Alternatives to doteval
Compare doteval alternatives for your business or organization using the curated list below. SourceForge ranks the best alternatives to doteval in 2026. Compare features, ratings, user reviews, pricing, and more from doteval competitors and alternatives in order to make an informed decision for your business.
-
1
Ango Hub
iMerit
Ango Hub is a quality-focused, enterprise-ready data annotation platform for AI teams, available on cloud and on-premise. It supports computer vision, medical imaging, NLP, audio, video, and 3D point cloud annotation, powering use cases from autonomous driving and robotics to healthcare AI. Built for AI fine-tuning, RLHF, LLM evaluation, and human-in-the-loop workflows, Ango Hub boosts throughput with automation, model-assisted pre-labeling, and customizable QA while maintaining accuracy. Features include centralized instructions, review pipelines, issue tracking, and consensus across up to 30 annotators. With nearly twenty labeling tools—such as rotated bounding boxes, label relations, nested conditional questions, and table-based labeling—it supports both simple and complex projects. It also enables annotation pipelines for chain-of-thought reasoning and next-gen LLM training and enterprise-grade security with HIPAA compliance, SOC 2 certification, and role-based access controls. -
2
Selene 1
atla
Atla's Selene 1 API offers state-of-the-art AI evaluation models, enabling developers to define custom evaluation criteria and obtain precise judgments on their AI applications' performance. Selene outperforms frontier models on commonly used evaluation benchmarks, ensuring accurate and reliable assessments. Users can customize evaluations to their specific use cases through the Alignment Platform, allowing for fine-grained analysis and tailored scoring formats. The API provides actionable critiques alongside accurate evaluation scores, facilitating seamless integration into existing workflows. Pre-built metrics, such as relevance, correctness, helpfulness, faithfulness, logical coherence, and conciseness, are available to address common evaluation scenarios, including detecting hallucinations in retrieval-augmented generation applications or comparing outputs to ground truth data. -
3
TruLens
TruLens
TruLens is an open-source Python library designed to systematically evaluate and track Large Language Model (LLM) applications. It provides fine-grained instrumentation, feedback functions, and a user interface to compare and iterate on app versions, facilitating rapid development and improvement of LLM-based applications. Programmatic tools that assess the quality of inputs, outputs, and intermediate results from LLM applications, enabling scalable evaluation. Fine-grained, stack-agnostic instrumentation and comprehensive evaluations help identify failure modes and systematically iterate to improve applications. An easy-to-use interface that allows developers to compare different versions of their applications, facilitating informed decision-making and optimization. TruLens supports various use cases, including question-answering, summarization, retrieval-augmented generation, and agent-based applications.Starting Price: Free -
4
HumanSignal
HumanSignal
HumanSignal's Label Studio Enterprise is a comprehensive platform designed for creating high-quality labeled data and evaluating model outputs with human supervision. It supports labeling and evaluating multi-modal data, image, video, audio, text, and time series, all in one place. It offers customizable labeling interfaces with pre-built templates and powerful plugins, allowing users to tailor the UI and workflows to specific use cases. Label Studio Enterprise integrates seamlessly with popular cloud storage providers and ML/AI models, facilitating pre-annotation, AI-assisted labeling, and prediction generation for model evaluation. The Prompts feature enables users to leverage LLMs to swiftly generate accurate predictions, enabling instant labeling of thousands of tasks. It supports various labeling use cases, including text classification, named entity recognition, sentiment analysis, summarization, and image captioning.Starting Price: $99 per month -
5
Scale Evaluation
Scale
Scale Evaluation offers a comprehensive evaluation platform tailored for developers of large language models. This platform addresses current challenges in AI model assessment, such as the scarcity of high-quality, trustworthy evaluation datasets and the lack of consistent model comparisons. By providing proprietary evaluation sets across various domains and capabilities, Scale ensures accurate model assessments without overfitting. The platform features a user-friendly interface for analyzing and reporting model performance, enabling standardized evaluations for true apples-to-apples comparisons. Additionally, Scale's network of expert human raters delivers reliable evaluations, supported by transparent metrics and quality assurance mechanisms. The platform also offers targeted evaluations with custom sets focusing on specific model concerns, facilitating precise improvements through new training data. -
6
Latitude
Latitude
Latitude is an open-source prompt engineering platform designed to help product teams build, evaluate, and deploy AI models efficiently. It allows users to import and manage prompts at scale, refine them with real or synthetic data, and track the performance of AI models using LLM-as-judge or human-in-the-loop evaluations. With powerful tools for dataset management and automatic logging, Latitude simplifies the process of fine-tuning models and improving AI performance, making it an essential platform for businesses focused on deploying high-quality AI applications.Starting Price: $0 -
