Related Products
|
||||||
About
Improve your embedding metadata and embedding tokens with a user-friendly UI. Seamlessly apply advanced NLP cleansing techniques like TF-IDF, normalize, and enrich your embedding tokens, improving efficiency and accuracy in your LLM-related applications. Optimize the relevance of the content you get back from a vector database, intelligently splitting or merging the content based on its structure and adding void or hidden tokens, making chunks even more semantically coherent. Get full control over your data, effortlessly deploying Embedditor locally on your PC or in your dedicated enterprise cloud or on-premises environment. Applying Embedditor advanced cleansing techniques to filter out embedding irrelevant tokens like stop-words, punctuations, and low-relevant frequent words, you can save up to 40% on the cost of embedding and vector storage while getting better search results.
|
About
GloVe (Global Vectors for Word Representation) is an unsupervised learning algorithm developed by the Stanford NLP Group to obtain vector representations for words. It constructs word embeddings by analyzing global word-word co-occurrence statistics from a given corpus, resulting in vector spaces where the geometric relationships reflect semantic similarities and differences among words. A notable feature of GloVe is its ability to capture linear substructures within the word vector space, enabling vector arithmetic to express relationships. The model is trained on the non-zero entries of a global word-word co-occurrence matrix, which records how frequently pairs of words appear together in a corpus. This approach efficiently leverages statistical information by focusing on significant co-occurrences, leading to meaningful word representations. Pre-trained word vectors are available for various corpora, including Wikipedia 2014.
|
About
fastText is an open source, free, and lightweight library developed by Facebook's AI Research (FAIR) lab for efficient learning of word representations and text classification. It supports both unsupervised learning of word vectors and supervised learning for text classification tasks. A key feature of fastText is its ability to capture subword information by representing words as bags of character n-grams, which enhances the handling of morphologically rich languages and out-of-vocabulary words. The library is optimized for performance and capable of training on large datasets quickly, and the resulting models can be reduced in size for deployment on mobile devices. Pre-trained word vectors are available for 157 languages, trained on Common Crawl and Wikipedia data, and can be downloaded for immediate use. fastText also offers aligned word vectors for 44 languages, facilitating cross-lingual natural language processing tasks.
|
||||
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
Platforms Supported
Windows
Mac
Linux
Cloud
On-Premises
iPhone
iPad
Android
Chromebook
|
||||
Audience
Anyone searching for an open-source platform that helps them get the most out of your vector search
|
Audience
Data scientists in search of a solution to enhance their natural language processing models with word embeddings that capture global statistical information from large text corpora
|
Audience
Language processing practitioners and researchers requiring a tool for learning word embeddings and building text classifiers
|
||||
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
Support
Phone Support
24/7 Live Support
Online
|
||||
API
Offers API
|
API
Offers API
|
API
Offers API
|
||||
Screenshots and Videos |
Screenshots and Videos |
Screenshots and Videos |
||||
Pricing
No information available.
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
Pricing
Free
Free Version
Free Trial
|
||||
Reviews/
|
Reviews/
|
Reviews/
|
||||
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
Training
Documentation
Webinars
Live Online
In Person
|
||||
Company InformationEmbedditor
embedditor.ai/
|
Company InformationStanford NLP
United States
nlp.stanford.edu/projects/glove/
|
Company InformationfastText
fasttext.cc/
|
||||
Alternatives |
Alternatives |
Alternatives |
||||
|
|
|
|||||
|
|
|
|
||||
|
|
|
|||||
|
|
||||||
Categories |
Categories |
Categories |
||||
Integrations
Docker
Gensim
GitHub
IngestAI
JavaScript
Python
WebAssembly
|
||||||
|
|
|
|