Positron
Positron is a next-generation, free, open source available integrated development environment for data science, built to support both Python and R in one unified workflow. It enables data professionals to move from exploration to production by offering interactive consoles, notebook support, variables and plot panes, and built-in previews of apps alongside code, all without needing extensive configuration. The IDE includes AI-assisted tools like the Positron Assistant and Databot agent to help write or refine code, perform exploratory analysis, and accelerate development. It offers features like a dedicated Data Explorer for viewing dataframes, a connections pane for databases, a variables pane, a plot pane, and seamless switch between R and Python with full support for notebooks, scripts, and visual dashboards. With version control, extensions support, and deep integration with other tools in the Posit Software ecosystem.
Learn more
JetBrains DataSpell
Switch between command and editor modes with a single keystroke. Navigate over cells with arrow keys. Use all of the standard Jupyter shortcuts. Enjoy fully interactive outputs – right under the cell. When editing code cells, enjoy smart code completion, on-the-fly error checking and quick-fixes, easy navigation, and much more. Work with local Jupyter notebooks or connect easily to remote Jupyter, JupyterHub, or JupyterLab servers right from the IDE. Run Python scripts or arbitrary expressions interactively in a Python Console. See the outputs and the state of variables in real-time. Split Python scripts into code cells with the #%% separator and run them individually as you would in a Jupyter notebook. Browse DataFrames and visualizations right in place via interactive controls. All popular Python scientific libraries are supported, including Plotly, Bokeh, Altair, ipywidgets, and others.
Learn more
Bokeh
Bokeh makes it simple to create common plots, but also can handle custom or specialized use-cases. Plots, dashboards, and apps can be published in web pages or Jupyter notebooks. Python has an incredible ecosystem of powerful analytics tools: NumPy, Scipy, Pandas, Dask, Scikit-Learn, OpenCV, and more. With a wide array of widgets, plot tools, and UI events that can trigger real Python callbacks, the Bokeh server is the bridge that lets you connect these tools to rich, interactive visualizations in the browser. Microscopium is a project maintained by researchers at Monash University. It allows researchers to discover new gene or drug functions by exploring large image datasets with Bokeh’s interactive tools. Panel is a tool for polished data presentation that utilizes the Bokeh server. It is created and supported by Anaconda. Panel makes it simple to create custom interactive web apps and dashboards by connecting user-defined widgets to plots, images, tables, or text.
Learn more
runcell.dev
Runcell is a Jupyter-native AI agent that understands your notebooks, writes code and executes cells so you can focus on insights, offering four AI-powered modes in one high-performance extension: Interactive Learning Mode provides an AI teacher that explains concepts with live code examples, step-by-step algorithm comparisons and real-time visual execution; Autonomous Agent Mode takes full control of your notebook to execute cells, automate complex workflows, reduce manual tasks and handle errors intelligently; Smart Edit Mode acts as a context-aware assistant, delivering intelligent code suggestions, automated optimizations and real-time syntax and logic improvements; and AI-Enhanced Jupyter lets you ask natural-language questions about your code, generate AI-powered solutions and receive smart recommendations for next steps, all seamlessly integrated into the familiar Jupyter interface.
Learn more