7
Opik
Comet
Confidently evaluate, test, and ship LLM applications with a suite of observability tools to calibrate language model outputs across your dev and production lifecycle. Log traces and spans, define and compute evaluation metrics, score LLM outputs, compare performance across app versions, and more. Record, sort, search, and understand each step your LLM app takes to generate a response. Manually annotate, view, and compare LLM responses in a user-friendly table. Log traces during development and in production. Run experiments with different prompts and evaluate against a test set. Choose and run pre-configured evaluation metrics or define your own with our convenient SDK library. Consult built-in LLM judges for complex issues like hallucination detection, factuality, and moderation. Establish reliable performance baselines with Opik's LLM unit tests, built on PyTest. Build comprehensive test suites to evaluate your entire LLM pipeline on every deployment.Starting Price: $39 per month -
8
Athina AI
Athina AI
Athina is a collaborative AI development platform that enables teams to build, test, and monitor AI applications efficiently. It offers features such as prompt management, evaluation tools, dataset handling, and observability, all designed to streamline the development of reliable AI systems. Athina supports integration with various models and services, including custom models, and ensures data privacy through fine-grained access controls and self-hosted deployment options. The platform is SOC-2 Type 2 compliant, providing a secure environment for AI development. Athina's user-friendly interface allows both technical and non-technical team members to collaborate effectively, accelerating the deployment of AI features.Starting Price: Free -
9
Ragas
Ragas
Ragas is an open-source framework designed to test and evaluate Large Language Model (LLM) applications. It offers automatic metrics to assess performance and robustness, synthetic test data generation tailored to specific requirements, and workflows to ensure quality during development and production monitoring. Ragas integrates seamlessly with existing stacks, providing insights to enhance LLM applications. The platform is maintained by a team of passionate individuals leveraging cutting-edge research and pragmatic engineering practices to empower visionaries redefining LLM possibilities. Synthetically generate high-quality and diverse evaluation data customized for your requirements. Evaluate and ensure the quality of your LLM application in production. Use insights to improve your application. Automatic metrics that helps you understand the performance and robustness of your LLM application.Starting Price: Free -
10
BenchLLM
BenchLLM
Use BenchLLM to evaluate your code on the fly. Build test suites for your models and generate quality reports. Choose between automated, interactive or custom evaluation strategies. We are a team of engineers who love building AI products. We don't want to compromise between the power and flexibility of AI and predictable results. We have built the open and flexible LLM evaluation tool that we have always wished we had. Run and evaluate models with simple and elegant CLI commands. Use the CLI as a testing tool for your CI/CD pipeline. Monitor models performance and detect regressions in production. Test your code on the fly. BenchLLM supports OpenAI, Langchain, and any other API out of the box. Use multiple evaluation strategies and visualize insightful reports. -
11
ChainForge
ChainForge
ChainForge is an open-source visual programming environment designed for prompt engineering and large language model evaluation. It enables users to assess the robustness of prompts and text-generation models beyond anecdotal evidence. Simultaneously test prompt ideas and variations across multiple LLMs to identify the most effective combinations. Evaluate response quality across different prompts, models, and settings to select the optimal configuration for specific use cases. Set up evaluation metrics and visualize results across prompts, parameters, models, and settings, facilitating data-driven decision-making. Manage multiple conversations simultaneously, template follow-up messages, and inspect outputs at each turn to refine interactions. ChainForge supports various model providers, including OpenAI, HuggingFace, Anthropic, Google PaLM2, Azure OpenAI endpoints, and locally hosted models like Alpaca and Llama. Users can adjust model settings and utilize visualization nodes. -
12
HoneyHive
HoneyHive
AI engineering doesn't have to be a black box. Get full visibility with tools for tracing, evaluation, prompt management, and more. HoneyHive is an AI observability and evaluation platform designed to assist teams in building reliable generative AI applications. It offers tools for evaluating, testing, and monitoring AI models, enabling engineers, product managers, and domain experts to collaborate effectively. Measure quality over large test suites to identify improvements and regressions with each iteration. Track usage, feedback, and quality at scale, facilitating the identification of issues and driving continuous improvements. HoneyHive supports integration with various model providers and frameworks, offering flexibility and scalability to meet diverse organizational needs. It is suitable for teams aiming to ensure the quality and performance of their AI agents, providing a unified platform for evaluation, monitoring, and prompt management. -
13
Maxim
Maxim
