Python Debuggers for ChromeOS

Browse free open source Python Debuggers for ChromeOS and projects below. Use the toggles on the left to filter open source Python Debuggers for ChromeOS by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Context for your AI agents Icon
    Context for your AI agents

    Crawl websites, sync to vector databases, and power RAG applications. Pre-built integrations for LLM pipelines and AI assistants.

    Build data pipelines that feed your AI models and agents without managing infrastructure. Crawl any website, transform content, and push directly to your preferred vector store. Use 10,000+ tools for RAG applications, AI assistants, and real-time knowledge bases. Monitor site changes, trigger workflows on new data, and keep your AIs fed with fresh, structured information. Cloud-native, API-first, and free to start until you need to scale.
    Try for free
  • 1
    FlowLens MCP

    FlowLens MCP

    Open-source MCP server that gives your coding agent

    FlowLens MCP Server is an open-source tool designed to give AI-powered coding agents (like Claude Code, Cursor, GitHub Copilot / Codex, and others) full, replayable browser context to dramatically improve debugging, bug reporting, and regression testing for web applications. It works together with a companion browser extension: when a user reproduces a bug or a complicated UI interaction, the extension captures a rich session log, including screen/video recording, network traffic, console logs, DOM events, storage changes, and more, and exports it. The MCP server then loads this captured “flow” and exposes it to the AI agent via the Model Context Protocol (MCP), letting the agent examine, search, filter, and reason about the session just as a human developer would, without needing the agent to re-run the flow or rely on minimal reproduction data (logs, screenshots).
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • Next