Alternatives to Solar Mini

Compare Solar Mini alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to Solar Mini in 2025. Compare features, ratings, user reviews, pricing, and more from Solar Mini competitors and alternatives in order to make an informed decision for your business.

  • 1
    Mistral 7B

    Mistral 7B

    Mistral AI

    Mistral 7B is a 7.3-billion-parameter language model that outperforms larger models like Llama 2 13B across various benchmarks. It employs Grouped-Query Attention (GQA) for faster inference and Sliding Window Attention (SWA) to efficiently handle longer sequences. Released under the Apache 2.0 license, Mistral 7B is accessible for deployment across diverse platforms, including local environments and major cloud services. Additionally, a fine-tuned version, Mistral 7B Instruct, demonstrates enhanced performance in instruction-following tasks, surpassing models like Llama 2 13B Chat.
  • 2
    Llama 2
    The next generation of our open source large language model. This release includes model weights and starting code for pretrained and fine-tuned Llama language models — ranging from 7B to 70B parameters. Llama 2 pretrained models are trained on 2 trillion tokens, and have double the context length than Llama 1. Its fine-tuned models have been trained on over 1 million human annotations. Llama 2 outperforms other open source language models on many external benchmarks, including reasoning, coding, proficiency, and knowledge tests. Llama 2 was pretrained on publicly available online data sources. The fine-tuned model, Llama-2-chat, leverages publicly available instruction datasets and over 1 million human annotations. We have a broad range of supporters around the world who believe in our open approach to today’s AI — companies that have given early feedback and are excited to build with Llama 2.
  • 3
    Vicuna

    Vicuna

    lmsys.org

    Vicuna-13B is an open-source chatbot trained by fine-tuning LLaMA on user-shared conversations collected from ShareGPT. Preliminary evaluation using GPT-4 as a judge shows Vicuna-13B achieves more than 90%* quality of OpenAI ChatGPT and Google Bard while outperforming other models like LLaMA and Stanford Alpaca in more than 90%* of cases. The cost of training Vicuna-13B is around $300. The code and weights, along with an online demo, are publicly available for non-commercial use.
  • 4
    Mistral NeMo

    Mistral NeMo

    Mistral AI

    Mistral NeMo, our new best small model. A state-of-the-art 12B model with 128k context length, and released under the Apache 2.0 license. Mistral NeMo is a 12B model built in collaboration with NVIDIA. Mistral NeMo offers a large context window of up to 128k tokens. Its reasoning, world knowledge, and coding accuracy are state-of-the-art in its size category. As it relies on standard architecture, Mistral NeMo is easy to use and a drop-in replacement in any system using Mistral 7B. We have released pre-trained base and instruction-tuned checkpoints under the Apache 2.0 license to promote adoption for researchers and enterprises. Mistral NeMo was trained with quantization awareness, enabling FP8 inference without any performance loss. The model is designed for global, multilingual applications. It is trained on function calling and has a large context window. Compared to Mistral 7B, it is much better at following precise instructions, reasoning, and handling multi-turn conversations.
  • 5
    TinyLlama

    TinyLlama

    TinyLlama

    The TinyLlama project aims to pretrain a 1.1B Llama model on 3 trillion tokens. With some proper optimization, we can achieve this within a span of "just" 90 days using 16 A100-40G GPUs. We adopted exactly the same architecture and tokenizer as Llama 2. This means TinyLlama can be plugged and played in many open-source projects built upon Llama. Besides, TinyLlama is compact with only 1.1B parameters. This compactness allows it to cater to a multitude of applications demanding a restricted computation and memory footprint.
  • 6
    Phi-4-reasoning
    Phi-4-reasoning is a 14-billion parameter transformer-based language model optimized for complex reasoning tasks, including math, coding, algorithmic problem solving, and planning. Trained via supervised fine-tuning of Phi-4 on carefully curated "teachable" prompts and reasoning demonstrations generated using o3-mini, it generates detailed reasoning chains that effectively leverage inference-time compute. Phi-4-reasoning incorporates outcome-based reinforcement learning to produce longer reasoning traces. It outperforms significantly larger open-weight models such as DeepSeek-R1-Distill-Llama-70B and approaches the performance levels of the full DeepSeek-R1 model across a wide range of reasoning tasks. Phi-4-reasoning is designed for environments with constrained computing or latency. Fine-tuned with synthetic data generated by DeepSeek-R1, it provides high-quality, step-by-step problem solving.
  • 7
    Mistral Small 3.1
    ​Mistral Small 3.1 is a state-of-the-art, multimodal, and multilingual AI model released under the Apache 2.0 license. Building upon Mistral Small 3, this enhanced version offers improved text performance, and advanced multimodal understanding, and supports an expanded context window of up to 128,000 tokens. It outperforms comparable models like Gemma 3 and GPT-4o Mini, delivering inference speeds of 150 tokens per second. Designed for versatility, Mistral Small 3.1 excels in tasks such as instruction following, conversational assistance, image understanding, and function calling, making it suitable for both enterprise and consumer-grade AI applications. Its lightweight architecture allows it to run efficiently on a single RTX 4090 or a Mac with 32GB RAM, facilitating on-device deployments. It is available for download on Hugging Face, accessible via Mistral AI's developer playground, and integrated into platforms like Google Cloud Vertex AI, with availability on NVIDIA NIM and
  • 8
    Syn