Maxim is an agent simulation, evaluation, and observability platform that empowers modern AI teams to deploy agents with quality, reliability, and speed. Maxim's end-to-end evaluation and data management stack covers every stage of the AI lifecycle, from prompt engineering to pre & post release testing and observability, data-set creation & management, and fine-tuning. Use Maxim to simulate and test your multi-turn workflows on a wide variety of scenarios and across different user personas before taking your application to production. Features: Agent Simulation Agent Evaluation Prompt Playground Logging/Tracing Workflows Custom Evaluators- AI, Programmatic and Statistical Dataset Curation Human-in-the-loop Use Case: Simulate and test AI agents Evals for agentic workflows: pre and post-release Tracing and debugging multi-agent workflows Real-time alerts on performance and quality Creating robust datasets for evals and fine-tuning Human-in-the-loop workflowsStarting Price: $29/seat/month -
14
DeepEval
Confident AI
DeepEval is a simple-to-use, open source LLM evaluation framework, for evaluating and testing large-language model systems. It is similar to Pytest but specialized for unit testing LLM outputs. DeepEval incorporates the latest research to evaluate LLM outputs based on metrics such as G-Eval, hallucination, answer relevancy, RAGAS, etc., which uses LLMs and various other NLP models that run locally on your machine for evaluation. Whether your application is implemented via RAG or fine-tuning, LangChain, or LlamaIndex, DeepEval has you covered. With it, you can easily determine the optimal hyperparameters to improve your RAG pipeline, prevent prompt drifting, or even transition from OpenAI to hosting your own Llama2 with confidence. The framework supports synthetic dataset generation with advanced evolution techniques and integrates seamlessly with popular frameworks, allowing for efficient benchmarking and optimization of LLM systems.Starting Price: Free -
15
Symflower
Symflower
Symflower enhances software development by integrating static, dynamic, and symbolic analyses with Large Language Models (LLMs). This combination leverages the precision of deterministic analyses and the creativity of LLMs, resulting in higher quality and faster software development. Symflower assists in identifying the most suitable LLM for specific projects by evaluating various models against real-world scenarios, ensuring alignment with specific environments, workflows, and requirements. The platform addresses common LLM challenges by implementing automatic pre-and post-processing, which improves code quality and functionality. By providing the appropriate context through Retrieval-Augmented Generation (RAG), Symflower reduces hallucinations and enhances LLM performance. Continuous benchmarking ensures that use cases remain effective and compatible with the latest models. Additionally, Symflower accelerates fine-tuning and training data curation, offering detailed reports. -
16
AgentBench
AgentBench
AgentBench is an evaluation framework specifically designed to assess the capabilities and performance of autonomous AI agents. It provides a standardized set of benchmarks that test various aspects of an agent's behavior, such as task-solving ability, decision-making, adaptability, and interaction with simulated environments. By evaluating agents on tasks across different domains, AgentBench helps developers identify strengths and weaknesses in the agents’ performance, such as their ability to plan, reason, and learn from feedback. The framework offers insights into how well an agent can handle complex, real-world-like scenarios, making it useful for both research and practical development. Overall, AgentBench supports the iterative improvement of autonomous agents, ensuring they meet reliability and efficiency standards before wider application. -
17
Giskard
Giskard
Giskard provides interfaces for AI & Business teams to evaluate and test ML models through automated tests and collaborative feedback from all stakeholders. Giskard speeds up teamwork to validate ML models and gives you peace of mind to eliminate risks of regression, drift, and bias before deploying ML models to production.Starting Price: $0 -
18
Prompt flow
Microsoft
Prompt Flow is a suite of development tools designed to streamline the end-to-end development cycle of LLM-based AI applications, from ideation, prototyping, testing, and evaluation to production deployment and monitoring. It makes prompt engineering much easier and enables you to build LLM apps with production quality. With Prompt Flow, you can create flows that link LLMs, prompts, Python code, and other tools together in an executable workflow. It allows for debugging and iteration of flows, especially tracing interactions with LLMs with ease. You can evaluate your flows, calculate quality and performance metrics with larger datasets, and integrate the testing and evaluation into your CI/CD system to ensure quality. Deployment of flows to the serving platform of your choice or integration into your app’s code base is made easy. Additionally, collaboration with your team is facilitated by leveraging the cloud version of Prompt Flow in Azure AI. -
19
OpenPipe
OpenPipe
OpenPipe provides fine-tuning for developers. Keep your datasets, models, and evaluations all in one place. Train new models with the click of a button. Automatically record LLM requests and responses. Create datasets from your captured data. Train multiple base models on the same dataset. We serve your model on our managed endpoints that scale to millions of requests. Write evaluations and compare model outputs side by side. Change a couple of lines of code, and you're good to go. Simply replace your Python or Javascript OpenAI SDK and add an OpenPipe API key. Make your data searchable with custom tags. Small specialized models cost much less to run than large multipurpose LLMs. Replace prompts with models in minutes, not weeks. Fine-tuned Mistral and Llama 2 models consistently outperform GPT-4-1106-Turbo, at a fraction of the cost. We're open-source, and so are many of the base models we use. Own your own weights when you fine-tune Mistral and Llama 2, and download them at any time.Starting Price: $1.20 per 1M tokens -
