
116

Journal of the American Association for Laboratory Animal Science Vol 63, No 2
Copyright 2024 March 2024
by the American Association for Laboratory Animal Science Pages 116–147

Light: An Extrinsic Factor Influencing  
Animal-based Research

Robert T Dauchy,1,* John P Hanifin,2 George C Brainard,2 and David E Blask1

Light is an environmental factor that is extrinsic to animals themselves and that exerts a profound influence on the regula-
tion of circadian, neurohormonal, metabolic, and neurobehavioral systems of all animals, including research animals. These 
widespread biologic effects of light are mediated by distinct photoreceptors—rods and cones that comprise the conventional 
visual system and melanopsin-containing intrinsically photosensitive retinal ganglion cells (ipRGCs) of the nonvisual sys-
tem that interact with the rods and cones. The rods and cones of the visual system, along with the ipRGCs of the nonvisual 
system, are species distinct in terms of opsins and opsin concentrations and interact with one another to provide vision and 
regulate circadian rhythms of neurohormonal and neurobehavioral responses to light. Here, we review a brief history of light-
ing technologies, the nature of light and circadian rhythms, our present understanding of mammalian photoreception, and 
current industry practices and standards. We also consider the implications of light for vivarium measurement, production, 
and technological application and provide simple recommendations on artificial lighting for use by regulatory authorities, 
lighting manufacturers, designers, engineers, researchers, and research animal care staff that ensure best practices for opti-
mizing animal health and well-being and, ultimately, improving scientific outcomes.

Abbreviations and Acronyms: bLAD, blue-enriched LED light at daytime; Clock, circadian locomotor output kaput; CCT, cor-
related color temperature; CWF, cool white fluorescent; IGN, intergeniculate nucleus; ipRGC, intrinsically photosensitive retinal 
ganglion cell; HIOMT, hydroxyindole-O-methyltransferase; K, Kelvin temperature; LAN, light at night; LED, light-emitting di-
ode; LGN, lateral geniculate nucleus; PLR, pupillary light reflex; POT, primary optic tract; RHT, retinohypothalamic tract; SCN, 
suprachiasmatic nuclei; SPD, spectral power distribution.
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Introduction
Light is a fundamental extrinsic factor in animal-based 

research that like noise, vibration, and temperature requires seri-
ous consideration in the design and operation of animal facilities 
and the conduct of research using animals. The influence of light 
on circadian neurohormonal, neurobehavioral, and physiologic 
parameters is well established.14,74,93-102,130,137,138,160,181,196,238,247,

284,300,301,349,370,371,381,394,434 Over the past 30 y, experimental evi-
dence has revealed that almost all life on our planet varies in 
a species-specific manner with regard to how it is affected by 
photic energy.50,51,162,163 While light supports vision that allows 
us to see and move about in the world around us, it also func-
tions below the level of consciousness, regulating a wide range 
of behavioral and physiologic responses that alternate with a 
near 24-h rhythm (Figure 1) throughout each day (i.e., circadian 
rhythm).52 Minor changes in light intensity,45 spectral quality,46 
and duration47 at specific times of day can disrupt the circadian 
regulation of these neuroendocrine and neurobehavioral re-
sponses required for optimal animal health and well-being. In 
addition to the most obvious circadian rhythms of locomotor 
activity and sleep, hormones (including melatonin, corticoster-
one, and insulin), core body temperature, metabolism, immune 
function, and many other metabolic, physiological, and behav-
ioral processes, have circadian rhythms that are entrained by the 

environmental light–dark cycle.104,107,151,212,315,339,340,401,417,420,426 
Incorrect measurement and reporting of light, as well as im-
proper lighting protocols, in animal research facilities may 
present a source of unrecognized animal distress and a con-
founding variable in scientific investigations. This may, in turn, 
undermine the 3Rs of refining research animal models and 
reducing the number of animals used in research,80,336 while also 
compromising reproducibility, transparency, and accountability 
in research studies.77

Light is the most influential and potent regulator of the circa-
dian clock system, and by synchronizing circadian rhythmicity, 
it integrates almost all neurohormonal and neurobehavioral 
systems that incorporate a multitude of biologic processes under 
retinal control (Figure 2A and 2B).7,48,126,136,164,175,177,178,197,217-219,

278,360,362,365 Research animals exposed to artificial light emitted 
by a number of lighting technologies at an inappropriate light 
intensity, wavelength, or duration at a given time of day are 
at risk for circadian disruption.37-41,44-52,57,59,78,79,90,91,94-102,137-140, 

149,162,163,167,182,183,216,224,250,280 Unfortunately, the current eighth 
edition of the Guide for the Care and Use of Laboratory Animals187 
(the Guide) is antiquated as it provides limited guidance on the 
management of light and lighting protocols. While the Guide 
cautions that inappropriate lighting and lighting protocols may 
result in blindness or undue stress, the emphasis is primarily 
limited to rodents and, more specifically, Sprague–Dawley rats 
based on information available to 1985 and associated with the 
primary optic tract (POT) and related phototoxic retinopathy 
investigations.33,74 Light’s influence is only briefly mentioned 
as related to husbandry, pigmentation, body temperature, hor-
mone status, age, species, sex, stock or strain of the research 
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animals, reproductive activity, eating, cage position, and 
low-light levels.18,45,67,116,154,155,198,282,283,319,329,345,346,349,371 Further-
more, the Guide187 barely acknowledges the nonvisual circadian 
system as it pertains to rodents and lighting technologies in use 
today, for example, the rapidly emerging light-emitting diode 
(LED) technology. The Guide187 provides no information on the 

influence of daytime exposure to LED lighting on the biology 
of either humans or research animals.

As stated in the Guide,187 the traditional objectives of animal 
facility lighting pertaining to both animal research personnel 
and animals used in research were codified by the lighting 
industry’s Illuminating Engineering Society (IES)182,183 and 

Figure 1. Circadian rhythms have a cycle of about 24 h per day. This figure is presented with permission from the American Association for 
Laboratory Animal Science.

Figure 2. (A) This simplified diagram is a schematic of the neuroanatomy responsible for mediating the sensory capacity of the visual (primary 
optic tract [POT]) and nonvisual (retinohypothalamic tract [RHT]) regulation of circadian, neuroendocrine, and neurobehavioral functions. 
LGN = lateral geniculate nucleus; IGN = intergeniculate nucleus; SAD = seasonal affective disorder; SCN = suprachiasmatic nuclei. (B) This is 
a schematic of the neuroanatomy responsible for mediating sensory capacity of the visual (POT) and nonvisual (RHT) regulation of circadian, 
biological, and neurobehavioral acute and long-term effects in greater detail.
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Commission Internationale de l’Eclairage (International Com-
mission on Illumination [CIE]),78,79 both established in the 
early 20th century. The objectives state that lighting must 1) be 
optimal for visual performance; 2) permit aesthetic apprecia-
tion of space and the environment; 3) be visually comfortable; 
and 4) conserve energy. For the most part, the first 3 objectives 
are reasonably easy to achieve using any of the technologies 
currently available. Regarding the fourth objective, the current 
solid-state LED technology is, arguably, the most versatile, 
energy-efficient, and cost-effective option as compared with all 
other lighting technologies.

Another resource often used by animal research facilities, par-
ticularly for NIH-funded projects is the U.S. National Institutes 
of Health Design Requirements Manual,273 which specifically 
states that it follows the specifications established by the IES. 
The manual, however, focuses primarily on construction-related 
specifications that also apply to the U.S. Department of Energy 
with regard to community lighting concerns.394 The general 
requirements are human specific and deal with uniformity of 
lighting, including glare, shadows, unbalanced brightness in the 
workplace, and vertical surface illumination with light levels 
determined based on comfort and the visual task involved. The 
intensity of lighting for humans for offices, research animal 
housing, and support areas ranges from 270 to 540 lx (110 to 
220 µW/cm2). Light uniformity is based on human perception 
of intensity and is measured in lux (lx; illuminance) as a ratio of 
how light is evenly distributed on the ground compared with the 
light source above. The closer this ratio is to 1 the more evenly 
distributed the light is perceived. Measures of lux, appropriate 
for human daytime vision, are not appropriate for quantify-
ing light stimuli that regulate circadian, neuroendocrine, or 
neurobehavioral physiology in humans or animals.49,50,292 
Measures of irradiance (in µW/cm2) take into account both 
photopic (daytime) and scotopic (nighttime) light stimuli and 
reflect the more accurate reporting commonly used by the light-
ing industry.78,79,183 Both measures are presented here for ease 
of understanding; standard photoradiometers measure both 
illuminance (lx) and irradiance (µW/cm2). Minimum average 
light levels (with uniformity ratio of 3:1 or lower) are set as 
follows, measured in illuminance (irradiance): animal facili-
ties housing rodents, 270 to 810 lx (110 to 331 µW/cm2); animal 
facilities housing nonhuman primates (NHPs), 540 to 810 lx  
(220 to 331 µW/cm2); facilities housing aquatic species, 540 
to 800 lx (220 to 331 µW/cm2); animal surgery rooms, 2,200 lx 
(898 µW/cm2); procedure rooms, 1,075 lx (439 µW/cm2); cage 
wash areas, 430 to 540 lx (176 to 220 µW/cm2); feed and bed-
ding storage areas: 160 to 270 lx (64 to 110 µW/cm2); and facility 
corridors, 160 to 270 lx (64 to 110 µW/cm2). Little information 
is provided regarding fluorescent lighting technology or 
species-specific lighting (wavelength, intensity, duration re-
quirements); LED lighting technology is only briefly addressed.

Unfortunately, this paucity of information translates to an 
inability of researchers and animal husbandry personnel regard-
ing guidance on how to deal with light and lighting protocol 
concerns, what to measure, how and why to measure, and what 
factors to avoid, such as exposure to light at night (LAN). Since 
other authors have reviewed the many problems associated 
with LAN and lighting protocols in the vivarium,122,132-136 the 
purpose of this overview is to propose a series of light meas-
urement practices that can provide conservative guidance for 
facility management and research investigators.

In this overview, we discuss a brief historical perspective of 
1) lighting technologies; 2) light and circadian rhythms; 3) our 
current understanding of the visual and nonvisual systems; 

4) recent findings on the effects of extrinsic light exposure on 
research animals; 5) evolving light-measurement strategies (met-
rics), taking into account the complex nonvisual photoreceptive 
inputs for visual and nonvisual responses to light; and 6) simple 
recommendations for modifying research animal holding facili-
ties and improving practices to enhance the control of lighting 
and light–dark cycles. These recommended improvements 
and practices are conservative, easy to achieve with minimal 
resources and planning, and consistent with the Guide,187 Animal 
Research: Reporting of In Vivo Experiments (ARRIVE) Guidelines,293 
the Concordat on Openness in Animal Research,80 the 3Rs,336 and 
the recent NIH mandate regarding reproducibility, transparency, 
and accountability in research.77 Use of these recommendations 
should reduce experimental variability, increase reproducibility, 
reduce the number of animals used, and enhance the health 
and well-being of research animals, thus improving scientific 
outcomes.

