Showing 36 open source projects for "python framework"

View related business solutions
  • Auth0 for AI Agents now in GA Icon
    Auth0 for AI Agents now in GA

    Ready to implement AI with confidence (without sacrificing security)?

    Connect your AI agents to apps and data more securely, give users control over the actions AI agents can perform and the data they can access, and enable human confirmation for critical agent actions.
    Start building today
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    PyTorch

    PyTorch

    Open source machine learning framework

    PyTorch is a Python package that offers Tensor computation (like NumPy) with strong GPU acceleration and deep neural networks built on tape-based autograd system. This project allows for fast, flexible experimentation and efficient production. PyTorch consists of torch (Tensor library), torch.autograd (tape-based automatic differentiation library), torch.jit (a compilation stack [TorchScript]), torch.nn (neural networks library), torch.multiprocessing (Python multiprocessing), and...
    Downloads: 96 This Week
    Last Update:
    See Project
  • 2
    Ray

    Ray

    A unified framework for scalable computing

    ...Ray makes it effortless to parallelize single machine code — go from a single CPU to multi-core, multi-GPU or multi-node with minimal code changes. Accelerate your PyTorch and Tensorflow workload with a more resource-efficient and flexible distributed execution framework powered by Ray. Accelerate your hyperparameter search workloads with Ray Tune. Find the best model and reduce training costs by using the latest optimization algorithms. Deploy your machine learning models at scale with Ray Serve, a Python-first and framework agnostic model serving framework. Scale reinforcement learning (RL) with RLlib, a framework-agnostic RL library that ships with 30+ cutting-edge RL algorithms including A3C, DQN, and PPO. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 3
    Jittor

    Jittor

    Jittor is a high-performance deep learning framework

    ...The front-end language is Python. Module Design and Dynamic Graph Execution is used in the front-end, which is the most popular design for deep learning framework interface. The back-end is implemented by high-performance languages, such as CUDA, C++. Jittor'op is similar to NumPy. Let's try some operations. We create Var a and b via operation jt.float32, and add them.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 4
    MONAI

    MONAI

    AI Toolkit for Healthcare Imaging

    The MONAI framework is the open-source foundation being created by Project MONAI. MONAI is a freely available, community-supported, PyTorch-based framework for deep learning in healthcare imaging. It provides domain-optimized foundational capabilities for developing healthcare imaging training workflows in a native PyTorch paradigm. Project MONAI also includes MONAI Label, an intelligent open source image labeling and learning tool that helps researchers and clinicians collaborate, create...
    Downloads: 6 This Week
    Last Update:
    See Project
  • Dun and Bradstreet Connect simplifies the complex burden of data management Icon
    Dun and Bradstreet Connect simplifies the complex burden of data management

    Our self-service data management platform enables your organization to gain a complete and accurate view of your accounts and contacts.

    The amount, speed, and types of data created in today’s world can be overwhelming. With D&B Connect, you can instantly benchmark, enrich, and monitor your data against the Dun & Bradstreet Data Cloud to help ensure your systems of record have trusted data to fuel growth.
    Learn More
  • 5
    tvm

    tvm

    Open deep learning compiler stack for cpu, gpu, etc.

    ...Compilation of deep learning models in Keras, MXNet, PyTorch, Tensorflow, CoreML, DarkNet and more. Start using TVM with Python today, build out production stacks using C++, Rust, or Java the next day.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 6
    Metaflow

    Metaflow

    A framework for real-life data science

    Metaflow is a human-friendly Python library that helps scientists and engineers build and manage real-life data science projects. Metaflow was originally developed at Netflix to boost productivity of data scientists who work on a wide variety of projects from classical statistics to state-of-the-art deep learning.
    Downloads: 1 This Week
    Last Update:
    See Project
  • 7
    MegEngine

    MegEngine

    Easy-to-use deep learning framework with 3 key features

    ...Gain the lowest memory usage when inferencing a model by leveraging our unique pushdown memory planner. NOTE: MegEngine now supports Python installation on Linux-64bit/Windows-64bit/MacOS(CPU-Only)-10.14+/Android 7+(CPU-Only) platforms with Python from 3.5 to 3.8. On Windows 10 you can either install the Linux distribution through Windows Subsystem for Linux (WSL) or install the Windows distribution directly. Many other platforms are supported for inference.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    Raster Vision