20
Arize Phoenix
Arize AI
Phoenix is an open-source observability library designed for experimentation, evaluation, and troubleshooting. It allows AI engineers and data scientists to quickly visualize their data, evaluate performance, track down issues, and export data to improve. Phoenix is built by Arize AI, the company behind the industry-leading AI observability platform, and a set of core contributors. Phoenix works with OpenTelemetry and OpenInference instrumentation. The main Phoenix package is arize-phoenix. We offer several helper packages for specific use cases. Our semantic layer is to add LLM telemetry to OpenTelemetry. Automatically instrumenting popular packages. Phoenix's open-source library supports tracing for AI applications, via manual instrumentation or through integrations with LlamaIndex, Langchain, OpenAI, and others. LLM tracing records the paths taken by requests as they propagate through multiple steps or components of an LLM application.Starting Price: Free -
21
Benchable
Benchable
Benchable is a dynamic AI tool designed for businesses and tech enthusiasts to effectively compare the performance, cost, and quality of various AI models. It allows users to benchmark leading models like GPT-4, Claude, and Gemini through custom tests, providing real-time results to help make informed decisions. With its user-friendly interface and robust analytics, Benchable streamlines the evaluation process, ensuring you find the most suitable AI solution for your needs.Starting Price: $0 -
22
Literal AI
Literal AI
Literal AI is a collaborative platform designed to assist engineering and product teams in developing production-grade Large Language Model (LLM) applications. It offers a suite of tools for observability, evaluation, and analytics, enabling efficient tracking, optimization, and integration of prompt versions. Key features include multimodal logging, encompassing vision, audio, and video, prompt management with versioning and AB testing capabilities, and a prompt playground for testing multiple LLM providers and configurations. Literal AI integrates seamlessly with various LLM providers and AI frameworks, such as OpenAI, LangChain, and LlamaIndex, and provides SDKs in Python and TypeScript for easy instrumentation of code. The platform also supports the creation of experiments against datasets, facilitating continuous improvement and preventing regressions in LLM applications. -
23
Gemini 2.5 Deep Think
Google
Gemini 2.5 Deep Think is an enhanced reasoning mode within the Gemini 2.5 family that uses extended, parallel thinking and novel reinforcement learning techniques to tackle complex, multi-step problems in areas like math, coding, science, and strategic planning by generating and evaluating multiple lines of thought before responding, producing more detailed, creative, and accurate answers with support for longer replies and built-in tool integration (e.g., code execution and web search). Its performance shows state-of-the-art results on rigorous benchmarks, including LiveCodeBench V6 and Humanity’s Last Exam, and it demonstrates notable gains over previous versions in challenging domains, with internal evaluations also indicating improved content safety and tone-objectivity, though with a higher tendency to decline benign requests; Google is conducting frontier safety evaluations and implementing mitigations to manage risks as the model’s capabilities advance. -
24
Evaluate
Innecto Reward Consulting
Global job evaluation and architecture tool designed by HR, used by HR and advocated by business leaders. Evaluate is a job evaluation and job leveling tool that makes evaluating roles quick and straightforward, reducing the resource your department needs to commit to completing this vital yet often time-consuming task. Our defensible system for evaluating jobs gives HR confidence that roles are being assessed fairly and consistently and enables HR to create a strong foundation to build an effective organization. With Evaluate, you can proactively plan for rapid change of direction and growth and provide clarity around requirements of organizational design – both current and aspirational. We help HR leaders align their pay and reward with strategic business needs. Whether that's finding out if pay is competitive against the market, rewarding top performers, or designing a winning reward strategy, we make sure HR delivers value to the wider business. -
25
Tülu 3
Ai2
Tülu 3 is an advanced instruction-following language model developed by the Allen Institute for AI (Ai2), designed to enhance capabilities in areas such as knowledge, reasoning, mathematics, coding, and safety. Built upon the Llama 3 Base, Tülu 3 employs a comprehensive four-stage post-training process: meticulous prompt curation and synthesis, supervised fine-tuning on a diverse set of prompts and completions, preference tuning using both off- and on-policy data, and a novel reinforcement learning approach to bolster specific skills with verifiable rewards. This open-source model distinguishes itself by providing full transparency, including access to training data, code, and evaluation tools, thereby closing the performance gap between open and proprietary fine-tuning methods. Evaluations indicate that Tülu 3 outperforms other open-weight models of similar size, such as Llama 3.1-Instruct and Qwen2.5-Instruct, across various benchmarks.Starting Price: Free -