    Syn

    Upstage AI

    Syn is a next‑generation Japanese large language model co‑developed by Upstage and Karakuri, featuring under 14 billion parameters and optimized for enterprise use in finance, manufacturing, legal, and healthcare. It delivers top‑tier benchmark performance on the Weights & Biases Nejumi Leaderboard, achieving industry‑leading scores for accuracy and alignment, while maintaining cost efficiency through a lightweight architecture derived from Solar Mini. Syn excels in Japanese “truthfulness” and safety, understanding nuanced expressions and industry‑specific terminology, and offers flexible fine‑tuning to integrate proprietary data and domain knowledge. Built for scalable deployment, it supports on‑premises, AWS Marketplace, and cloud environments, with security and compliance safeguards tailored to enterprise requirements. Leveraging AWS Trainium, Syn reduces training costs by approximately 50 percent compared to traditional GPU setups, enabling rapid customization of use cases.
    Starting Price: $0.1 per 1M tokens
  • 9
    Stable Beluga

    Stable Beluga

    Stability AI

    Stability AI and its CarperAI lab proudly announce Stable Beluga 1 and its successor Stable Beluga 2 (formerly codenamed FreeWilly), two powerful new, open access, Large Language Models (LLMs). Both models demonstrate exceptional reasoning ability across varied benchmarks. Stable Beluga 1 leverages the original LLaMA 65B foundation model and was carefully fine-tuned with a new synthetically-generated dataset using Supervised Fine-Tune (SFT) in standard Alpaca format. Similarly, Stable Beluga 2 leverages the LLaMA 2 70B foundation model to achieve industry-leading performance.
  • 10
    Mixtral 8x7B

    Mixtral 8x7B

    Mistral AI

    Mixtral 8x7B is a high-quality sparse mixture of experts model (SMoE) with open weights. Licensed under Apache 2.0. Mixtral outperforms Llama 2 70B on most benchmarks with 6x faster inference. It is the strongest open-weight model with a permissive license and the best model overall regarding cost/performance trade-offs. In particular, it matches or outperforms GPT-3.5 on most standard benchmarks.
  • 11
    Solar Pro 2

    Solar Pro 2

    Upstage AI

    Solar Pro 2 is Upstage’s latest frontier‑scale large language model, designed to power complex tasks and agent‑like workflows across domains such as finance, healthcare, and legal. Packaged in a compact 31 billion‑parameter architecture, it delivers top‑tier multilingual performance, especially in Korean, where it outperforms much larger models on benchmarks like Ko‑MMLU, Hae‑Rae, and Ko‑IFEval, while also excelling in English and Japanese. Beyond superior language understanding and generation, Solar Pro 2 offers next‑level intelligence through an advanced Reasoning Mode that significantly boosts multi‑step task accuracy on challenges ranging from general reasoning (MMLU, MMLU‑Pro, HumanEval) to complex mathematics (Math500, AIME) and software engineering (SWE‑Bench Agentless), achieving problem‑solving efficiency comparable to or exceeding that of models twice its size. Enhanced tool‑use capabilities enable the model to interact seamlessly with external APIs and data sources.
    Starting Price: $0.1 per 1M tokens
  • 12
    OpenPipe

    OpenPipe

    OpenPipe

    OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.
    Starting Price: $1.20 per 1M tokens
  • 13
    Devstral

    Devstral

    Mistral AI

    Devstral is an open source, agentic large language model (LLM) developed by Mistral AI in collaboration with All Hands AI, specifically designed for software engineering tasks. It excels at navigating complex codebases, editing multiple files, and resolving real-world issues, outperforming all open source models on the SWE-Bench Verified benchmark with a score of 46.8%. Devstral is fine-tuned from Mistral-Small-3.1 and features a long context window of up to 128,000 tokens. It is optimized for local deployment on high-end hardware, such as a Mac with 32GB RAM or an Nvidia RTX 4090 GPU, and is compatible with inference frameworks like vLLM, Transformers, and Ollama. Released under the Apache 2.0 license, Devstral is available for free and can be accessed via Hugging Face, Ollama, Kaggle, Unsloth, and LM Studio.
    Starting Price: $0.1 per million input tokens
  • 14
    Falcon-40B