A brief history of lighting technology. For a complete review 
regarding the history of lighting technology, we suggest that 
the reader draw upon the information provided in several refer-
ences we used for this review.45,93,94,96,244,292 The earliest available 
evidence indicates that the controlled use of fire by our ancestor 
Homo erectus appeared to have occurred during the early stone 
age (Lower Paleolithic Era) nearly 1.4 million years ago. Fire was 
initially obtained opportunistically from natural occurrences 
(lighting strikes, meteor impacts, etc.) and transitioned to the 
use of animal dung and other slow-burning substances during 
wet and dry seasons and finally to kindled fire.393 Oil lamps 
first appeared in 70,000 BC and were made from nonflammable 
materials like rocks and shells that were covered with moss 
drenched in animal fat or tallow. Subsequently, the Chinese and 
then the Romans burned olive oil, sesame oil, fish oil, beeswax, 
and whale oil. At that time, olive oil was almost nonexistent in 
northern Europe. Swiss chemist Aime Argand invented an oil 
lamp that had a cylindrical wick and a glass cylinder chimney 
that directed a draft over the flame. Oil was widely used until 
the kerosene lamp took over somewhere in the 17th century. 
One of the oldest light sources, which has not changed much 
through history, was a mass of wax with an embedded wick, 
and one of the most common materials used was beeswax. In 
the 18th century, spermaceti, the crystallized oil of sperm whales, 
was identified as a replacement for tallow. Spermaceti resulted 
in a brighter light, was produced in great quantities, and did 
not smell. Colza oil and rapeseed oil also provided smokeless 
light. In the 1850s, James Young refined paraffin wax by distill-
ing coal. As late as the 19th century, illumination of large areas 
(streets, public places, factories, even rooms in houses) was 
not possible. The solution had been present in the ground for 
thousands of years and was overlooked for an additional 140 y 
after it was discovered. In 1790, William Murdoch, an employee 
of a factory in Soho, began experimenting with flammable gas. 
Coal gas, which he produced by distillation of coal, provided the 
brightest flame, as compared with all previous technologies. In 
1807, Pall Mall in London was the first street to be gas lit; Paris 
followed in 1820. In 1816, Baltimore became the first city in the 
United States to have gas streetlights. The first experiments in 
electrical illumination were made by Sir Humphry Davy in 
the 19th century (1801 to 1816). He took a filament made from 
a platinum strip and connected it to a battery; as the filament 
heated, it began to emit light. In the 1870s, Sir Joseph Swann and 
Thomas Edison used a carbon filament in an improved vacuum 
to produce the first commercially usable light source. Filaments 
were later made from tungsten and enclosed in an atmosphere 
of noble gas.
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One of the first recorded marine animal research facilities in 
the United States was the R/V Albatross I, commissioned in 
1882. It employed both kerosene lamps and, later, incandescent 
lamps for lighting in its aquaria facilities. During 40 y of service, 
she surveyed Newfoundland Banks and the Bering Sea, visited 
archipelagos of the Pacific, and served in 2 wars. Her work 
continued the earlier investigations of Charles Darwin while 
he was at Cambridge’s Christ’s College (1828 to 1831) and his 
subsequent studies that were conducted in the daytime during 
his 5-y voyage on the HMS Beagle (1831 to 1836). Meanwhile, a 
contemporary but obscure Austrian monk and scientist, Father 
Gregor Mendel, unbeknownst to Darwin and the general sci-
entific community, carried out inheritance experiments in peas 
and honeybees at the Augustinian St. Thomas Abbey in Brünn, 
also under sunlight, thus setting the stage for modern genetics 
by studying plants and animals.

As these events were transpiring, the modern age of the in-
dustrial revolution began to gain speed, reaching full throttle in 
the United States in the 1850s. The technological advancements 
made during this period changed lives, made vast fortunes, and 
positioned the United States for its rise to a global superpower. 
Key to this revolution, however, was the development and har-
nessing of electric power and, of course, the emergence of the 
incandescent light bulb. Over the years, the way we light our 
homes has changed from the warm glow of an open fireplace 
to candles, oil lamps, gas lamps, and then to electric lighting. 
Thomas Edison patented his incandescent light bulb in 1881 and 
then figured out how to implement a system for generating and 
delivering electricity to provide electric lights in our homes. The 
mass production and use of this remarkable new technology 
spread globally, and its use changed the industrialized world 
forever. However, this change meant that people were now ex-
posed to considerably less natural, blue-enriched daylight due 
to the population becoming more industrialized and transition-
ing out of the agricultural fields to the home and workplace for 
increasingly longer periods of time. In addition, people were 
now exposed to more broad-spectrum LAN in the community, 
home, and workplace. This single difference in our exposure to 
light, a little more than 140 y ago, was one of the most profound 
environmental changes affecting us on our planet in millions 
of years of evolution. In addition to effects on humans, animals 
maintained under conditions of artificial lighting were also af-
fected by this single environmental, extrinsic factor.

Peter Hewlett invented the first low-pressure mercury fluo-
rescent light in 1901, but its color was very unappealing, and it 
was not popular. The broad-spectrum high-pressure fluorescent 
light was invented in 1927 by 3 German scientists, but General 
Electric created a more practical version like the lamp in use 
today; it was put into production in the late 1930s. The halogen 
light was invented a year after the incandescent light bulb, but 
it did not go into production until the mid-1950s.

Today’s emerging technology, the light-emitting diode (LED), 
was based on the work of Henry Round, a British radio researcher 
in 1907. However, Nick Holonyak is generally considered to be 
the ‘Father of the LED light.’ In 1962, while at GE, he invented 
the first LED; it fluoresced red light because it used gallium 
arsenide phosphide as a substrate for the diode. In 1972 George 
Craford at Monsanto Company invented the first yellow LED, 
and Monsanto was the first company to mass-produce LEDs. 
But the remarkable work of 3 persistent Japanese investigators, 
Drs. Akasaki, Amano, and Nakamura, led to the creation of the 
blue light-emitting diodes in 1994, fundamentally changing the 
lighting industry as we know it today. These 3 scientists shared 
the 2014 Nobel Prize for their work. With the creation of the 

blue LED light, which had eluded scientists for nearly 20 y, the 
next generation of brighter, blue-enriched, cool white lamps, 
combining red, amber, and high-energy blue light were now 
available and formed the basis for all LED screens, including 
the 2010 development of ‘tunable’ strip lighting for research 
animal housing units.

In making general comparisons among traditional light 
sources, cool white fluorescent light, or cool white fluorescent 
(CWF) lamps, provide the same intensity or amount of visible 
light while using only 20% to 30% of the electricity used by in-
candescent and halogen lights, and they last 8 to 15 times longer. 
Although the upfront cost of the fluorescent light is higher, it 
can save over 5 times the purchase price in electricity costs over 
its lifetime. The fluorescent lamp is cooler than incandescent 
bulbs, generating less heat, due to a simple principle: electrons 
bound to mercury atoms are excited to states from which they 
radiate UV light (UV, 390 to 410 nm) as they return to lower 
energy levels; this UV light is converted to visible light as it 
strikes the fluorescent coating on the inner wall of the lamp. The 
fluorescent lamp radiates a markedly consistent spectral power 
distribution (SPD) as compared with all previous technologies. 
SPD describes the power per unit area per unit wavelength of an 
illumination. More generally, SPD describes the concentration of 
light as a function of wavelength. The drawbacks of fluorescent 
lighting (CWF) include the following: 1) disposal, fluorescent 
lights contain toxic mercury; 2) many governments have banned 
discarding these lamps as regular refuse; 3) the light bulb loses 
significant intensity over a short period of time; 4) ballasts (acti-
vating units within the luminaire) burn out within a short time 
frame; 5) ultrasonic noise, which particularly affected rodents; 
and 6), buzzing, slow-start, and dimming, which have been 
solved over time but are still considered by a part of the U.S. 
population as being ‘not warm’ or aesthetically appealing, as 
is the warm glow of a fireplace.

Currently, the most common lighting technology used in 
vivaria and offices around the world is white CWF lighting. 
LED light, and more specifically LED light enriched in the 
blue-appearing portion of the visible spectrum, is rapidly replac-
ing both fluorescent and incandescent lighting systems globally. 
LED lighting can now be regulated (tunable) for intensity and 
wavelength to provide a ‘warmth’ range from warm white to 
cool white. LED light has a host of advantages over fluorescent, 
incandescent, and halogen lighting, including higher efficiency, 
lower heat production, and a significantly longer operating life 
(up to 42 y).289 These advantages accrue because LEDs convert 
electricity directly to photons of light, rather than using a waste-
ful mixture of heat and light generated inside traditional bulbs 
or lamps. Inside an LED, electric current is applied to a sandwich 
of semiconductor materials that emit a specific wavelength of 
light depending on the chemical makeup of those materials. 
This feature allows control of the variable wavelength or color 
of the light, making it appear more ‘warm’ or ‘cool’ to the ob-
server. Because 20% of the world’s electricity is being used for 
lighting, calculations indicate that maximal use of LED lighting 
could reduce this usage to as little as 4%.183,289 Therefore, all in 
all, based on its features of superior spectral control, solid state 
sturdiness, size, and weight, LED lighting offers some attractive 
long-term, inexpensive alternatives to conventional lighting. 
However, another important advantage of LED lighting as 
compared with all other high-intensity discharge technologies 
currently in use is that it emits little-to-no high-frequency vibra-
tion due to the solid-state nature of this technology.

Both of the LED and CWF T8 lamps (tubular, 1-in. diameter, 
48-in. length) that we used in our animal research39,40,94-102 



120

Vol 63, No 2
Journal of the American Association for Laboratory Animal Science
March 2024

fit easily into the standard, traditional CWF overhead 48-in. 
luminaire (fixture) (Figure 3; CWF, top left; LED, top right), 
eliminating the need to change out the ballast system (cur-
rent regulator and stabilizer) and thereby avoiding a major 
expense. The major manufacturers in the lighting industry 
market that lamp to institutions considering a transition to 
the new technology. For the purposes of this article, one may 
think of color temperature (degrees Kelvin) as a measure of 
warmth of a light, as perceived by the human observer. In 
general, when employing this metric, the higher the Kelvin 
temperature (perceived brightness) and correlated color tem-
perature (CCT; perceived blue-enriched or cool), the less warm 
and more cool the light emitted by a source. Many LED lamps 
today are significantly blue-enriched (450 to 485 nm) and have 
a CCT of 5,000 K (Figure 3, bottom right), as compared with 
4,000 K for white fluorescent lamps. In general, both fluo-
rescent and LED light sources can range in CCT from 2,200 
to 6,500 K and even extend beyond this range. Traditionally, 
animal research facilities were illuminated with ‘warmer’ 
fluorescent lamps of 3,500 or 4,000 K CCT. In comparison, the 
new LED sources at 5,000 K appear ‘cooler’ even though the 
total luminous flux, or lumens, a measure of the total quantity 
of light, can be somewhat lower in the LEDs.244

Light and Circadian Rhythms
Most animal species on earth evolved under an important 

geophysical event, the daily and seasonal rising and setting of 

the sun. For thousands of generations, people and animals were 
exposed to the presence and absence of light on a daily basis 
due to the earth’s rotation. All mammals have internal mecha-
nisms that respond to alternating cycles of light and darkness 
and profoundly influence neuroendocrine systems throughout 
the 24-h day. Currently, we know that extrinsic light associated 
with light–dark cycles regulates virtually every major mam-
malian biological rhythm from birth to death.50-52,93,136,137,300,417 
These mechanisms also apply to research animals that are 
maintained in the artificial light/dark environments of vivaria 
around the world. The 4 basic biological rhythms are as fol-
lows: 1) circannual rhythms with a cycle of about 1 y, such as 
seasonal reproduction cycles, migrations, and hibernations; 
2) infradian rhythms, with a cycle of less than a year, such as 
the female menstrual cycle; 3) ultradian rhythms, with a cycle 
of less than a day, such as heart rate and encephalogram pat-
terns and eating cycles; and 4) circadian rhythms, with cycles 
of about 24 h. Circadian rhythms are the focus of this article, 
including rhythms of neuroendocrine hormones (i.e., melatonin) 
and the many other rhythms shown in Figure 1. The study of 
circadian rhythms encompasses the temporal organization and 
integration of circadian neurohormonal and neurobehavioral 
responses, collectively referred to as circadian physiology.259 
While written records of circadian physiology are available for 
only a few millennia, daily variations in physiologic processes 
in early humans were likely aligned with the 24-h daily photo-
period. The Egyptians developed sundials nearly 5,500 y ago, 
and the Chaldeans of Mesopotamia created the sophisticated 
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nondecimal time measurement system from which our system 
today is derived.314