26
Deepchecks
Deepchecks
Release high-quality LLM apps quickly without compromising on testing. Never be held back by the complex and subjective nature of LLM interactions. Generative AI produces subjective results. Knowing whether a generated text is good usually requires manual labor by a subject matter expert. If you’re working on an LLM app, you probably know that you can’t release it without addressing countless constraints and edge-cases. Hallucinations, incorrect answers, bias, deviation from policy, harmful content, and more need to be detected, explored, and mitigated before and after your app is live. Deepchecks’ solution enables you to automate the evaluation process, getting “estimated annotations” that you only override when you have to. Used by 1000+ companies, and integrated into 300+ open source projects, the core behind our LLM product is widely tested and robust. Validate machine learning models and data with minimal effort, in both the research and the production phases.Starting Price: $1,000 per month -
27
Weights & Biases
Weights & Biases
Experiment tracking, hyperparameter optimization, model and dataset versioning with Weights & Biases (WandB). Track, compare, and visualize ML experiments with 5 lines of code. Add a few lines to your script, and each time you train a new version of your model, you'll see a new experiment stream live to your dashboard. Optimize models with our massively scalable hyperparameter search tool. Sweeps are lightweight, fast to set up, and plug in to your existing infrastructure for running models. Save every detail of your end-to-end machine learning pipeline — data preparation, data versioning, training, and evaluation. It's never been easier to share project updates. Quickly and easily implement experiment logging by adding just a few lines to your script and start logging results. Our lightweight integration works with any Python script. W&B Weave is here to help developers build and iterate on their AI applications with confidence. -
28
Orq.ai
Orq.ai
Orq.ai is the #1 platform for software teams to operate agentic AI systems at scale. Optimize prompts, deploy use cases, and monitor performance, no blind spots, no vibe checks. Experiment with prompts and LLM configurations before moving to production. Evaluate agentic AI systems in offline environments. Roll out GenAI features to specific user groups with guardrails, data privacy safeguards, and advanced RAG pipelines. Visualize all events triggered by agents for fast debugging. Get granular control on cost, latency, and performance. Connect to your favorite AI models, or bring your own. Speed up your workflow with out-of-the-box components built for agentic AI systems. Manage core stages of the LLM app lifecycle in one central platform. Self-hosted or hybrid deployment with SOC 2 and GDPR compliance for enterprise security. -
29
promptfoo
promptfoo
Promptfoo discovers and eliminates major LLM risks before they are shipped to production. Its founders have experience launching and scaling AI to over 100 million users using automated red-teaming and testing to overcome security, legal, and compliance issues. Promptfoo's open source, developer-first approach has made it the most widely adopted tool in this space, with over 20,000 users. Custom probes for your application that identify failures you actually care about, not just generic jailbreaks and prompt injections. Move quickly with a command-line interface, live reloads, and caching. No SDKs, cloud dependencies, or logins. Used by teams serving millions of users and supported by an active open source community. Build reliable prompts, models, and RAGs with benchmarks specific to your use case. Secure your apps with automated red teaming and pentesting. Speed up evaluations with caching, concurrency, and live reloading.Starting Price: Free -
30
LMArena
LMArena
LMArena is a web-based platform that allows users to compare large language models through pair-wise anonymous match-ups: users input prompts, two unnamed models respond, and the crowd votes for the better answer; the identities are only revealed after voting, enabling transparent, large-scale evaluation of model quality. It aggregates these votes into leaderboards and rankings, enabling contributors of models to benchmark performance against peers and gain feedback from real-world usage. Its open framework supports many different models from academic labs and industry, fosters community engagement through direct model testing and peer comparison, and helps identify strengths and weaknesses of models in live interaction settings. It thereby moves beyond static benchmark datasets to capture dynamic user preferences and real-time comparisons, providing a mechanism for users and developers alike to observe which models deliver superior responses.Starting Price: Free -
31
Klu
Klu
Klu.ai is a Generative AI platform that simplifies the process of designing, deploying, and optimizing AI applications. Klu integrates with your preferred Large Language Models, incorporating data from varied sources, giving your applications unique context. Klu accelerates building applications using language models like Anthropic Claude, Azure OpenAI, GPT-4, and over 15 other models, allowing rapid prompt/model experimentation, data gathering and user feedback, and model fine-tuning while cost-effectively optimizing performance. Ship prompt generations, chat experiences, workflows, and autonomous workers in minutes. Klu provides SDKs and an API-first approach for all capabilities to enable developer productivity. Klu automatically provides abstractions for common LLM/GenAI use cases, including: LLM connectors, vector storage and retrieval, prompt templates, observability, and evaluation/testing tooling.Starting Price: $97 -
