Open Source Python Machine Learning Software for Linux

Python Machine Learning Software for Linux

View 57 business solutions

Browse free open source Python Machine Learning Software for Linux and projects below. Use the toggles on the left to filter open source Python Machine Learning Software for Linux by OS, license, language, programming language, and project status.

  • Our Free Plans just got better! | Auth0 Icon
    Our Free Plans just got better! | Auth0

    With up to 25k MAUs and unlimited Okta connections, our Free Plan lets you focus on what you do best—building great apps.

    You asked, we delivered! Auth0 is excited to expand our Free and Paid plans to include more options so you can focus on building, deploying, and scaling applications without having to worry about your security. Auth0 now, thank yourself later.
    Try free now
  • Automate contact and company data extraction Icon
    Automate contact and company data extraction

    Build lead generation pipelines that pull emails, phone numbers, and company details from directories, maps, social platforms. Full API access.

    Generate leads at scale without building or maintaining scrapers. Use 10,000+ ready-made tools that handle authentication, pagination, and anti-bot protection. Pull data from business directories, social profiles, and public sources, then export to your CRM or database via API. Schedule recurring extractions, enrich existing datasets, and integrate with your workflows.
    Explore Apify Store
  • 1
    Diffgram

    Diffgram

    Training data (data labeling, annotation, workflow) for all data types

    From ingesting data to exploring it, annotating it, and managing workflows. Diffgram is a single application that will improve your data labeling and bring all aspects of training data under a single roof. Diffgram is world’s first truly open source training data platform that focuses on giving its users an unlimited experience. This is aimed to reduce your data labeling bills and increase your Training Data Quality. Training Data is the art of supervising machines through data. This includes the activities of annotation, which produces structured data; ready to be consumed by a machine learning model. Annotation is required because raw media is considered to be unstructured and not usable without it. That’s why training data is required for many modern machine learning use cases including computer vision, natural language processing and speech recognition.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 2
    scikit-learn

    scikit-learn

    Machine learning in Python

    scikit-learn is an open source Python module for machine learning built on NumPy, SciPy and matplotlib. It offers simple and efficient tools for predictive data analysis and is reusable in various contexts.
    Downloads: 4 This Week
    Last Update:
    See Project
  • 3
    Arize Phoenix

    Arize Phoenix

    Uncover insights, surface problems, monitor, and fine tune your LLM

    Phoenix provides ML insights at lightning speed with zero-config observability for model drift, performance, and data quality. Phoenix is an Open Source ML Observability library designed for the Notebook. The toolset is designed to ingest model inference data for LLMs, CV, NLP and tabular datasets. It allows Data Scientists to quickly visualize their model data, monitor performance, track down issues & insights, and easily export to improve. Deep Learning Models (CV, LLM, and Generative) are an amazing technology that will power many of future ML use cases. A large set of these technologies are being deployed into businesses (the real world) in what we consider a production setting.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 4
    marimo

    marimo

    A reactive notebook for Python

    marimo is an open-source reactive notebook for Python, reproducible, git-friendly, executable as a script, and shareable as an app. marimo notebooks are reproducible, extremely interactive, designed for collaboration (git-friendly!), deployable as scripts or apps, and fit for modern Pythonista. Run one cell and marimo reacts by automatically running affected cells, eliminating the error-prone chore of managing the notebook state. marimo's reactive UI elements, like data frame GUIs and plots, make working with data feel refreshingly fast, futuristic, and intuitive. Version with git, run as Python scripts, import symbols from a notebook into other notebooks or Python files, and lint or format with your favorite tools. You'll always be able to reproduce your collaborators' results. Notebooks are executed in a deterministic order, with no hidden state, delete a cell and marimo deletes its variables while updating affected cells.
    Downloads: 3 This Week
    Last Update:
    See Project
  • Powerful cloud-based licensing solution designed for fast-growing software businesses. Icon
    Powerful cloud-based licensing solution designed for fast-growing software businesses.

    A single-point of license control for desktop, SaaS, and mobile applications, APIs, VMs and devices.