    Falcon-40B

    Technology Innovation Institute (TII)

    Falcon-40B is a 40B parameters causal decoder-only model built by TII and trained on 1,000B tokens of RefinedWeb enhanced with curated corpora. It is made available under the Apache 2.0 license. Why use Falcon-40B? It is the best open-source model currently available. Falcon-40B outperforms LLaMA, StableLM, RedPajama, MPT, etc. See the OpenLLM Leaderboard. It features an architecture optimized for inference, with FlashAttention and multiquery. It is made available under a permissive Apache 2.0 license allowing for commercial use, without any royalties or restrictions. ⚠️ This is a raw, pretrained model, which should be further finetuned for most usecases. If you are looking for a version better suited to taking generic instructions in a chat format, we recommend taking a look at Falcon-40B-Instruct.
  • 15
    Phi-4-mini-reasoning
    Phi-4-mini-reasoning is a 3.8-billion parameter transformer-based language model optimized for mathematical reasoning and step-by-step problem solving in environments with constrained computing or latency. Fine-tuned with synthetic data generated by the DeepSeek-R1 model, it balances efficiency with advanced reasoning ability. Trained on over one million diverse math problems spanning multiple levels of difficulty from middle school to Ph.D. level, Phi-4-mini-reasoning outperforms its base model on long sentence generation across various evaluations and surpasses larger models like OpenThinker-7B, Llama-3.2-3B-instruct, and DeepSeek-R1. It features a 128K-token context window and supports function calling, enabling integration with external tools and APIs. Phi-4-mini-reasoning can be quantized using Microsoft Olive or Apple MLX Framework for deployment on edge devices such as IoT, laptops, and mobile devices.
  • 16
    EXAONE Deep
    EXAONE Deep is a series of reasoning-enhanced language models developed by LG AI Research, featuring parameter sizes of 2.4 billion, 7.8 billion, and 32 billion. These models demonstrate superior capabilities in various reasoning tasks, including math and coding benchmarks. Notably, EXAONE Deep 2.4B outperforms other models of comparable size, EXAONE Deep 7.8B surpasses both open-weight models of similar scale and the proprietary reasoning model OpenAI o1-mini, and EXAONE Deep 32B shows competitive performance against leading open-weight models. The repository provides comprehensive documentation covering performance evaluations, quickstart guides for using EXAONE Deep models with Transformers, explanations of quantized EXAONE Deep weights in AWQ and GGUF formats, and instructions for running EXAONE Deep models locally using frameworks like llama.cpp and Ollama.
  • 17
    Tülu 3
    Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.
  • 18
    Ministral 3

    Ministral 3

    Mistral AI

    Mistral 3 is the latest generation of open-weight AI models from Mistral AI, offering a full family of models, from small, edge-optimized versions to a flagship, large-scale multimodal model. The lineup includes three compact “Ministral 3” models (3B, 8B, and 14B parameters) designed for efficiency and deployment on constrained hardware (even laptops, drones, or edge devices), plus the powerful “Mistral Large 3,” a sparse mixture-of-experts model with 675 billion total parameters (41 billion active). The models support multimodal and multilingual tasks, not only text, but also image understanding, and have demonstrated best-in-class performance on general prompts, multilingual conversations, and multimodal inputs. The base and instruction-fine-tuned versions are released under the Apache 2.0 license, enabling broad customization and integration in enterprise and open source projects.
  • 19
    Falcon Mamba 7B

    Falcon Mamba 7B

    Technology Innovation Institute (TII)