32
SwarmOne
SwarmOne
SwarmOne is an autonomous infrastructure platform designed to streamline the entire AI lifecycle, from training to deployment, by automating and optimizing AI workloads across any environment. With just two lines of code and a one-click hardware installation, users can initiate instant AI training, evaluation, and deployment. It supports both code and no-code workflows, enabling seamless integration with any framework, IDE, or operating system, and is compatible with any GPU brand, quantity, or generation. SwarmOne's self-setting architecture autonomously manages resource allocation, workload orchestration, and infrastructure swarming, eliminating the need for Docker, MLOps, or DevOps. Its cognitive infrastructure layer and burst-to-cloud engine ensure optimal performance, whether on-premises or in the cloud. By automating tasks that typically hinder AI model development, SwarmOne allows data scientists to focus exclusively on scientific work, maximizing GPU utilization. -
33
Handit
Handit
Handit.ai is an open source engine that continuously auto-improves your AI agents by monitoring every model, prompt, and decision in production, tagging failures in real time, and generating optimized prompts and datasets. It evaluates output quality using custom metrics, business KPIs, and LLM-as-judge grading, then automatically AB-tests each fix and presents versioned pull-request-style diffs for you to approve. With one-click deployment, instant rollback, and dashboards tying every merge to business impact, such as saved costs or user gains, Handit removes manual tuning and ensures continuous improvement on autopilot. Plugging into any environment, it delivers real-time monitoring, automatic evaluation, self-optimization through AB testing, and proof-of-effectiveness reporting. Teams have seen accuracy increases exceeding 60 %, relevance boosts over 35 %, and thousands of evaluations within days of integration.Starting Price: Free -
34
Teammately
Teammately
Teammately is an autonomous AI agent designed to revolutionize AI development by self-iterating AI products, models, and agents to meet your objectives beyond human capabilities. It employs a scientific approach, refining and selecting optimal combinations of prompts, foundation models, and knowledge chunking. To ensure reliability, Teammately synthesizes fair test datasets and constructs dynamic LLM-as-a-judge systems tailored to your project, quantifying AI capabilities and minimizing hallucinations. The platform aligns with your goals through Product Requirement Docs (PRD), enabling focused iteration towards desired outcomes. Key features include multi-step prompting, serverless vector search, and deep iteration processes that continuously refine AI until objectives are achieved. Teammately also emphasizes efficiency by identifying the smallest viable models, reducing costs, and enhancing performance.Starting Price: $25 per month -
35
Tallyrus
Tallyrus
Tallyrus is an AI-document-analysis platform designed to process large batches of written content (essays, resumes, reports, etc.) using customizable evaluators so users can define their own criteria and rubrics. It enables bulk document uploads, automatically evaluating each with tags, extracting insights, scoring per rubric dimensions (like structure, coherence, grammar, etc.), and generating feedback. It supports team collaboration features, letting multiple users review, comment, or adjust evaluators; it also provides advanced analytics to compare performance across submissions, spot common issues, or aggregate results. Tallyrus emphasizes efficiency (cutting down the time spent grading or screening), consistency (applying the same criteria fairly), and scalability (handling thousands of documents at once), while aiming for more objective, bias-reduced evaluation.Starting Price: $9 per month -
36
Adaline
Adaline
Iterate quickly and ship confidently. Confidently ship by evaluating your prompts with a suite of evals like context recall, llm-rubric (LLM as a judge), latency, and more. Let us handle intelligent caching and complex implementations to save you time and money. Quickly iterate on your prompts in a collaborative playground that supports all the major providers, variables, automatic versioning, and more. Easily build datasets from real data using Logs, upload your own as a CSV, or collaboratively build and edit within your Adaline workspace. Track usage, latency, and other metrics to monitor the health of your LLMs and the performance of your prompts using our APIs. Continuously evaluate your completions in production, see how your users are using your prompts, and create datasets by sending logs using our APIs. The single platform to iterate, evaluate, and monitor LLMs. Easily rollbacks if your performance regresses in production, and see how your team iterated the prompt. -
37
YouNoodle
YouNoodle
YouNoodle Compete is an application management software that enables organizations to source, receive, evaluate, and select winners for various entrepreneurship programs, innovation competitions, and awards. Users can customize application forms to their unique needs, automate communications with applicants, and set up application windows that fit their schedules. It allows for the design and development of showcase pages specific to each program, providing relevant information and updates to a network of entrepreneurs. Real-time data visualization offers insights into program objectives while applications are being received, measuring metrics like demographics, location, and industries. The judging process is streamlined with customizable evaluation forms, automatic assignment of applications to judges, and the ability to invite judges to begin evaluations. Selecting winners is simplified through results ranking, considering weighted averages of scores, and sharing outcomes.Starting Price: $3,999 per program -