    10Duke Enterprise is a cloud-based, scalable and flexible software licensing solution enabling software vendors to easily configure, manage and monetize the licenses they provide to their customers in real-time.
    Learn More
  • 5
    ClearML

    ClearML

    Streamline your ML workflow

    ClearML is an open source platform that automates and simplifies developing and managing machine learning solutions for thousands of data science teams all over the world. It is designed as an end-to-end MLOps suite allowing you to focus on developing your ML code & automation, while ClearML ensures your work is reproducible and scalable. The ClearML Python Package for integrating ClearML into your existing scripts by adding just two lines of code, and optionally extending your experiments and other workflows with ClearML powerful and versatile set of classes and methods. The ClearML Server storing experiment, model, and workflow data, and supports the Web UI experiment manager, and ML-Ops automation for reproducibility and tuning. It is available as a hosted service and open source for you to deploy your own ClearML Server. The ClearML Agent for ML-Ops orchestration, experiment and workflow reproducibility, and scalability.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 6
    FiftyOne

    FiftyOne

    The open-source tool for building high-quality datasets

    The open-source tool for building high-quality datasets and computer vision models. Nothing hinders the success of machine learning systems more than poor-quality data. And without the right tools, improving a model can be time-consuming and inefficient. FiftyOne supercharges your machine learning workflows by enabling you to visualize datasets and interpret models faster and more effectively. Improving data quality and understanding your model’s failure modes are the most impactful ways to boost the performance of your model. FiftyOne provides the building blocks for optimizing your dataset analysis pipeline. Use it to get hands-on with your data, including visualizing complex labels, evaluating your models, exploring scenarios of interest, identifying failure modes, finding annotation mistakes, and much more! Surveys show that machine learning engineers spend over half of their time wrangling data, but it doesn't have to be that way.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 7
    Qlib

    Qlib

    Qlib is an AI-oriented quantitative investment platform

    Qlib is an AI-oriented quantitative investment platform, which aims to realize the potential, empower the research, and create the value of AI technologies in quantitative investment. With Qlib, you can easily try your ideas to create better Quant investment strategies. An increasing number of SOTA Quant research works/papers are released in Qlib. With Qlib, users can easily try their ideas to create better Quant investment strategies. At the module level, Qlib is a platform that consists of above components. The components are designed as loose-coupled modules and each component could be used stand-alone.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 8
    tika-python

    tika-python

    Python binding to the Apache Tika™ REST services

    A Python port of the Apache Tika library that makes Tika available using the Tika REST Server. This makes Apache Tika available as a Python library, installable via Setuptools, Pip and easy to install. To use this library, you need to have Java 7+ installed on your system as tika-python starts up the Tika REST server in the background. To get this working in a disconnected environment, download a tika server file (both tika-server.jar and tika-server.jar.md5, which can be found here) and set the TIKA_SERVER_JAR environment variable to TIKA_SERVER_JAR="file:////tika-server.jar" which successfully tells python-tika to "download" this file and move it to /tmp/tika-server.jar and run as a background process. This is the only way to run python-tika without internet access. Without this set, the default is to check the tika version and pull latest every time from Apache.
    Downloads: 2 This Week
    Last Update:
    See Project
  • 9
    PyBroker

    PyBroker

    Algorithmic Trading in Python with Machine Learning

    Are you looking to enhance your trading strategies with the power of Python and machine learning? Then you need to check out PyBroker! This Python framework is designed for developing algorithmic trading strategies, with a focus on strategies that use machine learning. With PyBroker, you can easily create and fine-tune trading rules, build powerful models, and gain valuable insights into your strategy’s performance.
    Downloads: 1 This Week
    Last Update:
    See Project
  • Comet Backup - Fast, Secure Backup Software for MSPs Icon
    Comet Backup - Fast, Secure Backup Software for MSPs

    Fast, Secure Backup Software for Businesses and IT Providers

    Comet is a flexible backup platform, giving you total control over your backup environment and storage destinations.
    Learn More
  • 10
    Ubix Linux