    Falcon Mamba 7B is the first open-source State Space Language Model (SSLM), introducing a groundbreaking architecture for Falcon models. Recognized as the top-performing open-source SSLM worldwide by Hugging Face, it sets a new benchmark in AI efficiency. Unlike traditional transformers, SSLMs operate with minimal memory requirements and can generate extended text sequences without additional overhead. Falcon Mamba 7B surpasses leading transformer-based models, including Meta’s Llama 3.1 8B and Mistral’s 7B, showcasing superior performance. This innovation underscores Abu Dhabi’s commitment to advancing AI research and development on a global scale.
  • 20
    Mistral Medium 3.1
    Mistral Medium 3.1 is the latest frontier-class multimodal foundation model released in August 2025, designed to deliver advanced reasoning, coding, and multimodal capabilities while dramatically reducing deployment complexity and costs. It builds on the highly efficient architecture of Mistral Medium 3, renowned for offering state-of-the-art performance at up to 8-times lower cost than leading large models, enhancing tone consistency, responsiveness, and accuracy across diverse tasks and modalities. The model supports deployment across hybrid environments, on-premises systems, and virtual private clouds, and it achieves competitive performance relative to high-end models such as Claude Sonnet 3.7, Llama 4 Maverick, and Cohere Command A. Ideal for professional and enterprise use cases, Mistral Medium 3.1 excels in coding, STEM reasoning, language understanding, and multimodal comprehension, while maintaining broad compatibility with custom workflows and infrastructure.
  • 21
    Mistral Large 3
    Mistral Large 3 is a next-generation, open multimodal AI model built with a powerful sparse Mixture-of-Experts architecture featuring 41B active parameters out of 675B total. Designed from scratch on NVIDIA H200 GPUs, it delivers frontier-level reasoning, multilingual performance, and advanced image understanding while remaining fully open-weight under the Apache 2.0 license. The model achieves top-tier results on modern instruction benchmarks, positioning it among the strongest permissively licensed foundation models available today. With native support across vLLM, TensorRT-LLM, and major cloud providers, Mistral Large 3 offers exceptional accessibility and performance efficiency. Its design enables enterprise-grade customization, letting teams fine-tune or adapt the model for domain-specific workflows and proprietary applications. Mistral Large 3 represents a major advancement in open AI, offering frontier intelligence without sacrificing transparency or control.
  • 22
    Giga ML

    Giga ML

    Giga ML

    We just launched X1 large series of Models. Giga ML's most powerful model is available for pre-training and fine-tuning with on-prem deployment. Since we are Open AI compatible, your existing integrations with long chain, llama-index, and all others work seamlessly. You can continue pre-training of LLM's with domain-specific data books or docs or company docs. The world of large language models (LLMs) rapidly expanding, offering unprecedented opportunities for natural language processing across various domains. However, some critical challenges have remained unaddressed. At Giga ML, we proudly introduce the X1 Large 32k model, a pioneering on-premise LLM solution that addresses these critical issues.
  • 23
    Llama 3.2
    The open-source AI model you can fine-tune, distill and deploy anywhere is now available in more versions. Choose from 1B, 3B, 11B or 90B, or continue building with Llama 3.1. Llama 3.2 is a collection of large language models (LLMs) pretrained and fine-tuned in 1B and 3B sizes that are multilingual text only, and 11B and 90B sizes that take both text and image inputs and output text. Develop highly performative and efficient applications from our latest release. Use our 1B or 3B models for on device applications such as summarizing a discussion from your phone or calling on-device tools like calendar. Use our 11B or 90B models for image use cases such as transforming an existing image into something new or getting more information from an image of your surroundings.
  • 24
    LTM-2-mini

    LTM-2-mini

    Magic AI

    LTM-2-mini is a 100M token context model: LTM-2-mini. 100M tokens equals ~10 million lines of code or ~750 novels. For each decoded token, LTM-2-mini’s sequence-dimension algorithm is roughly 1000x cheaper than the attention mechanism in Llama 3.1 405B1 for a 100M token context window. The contrast in memory requirements is even larger – running Llama 3.1 405B with a 100M token context requires 638 H100s per user just to store a single 100M token KV cache.2 In contrast, LTM requires a small fraction of a single H100’s HBM per user for the same context.
  • 25
    LongLLaMA

    LongLLaMA

    LongLLaMA

    This repository contains the research preview of LongLLaMA, a large language model capable of handling long contexts of 256k tokens or even more. LongLLaMA is built upon the foundation of OpenLLaMA and fine-tuned using the Focused Transformer (FoT) method. LongLLaMA code is built upon the foundation of Code Llama. We release a smaller 3B base variant (not instruction tuned) of the LongLLaMA model on a permissive license (Apache 2.0) and inference code supporting longer contexts on hugging face. Our model weights can serve as the drop-in replacement of LLaMA in existing implementations (for short context up to 2048 tokens). Additionally, we provide evaluation results and comparisons against the original OpenLLaMA models.
  • 26
    Llama 4 Behemoth
    Llama 4 Behemoth is Meta's most powerful AI model to date, featuring a massive 288 billion active parameters. It excels in multimodal tasks, outperforming previous models like GPT-4.5 and Gemini 2.0 Pro across multiple STEM-focused benchmarks such as MATH-500 and GPQA Diamond. As the teacher model for the Llama 4 series, Behemoth sets the foundation for models like Llama 4 Maverick and Llama 4 Scout. While still in training, Llama 4 Behemoth demonstrates unmatched intelligence, pushing the boundaries of AI in fields like math, multilinguality, and image understanding.
  • 27
    Pixtral Large