38
Alooba
Alooba
Alooba is a skills assessment platform designed to help organizations evaluate their candidates' and employees' skills, knowledge, and abilities. It is used by organizations to understand their candidates' skills, as well as evaluate their current team's capabilities. Alooba offers a comprehensive suite of assessments to evaluate candidates' abilities efficiently and accurately. With Alooba's user-friendly platform, you can assess candidates using various test types relevant to hiring across all organizations. The multiple-choice tests allow you to evaluate candidates' understanding of fundamental hiring concepts and practices. You can customize the skills covered in the test to align with your organization's specific hiring requirements. The tests are autograded, providing quick and objective results. Alooba's platform includes innovative features like autograding, ensuring objective evaluation of candidates' skills.Starting Price: $250 per month -
39
Cedar
Amazon
Cedar is an open source policy language and evaluation engine developed by AWS to facilitate fine-grained access control in applications. It enables developers to define clear and concise authorization policies, decoupling access control from application logic. Cedar supports common authorization models, including role-based access control and attribute-based access control, allowing for expressive and analyzable policy definitions. Its design emphasizes readability and performance, ensuring that policies are both easy to understand and efficient to enforce. By integrating Cedar, applications can make precise authorization decisions, enhancing security and maintainability. The policy structure is designed to be indexed for quick retrieval and to support fast and scalable real-time evaluation, with bounded latency. It enables analyzer tools capable of optimizing your policies and proving that your security model is what you believe it is.Starting Price: Free -
40
Ferret
Apple
An End-to-End MLLM that Accept Any-Form Referring and Ground Anything in Response. Ferret Model - Hybrid Region Representation + Spatial-aware Visual Sampler enable fine-grained and open-vocabulary referring and grounding in MLLM. GRIT Dataset (~1.1M) - A Large-scale, Hierarchical, Robust ground-and-refer instruction tuning dataset. Ferret-Bench - A multimodal evaluation benchmark that jointly requires Referring/Grounding, Semantics, Knowledge, and Reasoning.Starting Price: Free -
41
AgentHub
AgentHub
AgentHub is a staging environment to simulate, trace, and evaluate AI agents in a private, sandboxed space that lets you ship with confidence, speed, and precision. With easy setup, you can onboard agents in minutes; a robust evaluation infrastructure provides multi-step trace logging, LLM graders, and fully customizable evaluations. Realistic user simulation employs configurable personas to model diverse behaviors and stress scenarios, and dataset enhancement synthetically expands test sets for comprehensive coverage. Prompt experimentation enables dynamic multi-prompt testing at scale, while side-by-side trace analysis lets you compare decisions, tool invocations, and outcomes across runs. A built-in AI Copilot analyzes traces, interprets results, and answers questions grounded in your own code and data, turning agent runs into clear, actionable insights. Combined human-in-the-loop and automated feedback options, along with white-glove onboarding and best-practice guidance. -
42
Frontline Professional Growth
Frontline Education
Frontline’s Professional Growth software brings professional learning, collaboration and evaluations together. Meet each educator’s unique needs with individual PD plans and relevant, targeted online or in-person learning opportunities. Provide an online space for educators to collaborate, learn together, invite feedback and build a culture of learning. Conduct transparent, defensible, growth-focused evaluations, and link results to professional learning plans and goals. Provide a catalog of goal-aligned learning opportunities, online/virtual, in-district, out-of-district, conferences, and more. Use evaluation results to identify relevant professional learning. Track progress toward state and district requirements. Automatically find substitutes in Frontline Absence & Time for approved out-of-classroom PD absences. Take back your time while giving your teachers the personalized learning experiences they need and deserve. -
43
ColBERT
Future Data Systems
ColBERT is a fast and accurate retrieval model, enabling scalable BERT-based search over large text collections in tens of milliseconds. It relies on fine-grained contextual late interaction: it encodes each passage into a matrix of token-level embeddings. At search time, it embeds every query into another matrix and efficiently finds passages that contextually match the query using scalable vector-similarity (MaxSim) operators. These rich interactions allow ColBERT to surpass the quality of single-vector representation models while scaling efficiently to large corpora. The toolkit includes components for retrieval, reranking, evaluation, and response analysis, facilitating end-to-end workflows. ColBERT integrates with Pyserini for retrieval and provides integrated evaluation for multi-stage pipelines. It also includes a module for detailed analysis of input prompts and LLM responses, addressing reliability concerns with LLM APIs and non-deterministic behavior in Mixture-of-Experts.Starting Price: Free -