    Ubix Linux

    The Pocket Datalab

    Ubix stands for Universal Business Intelligence Computing System. Ubix Linux is an open-source, Debian-based Linux distribution geared towards data acquisition, transformation, analysis and presentation. Ubix Linux purpose is to offer a tiny but versatile datalab. Ubix Linux is easily accessible, resource-efficient and completely portable on a simple USB key. Ubix Linux is a perfect toolset for learning data analysis and artificial intelligence basics on small to medium datasets. You can find additional information, technical guidance, and user credentials on the project website https://ubix-linux.sourceforge.io/ or on the project subreddit https://reddit.com/r/UbixLinux.
    Downloads: 19 This Week
    Last Update:
    See Project
  • 11
    SMILI

    SMILI

    Scientific Visualisation Made Easy

    The Simple Medical Imaging Library Interface (SMILI), pronounced 'smilie', is an open-source, light-weight and easy-to-use medical imaging viewer and library for all major operating systems. The main sMILX application features for viewing n-D images, vector images, DICOMs, anonymizing, shape analysis and models/surfaces with easy drag and drop functions. It also features a number of standard processing algorithms for smoothing, thresholding, masking etc. images and models, both with graphical user interfaces and/or via the command-line. See our YouTube channel for tutorial videos via the homepage. The applications are all built out of a uniform user-interface framework that provides a very high level (Qt) interface to powerful image processing and scientific visualisation algorithms from the Insight Toolkit (ITK) and Visualisation Toolkit (VTK). The framework allows one to build stand-alone medical imaging applications quickly and easily.
    Leader badge
    Downloads: 9 This Week
    Last Update:
    See Project
  • 12
    Uranie

    Uranie

    Uranie is CEA's uncertainty analysis platform, based on ROOT

    Uranie is a sensitivity and uncertainty analysis plateform based on the ROOT framework (http://root.cern.ch) . It is developed at CEA, the French Atomic Energy Commission (http://www.cea.fr). It provides various tools for: - data analysis - sampling - statistical modeling - optimisation - sensitivity analysis - uncertainty analysis - running code on high performance computers - etc. Thanks to ROOT, it is easily scriptable in CINT (c++ like syntax) and Python. Is is available both for Unix and Windows platforms (a dedicated platform archive is available on request). Note : if you have downloaded version 3.12 before the 8th of february, a patch exists for a minor bug on TOutputFileKey file, don't hesitate to ask us.
    Downloads: 3 This Week
    Last Update:
    See Project
  • 13
    AI learning

    AI learning

    AiLearning, data analysis plus machine learning practice

    We actively respond to the Research Open Source Initiative (DOCX) . Open source today is not just open source, but datasets, models, tutorials, and experimental records. We are also exploring other categories of open source solutions and protocols. I hope you will understand this initiative, combine this initiative with your own interests, and do what you can. Everyone's tiny contributions, together, are the entire open source ecosystem. We are iBooker, a large open-source community, we-media, and online earning community, with a QQ group of more than 10,000 people and at least 10,000 subscribers. The number of Github Stars exceeds 60k, and it ranks in the top 100 of all Github organizations. The daily up of all its websites exceeds 4k, and the peak of Alexa ranking is 20k. Our core members are certified as CSDN blog experts and short-book programmers as excellent authors. We have established ApacheCN, a non-profit document, and tutorial translation project.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 14
    AWS Step Functions Data Science SDK

    AWS Step Functions Data Science SDK

    For building machine learning (ML) workflows and pipelines on AWS

    The AWS Step Functions Data Science SDK is an open-source library that allows data scientists to easily create workflows that process and publish machine learning models using Amazon SageMaker and AWS Step Functions. You can create machine learning workflows in Python that orchestrate AWS infrastructure at scale, without having to provision and integrate the AWS services separately. The best way to quickly review how the AWS Step Functions Data Science SDK works is to review the related example notebooks. These notebooks provide code and descriptions for creating and running workflows in AWS Step Functions Using the AWS Step Functions Data Science SDK. In Amazon SageMaker, example Jupyter notebooks are available in the example notebooks portion of a notebook instance. To run the AWS Step Functions Data Science SDK example notebooks locally, download the sample notebooks and open them in a working Jupyter instance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 15
    AutoGluon