    Pixtral Large

    Mistral AI

    Pixtral Large is a 124-billion-parameter open-weight multimodal model developed by Mistral AI, building upon their Mistral Large 2 architecture. It integrates a 123-billion-parameter multimodal decoder with a 1-billion-parameter vision encoder, enabling advanced understanding of documents, charts, and natural images while maintaining leading text comprehension capabilities. With a context window of 128,000 tokens, Pixtral Large can process at least 30 high-resolution images simultaneously. The model has demonstrated state-of-the-art performance on benchmarks such as MathVista, DocVQA, and VQAv2, surpassing models like GPT-4o and Gemini-1.5 Pro. Pixtral Large is available under the Mistral Research License for research and educational use, and under the Mistral Commercial License for commercial applications.
  • 28
    Llama 3.1
    The open source AI model you can fine-tune, distill and deploy anywhere. Our latest instruction-tuned model is available in 8B, 70B and 405B versions. Using our open ecosystem, build faster with a selection of differentiated product offerings to support your use cases. Choose from real-time inference or batch inference services. Download model weights to further optimize cost per token. Adapt for your application, improve with synthetic data and deploy on-prem or in the cloud. Use Llama system components and extend the model using zero shot tool use and RAG to build agentic behaviors. Leverage 405B high quality data to improve specialized models for specific use cases.
  • 29
    Mistral Large 2
    Mistral AI has launched the Mistral Large 2, an advanced AI model designed to excel in code generation, multilingual capabilities, and complex reasoning tasks. The model features a 128k context window, supporting dozens of languages including English, French, Spanish, and Arabic, as well as over 80 programming languages. Mistral Large 2 is tailored for high-throughput single-node inference, making it ideal for large-context applications. Its improved performance on benchmarks like MMLU and its enhanced code generation and reasoning abilities ensure accuracy and efficiency. The model also incorporates better function calling and retrieval, supporting complex business applications.
  • 30
    Mistral Small

    Mistral Small

    Mistral AI

    On September 17, 2024, Mistral AI announced several key updates to enhance the accessibility and performance of their AI offerings. They introduced a free tier on "La Plateforme," their serverless platform for tuning and deploying Mistral models as API endpoints, enabling developers to experiment and prototype at no cost. Additionally, Mistral AI reduced prices across their entire model lineup, with significant cuts such as a 50% reduction for Mistral Nemo and an 80% decrease for Mistral Small and Codestral, making advanced AI more cost-effective for users. The company also unveiled Mistral Small v24.09, a 22-billion-parameter model offering a balance between performance and efficiency, suitable for tasks like translation, summarization, and sentiment analysis. Furthermore, they made Pixtral 12B, a vision-capable model with image understanding capabilities, freely available on "Le Chat," allowing users to analyze and caption images without compromising text-based performance.
  • 31
    Olmo 2
    Olmo 2 is a family of fully open language models developed by the Allen Institute for AI (AI2), designed to provide researchers and developers with transparent access to training data, open-source code, reproducible training recipes, and comprehensive evaluations. These models are trained on up to 5 trillion tokens and are competitive with leading open-weight models like Llama 3.1 on English academic benchmarks. Olmo 2 emphasizes training stability, implementing techniques to prevent loss spikes during long training runs, and utilizes staged training interventions during late pretraining to address capability deficiencies. The models incorporate state-of-the-art post-training methodologies from AI2's Tülu 3, resulting in the creation of Olmo 2-Instruct models. An actionable evaluation framework, the Open Language Modeling Evaluation System (OLMES), was established to guide improvements through development stages, consisting of 20 evaluation benchmarks assessing core capabilities.
  • 32
    Mistral Medium 3
    Mistral Medium 3 is a powerful AI model designed to deliver state-of-the-art performance at a fraction of the cost compared to other models. It offers simpler deployment options, allowing for hybrid or on-premises configurations. Mistral Medium 3 excels in professional applications like coding and multimodal understanding, making it ideal for enterprise use. Its low-cost structure makes it highly accessible while maintaining top-tier performance, outperforming many larger models in specific domains.
  • 33
    Qwen2.5-Max
    Qwen2.5-Max is a large-scale Mixture-of-Experts (MoE) model developed by the Qwen team, pretrained on over 20 trillion tokens and further refined through Supervised Fine-Tuning (SFT) and Reinforcement Learning from Human Feedback (RLHF). In evaluations, it outperforms models like DeepSeek V3 in benchmarks such as Arena-Hard, LiveBench, LiveCodeBench, and GPQA-Diamond, while also demonstrating competitive results in other assessments, including MMLU-Pro. Qwen2.5-Max is accessible via API through Alibaba Cloud and can be explored interactively on Qwen Chat.
  • 34
    MiniMax M1