The modern era of circadian rhythm study began with 
the work of the eminent German botanist Erwin Bünning in 
the 1930s, who first introduced the idea of internal clocks by 
studying the opening and closing of flowers.58 Subsequently, the 
German physician and behavioral physiologist Jürgen Aschoff 
suggested that alterations in the light/dark cycle could disrupt 
an organism’s internal ‘Zeitgeber’ or timekeeper, leading to ad-
verse neurobehavioral outcomes. Aschoff’s student, the British/
American biologist Colin Pittendrigh at Princeton University 
showed in both Drosophila and rodents how circadian rhythms 
entrain to the light/dark cycle. In the 1960s Franz Halberg 
coined the terms ‘Circadian’ and ‘Chronobiology.’160 These 4 
pioneers are considered the fathers of modern Chronobiology. 
The next great leap occurred in the early 1970s—the discovery 
of the suprachisamatic nuclei (SCN) or master biologic clock. 
These bilateral nuclei, located in the anteriobasal portion of the 
hypothalamus, sit along the midline above the optic chiasm in 
the floor of the third ventricular recess of the brain. For an out-
standing historical review and detail of the circadian aspects of 
all this work, we highly recommend Roberto Refinetti’s classic 
text, Circadian Physiology.314 The 2017 Nobel Prize in Medicine or 
Physiology was awarded to Jeffrey C Hall, Michael W Rosbash, 
and Michael W Young, all students of Pittendrigh, for their 
discovery of the clock genes Period and Timeless in Drosophila.161

The advent of electrical lighting has influenced the nature of 
all the aforementioned biological rhythms and most significantly 
circadian rhythms.86,87,163,289 This influence applies not only to 
humans and feral animals but also to animals in the controlled 
environment of the vivarium (Table 1). In efforts to improve 
research animal habitat and vivarium design, the consideration 
of both the visual and nonvisual effects of light will become 
increasingly important. For example, one might question the 
extent to which a specific architectural design replicates the 
biologic effects of natural sunlight, much like the emerging, 
blue-enriched LED technology,93,94,101 or how lighting can be 
used to minimize the deleterious effects of LAN and enhance 
research animal health and well-being.

Current practices for measuring light in the vivarium.  The 
lighting industry, biomedical research community, and research 
animal care groups are now beginning to address the concerns 
associated with light, lighting technologies, and lighting  
protocols.93 However, making progress in this work first requires 
proper quantification of how light influences physiology and 
behavior. As a matter of course, light measurements fall into 2 
categories: radiometry and photometry.244,292 Radiometry incor-
porates the physical properties of light wavelength and energy. A 
radiometer quantifies radiant power over a defined bandwidth 
of electromagnetic energy. In contrast, photometry, a specialized 
branch of radiometry, accounts for the fact that biologic receptors 
are not equally sensitive to all light wavelengths. A photometer 
is a radiometer that uses filters to weight the detector response 
to various wavelengths according to the spectral sensitivity 
of vision in a species. The majority of commercially available 
photometers use a weighting function, the photopic luminous 
efficiency function (Vλ), which reflects the spectral sensitiv-
ity of the long- and middle-wavelength–sensitive cones.55,57,243  
Depending on the geometric properties of interest, luminous 
intensity (unit of measure, candela [cd; lumens/steradians 
{lm/sr}]), luminance (cd/m2), or illuminance (lux [lx; lm/m2]) 
can be determined from the output of these devices. During 
the 1980s through 2000, the vast majority of both human and 
animal research studies on circadian, neuroendocrine, and 

neurobehavioral responses to light quantified the stimuli in 
terms of photopic illuminance240-244 because light meters that 
measured in lux were inexpensive and readily available. Two 
subsequent areas of investigation, however, have shown this 
practice is inadequate.

First, during the past 20 y, scientists have learned that al-
though the photoreceptive capacity of the retina is dominated 
by rhodopsin-based rods and cones, a small subset of the retina’s 
output neurons, the melanopsin-based retinal ganglion cells 
are also directly photosensitive (Figure 4).34,168-170 Most aspects 
of animal physiology and behavior are influenced by retinal 
illumination, but they are distinct from the general aspects of 
vision for image formation14,15,120,214,306,377 because they are not 
related to spatial patterns of light exposure and persist even in 
animals that are blind.140,264,265,269,286,362,433

Second, empirical observations have shown that circadian, 
behavioral, and physiological responses to extrinsic light have 
distinct spectral sensitivities (Figure 5). More than 12 analytic 
spectra studies based on selective wavelength comparisons in 
humans, NHPs, and rodents demonstrated that peak sensitivi-
ties in the short-wavelength portion of the visible spectrum (447 
to 484 nm [blue-appearing])34,48,49,242,387,433 clearly diverge from 
that predicted by νλ (peak sensitivity, 555 nm).

Taken together, these findings indicate that established photo-
metric light measures using the vλ spectral weighting function 
(e.g., photopic lux) are inadequate for quantifying the light 
that regulates nonvisual physiology and behavior. An alterna-
tive method put forth by the Commission Internationale de 
l’Eclairge in 2018 is currently available, satisfying this unfilled 
need, which has important ramifications for the animal and 
biomedical research communities.79 However, the lack of a fully 
accepted metric (i.e., an agreed-upon method for the measure-
ment of light) complicates the comparison of research findings 
and the replication of experimental conditions.244 Furthermore, 
this deficiency hinders the ability of the lighting industry and 
regulators to predict the influence of various lighting proto-
cols on behavioral and physiologic systems. The fundamental 
obstacle in addressing this requirement has been the difficulty 
in determining a spectral weighting function (similar to νλ) for 
nonvisual responses.244 Understanding the full scope of this 
challenge requires a review of our current knowledge of the 
visual system and, more importantly, of basic neurophysiology 
of intrinsically photosensitive retinal ganglion cells (ipRGCs) 
and their interactions with the classic rods and cones of the 
visual system.

The visual and nonvisual (circadian) systems. Over the past 
30 y, scientific evidence has demonstrated that many aspects 
of animal physiology and behavior are influenced by retinal 
illumination (Table 1).14,15,331 While some responses originat-
ing in the eye are related to vision (i.e., image formation), 
others are unrelated to spatial patterns of light exposure 
and can persist in some blind animals. These types of light 
responses are referred to as nonimage-forming or nonvisual 
responses and are related to the circadian system (Figure 4).  
Most of the significant advances in our understanding of 
these 2 systems indicate that they have similar ocular ar-
chitecture and responses. As mentioned earlier, their most 
influential effect is the light-induced entrainment (circadian 
regulation or Zeitgeber [timekeeper] signals) of endogenous 
circadian clocks. Because circadian rhythmicity is a character-
istic of almost every physiologic, metabolic, and behavioral 
system, this phenomenon brings a wide array of biologic 
processes under indirect retinal control. That said, the term 
nonvisual (circadian) response has come to encompass an 
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Table 1. Selected articles of light impact on animal biology and health

Species Research areas/impacts References
Homo sapiens Bright light suppresses melatonin secretion 227

Light and biologic rhythms 15
Light, circadian regulation, adiposity, and aging 260, 318, 319, 348, 421, 422
Photoreception and neurobehavioral regulation 52, 379
Bright light reset the human circadian pacemaker 90,91
Monochromatic light and plasma melatonin levels 47
Light, melatonin, and breast cancer 175, 207
Light estrogen receptors and breast cancer 311
A novel retinal opsin: melanopsin 308
Temperature 433
Action spectrum of melatonin suppression 49
Shift work, light at night (LAN), and breast cancer 103, 424
Melatonin circadian re-entrainment with blue light 236
LAN, poor sleep, glucose metabolism, and obesity 366
Photopigment and melatonin suppression 388
LAN and breast cancer 38, 39, 148
Phototransduction and circadian clock 34
Spectral responses and the circadian system 152
Melanopsin-containing retinal ganglion cells 168-170
Phase response curves and single bright exposure 203
LAN and breast cancer 39, 252
Distinct population of intrinsically photosensitive 92
Melatonin receptors and sleep 114
Light, neuroendocrine/neurobehavioral regulation 164, 416
Measuring and using light 245
Seasonal light circadian, entrainment, and health 342
Light exposure devices and nighttime sleep disorder 398
LEDs and physiology 147, 290
Circadian disruption and fat overload 224
Seasonal clock, ulcerative colitis, and Crohn disease 130
Oxidative stress 324
Recommendations for light exposure and sleep 57
Light and glucocorticoid pulsatility 230, 340
Excessive light exposure, DNA damage, and cancer 321

Gorilla gorilla Light, glucocorticoid secretion, and fitness 31
Pongo pygmaeus

Pan paniscus Light, metabolism, and neurohormones 20, 254
Macaca mulatta Light pupillary reflex 143, 306

Ganglion cells and visual and nonvisual systems 92
Light or melatonin shifts circadian rhythms 255
Light, aging of circadian rhythms 444

Callithrix jacchus Light circadian rhythms and blindness 363
Cebus capucinus Light and hormonal regulation 191, 192
Hylobatidae hylobates

Nomascus, Hoolock

Symphalanges Light and sleeping behavior 126, 316
Saimiri sciureus Light and circadian rhythms of locomotor activity 390, 391
Cetacea Light, circadian rhythms 237, 396

Light, melatonin, and cortisol 287, 288, 374, 375
Chiroptera Light and clock genes 441
Artiodactyla Light, field conditions, and behavior 115, 187, 240, 291, 331, 377, 428
Bos taurus Melatonin isolation 221

Impact on neuroendocrine and neurobehavior 233, 408, 409
Light, circadian regulation 64

(continued)
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Equus ferus Chronobiology and the horse 270, 271
Light impact on circadian rhythms and health 271

Elephas maximus Light and immunoglobulin regulation 186, 303
Ursus arctos Light, food entrainment, and circadian rhythms 112, 195, 411
Ursus maritimus Light and circadian rhythmicity 194, 412
Phascolarctos cinereus Light and hormone secretion 2, 239
Sus domesticus Light intensity, circadian rhythms, and health 156, 185
Sus scrofa domesticus Lighting and locomotor activity 36, 381
Capra hircus Light and reproduction 68

Light and gene expression 228
Light cycles and health 296

Ovis aries (sheep) Melatonin analysis 10, 11
Photoperiodism and seasonal breeding 36, 427
Light cycle impact on reproduction and health 282

Bradypus variegatus Light and blood pressure 113
Choloepus hoffmanni Light and locomotor activity 179
Canis lupus Circadian-mediated metabolism 68, 69
Canis familiaris Light and circadian profiles 297, 298
Hyaenidae Light and feeding patterns 88
Felidae Light and reproduction 56
Felis catus Varying photoperiods and neurohormone concentrations 225
Marmota monax Light, circadian rhythms, hibernation arousal, and mating 439
Mustelidae Light cycles, feeding, hormone circadian rhythms 42, 373, 374, 445
Procyon lotor Light and seasonal reproduction 17, 280
Microcebus murinus Light and reproduction 223
Mesocricetus auratus Adrenocortical cytogenesis 322, 323

Hypothalamic activity of luteinizing hormone and 
follicle-stimulating hormone releasing hormones

37

Light and the parasympathetic system 25
Photoperiod and adiposity 30
LAN and depression-like behavior 28
LAN and immune suppression 29
Different light spectra and pineal melatonin 44, 305
Light irradiance, wavelength, and reproduction 46
Light synchronization of ovulation 3
Photoperiod and reproduction 67
Light and melatonin suppression 294, 295
Photoreceptors and circadian rhythm entrainment 380
Light and circadian phase shifting 360
Photoperiods, circadian rhythms, and depression 35

Rattus Constant light and pituitary function 217
Light and body temperature entrainment 258
Light and pineal gland serotonin levels 206
Light and corticosterone controls 344, 345
Retinal photopigment that mediates pineal response 62
Hormonal influence in phototoxic retinopathy 283
Light and phototoxic retinopathy 33
Pinealectomy and melatonin suppression 226
Photoperiodic control of reproduction 277
Ambient light intensity and melatonin rhythm 213, 248
Light and phototoxic retinopathy 74
Light in summer and winter 182
Diurnal susceptibility to phototoxic retinopathy 116
Cyclic light threshold and phototoxic retinopathy 350
Light illumination in animal quarters 45