    Raster Vision

    Open source framework for deep learning satellite and aerial imagery

    Raster Vision is an open source framework for Python developers building computer vision models on satellite, aerial, and other large imagery sets (including oblique drone imagery). There is built-in support for chip classification, object detection, and semantic segmentation using PyTorch. Raster Vision allows engineers to quickly and repeatably configure pipelines that go through core components of a machine learning workflow: analyzing training data, creating training chips, training models, creating predictions, evaluating models, and bundling the model files and configuration for easy deployment. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 9
    Lightly

    Lightly

    A python library for self-supervised learning on images

    A python library for self-supervised learning on images. We, at Lightly, are passionate engineers who want to make deep learning more efficient. That's why - together with our community - we want to popularize the use of self-supervised methods to understand and curate raw image data. Our solution can be applied before any data annotation step and the learned representations can be used to visualize and analyze datasets. This allows selecting the best core set of samples for model training...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Failed Payment Recovery for Subscription Businesses Icon
    Failed Payment Recovery for Subscription Businesses

    For subscription companies searching for a failed payment recovery solution to grow revenue, and retain customers.

    FlexPay’s innovative platform uses multiple technologies to achieve the highest number of retained customers, resulting in reduced involuntary churn, longer life span after recovery, and higher revenue. Leading brands like LegalZoom, Hooked on Phonics, and ClinicSense trust FlexPay to recover failed payments, reduce churn, and increase customer lifetime value.
    Learn More
  • 10
    ktrain

    ktrain

    ktrain is a Python library that makes deep learning AI more accessible

    ktrain is a Python library that makes deep learning and AI more accessible and easier to apply. ktrain is a lightweight wrapper for the deep learning library TensorFlow Keras (and other libraries) to help build, train, and deploy neural networks and other machine learning models. Inspired by ML framework extensions like fastai and ludwig, ktrain is designed to make deep learning and AI more accessible and easier to apply for both newcomers and experienced practitioners. ...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 11
    OneFlow

    OneFlow

    OneFlow is a deep learning framework designed to be user-friendly

    OneFlow is a deep learning framework designed to be user-friendly, scalable and efficient. An extension for OneFlow to target third-party compiler, such as XLA, TensorRT and OpenVINO etc.CUDA runtime is statically linked into OneFlow. OneFlow will work on a minimum supported driver, and any driver beyond. For more information. Distributed performance (efficiency) is the core technical difficulty of the deep learning framework. OneFlow focuses on performance improvement and heterogeneous...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 12
    OpenVINO Training Extensions

    OpenVINO Training Extensions

    Trainable models and NN optimization tools

    OpenVINO™ Training Extensions provide a convenient environment to train Deep Learning models and convert them using the OpenVINO™ toolkit for optimized inference. When ote_cli is installed in the virtual environment, you can use the ote command line interface to perform various actions for templates related to the chosen task type, such as running, training, evaluating, exporting, etc. ote train trains a model (a particular model template) on a dataset and saves results in two files. ote...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 13
    Thinc

    Thinc

    A refreshing functional take on deep learning

    Thinc is a lightweight deep learning library that offers an elegant, type-checked, functional-programming API for composing models, with support for layers defined in other frameworks such as PyTorch, TensorFlow and MXNet. You can use Thinc as an interface layer, a standalone toolkit or a flexible way to develop new models. Previous versions of Thinc have been running quietly in production in thousands of companies, via both spaCy and Prodigy. We wrote the new version to let users compose,...
    Downloads: 2 This Week
    Last Update:
    See Project
  • 14
    PyTorch Geometric Temporal

    PyTorch Geometric Temporal

    Spatiotemporal Signal Processing with Neural Machine Learning Models

    The library consists of various dynamic and temporal geometric deep learning, embedding, and Spatio-temporal regression methods from a variety of published research papers. Moreover, it comes with an easy-to-use dataset loader, train-test splitter and temporal snaphot iterator for dynamic and temporal graphs. The framework naturally provides GPU support. It also comes with a number of benchmark datasets from the epidemiological forecasting, sharing economy, energy production and web traffic...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    PyTorch/XLA

