LM-Kit.NET
LM-Kit.NET is a cutting-edge, high-level inference SDK designed specifically to bring the advanced capabilities of Large Language Models (LLM) into the C# ecosystem.
Tailored for developers working within .NET, LM-Kit.NET provides a comprehensive suite of powerful Generative AI tools, making it easier than ever to integrate AI-driven functionality into your applications.
The SDK is versatile, offering specialized AI features that cater to a variety of industries. These include text completion, Natural Language Processing (NLP), content retrieval, text summarization, text enhancement, language translation, and much more. Whether you are looking to enhance user interaction, automate content creation, or build intelligent data retrieval systems, LM-Kit.NET offers the flexibility and performance needed to accelerate your project.
Learn more
Gemini
Gemini is Google’s advanced AI assistant designed to help users think, create, learn, and complete tasks with a new level of intelligence. Powered by Google’s most capable models, including Gemini 3, it enables users to ask complex questions, generate content, analyze information, and explore ideas through natural conversation. Gemini can create images, videos, summaries, study plans, and first drafts while also providing feedback on uploaded files and written work. The platform is grounded in Google Search, allowing it to deliver accurate, up-to-date information and support deep follow-up questions. Gemini connects seamlessly with Google apps like Gmail, Docs, Calendar, Maps, YouTube, and Photos to help users complete tasks without switching tools. Features such as Gemini Live, Deep Research, and Gems enhance brainstorming, research, and personalized workflows. Available through flexible free and paid plans, Gemini supports everyday users, students, and professionals across devices.
Learn more
Olmo 3
Olmo 3 is a fully open model family spanning 7 billion and 32 billion parameter variants that delivers not only high-performing base, reasoning, instruction, and reinforcement-learning models, but also exposure of the entire model flow, including raw training data, intermediate checkpoints, training code, long-context support (65,536 token window), and provenance tooling. Starting with the Dolma 3 dataset (≈9 trillion tokens) and its disciplined mix of web text, scientific PDFs, code, and long-form documents, the pre-training, mid-training, and long-context phases shape the base models, which are then post-trained via supervised fine-tuning, direct preference optimisation, and RL with verifiable rewards to yield the Think and Instruct variants. The 32 B Think model is described as the strongest fully open reasoning model to date, competitively close to closed-weight peers in math, code, and complex reasoning.
Learn more