(continued)

Table 1. (Continued)
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Preference for low light intensities 346,347
Phototoxic retinopathy 27
Phototransduction in ganglion cells 34
Light impact on heart rate 18
Animal facility LAN and human cancer growth 95,96
LAN, Warburg effect, and breast cancer 40
Melatonin suppression of breast cancer 37-41, 96, 102, 164
Daytime blue light exposure and prostate cancer 98
Degenerative retinal lesions 431
Daytime LED light and enhanced animal health 1, 97, 101, 423
Facility lighting and circadian regulation 164, 192
Melatonin inhibition of multiple diseases 324, 325
Light and circadian clocks 146, 328, 329
Light and tissue growth 369
Light, melatonin, and brain trauma recovery 389, 390

Mus Low light intensity preference 413
Light influence on organ weights 337, 338
Light, clock gene expression, and behavior 1, 7, 12
Light and behavioral paradigms 118, 330
Light and genetic control of melatonin synthesis 119
Melatonin variation in different mouse strains 153, 403
Photoreception in the retinally degenerate mouse 140
Nutrient preference 19
LAN and anxiety 43
Melatonin and metabolism 202, 235
Phototransduction by retinal ganglion cells 34, 417
Melanopsin and rod–cone photoreceptive systems 170, 171
Diminished pupillary response 243
Light and circadian wheel-running behavior 132
Fatty acid oxidation 144
Diurnal variation and inflammation 253
Light, rod–cones, and sleep modulation 6
Light and aging 166, 184, 351, 387
Light and sleep 167
Light and tumor development 219
Aberrant light impairs mood and cognitive behavior 220
Light, melanopsin measurement 262, 263
Light and feeding behavior 180, 353
Modulation of memory performance by light 385
Light and the laboratory mouse 293
Facility LAN alters scientific outcomes 102, 122
LAN and metabolic changes 131
LAN and body weight increases 135, 173
LAN and depression 132, 134
Daytime LED light promotes health and well-being 94
Light and metabolic dysregulation 261
Light and circadian clocks 16, 65
Light and circadian clock gene mutations 368
Light intensity and gonadal and spleen growth 407, 418
Light and cyclic cellular protein expression 419

Octodon degus Photoperiods and seasonal affective disorders 16
Suncus etruscus Recommended light levels for healthy maintenance 9, 145
Aves Artificial photoperiods and circadian rhythms 76

Photoperiod and circadian rhythm 147
Circadian clock in an arctic animal 240, 332

(continued)

Table 1. (Continued)

Species Research areas/impacts References



125

Vivarium light as an extrinsic factor

Circadian rhythms and environmental photoperiods 158
Light and molt rhythms 159
Moonlight feeding behavior 72
Light, circadian rhythms, and energy 60
Artificial light and behavior 111, 160, 348
Light and circadian rhythms 437
Photoperiods and gut health 89
Light and circadian variation in indole content 445
Moonlight and behavior 73
Light, circadian rhythms, and temperature 370
Light and melatonin rhythms 436

Gallus gallus Dim-light, melatonin, metabolism 2
Food consumption and growth 60
LED light and health 234
Monochromatic light and immune response 429

Reptillia Light, melatonin circadian rhythms 127
Designing environments, photoperiods, and health 106
Light and pineal melatonin secretion 265
Moonlight and behavior 72
Photoperiods and healthful development 127
Moonlight and activity 414

Rana Isolation of melatonin 222
Amphibia Light, temperature, and body mass 53

Breeding behavior 22
Light, circadian rhythms, and health 410
LAN and circadian disruption 136, 410

Nauphoeta cinerea Photoperiod-dependent and pheromone suppression 209
Carassius auratus Light and mRNA expression patterns 400, 401
Danio rerio Sleep and regulation 442, 443

Light-induced gene transcription 415
Light, gene expression, and sleep 362
Lighting conditions and gene expression rhythms 109, 204
Light-entrainable circadian pacemakers 266
Light, spatial distribution, and swimming behavior 352
Responses to ambient illumination 354

Hymenoptera Light and fitness 238
Light and circadian regulation 315

Leucophaea maderae Light, circadian oscillations, and homeostasis 302
Photuris pyralis LAN and courtship behavior 128
Homoptera LAN and population dynamics 339
Drosophila melanogaster Circadian systems 301

Molecular genetics, circadian cycling, and behavior 24
Visual system mutations and circadian rhythms 117
Light, per gene and circadian cycling 150, 162, 386
Lighting protocols and fitness 210
Light and lifespan 229
Light and entrainment of the circadian clock 272, 273, 299, 300
Light regulation of circadian clocks 138, 139, 208
Light and circadian rhythms 302, 432
Circadian rhythms and feedback loops 334
Light and eclosion rhythms 356, 357

Ixodes scapularis Circadian gene dysregulation and host feeding pattern 205
Onchidium reevesii Light, circadian rhythms, and memory 157, 430
Platyhelminthes Light and circadian rhythms 172, 190

(continued)
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ever-expanding list of more acute effects of light that ensure 
a normal physiologic state. For example, light constricts the 
pupil, abrogates pineal melatonin production, increases heart 
rate and core body temperature, stimulates neurohormone 
production, and acts to increase subjective and objective 
measures of alertness and psychomotor reaction time, mood, 
and learning.255,293,298,305,383 Appreciation of this basic biology 
has led to numerous therapeutic applications in both humans 
and animals, including treatment for depression, seasonal 
affective disorder, and circadian disruption associated with 
jetlag, shift work, space flight, and problems with cognition 
and fatigue.250,314,370,374,397,417

In brief, light enters the eye and passes through the lens to 
excite the retina. Photic signals are transmitted via the POT to the 

thalamus and then to the visual cortex providing vision (Figure 4).  
A parallel but separate pathway extends from the retina and 
optic chiasm to a nonvisual part of the brain in the anteriobasal 
hypothalamus and the SCN (the master biological clock). This 
paired nuclear group is located above the optic chiasm and near 
the supraoptic recess of the third ventricle, allowing it to readily 
receive light/dark information from the retina. There is a short 
projection from the SCN to the paraventricular nucleus and a 
long descending multisynaptic pathway to the upper thoracic 
level of the spine. The retinohypothalamic tract (RHT) pathway 
then leaves the central nervous system through the superior 
cervical ganglion, and postganglionic autonomic nerve fibers 
climb up the vasculature to innervate the pineal gland.288,302 The 
pineal gland synthesizes and secretes a variety of compounds, 

Porifera Light and behavior 123, 129
Spongillida Light and circadian behavior 267, 439, 441
Conus mollusca Circadian rhythms 279
Conicus Circadian immunologic responses 438
Strongylocentrotus intermedius Circadian rhythms and spawning behavior 123, 438, 440
Cephalochordates Light, evolution, and photosensitivity 211
Caenorhabditis elegans Light and locomotor activity 4,61
Hymenolepis diminuta Light and other rhythms 171, 189
Schistosoma mansoni Light and gene expression 313, 314
Eylais extendens Periods of light and hatching larvae 435
Enterobacter aerogenes Circadian clock and light 292

Figure 4. The human retina and eye. The ocular structure of most species has similar characteristics in both sexes. The retina is a layered struc-
ture; light passes through the lens and inner retinal layers (retinal ganglion cells, amacrine cells, bipolar cells, and horizontal cells) to reach the 
light-sensitive photoreceptors in the outer retina (rods and cones). The retina contains 2 classes of visual photoreceptors: rods, which mediate 
low-light (scotopic) vision, and cones, which mediate bright-light (photopic) vision and provide color vision. Most mammals have 3 cone opsins, 
short-wavelength (SWS), middle-wavelength (MWS), and long-wavelength (LWS)–sensitive opsins, except for mice, which have only 2 opsins 
(SWS and MWS). These opsins are coexpressed in 95% of cones. In addition to rods and cones, a subset of ganglion cells containing the pigment 
melanopsin (referred to as melanopsin-containing intrinsically photosensitive retinal ganglion cells [ipRGC]) capture light in the blue-appearing 
portion of the visible spectrum and mediate many nonvisual (circadian) responses to light. This figure is presented with permission from the 
American Association for Laboratory Animal Science.

Table 1. (Continued)
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but the most widely studied is the circadian nighttime neu-
rohormone, the 5-methoxyindole melatonin (MLT). Systemic 
MLT levels are high at night and low during the daytime. This 
light–dark-dependent entrainment of the SCN regulates circa-
dian rhythms of metabolism and physiology in all mammals. Its 
long, multisynaptic pathway provides 2 forms of information 
through our nervous system: vision and biological time.50 In 
this manner, light influences both the POT regulation of both 
visual effects and visual reflexes of mammals and RHT regula-
tion of acute and long-term biological and behavioral effects 
(Figure 2A and 2B).

Light must pass through the inner layer of the inner retina 
layer to reach the light-sensitive photoreceptors of the outer retina 
(Figure 4). The retinal photoreceptor layer of the eye contains 
rod and cone photoreceptors that, respectively, mediate scotopic 
(low light) and photopic (bright light) vision via the POT. In 
most mammals, including nocturnal rodent species (the most 
widely used for animal research), the retina is rod dominated, 
with approximately 6.4 million rods that account for about 
97% of photoreceptors.105,140,217 Conversely, the retina contains  
only about 200,000 cones, which account for less than 3% of the 
photoreceptors.292 In contrast to the primate retina, the mouse 
retina does not have a fovea centralis, or central region, that con-
tains the highest cone density and lacks rods and other neurons. 
The densities of rods and cones peak in the area centralis, a broad 
central region with fewer receptors than the fovea but more than 
the peripheral parts of the eye, decrease peripherally around the 
retina. Peak rod density in mice is about 100,000/mm2, whereas 
peak cone density is approximately 16,000/mm2; the peak cone 
density is comparable to that of humans, NHPs, and cats.217

The photoreceptor outer segment contains light-sensitive 
visual pigments, which are transmembrane proteins comprising 

an opsin protein bound to a light-sensitive vitamin A–based 
chromophore, 11-cis retinal.176 Absorption of light photons 
leads to isomerization of the 11-cis retinal to an all-trans state, 
resulting in a conformational change in the opsin that triggers 
activation of the G-protein transducin. Once activated, trans-
ducin subsequently leads to activation of phosphodiesterase 
that, in turn, hydrolyzes cGMP, a serine/threonine-specific 
protein kinase, into GMP. This step results in the closure of 
cyclic nucleotide–gated ion channels and hyperpolarization 
of the photoreceptor cells. Photoreceptor cells are depolarized 
during the dark phase and constitutively release glutamate, 
effectively reducing their output signal.13,124,213

The retinas of rodents, particularly mice, contain 3 visual 
pigments: a rod opsin with a peak sensitivity (λmax) at 498 nm 
and cone opsins that are sensitive to middle-wavelength (λmax, 
508 nm) and UV (λmax, approximately 360 nm) light.54,110,192,193 
Due to this UV-sensitive pigment, mice show a greater sensi-
tivity to UV light than humans.192,193,365,399 In addition, unlike 
humans and some other mammals, mice lack a long-wavelength 
opsin and thus are less sensitive to longer wavelength light. 
A common misconception is that mice cannot perceive 
red-appearing light in the visible spectrum.100,292 For example, 
humans are 12 times more sensitive to a red-light stimulus of 
600 nm than are mice.292 This characteristic, however, does not 
mean that mice cannot detect such light via both the visual and 
nonvisual systems. When such light is of sufficient intensity and 
duration, both of the photosensitive systems that regulate the 
circadian rhythms of metabolism and physiology in mice are 
quite capable of responding to long-wavelength light.100,284,285,292