    PyTorch/XLA

    Enabling PyTorch on Google TPU

    PyTorch/XLA is a Python package that uses the XLA deep learning compiler to connect the PyTorch deep learning framework and Cloud TPUs. You can try it right now, for free, on a single Cloud TPU with Google Colab, and use it in production and on Cloud TPU Pods with Google Cloud. Take a look at one of our Colab notebooks to quickly try different PyTorch networks running on Cloud TPUs and learn how to use Cloud TPUs as PyTorch devices.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Jina

    Jina

    Build cross-modal and multimodal applications on the cloud

    Jina is a framework that empowers anyone to build cross-modal and multi-modal applications on the cloud. It uplifts a PoC into a production-ready service. Jina handles the infrastructure complexity, making advanced solution engineering and cloud-native technologies accessible to every developer. Build applications that deliver fresh insights from multiple data types such as text, image, audio, video, 3D mesh, PDF with Jina AI’s DocArray. Polyglot gateway that supports gRPC, Websockets, HTTP,...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    AWS Neuron

    AWS Neuron

    Powering Amazon custom machine learning chips

    AWS Neuron is a software development kit (SDK) for running machine learning inference using AWS Inferentia chips. It consists of a compiler, run-time, and profiling tools that enable developers to run high-performance and low latency inference using AWS Inferentia-based Amazon EC2 Inf1 instances. Using Neuron developers can easily train their machine learning models on any popular framework such as TensorFlow, PyTorch, and MXNet, and run it optimally on Amazon EC2 Inf1 instances. You can...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    MMDeploy

    MMDeploy

    OpenMMLab Model Deployment Framework

    MMDeploy is an open-source deep learning model deployment toolset. It is a part of the OpenMMLab project. Models can be exported and run in several backends, and more will be compatible. All kinds of modules in the SDK can be extended, such as Transform for image processing, Net for Neural Network inference, Module for postprocessing and so on. Install and build your target backend. ONNX Runtime is a cross-platform inference and training accelerator compatible with many popular ML/DNN...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Lightning-Hydra-Template

    Lightning-Hydra-Template

    PyTorch Lightning + Hydra. A very user-friendly template

    Convenient all-in-one technology stack for deep learning prototyping - allows you to rapidly iterate over new models, datasets and tasks on different hardware accelerators like CPUs, multi-GPUs or TPUs. A collection of best practices for efficient workflow and reproducibility. Thoroughly commented - you can use this repo as a reference and educational resource. Not fitted for data engineering - the template configuration setup is not designed for building data processing pipelines that...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    D2L.ai

    D2L.ai

    Interactive deep learning book with multi-framework code

    Interactive deep learning book with multi-framework code, math, and discussions. Adopted at 300 universities from 55 countries including Stanford, MIT, Harvard, and Cambridge. This open-source book represents our attempt to make deep learning approachable, teaching you the concepts, the context, and the code. The entire book is drafted in Jupyter notebooks, seamlessly integrating exposition figures, math, and interactive examples with self-contained code. Offers sufficient technical depth to...
    Downloads: 1 This Week
    Last Update:
    See Project
  • 21
    Horovod

    Horovod

    Distributed training framework for TensorFlow, Keras, PyTorch, etc.

    ...Start scaling your model training with just a few lines of Python code. Scale up to hundreds of GPUs with upwards of 90% scaling efficiency.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    Spektral

    Spektral

    Graph Neural Networks with Keras and Tensorflow 2

    Spektral is a Python library for graph deep learning, based on the Keras API and TensorFlow 2. The main goal of this project is to provide a simple but flexible framework for creating graph neural networks (GNNs). You can use Spektral for classifying the users of a social network, predicting molecular properties, generating new graphs with GANs, clustering nodes, predicting links, and any other task where data is described by graphs.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    DIG

    DIG

    A library for graph deep learning research

    The key difference with current graph deep learning libraries, such as PyTorch Geometric (PyG) and Deep Graph Library (DGL), is that, while PyG and DGL support basic graph deep learning operations, DIG provides a unified testbed for higher level, research-oriented graph deep learning tasks, such as graph generation, self-supervised learning, explainability, 3D graphs, and graph out-of-distribution. If you are working or plan to work on research in graph deep learning, DIG enables you to...
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Chainer

    Chainer

    A flexible deep learning framework

    Chainer is a Python-based deep learning framework. It provides automatic differentiation APIs based on dynamic computational graphs as well as high-level APIs for neural networks.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series...
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next