    AutoGluon

    AutoGluon: AutoML for Image, Text, and Tabular Data

    AutoGluon enables easy-to-use and easy-to-extend AutoML with a focus on automated stack ensembling, deep learning, and real-world applications spanning image, text, and tabular data. Intended for both ML beginners and experts, AutoGluon enables you to quickly prototype deep learning and classical ML solutions for your raw data with a few lines of code. Automatically utilize state-of-the-art techniques (where appropriate) without expert knowledge. Leverage automatic hyperparameter tuning, model selection/ensembling, architecture search, and data processing. Easily improve/tune your bespoke models and data pipelines, or customize AutoGluon for your use-case. AutoGluon is modularized into sub-modules specialized for tabular, text, or image data. You can reduce the number of dependencies required by solely installing a specific sub-module via: python3 -m pip install <submodule>.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 16
    Awesome Fraud Detection Research Papers

    Awesome Fraud Detection Research Papers

    A curated list of data mining papers about fraud detection

    A curated list of data mining papers about fraud detection from several conferences.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 17
    Bytewax

    Bytewax

    Python Stream Processing

    Bytewax is a Python framework that simplifies event and stream processing. Because Bytewax couples the stream and event processing capabilities of Flink, Spark, and Kafka Streams with the friendly and familiar interface of Python, you can re-use the Python libraries you already know and love. Connect data sources, run stateful transformations, and write to various downstream systems with built-in connectors or existing Python libraries. Bytewax is a Python framework and Rust distributed processing engine that uses a dataflow computational model to provide parallelizable stream processing and event processing capabilities similar to Flink, Spark, and Kafka Streams. You can use Bytewax for a variety of workloads from moving data à la Kafka Connect style all the way to advanced online machine learning workloads. Bytewax is not limited to streaming applications but excels anywhere that data can be distributed at the input and output.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 18
    Datapipe

    Datapipe

    Real-time, incremental ETL library for ML with record-level depend

    Datapipe is a real-time, incremental ETL library for Python with record-level dependency tracking. Datapipe is designed to streamline the creation of data processing pipelines. It excels in scenarios where data is continuously changing, requiring pipelines to adapt and process only the modified data efficiently. This library tracks dependencies for each record in the pipeline, ensuring minimal and efficient data processing.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 19
    Deep learning time series forecasting

    Deep learning time series forecasting

    Deep learning PyTorch library for time series forecasting

    Example image Flow Forecast (FF) is an open-source deep learning for time series forecasting framework. It provides all the latest state-of-the-art models (transformers, attention models, GRUs) and cutting-edge concepts with easy-to-understand interpretability metrics, cloud provider integration, and model serving capabilities. Flow Forecast was the first time series framework to feature support for transformer-based models and remains the only true end-to-end deep learning for time series forecasting framework. Currently, Task-TS from CoronaWhy primarily maintains this repository. Pull requests are welcome. Historically, this repository provided open-source benchmarks and codes for flash flood and river flow forecasting. Full transformer (SimpleTransformer in model_dict): The full original transformer with all 8 encoder and decoder blocks. Requires passing the target in at inference.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 20
    Face Mask Detection

    Face Mask Detection

    Face Mask Detection system based on computer vision and deep learning

    Face Mask Detection system based on computer vision and deep learning using OpenCV and Tensorflow/Keras. Face Mask Detection System built with OpenCV, Keras/TensorFlow using Deep Learning and Computer Vision concepts in order to detect face masks in static images as well as in real-time video streams. Amid the ongoing COVID-19 pandemic, there are no efficient face mask detection applications which are now in high demand for transportation means, densely populated areas, residential districts, large-scale manufacturers and other enterprises to ensure safety. The absence of large datasets of ‘with_mask’ images has made this task cumbersome and challenging. Our face mask detector doesn't use any morphed masked images dataset and the model is accurate. Owing to the use of MobileNetV2 architecture, it is computationally efficient, thus making it easier to deploy the model to embedded systems (Raspberry Pi, Google Coral, etc.).
    Downloads: 0 This Week
    Last Update:
    See Project
  • 21
    Forecasting Best Practices