The nonvisual (circadian) system, which consists of the RHT 
emanating from the ipRGC of the retina, controls circadian 
rhythms of metabolism and physiology via light and light–dark 
cycles. This system was not discovered until 2003 (Figure 4).34,170 
These unique ganglion cells achieve their intrinsic photosen-
sitivity through the expression of the opsin photopigment 
melanopsin, which absorbs light primarily in the blue-appearing 
portion of the visible spectrum (564 to 582 nm).306-308,310 
Melanopsin-containing ipRGCs comprise only a small portion 
of the overall ganglion cell population (1 to 5% depending on 
the species and estimation methodology), but they project to 
all major portions of the brain via the RHT, including those  
with nonvisual (circadian) responses.57,120,121,152,165 At least  
5 subsets of ipRGCs have been identified in primates (4 in  
the case of nonprimates).34 Their density is species dependent 
and described to date only in humans and specific NHPs and 
rodents.34,169,170,243,244,416

The response of ipRGCs to light is an irradiance-dependent in-
crease in photic activation, with downstream responses that are 
activated by much lower levels of illumination than classic rods 
and cones.170 In the field of photobiology, an action spectrum 
is one of the principal tools for identifying how melanopsin 
initiates a light-induced response that ultimately translates 
to circadian regulation. Photopigments like melanopsin have 
their own action spectrum (Figure 5), or pattern of wavelength 
sensitivity that varies from species to species.49,50 Specific abla-
tion of ipRGCs only abolishes nonimage-forming responses, 
thus identifying this cell class as the principal conduit of photic 
input to circadian and other systemic responses to light.57,120,152 
Indeed, ipRGCs can detect light when isolated from the retina 
proper, thus explaining why the photosensitivity of these cells 
survives the loss of functional rods and cones34,138,152,195,241,433 
and why the spectral sensitivity of nonimage-forming responses 
is different from that of rod- or cone-based vision.6,34,90,91,137,241,433 
In all mammals, light provides the principal cue for entraining 

Figure 5. This graph illustrates the relative wavelength sensitivity of 
the photopic visual system. The photopic, or daytime, system uses 
Cones that are capable of color vision and are responsible for high 
spatial acuity. The 3 types of cones are referred to as the short-, me-
dium-, and long-wavelength–sensitive cones (S-, M-, and L-cones). 
The scotopic (dark phase) system primarily uses rods, which medi-
ate vision at low light levels. Rods do not mediate color vision and 
have low spatial acuity. At dawn and dusk, light levels are low, and 
both rods and cones are operational; this is arbitrarily referred to as 
the mesopic system. Rods and M- and L-cones have peak sensitivities 
of 555 nm, whereas the peak sensitivity of mammalian circadian, neu-
roendocrine, and neurobehavioral responses regulated by the ipRGC 
blue-rich LED system ranges between 446 and 484 nm. If you have 
normal color vision, and you can see the spectrum at the base of the 
slide, your 3-cone system is working with peak sensitivity at 555 nm; 
this is known in the neural literature as the ‘standard observer.’
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the circadian system.14,15 The photoreceptors mediating this 
process are exclusively ocular, and enucleation eliminates all 
responses to light.138,276 However, circadian photoreception, 
phase-shifting, and suppression of pineal melatonin responses 
to light are sustained even in the absence of rods and cones and 
when animals are visually blind.285 Indeed, all mammals sustain 
circadian entrainment, suppression of melatonin, and preserva-
tion of neuroendocrine and neurobehavioral responses to light 
via the nonvisual melanopsin-containing ipRGC cells,307,308 
which are directly photosensitive and project via the RHT to the 
anterior basal portion of the hypothalamus. The hypothalamus 
is the site of the SCN, which comprise the master circadian 
oscillator in mammals.247,425 The SCN projects over a polysyn-
aptic pathway to the pineal gland, thereby driving a series of 
molecular events that lead to the production of pineal melatonin 
(N-acetyl-5-methoxytryptamine) primarily at night.10,114,205,261,263 
The daily rhythmic melatonin signal contributes to the temporal 
coordination of normal behavioral and physiologic functions 
including sleep-wake,68,246,266,361,443 cognitive performance,134,141, 

295,382 reproductive cycles,68,276,281,317,321 immune functions,29,63,71,82, 
228,248,249,341,403 gene expression,30,66,85,188,256,395,405 hormone  
levels,104,188,190,199,211,231,232,274,310,319,348,358,363,381,391,392,403 tempera-
ture regulation,50,53,114,201,234,257,369,376 electrolyte balance,107 glucose 
metabolism,212,230,335,396,414 neural protein synthesis,23,354,355 and 
redox states,323-326,383 and melatonin has remarkable anticancer 
and antioxidant properties.142,323-326 Although ipRGC can me-
diate nonvisual responses to light in the absence of rods and 
cones, functional rods and cones contribute to these responses 
under normal circumstances. However, if rods, cones, and 
melanopsin-containing ipRGCs are lost, then all responses to 
light are abolished.34,292 These responses to light include circa-
dian entrainment and pupillary light responses,143,304 pineal 
melatonin suppression,268,269,275 adaptation of visual pathways 
to light,245,292 acute disruption of activity,149 sleep,5,91,246,298,299 
mood and cognition,219,384 and other important responses that 
influence animal health and well-being (Table 1).

The pupillary light reflex (PLR), a melanopsin-ipRGC–driven 
response controls the amount of light reaching the retina by  
a simple, well-characterized pathway that links a sensory  
signal and light irradiance to the motor output of pupillary 
constriction.143,244,305,331 Data from both animals and humans 
show that rods, cones, and ipRGCs all participate in the PLR and 
that their contributions are variable depending on light intensity 
and spectral content; however, the ipRGCs are spectrally distinct 
photoreceptors and their ‘firing rate’ is sensitive to even a few 
photons of light, which drives the PLR and ultimately most 
physiological and behavioral responses to light.59,143,269,305 
This feature is particularly relevant during the vivarium dark 
phase. At the initiation of the lights-off period, when prior reti-
nal irradiance (from light phase ocular exposure) has exceeded 
the threshold of melanopsin activation, PLR persists for many 
seconds into the dark phase. In the presence of LAN in the 
animal room, both PLR and ipRGC activation may continue. 
During the light phase, this activation is critical for normal 
circadian regulation of neuroendocrine and neurobehavior 
parameters associated with animal health and well-being. 
However, animals exposed to light during the dark phase are 
at high risk of circadian disruption of the central (i.e., SCN) 
and peripheral clock systems and subsequently to disrup-
tions of physiologic and behavioral circadian rhythms. While 
some laboratories108-112,122,276 have proposed that the nighttime 
‘dim-light’ exposure of one strain of mouse is approximately 5 lx 
(2.0 µW/cm2), our lab has demonstrated that in several strains 
of both rats37-41,96-101 and mice,94,102 exposure to broad-spectrum 

CWF LAN of as little as 0.2 lx (0.08 µW/cm2) for a period of as 
brief as 2 h during dark phase is sufficient to disrupt circadian 
patterns of neuroendocrine and neurobehavioral responses. We 
discuss this phenomenon more completely in the subsequent 
section on extrinsic LAN.

Additional considerations for vertebrates.  Extrinsic light 
exposure influences SCN regulation of the hypothalamic– 
pituitary–gonadal axis205 and significantly influences metabo-
lism and physiology, resulting in greater uptake of fatty acids 
by both normal and neoplastic tissue, reduced lean-to-muscle 
mass,172 impaired organ function, and more comorbidities.63,149 
Exposure to light at the wrong time of day (such as LAN) 
elevates serum fatty acids,26,34,35,94-101 body mass, and body 
fat.70,94,135,424,425 Exposing mice to LAN reduces energy ex-
penditure and promotes carbohydrate over fat metabolism, 
thus increasing body fat mass.40 Administration of physiologic 
levels of exogenous melatonin to mice and rats exposed to dim 
LAN attenuates disruption of circadian rhythms of metabolism 
in adipose tissue.40,425

Light modulates glucocorticoid-associated control of an array 
of biologic functions, including those maintaining homeostasis 
and physiologic functions.162,163,378 These functions include the 
regulation of corticosteroid levels in hamsters,190,339 mice, and 
rats.133,229,310 Exposure to LAN also affects various physiologic 
processes that include inflammatory responses, wound healing, 
blood pressure, growth and development, blood glucose levels, 
muscle and bone physiology, and mentation.216,397

With regard to reproduction, exposure to LAN in the vivarium 
affects the ovaries of a variety of species from fish to mammals. 
Oscillating clock genes in the ovaries are regulated in a defined 
fashion by light–dark cycles; misalignment of the circadian clock 
can alter or inhibit reproduction.3,7,67,68,123,222,292,398 Reproduc-
tion in research species that are seasonal breeders depends  
on seasonal patterns of light–dark exposure and melatonin 
production.325 Indeed, reproduction in photoperiodic animals is 
compromised by aberrant lighting during the daily dark phase 
and is highly improved when animal facilities are completely 
LAN decontaminated to ensure normal nocturnal melatonin 
signaling.

Thoughts regarding invertebrates. Extrinsic light conditions 
are also a major concern when housing and maintaining 
invertebrates for research, given that biologic rhythms in 
these animals, including unicellular organisms, share nearly 
identical complexity with mammals.32,428 Indeed, clock genes 
were first identified in fruit flies (Drosophila melanogaster), 
work that was awarded the 2017 Nobel Prize in Physiology 
or Medicine.161,333,433 Fruit flies remain an important model for 
the study of genetics, development, and disease.32,207 Although 
constant bright light in animal facilities can adversely affect 
fecundity, longevity, and development in fruit flies,209,357 little 
information is available regarding the effect of daytime light 
(including LED light) on the physiology and metabolism of 
fruit flies.2,94,98,101,406 Irregular lighting conditions may also 
negatively impact less commonly studied invertebrates. Ex-
posure to LAN attenuates immune responses in crickets,128 
reduces clutch sizes in ants,237 and dramatically reduces 
the likelihood of successful mating in moths, fireflies, and  
aphids.128,338,398 No information is currently available re-
garding the use of daytime LED. Nonetheless, these studies 
underscore the importance of inappropriate lighting, par-
ticularly LAN, on circadian rhythms of metabolism and 
physiology that are highly conserved across species. The use 
of stable species-appropriate light–dark cycles should always 
be incorporated into invertebrate housing.
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Extrinsic light at night exposure in the vivarium. Human and 
animal exposure to LAN is one of the most common events 
in the community, home, workplace, and vivarium.125,360,387 
Approximately 95% of animals used in research are rodents,122 
but the deleterious effects of exposure to LAN on health and 
well-being apply to all humans and animals. Although ro-
dents have poor visual acuity, they are highly sensitive to light  
intensity,21 responding to levels as low as 0.2 lx (0.08 µW/cm2) 
or less.96,99 Exposure of Syrian hamsters to even low levels 
(15 lx; 6.12 µW/cm2) of red-appearing ‘safety’ lights100 or 0.05 lx 
(0.02 µW/cm2) of green-appearing light365 is enough to disrupt 
normal nighttime melatonin rhythms, leading to disruptions in 
other metabolic and physiologic rhythms. Melanopsin-ipRGCs, 
which regulate circadian rhythms of metabolism and physiol-
ogy in both normal and neoplastic tissues, are highly sensitive 
to LAN and can be activated by less than 1 lx (0.41 µW/cm2) 
of light.147,148 Clearly, extrinsic LAN in the vivarium, which 
can originate from light leaking around doors and hallway 
lights, observation windows, room circuits and electronics, 
and racks,106 disrupts circadian rhythms and triggers a host of 
metabolic and physiologic effects through 3 key mechanisms: 
1) altered expression of clock genes; 2) melatonin suppression; 
and 3) sympathetic stimulation.201,218,359,360 Clock genes, which 
include brain and muscle ARNT-like protein 1 (Bmal1), circadian 
locomotor output cycles kaput, cryptochrome (Cry) 1 and 2, 
and period (Per 1 to 3), all of which are regulated by light and 
light–dark cycles, work together to control cellular functions and 
maintain homeostasis.7,355,358,364,367,378 Disruption of these clock 
genes by LAN alters feedback loops from the normal 24-h cycle 
and results in misalignment of circadian rhythms, metabolism, 
and physiology.258 Dark-phase exposure to dim LAN for as little 
as 15 min elevates baseline expression of clock genes and phase 
shifts the SCN activity in mammals.259,358,367 Chronic exposure to 
5 lx (2.04 µW/cm2) LAN altered circadian expression of Bmal1, 
Per1, Per2, Cry1, and Cry2 in mice253 and Siberian hamsters.28 
One further thought for consideration involves the natural set-
ting of feral animals. Light at night in the natural setting from a 
bright super moon and starlight have been reported to provide 
combined intensities of less than 0.3 photopic lx, although 0.1 lx 
is a more realistic value for moonlight.244,292 For best practices, in 
the case of the ‘controlled environment’ of the research animal 
vivarium setting, we recommend LAN intensity values of less 
than 0.1 lx, or better yet, no LAN contamination whatsoever, 
and provide details on how to achieve this situation relatively 
easily and in a cost-effective manner.96