44
CoGrader
CoGrader
AI Essay Grader - less time grading, more time with the kids. CoGrader is the AI Essay Grader for teachers that's connected to Google Classroom or Canvas - use your own rubrics on our AI grading tool or generate rubric using AI and provide timely and specific feedback to your students 80% faster. -
45
KickUp
KickUp
KickUp is a platform for modern professional growth teams to track educator progress, align strategic priorities with PD activities and performance evaluation, and build on success for continuous improvement. We support professional growth teams through two complementary modules: Professional Learning, for managing PD activities and evaluating outcomes, and Professional Growth, for tracking formative and summative data on educator performance. Improve educator practice and unlock insights about the effectiveness of your supports by bringing data from learning walks, coaching cycles, and needs assessments into one hub. Build educator engagement and effectiveness by connecting all of your online and offline PD to one, simple, source of truth. Move performance evaluation from compliance to growth, and invest educators in a cycle of continuous improvement. -
46
Valid Eval
Valid Eval
Complex group deliberations don't have to be painful. Whether you're tasked with ranking hundreds of competing proposals, judging a dozen live pitches, or managing a multi-phase innovation program, there's an easier way. A better way. Valid Eval is an online evaluation system for organizations that make and defend tough decisions. It's a secure SaaS platform that works efficiently at virtually any scale so you can involve as many applicants, subjects, domain experts, and judges as it takes to do the job right. Combining best practices from the learning sciences and systems engineering, Valid Eval delivers defensible, data driven results and provides robust reporting tools that help you measure and monitor performance and demonstrate mission alignment. Best of all, it provides an unprecedented degree of transparency that promotes accountability and builds trust in the process. -
47
EduThrill
EduThrill
Your one stop for all academic needs including online proctored examinations, interview and examination preparation along with upskilling and placement support. Asynchronous video interview format for Technical and HR evaluations. The asynchronous model enables candidates and interviewers to complete the process at their time and place of choice. Enables deep technical/domain evaluations asynchronously, saving precious technical panel bandwidth. Enables HR rounds and in-depth evaluation of candidate’s time management, communication skills, culture fitment and personality. Customizable workflows and reward mechanisms to segregate strong performers from weak candidates. The first level of screening without human intervention leads to huge effort and cost-saving. -
48
Agenta
Agenta
Agenta is an open-source LLMOps platform designed to help teams build reliable AI applications with integrated prompt management, evaluation workflows, and system observability. It centralizes all prompts, experiments, traces, and evaluations into one structured hub, eliminating scattered workflows across Slack, spreadsheets, and emails. With Agenta, teams can iterate on prompts collaboratively, compare models side-by-side, and maintain full version history for every change. Its evaluation tools replace guesswork with automated testing, LLM-as-a-judge, human annotation, and intermediate-step analysis. Observability features allow developers to trace failures, annotate logs, convert traces into tests, and monitor performance regressions in real time. Agenta helps AI teams transition from siloed experimentation to a unified, efficient LLMOps workflow for shipping more reliable agents and AI products.Starting Price: Free -
49
Claude Opus 3
Anthropic
Opus, our most intelligent model, outperforms its peers on most of the common evaluation benchmarks for AI systems, including undergraduate level expert knowledge (MMLU), graduate level expert reasoning (GPQA), basic mathematics (GSM8K), and more. It exhibits near-human levels of comprehension and fluency on complex tasks, leading the frontier of general intelligence. All Claude 3 models show increased capabilities in analysis and forecasting, nuanced content creation, code generation, and conversing in non-English languages like Spanish, Japanese, and French.Starting Price: Free -
50
Edexia
Edexia
Edexia is an AI-powered assessment marking and grading assistant designed to enhance the efficiency and effectiveness of educators. Unlike traditional AI systems, Edexia learns to mark and provide feedback in alignment with individual teaching styles, ensuring personalized and consistent evaluations. It employs advanced syllabus-specific criteria to assess essays and exams, allowing teachers to concentrate more on teaching and less on administrative tasks. Edexia's unique approach ensures that data remains exclusively within the school, maintaining privacy and security without relying on external data training. The platform offers features such as AI-powered highlighting, which intelligently identifies and annotates relevant portions of student work, linking them to detailed reasoning that supports the educator's evaluation. Additionally, Edexia provides increased customization and detailed insights into the grading process.