    MiniMax M1

    MiniMax

    MiniMax‑M1 is a large‑scale hybrid‑attention reasoning model released by MiniMax AI under the Apache 2.0 license. It supports an unprecedented 1 million‑token context window and up to 80,000-token outputs, enabling extended reasoning across long documents. Trained using large‑scale reinforcement learning with a novel CISPO algorithm, MiniMax‑M1 completed full training on 512 H800 GPUs in about three weeks. It achieves state‑of‑the‑art performance on benchmarks in mathematics, coding, software engineering, tool usage, and long‑context understanding, matching or outperforming leading models. Two model variants are available (40K and 80K thinking budgets), with weights and deployment scripts provided via GitHub and Hugging Face.
  • 35
    Orpheus TTS

    Orpheus TTS

    Canopy Labs

    Canopy Labs has introduced Orpheus, a family of state-of-the-art speech large language models (LLMs) designed for human-level speech generation. These models are built on the Llama-3 architecture and are trained on over 100,000 hours of English speech data, enabling them to produce natural intonation, emotion, and rhythm that surpasses current state-of-the-art closed source models. Orpheus supports zero-shot voice cloning, allowing users to replicate voices without prior fine-tuning, and offers guided emotion and intonation control through simple tags. The models achieve low latency, with approximately 200ms streaming latency for real-time applications, reducible to around 100ms with input streaming. Canopy Labs has released both pre-trained and fine-tuned 3B-parameter models under the permissive Apache 2.0 license, with plans to release smaller models of 1B, 400M, and 150M parameters for use on resource-constrained devices.
  • 36
    Magistral

    Magistral

    Mistral AI

    Magistral is Mistral AI’s first reasoning‑focused language model family, released in two sizes: Magistral Small, a 24 B‑parameter open‑weight model under Apache 2.0 (downloadable on Hugging Face), and Magistral Medium, a more capable enterprise version available via Mistral’s API, Le Chat platform, and major cloud marketplaces. Built for domain‑specific, transparent, multilingual reasoning across tasks like math, physics, structured calculations, programmatic logic, decision trees, and rule‑based systems, Magistral produces chain‑of‑thought outputs in the user’s language that you can follow and verify. This launch marks a shift toward compact yet powerful transparent AI reasoning. Magistral Medium is currently available in preview on Le Chat, the API, SageMaker, WatsonX, Azure AI, and Google Cloud Marketplace. Magistral is ideal for general-purpose use requiring longer thought processing and better accuracy than with non-reasoning LLMs.
  • 37
    Ministral 3B

    Ministral 3B

    Mistral AI

    Mistral AI introduced two state-of-the-art models for on-device computing and edge use cases, named "les Ministraux": Ministral 3B and Ministral 8B. These models set a new frontier in knowledge, commonsense reasoning, function-calling, and efficiency in the sub-10B category. They can be used or tuned for various applications, from orchestrating agentic workflows to creating specialist task workers. Both models support up to 128k context length (currently 32k on vLLM), and Ministral 8B features a special interleaved sliding-window attention pattern for faster and memory-efficient inference. These models were built to provide a compute-efficient and low-latency solution for scenarios such as on-device translation, internet-less smart assistants, local analytics, and autonomous robotics. Used in conjunction with larger language models like Mistral Large, les Ministraux also serve as efficient intermediaries for function-calling in multi-step agentic workflows.
  • 38
    Kimi K2