Lists of melatonin-receptor–mediated and –independent 
physiologic functions are extensive.63,324,325 Alterations in 
normal melatonin rhythms disrupt endocrine pathways of 
reproductive, adrenal, and thyroid hormone axes.38,391,419 Noc-
turnal suppression of melatonin by light is species-specific and 
occurs in an intensity-, wavelength-, and duration-dependent 
manner.47-52

Most mammals have robust circadian nocturnal melatonin 
rhythms and pineal melatonin production (Table 1);320 this 
characteristic, however, is not necessarily the case for all 
strains of mice.118,119,201 Radioimmunoassay has revealed 
robust circadian dark-phase melatonin peaks in C3H, 
CBA94,153,201,292,402,406, and Foxn1 nude mice and rats,102,201,292 
but such peaks were not detected in other inbred strains of 
mice including C57BL/6, BALB/c, and AKR.153,201,404 This 
finding has been countered by investigators who sampled 
more frequently and thus detected brief and very low level 
(>10 pg/pineal gland) nighttime peaks in these 3 strains of 
mice but with no evidence of a circadian rhythm.82,201,402 

Mutations in enzymes catalyzing the synthesis of melatonin, 
such as N-acetyltransferase and hydroxyindole-O-methyl-
transferase,200,201,205,334,402 may help to explain the variability of 
melatonin production in various inbred mouse strains. None-
theless, these mice all maintain robust circadian rhythmicity 
of other neuroendocrine and neurobehavioral parameters 
associated with normal light–dark cycles. Indeed, the SCN 
generates circadian rhythmicity in autonomic nervous system 
signaling that is entrained to the light–dark cycle independ-
ent of the melatonin rhythm,122 and rodents are 100 times 
more sensitive to light than humans.50 Changes in lighting 
parameters can lead to alterations in sympathetic control that 
in turn disrupt physiologic processes, including cell cycle 
control.25 These effects may help to explain in part why some 
mouse and rat strains are particularly susceptible to various 
metabolic diseases and cancers.228

A large amount of data documents the effects of LAN 
on cancer in both humans and rodents. The risk of several 
cancers is significantly higher in industrialized societies that 
experience circadian disruption due to nighttime light 
pollution.125 Levels of LAN correlate strongly with the de-
velopment of breast,37-41,95,96,98,206 prostate, and colorectal 
cancers.327,342,343 For more than 30 y, our team has focused 
its attention on LAN suppression of the pineal nighttime 
circadian melatonin signal and its effects on normal and 
neoplastic tissue metabolism and physiology in research 
animals.37-42,94-102 Overwhelming evidence to date from our 
studies and others81,174,251 demonstrates that circulating 
levels of melatonin suppress rodent and human tumor prolif-
erative activity in vivo. This suppression occurs via guanine 
nucleotide-binding protein receptor–coupled MT1 melatonin 
receptor–mediated blockade of linoleic acid metabolism to the 
mitogen 13-hydroxyoctadecadienoic acid via 15-lipoxygenase 
1 and aerobic glycolysis (Warburg effect), leading to suppres-
sion of the mitogen-activated extracellular signal-regulated 
kinase p44/p46 (ERK1/2), insulin-like growth factor 1, and 
serine/threonine kinase signaling pathways. Experimental 
findings clearly show that exposure to LAN and disruption/
suppression of the normal nighttime circadian melatonin 
signal markedly augments rodent and human tumor linoleic 
acid metabolism and the Warburg effect to stimulate tumor 
growth progression.37-41,94-102,174,215,251

Melatonin also can reduce estrogen receptor-α mRNA expres-
sion or transcriptional activity and aromatase action.41,262,320,326 
In addition, melatonin can inhibit invasion and metastasis by 
elevating the expression of adhesion proteins E-cadherin and 
β1-integrin and reducing that of matrix metalloproteinases.41,252 
This potent neurohormone also counteracts tumor immune in-
vasion by promoting IL2, IL12, and IFNλ production in T cells 
and monocytes, thus further amplifying oncostatic responses.63 
All beneficial effects of melatonin on cancer initiation, metabo-
lism, progression, and immune cell response are attenuated in 
animals that are exposed to LAN.320 Whether due to general 
LAN disruption of circadian rhythms, abrogated circadian 
nighttime melatonin production, or a combination of the 2, LAN 
increases cancer risk in humans and animals. As a result of our 
work and that of others, the International Agency for Research 
on Cancer (IARC) in 2010 classified night shift work involving 
circadian disruption, a proxy for LAN exposure, as a probable 
Class II Carcinogen.423

Lighting Technology
The lighting technology that is used in vivaria can have 

major effects on research animal health and well-being.8,94-102 
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Currently, broad-spectrum CWF lighting is the conventional 
type of lighting being used worldwide in the home, commu-
nity, workplace, and vivaria.182,183 The average rated lifespan 
(ARL; or B50) indicates when approximately 50% of the lights 
will fail in terms of usage in hours. The ARL for CWF lighting 
is between 8,000 and 10,000 h, whereas older technologies have 
shorter ARLs (e.g., 2,000 to 4,000 h for halogen lighting and 450 
to 750 h for incandescent lighting (450 to 750 h), with values 
depending on temperature (indoor or outdoor; temperatures 
above or below approximately 23 °C). The temporal period 
of decay, as measured in terms of degradation of light source 
intensity (lx; µW/cm2) over time, follows a similar trend, with 
CWF lighting decay periods that are much longer than those 
of either halogen or incandescent lighting technologies. This 
trend also applies to increases in light source vibration and 
ultrasound over time in the aging process of these lighting 
technologies.78,79,163,173,183 However, although CWF light has 
many advantages over older technologies, such as incandescent 
and halogen lighting, it also has several drawbacks, including 
disposal issues (CWF light contains toxic mercury, the disposal 
of which in regular garbage has been banned by many govern-
ments around the world), rapid loss of intensity, higher noise 
and vibration, and rapid burn out (2 to 3 y), depending on us-
age, temperature, and ballast type. Many of the problems with 
slow light onset, buzzing, and dimming have been corrected, 
but the general population considers CWF light as not warm 
or appealing, as is the glow of a fireplace.182,183 The last matter 
can be addressed by using CWF lamps with lower CCT charac-
teristics (i.e., 2,500 K and lower). The CCT is a perceived visible 
color characteristic of the light source; generally speaking, light 
with a higher CCT (above 5,000 K) tends to appear more bluish 
or white appearing (cool) to the observer, compared with light 
of a lower CCT (below 1,500 to 2,500 K), which appears more 
reddish or yellow-white (warm).183

Worldwide, vivaria are rapidly converting from conventional 
lighting technologies, such as incandescent and CWF, to LED 
technology.86,87,93,173 The LED lighting that is most commonly 
adopted during this transition is enriched in the blue-appearing 
portion of the visible spectrum, because this option reflects most 
closely the full spectrum of natural sunlight to which all life has 
been exposed during evolution over thousands of generations.50 
LED lighting currently comprises approximately 30% of the 
light technology used globally by industrialized nations and 
is estimated to grow to 80% in usage by 2030.289 As compared 
with incandescent and CWF technologies, LED technology is 
cost-effective, energy-efficient, produces minimal heat and vir-
tually no noise or vibration, has sustained spectral quality, lasts 
up to 40 y without replacement, and may also be tunable (i.e., 
it can also be regulated for both intensity and spectral quality 
(wavelength) to provide a wide range of CCT and intensities 
suitable for personnel. LED lights convert electricity directly 
to photons of light, as compared with the wasteful mixture 
of heat and light generated by traditional bulbs and lamps 
(incandescent, CWF) or those that use high-intensity discharge 
technology that typically involves electricity-gas discharge us-
ing tungsten electrodes and noble gases (mercury vapor, metal 
halide, sodium vapor, xenon vapor).289

As mentioned above, an important feature of LED lighting 
technology attributable to its solid-state technology is that it 
emits little-to-no high-frequency vibration or noise (including 
ultrasonic), as compared with older lighting technologies. In 
addition, all of the world’s leading manufacturers of LEDs, 
which are comparable in size to standard CWF lamps, produce 
a wide range of lamps that easily fit and function in standard 

luminaires, so ballasts need not be replaced. Taken together 
with the remarkable long-term cost and energy savings, these 
features make it easy to understand why institutions around 
the world are rapidly transitioning to LED technology. Indeed, 
in the animal research field, a number of vendors are rapidly 
producing and marketing LED-lighted animal housing units 
to meet demand.

While some information regarding the use of LED tech-
nology at night is available for the community, home, and 
workplace,78,80 little information is available regarding its day-
time use, particularly in animal research settings. Furthermore, 
companies may send LED products to market without prior 
investigations of their effects on animal health and well-being or 
experimental outcomes. The little work that has been conducted 
to date by groups such as the U.S. Department of Energy and 
the Environmental Protection Agency has focused primarily on 
the adverse effects of nighttime LED lighting on humans in the 
community setting as relevant to visual glare, sleep disorders, 
or disruption of various circadian biologic rhythms.86,87,289 The 
antiquated Guide187 unfortunately does not directly include the 
emerging new LED technology when addressing the topic of 
lighting technology. One suggestion in this regard may well be 
to transition to a type of ‘living’ or interactive Guide, whereby the 
most up-to-date scientifically supported information pertaining 
to all facets of animal care and use, including extrinsic factors 
such as light, is immediately accessible for the animal research 
community. Organizations, such as the CIE,78,79 AMA,86,87 
IES,183 NIH,273 as well as those associated with the Concordat80 
and the ARRIVE guidelines,293 have been using this type of 
electronic online technology for many years with great success 
and acceptance.

For many years now, our team has studied the influence 
of blue-enriched LED light during the day (lights-on) phase 
(bLAD) on animal health and well-being in the vivarium  
setting.147 Recent IACUC-approved studies from our laboratory 
revealed that rodents exposed to bLAD, as compared with CWF 
lighting, and maintained on static rack systems in a standard LD 
12:12 photoperiod, exhibited 6- to 7-fold higher circadian dark 
phase melatonin blood levels, resulting in a marked positive 
enhancement of the circadian regulation of neuroendocrine, 
metabolic, and physiologic parameters associated with animal 
health and well-being.93,97,98,101 Subsequent studies corroborated 
these findings in mice and Sprague–Dawley rats1,406 that were 
maintained on individually ventilated caging (IVC) systems. 
This work provided the first experimental data on how the use 
of bLAD technology affects animal physiology in the vivarium 
setting. With these data in mind, we suggest a few easily achiev-
able approaches for animal research communities.