    Forecasting Best Practices

    Time Series Forecasting Best Practices & Examples

    Time series forecasting is one of the most important topics in data science. Almost every business needs to predict the future in order to make better decisions and allocate resources more effectively. This repository provides examples and best practice guidelines for building forecasting solutions. The goal of this repository is to build a comprehensive set of tools and examples that leverage recent advances in forecasting algorithms to build solutions and operationalize them. Rather than creating implementations from scratch, we draw from existing state-of-the-art libraries and build additional utilities around processing and featuring the data, optimizing and evaluating models, and scaling up to the cloud. The examples and best practices are provided as Python Jupyter notebooks and R markdown files and a library of utility functions.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 22
    A High-Order Multi-Variate Approximation Scheme for Arbitrary Data Sets, C implementation of the method described in http://web.mit.edu/qiqi/www/paper/interpolation.pdf, with Python and Fortran interfaces.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 23
    ML workspace

    ML workspace

    All-in-one web-based IDE specialized for machine learning

    All-in-one web-based development environment for machine learning. The ML workspace is an all-in-one web-based IDE specialized for machine learning and data science. It is simple to deploy and gets you started within minutes to productively built ML solutions on your own machines. This workspace is the ultimate tool for developers preloaded with a variety of popular data science libraries (e.g., Tensorflow, PyTorch, Keras, Sklearn) and dev tools (e.g., Jupyter, VS Code, Tensorboard) perfectly configured, optimized, and integrated. Usable as remote kernel (Jupyter) or remote machine (VS Code) via SSH. Easy to deploy on Mac, Linux, and Windows via Docker. Jupyter, JupyterLab, and Visual Studio Code web-based IDEs.By default, the workspace container has no resource constraints and can use as much of a given resource as the host’s kernel scheduler allows.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 24
    Monk Computer Vision

    Monk Computer Vision

    A low code unified framework for computer vision and deep learning

    Monk is an open source low code programming environment to reduce the cognitive load faced by entry level programmers while catering to the needs of Expert Deep Learning engineers. There are three libraries in this opensource set. - Monk Classiciation- https://monkai.org. A Unified wrapper over major deep learning frameworks. Our core focus area is at the intersection of Computer Vision and Deep Learning algorithms. - Monk Object Detection - https://github.com/Tessellate-Imaging/Monk_Object_Detection. Monk object detection is our take on assembling state of the art object detection, image segmentation, pose estimation algorithms at one place, making them low code and easily configurable on any machine. - Monk GUI - https://github.com/Tessellate-Imaging/Monk_Gui. An interface over these low code tools for non coders.
    Downloads: 0 This Week
    Last Update:
    See Project
  • 25
    NannyML

    NannyML

    Detecting silent model failure. NannyML estimates performance

    NannyML is an open-source python library that allows you to estimate post-deployment model performance (without access to targets), detect data drift, and intelligently link data drift alerts back to changes in model performance. Built for data scientists, NannyML has an easy-to-use interface, and interactive visualizations, is completely model-agnostic, and currently supports all tabular classification use cases. NannyML closes the loop with performance monitoring and post deployment data science, empowering data scientist to quickly understand and automatically detect silent model failure. By using NannyML, data scientists can finally maintain complete visibility and trust in their deployed machine learning models. When the actual outcome of your deployed prediction models is delayed, or even when post-deployment target labels are completely absent, you can use NannyML's CBPE-algorithm to estimate model performance.
    Downloads: 0 This Week
    Last Update:
    See Project
  • Previous
  • You're on page 1
  • 2
  • Next