    Kimi K2

    Moonshot AI

    Kimi K2 is a state-of-the-art open source large language model series built on a mixture-of-experts (MoE) architecture, featuring 1 trillion total parameters and 32 billion activated parameters for task-specific efficiency. Trained with the Muon optimizer on over 15.5 trillion tokens and stabilized by MuonClip’s attention-logit clamping, it delivers exceptional performance in frontier knowledge, reasoning, mathematics, coding, and general agentic workflows. Moonshot AI provides two variants, Kimi-K2-Base for research-level fine-tuning and Kimi-K2-Instruct pre-trained for immediate chat and tool-driven interactions, enabling both custom development and drop-in agentic capabilities. Benchmarks show it outperforms leading open source peers and rivals top proprietary models in coding tasks and complex task breakdowns, while its 128 K-token context length, tool-calling API compatibility, and support for industry-standard inference engines.
  • 39
    Code Llama
    Code Llama is a large language model (LLM) that can use text prompts to generate code. Code Llama is state-of-the-art for publicly available LLMs on code tasks, and has the potential to make workflows faster and more efficient for current developers and lower the barrier to entry for people who are learning to code. Code Llama has the potential to be used as a productivity and educational tool to help programmers write more robust, well-documented software. Code Llama is a state-of-the-art LLM capable of generating code, and natural language about code, from both code and natural language prompts. Code Llama is free for research and commercial use. Code Llama is built on top of Llama 2 and is available in three models: Code Llama, the foundational code model; Codel Llama - Python specialized for Python; and Code Llama - Instruct, which is fine-tuned for understanding natural language instructions.
  • 40
    Xgen-small

    Xgen-small

    Salesforce

    Xgen-small is an enterprise-ready compact language model developed by Salesforce AI Research, designed to deliver long-context performance at a predictable, low cost. It combines domain-focused data curation, scalable pre-training, length extension, instruction fine-tuning, and reinforcement learning to meet the complex, high-volume inference demands of modern enterprises. Unlike traditional large models, Xgen-small offers efficient processing of extensive contexts, enabling the synthesis of information from internal documentation, code repositories, research reports, and real-time data streams. With sizes optimized at 4B and 9B parameters, it provides a strategic advantage by balancing cost efficiency, privacy safeguards, and long-context understanding, making it a sustainable and predictable solution for deploying Enterprise AI at scale.
  • 41
    Mistral Large

    Mistral Large

    Mistral AI

    Mistral Large is Mistral AI's flagship language model, designed for advanced text generation and complex multilingual reasoning tasks, including text comprehension, transformation, and code generation. It supports English, French, Spanish, German, and Italian, offering a nuanced understanding of grammar and cultural contexts. With a 32,000-token context window, it can accurately recall information from extensive documents. The model's precise instruction-following and native function-calling capabilities facilitate application development and tech stack modernization. Mistral Large is accessible through Mistral's platform, Azure AI Studio, and Azure Machine Learning, and can be self-deployed for sensitive use cases. Benchmark evaluations indicate that Mistral Large achieves strong results, making it the world's second-ranked model generally available through an API, next to GPT-4.
  • 42
    Alpaca

    Alpaca

    Stanford Center for Research on Foundation Models (CRFM)

    Instruction-following models such as GPT-3.5 (text-DaVinci-003), ChatGPT, Claude, and Bing Chat have become increasingly powerful. Many users now interact with these models regularly and even use them for work. However, despite their widespread deployment, instruction-following models still have many deficiencies: they can generate false information, propagate social stereotypes, and produce toxic language. To make maximum progress on addressing these pressing problems, it is important for the academic community to engage. Unfortunately, doing research on instruction-following models in academia has been difficult, as there is no easily accessible model that comes close in capabilities to closed-source models such as OpenAI’s text-DaVinci-003. We are releasing our findings about an instruction-following language model, dubbed Alpaca, which is fine-tuned from Meta’s LLaMA 7B model.
  • 43
    OpenLLaMA

    OpenLLaMA

    OpenLLaMA

    OpenLLaMA is a permissively licensed open source reproduction of Meta AI’s LLaMA 7B trained on the RedPajama dataset. Our model weights can serve as the drop in replacement of LLaMA 7B in existing implementations. We also provide a smaller 3B variant of LLaMA model.
  • 44
    Devstral Small 2
    Devstral Small 2 is the compact, 24 billion-parameter variant of the new coding-focused model family from Mistral AI, released under the permissive Apache 2.0 license to enable both local deployment and API use. Alongside its larger sibling (Devstral 2), this model brings “agentic coding” capabilities to environments with modest compute: it supports a large 256K-token context window, enabling it to understand and make changes across entire codebases. On the standard code-generation benchmark (SWE-Bench Verified), Devstral Small 2 scores around 68.0%, placing it among open-weight models many times its size. Because of its reduced size and efficient design, Devstral Small 2 can run on a single GPU or even CPU-only setups, making it practical for developers, small teams, or hobbyists without access to data-center hardware. Despite its compact footprint, Devstral Small 2 retains key capabilities of larger models; it can reason across multiple files and track dependencies.
  • 45
    Llama