Recommendations for the Animal  
Research Community

Consistently monitor and report light measurements. Computer- 
directed lighting sensor equipment is currently available on 
the open market to monitor and record animal room lighting 
intensities during light and dark phases. Unfortunately, in many 
cases, these sensors have wide ranges of sensitivity, particularly 
during dark-phase measurements, fail frequently or become 
inaccurate over time, or furnish inaccurate light–dark cycle 
information to a central computer source.131 In some cases, 
due to a breakdown in the light control or sensing service, 
computer-generated light–dark cycles can be inadvertently 
altered for weeks without notification of personnel, compromis-
ing both animal health and well-being and research outcomes. 
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This error is typically that lights that remain on during the 
expected dark phase, rather than lights that stay off during 
the expected light phase (a situation that would be noticed by 
personnel). In this regard, we recommend that alarms associ-
ated with such computer-directed lighting sensor systems be 
programmed to alert animal care personnel (via office or home 
computer or cell phone) immediately when deviations in animal 
room lighting protocol concerns occur; in addition, these alarm 
systems should be monitored regularly. Lighting deviations  
are chronotoxic in that they adversely affect normal cir-
cadian rhythms of behavioral, physiologic, and metabolic  
functions.35-41,96,98,102,103,148,251,320,326,327,342,343 Any deviations 
should be corrected immediately, as the correct protocols are 
relatively easy to implement.

We also encourage personnel to directly and regularly moni-
tor, record, and report light-phase illuminance (lx) or irradiance 
(μW/cm2) levels in the macroenvironment (animal room) and 
microenvironment (within a cage at eye level) as completely 
as possible. A variety of low-cost radiometer–photometers are 
currently available for both older (i.e., CWF) and newer (i.e., 
LED) lighting technologies that can collect this information 
after appropriate calibration. Such reporting would allow all 
stakeholders to meet the basic recommendations of the current 
Guide187 and the ARRIVE guidelines.292 We further strongly 
recommend that investigators report the time of day that animal 
handling and experiments are conducted (including surgeries, 
tissue harvests, and treatment regimens) relative to the animal’s 
light on-off schedule because time of day significantly affects 
circadian rhythms of animal metabolism and physiology and 
experimental outcomes.9,37-41,94-102,406

Reduce variation in vivarium light. The 2 principal elements in 
light-controlled regulation of animal behavior and physiology 
are physical-biologic stimulus processing and sensory-neural 
processing.164,312 The physical-biologic processing elements 
are the light source physics, the animal’s conscious and reflex 
behavior in relation to the light source, and the transduction of 
light to the retina. Factors influencing this physiology include 
the wavelength sensitivity of the retinal photoreceptors, pho-
toreceptor distribution, photoreceptor adaptation state, and 
the ability of the CNS to temporally integrate photic stimuli.

Light source geometry relative to the eye is important in 
understanding the elements of ocular physiology that influence 
circadian regulation. One measurement technique that has been 
characterized for architectural lighting108 and recommended 
by the Guide187 is to simply place a light meter at 1 m above 
the floor of an empty animal room, aim it directly at the light 
source, and measure light illuminances with the lights on and off. 
However, the data derived from this approach do not accurately 
capture the corneal illuminance experienced by animals. Clearly, 
conscious and reflex behaviors such as head movement, eye mo-
tion, eye blink, source avoidance, and eye closure are important  
considerations.143,179,244,292,305 On the microenvironmental level, 
cage type (i.e., polycarbonate or polysulfone), color, wall thick-
nesses, and location on the rack should all be considered. Nesting 
materials and enrichment devices can also influence circadian 
rhythms in neuroendocrine and neurobehavioral parameters 
in rats and mice.1,77,81,83,358,359 Cage location on a rack can mark-
edly influence light intensities. For example, light intensities are 
typically greater near the top of the rack345 but may vary by as 
much as 80-fold on the same rack and differ by more than 10-fold 
when measured in the front, middle, or rear of the cage at a given  
location.2,94,96,99,406 Cage placement on the rack also affects expo-
sure, as top-tier cages receive 3 to 19 times more light than those 
at the bottom of the rack.75,154

Based on our current knowledge (Table 1), we recom-
mend that ambient microenvironmental lighting intensities  
during light phase range between approximately 500 lx 
(204 µW/cm2) and 800 lx (327 µW/cm2) for humans; for do-
mesticated and research animals, we recommend a lower range 
on the order of 100 to 400 lx (41 to 163 µW/cm2). In the case of 
rodent species, light-phase ocular light intensities in the micro-
environment (within-cage) should not exceed approximately 
75 lx (31 µW/cm2; average intensity, back-to-front of interior 
cage environment)96,97,100,102,424,425 and should be lower when 
feasible.163,164,244,292 In addition, the lighting technology should 
provide diffuse daytime lighting that is more blue-appearing (in 
the visible spectrum), with the objective of healthful exposure of 
both the visual (rod, cone) and nonvisual (melanopsin-ipRGC) 
photoreceptor systems to known thresholds of different bio-
logic responses to light, including entrainment of the circadian 
clock, pupillary constriction, regulation of hormones such as 
melatonin and corticosterone, and modulation of sleep and 
cognition. In contrast, the Guide indicates that caution should 
be exercised with regard to increasing daytime illumination in 
animal rooms for purposes of housing, handling and mainte-
nance and recommends lighting intensities between 130 and 
325 lx at cage level in the room.187

A comment is warranted here regarding the effects of CWF 
or LED light on data collected in research animals. Light-phase 
exposure to LED light that is enriched in the blue-appearing 
portion of the visible spectrum (cooler, 5,000 K) clearly am-
plifies the dark-phase circadian melatonin signal, extending 
the signal for 2 to 4 h into the light phase,93,97 as compared 
with broad-spectrum CWF light (warmer, 4,000 K). This 
extension has the opposite effect of CWF LAN and results 
in greater suppression of rodent and human tumor me-
tabolism and growth by melatonin and enhancement of 
circadian rhythms of neurohormonal and neurophysiological 
factors.40,41,95,96,99,101,102,163,174 Furthermore, others have sug-
gested that either CWF or LED light enhanced in the violet 
portion of the visible spectrum (390 to 350 nm) at higher 
intensities (above 100 lx; above 45 µW/cm2) (referred to as 
‘violet-pumped’) may be most appropriate for vivaria because 
it appears ‘white-like’ to both humans and mice during light 
phase.244,292 The effects of these violet/blue enhanced CWF 
and LED lighting technologies on animals and animal-based 
research models have not yet been reported. However, work 
underway by our laboratory and others will help to address 
these questions.

Nesting materials and enrichment devices can form physical 
barriers between animals and light sources and can thereby 
alter animal physiology and metabolism.424,425 This situation 
sets the stage for significant interanimal variability and for 
potential changes in retinal morphology154 that may confound 
toxicity studies.245,309 In deference to competing considerations, 
particularly in regard to small research animal caging, one solu-
tion may be to reduce the number and/or size of enrichment 
devices that are placed in rodent cages or use enrichment de-
vices such as cotton squares rather than light-blocking colored 
‘enrichment’ items.425 For some studies, particularly those that 
are circadian dependent, removal of all enrichment devices is 
also an option if justification is provided and IACUC approval 
is secured. At a minimum, the type and vendor information of 
such items should be reported in publications, particularly for 
rodents to support research reproducibility, transparency, and 
accountability.77

Options for minimizing light variation in cages include using 
a similar location for all cages on a given study, rotating cage 
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position on the rack to control for cage position on the rack, 
or using specially designed photobiologic light cabinets that 
deliver consistent lighting to all cages. Some investigators use 
small spaces or cubicles and place lamps in corners, which may 
result in more consistent illumination. In most cases and during 
specific investigations, cage racks can be placed appropriately 
under luminaires to deliver similar external light intensities 
to different units. In addition, cage material, bedding, and 
enrichment devices modulate the amount of light available to 
the animals.425 Therefore, we recommend the following for the 
use of small animals such as rodents: 1) minimize the number 
and type of enrichment devices per cage; 2) be cognizant of and 
report the type of enrichment devices used; 3) be consistent 
during and between studies with regard to type/number of 
enrichment devices used; 4) maintain equivalent lighting for 
control and experimental animals; and 5) monitor and report 
macroenvironmental (room) and microenvironmental (within 
cage) lighting intensity illuminance and irradiance measures 
(at eye level) to promote experimental reproducibility, ac-
countability, transparency, animal health and well-being, and 
valid scientific outcomes.77,94,100,101,425 For short-term studies, 
some investigators may remove all enrichment devices, with 
IACUC approval. Recent studies have shown that the spectral 
transmittance of light passing through standard rodent cages 
(polycarbonate or polysulfone) of different tints significantly 
influences circadian metabolism and physiology in commonly 
used rodent strains.97,98 Further elucidation of the specific ocular 
and neural elements mediating these biologic effects of light in 
mammals, particularly in determining the interdependence and 
variability, remains an emerging science.97,138,244,292

Cage rack technology (i.e., static, IVC, and emerging bio-
containment technology) may be important when using either 
CWF or LED lighting during the light phase.2,94,406 Whereas 
animals maintained on static or IVC systems are exposed to 
either diffuse, broad-spectrum CWF or LED lighting from over-
head luminaire systems (i.e., tubular, or ‘T’ designated lamps), 
animals that are housed in these new types of biocontainment 
units are exposed to LED strip lighting that varies in its location 
due to differences among manufacturers. Animal ocular light 
exposure is linear across the cage unit and not as diffuse as 
with tubular lamp lighting, and light photons excite the visual 
rod-cone and melanopsin-ipRGC systems differently.244,292 How 
this situation translates to potential circadian rhythm alterations 
in neurobehavioral and neurophysiological parameters has 
only been recently addressed.1,94,97,98,406 These studies revealed 
that most strains of rats97,98,101 and mice94 maintained on either 
static or IVC caging406 in translucent polycarbonate cages and 
exposed to bLAD had significantly higher plasma melatonin 
levels and lower body growth rates, food and water intake, and 
plasma circadian markers than did animals exposed to CWF 
light. However, one strain of rats (Sprague–Dawley) housed in 
a newly manufactured and marketed LED-lighted biocontain-
ment system had elevated circadian nighttime melatonin blood 
levels and changes in some blood analytes.1 Nevertheless, 
these studies1,406 clearly showed that CWF or LED bulb type 
and technology can influence circadian rhythms. Nonetheless, 
LED light in general also has broad effects on the circadian 
regulation of neuroendocrine, metabolic, and neurobehavioral 
parameters. Despite variations in the type of light exposure and 
spectral quality due to the various aforementioned parameters, 
all should be standardized in experimental design and fully 
reported in research publications.

Another consideration regarding the rapidly emerging tun-
able LED technology is the use of gradual changes in light-phase 

and dark-phase onsets, simulating dawn and dusk.122,244,292 In 
other words, at the onset of the light phase, light sources can be 
gradually increased in intensity from 0 to 400 lx (room measures) 
and in spectral quality from longer wavelength (red-yellow) to 
shorter wavelength (blue-enriched) over a brief period (e.g., 3 to 
5 min). Conversely, at the onset of the dark phase, animal room 
lighting can be adjusted in reverse fashion to decrease inten-
sity (from 400 to 0 lx, room intensity) and increase wavelength 
(blue-enriched to red-yellow–enriched to total darkness [0 lx]), 
thus mimicking the natural transition from day to night. Some 
rodent studies have shown that these gradual photoperiod tran-
sitions may reduce stress and positively influence animal health 
and well-being.30,31,132,134,135 Based on the studies discussed 
above, implementation of gradual photoperiod transitions at 
light onset and offset should be considered.