    Llama

    Meta

    Llama (Large Language Model Meta AI) is a state-of-the-art foundational large language model designed to help researchers advance their work in this subfield of AI. Smaller, more performant models such as Llama enable others in the research community who don’t have access to large amounts of infrastructure to study these models, further democratizing access in this important, fast-changing field. Training smaller foundation models like Llama is desirable in the large language model space because it requires far less computing power and resources to test new approaches, validate others’ work, and explore new use cases. Foundation models train on a large set of unlabeled data, which makes them ideal for fine-tuning for a variety of tasks. We are making Llama available at several sizes (7B, 13B, 33B, and 65B parameters) and also sharing a Llama model card that details how we built the model in keeping with our approach to Responsible AI practices.
  • 46
    Qwen-7B

    Qwen-7B

    Alibaba

    Qwen-7B is the 7B-parameter version of the large language model series, Qwen (abbr. Tongyi Qianwen), proposed by Alibaba Cloud. Qwen-7B is a Transformer-based large language model, which is pretrained on a large volume of data, including web texts, books, codes, etc. Additionally, based on the pretrained Qwen-7B, we release Qwen-7B-Chat, a large-model-based AI assistant, which is trained with alignment techniques. The features of the Qwen-7B series include: Trained with high-quality pretraining data. We have pretrained Qwen-7B on a self-constructed large-scale high-quality dataset of over 2.2 trillion tokens. The dataset includes plain texts and codes, and it covers a wide range of domains, including general domain data and professional domain data. Strong performance. In comparison with the models of the similar model size, we outperform the competitors on a series of benchmark datasets, which evaluates natural language understanding, mathematics, coding, etc. And more.
  • 47
    Llama 4 Scout
    Llama 4 Scout is a powerful 17 billion active parameter multimodal AI model that excels in both text and image processing. With an industry-leading context length of 10 million tokens, it outperforms its predecessors, including Llama 3, in tasks such as multi-document summarization and parsing large codebases. Llama 4 Scout is designed to handle complex reasoning tasks while maintaining high efficiency, making it perfect for use cases requiring long-context comprehension and image grounding. It offers cutting-edge performance in image-related tasks and is particularly well-suited for applications requiring both text and visual understanding.
  • 48
    Voxtral

    Voxtral

    Mistral AI

    Voxtral models are frontier open source speech‑understanding systems available in two sizes—a 24 B variant for production‑scale applications and a 3 B variant for local and edge deployments, both released under the Apache 2.0 license. They combine high‑accuracy transcription with native semantic understanding, supporting long‑form context (up to 32 K tokens), built‑in Q&A and structured summarization, automatic language detection across major languages, and direct function‑calling to trigger backend workflows from voice. Retaining the text capabilities of their Mistral Small 3.1 backbone, Voxtral handles audio up to 30 minutes for transcription or 40 minutes for understanding and outperforms leading open source and proprietary models on benchmarks such as LibriSpeech, Mozilla Common Voice, and FLEURS. Accessible via download on Hugging Face, API endpoint, or private on‑premises deployment, Voxtral also offers domain‑specific fine‑tuning and advanced enterprise features.
  • 49
    Llama 3.3
    Llama 3.3 is the latest iteration in the Llama series of language models, developed to push the boundaries of AI-powered understanding and communication. With enhanced contextual reasoning, improved language generation, and advanced fine-tuning capabilities, Llama 3.3 is designed to deliver highly accurate, human-like responses across diverse applications. This version features a larger training dataset, refined algorithms for nuanced comprehension, and reduced biases compared to its predecessors. Llama 3.3 excels in tasks such as natural language understanding, creative writing, technical explanation, and multilingual communication, making it an indispensable tool for businesses, developers, and researchers. Its modular architecture allows for customizable deployment in specialized domains, ensuring versatility and performance at scale.
  • 50
    PygmalionAI

    PygmalionAI

    PygmalionAI

    PygmalionAI is a community dedicated to creating open-source projects based on EleutherAI's GPT-J 6B and Meta's LLaMA models. In simple terms, Pygmalion makes AI fine-tuned for chatting and roleplaying purposes. The current actively supported Pygmalion AI model is the 7B variant, based on Meta AI's LLaMA model. With only 18GB (or less) VRAM required, Pygmalion offers better chat capability than much larger language models with relatively minimal resources. Our curated dataset of high-quality roleplaying data ensures that your bot will be the optimal RP partner. Both the model weights and the code used to train it are completely open-source, and you can modify/re-distribute it for whatever purpose you want. Language models, including Pygmalion, generally run on GPUs since they need access to fast memory and massive processing power in order to output coherent text at an acceptable speed.