Eliminate vivarium LAN pollution. The Guide188 recommends 
the elimination or limitation of light exposure during the 
dark phase and the use of a time-controlled lighting system 
to guarantee regular cycling, with light cycles set at intensities 
described above. Despite these recommendations, vivarium 
lighting is often adjusted to meet the needs of animal care and 
research personnel. Brighter room lights are often used during 
cage changing or room cleaning to aid in visualization; dimmer 
intensities may be used during the remainder of the light phase 
when personnel are not present. These photic disturbances, 
including entering and exiting rooms from a lighted corridor 
during the dark phase and using observation windows, even 
when covered with red safety filters, alter animal ocular light 
exposure; the degree to which this occurs also depends on cage 
and rack location in the LAN-contaminated animal room.99

For many years, our Tulane Center for Circadian Biology team 
has studied the influence of light, particularly LAN, on human 
and animal metabolism and physiology. Although the role of 
light in vision is widely recognized, our studies have focused on 
the nonvisual effects of light, including entrainment of circadian 
rhythms and regulation of neurohormones and neurobehavior. 
More specifically, our NIH- and AALAS Grants for Laboratory 
Animal Science-supported studies provided the experimental 
evidence that supports epidemiologic findings38-40,95,96,99 in the 
night shift work population regarding the association between 
LAN and risk of invasive breast cancer.103,341-343,372 As mentioned 
earlier, night-shift work, which involves LAN exposure and cir-
cadian disruption, is currently classified as a Class IIA probable 
human carcinogen by the International Agency for Research on 
Cancer of the World Health Organization.423

In view of these considerations, we recommend the elimina-
tion of all LAN in animal housing rooms during the dark phase. 
As discussed above, LAN-induced suppression of endogenous 
melatonin production may promote various disease processes, 
including carcinogenesis and metabolic disorders.38-40,95,96,99,102 
LAN contamination in animal facilities is a common problem, 
even in modern facilities; however, simple remedies are avail-
able for many common sources of LAN contamination. To 
ensure maintenance of complete darkness, animal holding 
rooms should be inspected for sources of light pollution, and 
room entrances during the dark phase should be controlled to 
prevent light intrusion. A variety of cost-effective data loggers 
and alarm systems can be used to monitor animal facility light 
intensities and detect unwanted light and inappropriate entry 
during the dark phase. Although one set of recommendations 
may not be optimal for all animal uses, important considerations 
to ensure complete darkness during dark phase include the fol-
lowing: 1) removing unnecessary lighted equipment; 2) covering 
light sources in animal rooms, including electronic indicator 
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lights, ventilated tower screens, and circuits; 3) eliminating 
animal observation windows on doors or completely covering 
them with blackout shielding; 4) installing door frames shoes, 
seals, and sweeps with vinyl gaskets and anodized aluminum 
encasements; and 5) installing light-tight, black-out curtains. 
These modifications can be remarkably effective. When possible, 
entry into the main animal holding quarters from an unlighted 
LAN-decontaminated internal room, as compared with the 
outside lighted corridor, should also be considered.96,99

Finally, some animal species, including mice and rats, have 
generally been regarded as being insensitive to red light.122 
Although partially true with regard to the visual system, 
numerous studies that include irradiance response curves to 
long-wavelength light (>600 nm) demonstrate sensitivity to red 
light if the intensity and duration are high enough.49,93,100,292 
Limiting dark-phase exposure of animals to dim (not bright) 
red safety light (under 35 lx or 14 µW/cm2) for less than 15 min 
during the dark phase (including red safety flashlights) can be 
an effective approach to maintaining circadian organization 
in research animals.100 However, all red-appearing lights do 
not emit solely in the red spectrum and may not exclude all 
shorter wavelength light. We recommend using a photometer 
to confirm emitted wavelengths before use. As a result of this 
misunderstanding of photobiology, some facilities have used 
reverse lighting in animal facilities (lights off during the work 
day and on at night. This approach reverses animal circadian 
rhythm cycles, and red light or sodium light (589 to 590 nm) 
during the work day allows personnel to see but is on the 
margins of rodent circadian sensitivity.292 The known visual 
pigments of the mouse retina are around 12 times less sensitive 
than those of humans to a 600-nm red light and around 8 times 
less sensitive to a 589-nm sodium light. As such, the level of 
nocturnal light required for humans to work in a mouse room 
for a sustained period of time would certainly produce biologic 
responses in mice. With this situation in mind, we recommend 
only limited use of these light sources (below 35 lx [14 µW/cm2]) 
for less than 15 min) during the dark phase.100 Reverse light 
cycles can work well for both research animals and personnel 
with regard to maintaining normal workday routines without  
compromising animal health and well-being or experimen-
tal results.39-41,102,131-135,274-276 As described in these and other 
reports, both humans246 and research animals, including 
rodents,244,292 reverse their circadian rhythms of metabolism 
and physiology accordingly to the reverse light cycles. Changes 
in circadian rhythms of neurohormonal and neurobehavioral 
responses may begin to occur within 24 to 48 h.

Use and apply the new metric for measuring and providing 
vivarium light. Historically, the lack of a fully established and 
consistent method of properly measuring light in the research 
animal setting confounded the proper replication of experi-
mental conditions and comparisons across investigations that 
hindered scientific progress. This has now changed, as will be 
discussed subsequently. As we have shown, the scientific litera-
ture contains numerous studies of circadian, neuroendocrine, 
and neurobehavioral responses to calibrated light exposure. 
That said, many studies fail to provide basic information per-
taining to animal facility light levels, light spectral quality, or 
even lighting protocols other than the fact that they conform 
to local regulations. Almost always, such regulations are based 
solely on light intensity levels applicable to working conditions 
for staff rather than considerations for animal physiology and 
behavior.273,292 More specifically, the physical properties of light 
and other portions of the electromagnetic spectrum (X-rays, UV, 
infrared, radio waves) are not differentiated, except with regard 

to the ability of light to support human vision,244,292 and almost 
all light quantification currently assumes a human (standard) 
observer, as defined by the CIE.79 Light may vary in not only 
total energy but also in its distribution across wavelengths. 
Because humans are not equally sensitive to all wavelengths, 
summing energy across a spectrum cannot predict brightness. 
Therefore, a spectral efficiency function (Vλ, or photic sensitiv-
ity function) is used and defined based on human perceived 
brightness, which peaks at 555 nm and is far from the portion 
of the spectrum to which most animals are most sensitive. 
Indeed, some animal species can use UV radiation, which falls 
outside of the technical definition of light, for vision. Thus, the 
current anthropomorphic metrics are not suitable for quantita-
tive guidelines for light exposure of animals.

When investigators provide light measurements, they gener-
ally report values in terms of lux (lx), which indicate the amount 
of light falling on a surface that stimulates the mammalian eye 
during the daytime (i.e., the perceived brightness to the human 
visual system).244,292 The lux measurement unit is based on the 
daytime (photopic) sensitivity curve and has a peak sensitiv-
ity of about 555 nm, characteristic of the red and green (middle 
wavelength) M-cones of the human retina. As such, the lux 
unit is not relevant for most animal species, including rodents, 
because it does not adequately reflect nighttime (scotopic) re-
sponses that occur when rods provide the primary responses 
to light, nor does it include the contribution of the important 
nonvisual melanopsin-ipRGC system responses. Radiometric 
units based on unweighted power measurements (µW/cm2) 
are more relevant for animals and are preferred in circadian 
biology.83,84,244,292 In the context most familiar with biologic 
researchers (i.e., lux values), we recommend that the use of the 
new photometric units equivalent α-opic lux, where α is defined 
as the receptor opsin λmax in nm.79 The α-opic irradiance matrix 
weighting functions used for this metric are not defined by the 
spectral sensitivity of any single visual response (as is the case 
for Vλ) but rather are based on the light sensitive receptors re-
sponsible for detecting light (and thus including all responses 
to light). The complement of retinal photoreceptors and their 
photopigments are largely retained across all mammals. There-
fore, the photopigment complement of most animal species and 
each photopigment channel can be evaluated independently by 
defining α (S-cone: Cyanopic, λmax = 419 nm; ipRGC-melanopsin: 
λmax = 480 nm; Rod: Rhodopic, λmax = 496 nm; M-cone: Chloropic 
λmax = 531 nm; L-cone: Erythropic = 558 nm). The α-opic lux 
values are always identical to the photopic lux for a theoretical 
equal-energy radiator, based on a 32-y-old standard observer. 
One limitation of the α-opic measurement system is that al-
though it is readily translatable across almost all species,244 it is 
currently not readily scalable to all nonmammalian vertebrates. 
For instance, some fish species have over 10 photopigment 
classes. Nonetheless, α-opic irradiances can be calculated for 
subsets of these photopigment classes and for photopigment 
classes that have not yet been identified. This greater complexity 
of the nonmammalian photobiology underlies our decision to 
focus this review primarily on humans and research mammals.

As mentioned above, the primary reason for using illumi-
nance measures of lux in animal studies is that lux meters are 
inexpensive and readily available, and lux is the primary output 
of the commercially available light meters. Historically, consen-
sus of opinion holds that expecting all vivaria and researchers to 
adopt such strict guidelines is unrealistic and that reporting lux 
is better than reporting nothing.244,292 Recent guidelines on the 
use of light in scientific investigations recommend that SPD of all 
light sources, or the amount of power that a light source contains 
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at each wavelength in the visible spectrum (400 to 740 nm)79 
should always be reported to support reproducibility.77

In February 2023, a workshop entitled third International 
Workshop on Circadian and Neurophysiological Photometry 
was held in Manchester, UK, to address the problem of light 
measurement in animal research. This workshop resulted in a 
consensus view of an expert working group that included ex-
pertise spanning mammalian photobiology, neurobiology, and 
animal husbandry and welfare. A specific aim of the workshop 
was to formulate a consensus agreement on appropriate metrics 
for quantifying light for nonhuman mammals and using these 
metrics to improve animal welfare and repeatability in animal 
research. The conclusion reached was that the best available ap-
proach to quantify light for research animals is a species-specific 
α-opic metrology that can be used for both animal husbandry 
and experimentation. A manuscript that is currently being 
prepared for submission to an open-access journal will provide 
guidance on using this metric for multiple rodent species and 
other mammals used in research.

Before this recent workshop, a rodent irradiance toolbox was 
developed to allow calculation of α-opic lux units based on the 
photopigments of the rodent retina.292 This toolbox is freely 
available online.277 Researchers can use any one of a range of 
properly calibrated low-cost spectroradiometers to accurately 
measure SPDs that can then be used as raw data for the rodent 
toolbox. The rodent irradiance toolbox enables calculations of 
α-opic lux units based on the photopigments of the rodent retina 
and provides effective irradiance calculations for rod, cone, 
and melanopsin photoreceptors that drive visual, circadian, 
neuroendocrine, and neurobehavioral responses.

With this in mind, our advice is that investigators record the 
light environment in the most complete form possible, namely 
corneal SPDs. Although the mathematical procedure for meas-
uring α-opic lux values is fairly straightforward, simple-to-use 
light meters that employ these units are not currently available. 
As mentioned above, the rodent irradiance toolbox that was de-
veloped for this purpose allows calculation of lux-derived units 
based on the photopigments of the rodent retina.292 The toolbox 
automatically calculates these quantities from information 
provided by the user. These quantities can also be calculated 
manually by using relevant spectral sensitivity functions that are 
provided in the reference portion of the worksheet. Researchers 
can also use any of a variety of properly calibrated low-cost 
spectroradiometers for accurate light irradiance measurements 
to create the raw data file for the rodent toolbox.277 Spectroradi-
ometers (capable of measuring the spectral output of the light 
source), as used in our studies (FieldSpec, ASD, Boulder, CO), 
are somewhat more expensive.

As an example, in our previous studies,38-41,96-102,164 CWF 
and LED lamps were installed in overhead T8 assemblies in 
light-proof rooms and the spectral characteristics of each light 
source were measured separately using a spectroradiometer 
with a cosine receptor attachment (FieldSpec, ASD). Light 
source measurements through cages were carried out with a 
spectroradiometer with a minimum wavelength between 325 
to 780 nm (most employ a minimum of 380 nm), generating a 
raw data file in an Excel spreadsheet. To calculate the effective 
rodent rod, cone, and melanopsin photoreceptor illuminances, 
the light sources were entered into a toolbox worksheet. The 
SPDs for these experiments were imported into the worksheet in 
1-nm increments between 325 and 782 nm. The toolbox lists the 
rodent spectral range as extending to 298 nm, which is beyond 
the range of the spectroradiometer used in our studies. Accord-
ing to Toolbox instructions, values between 298 and 325 nm were 

manually changed to 0. The 5 basic steps for using the rodent 
toolbox are summarized as follows based on the online website: 
1) beginning with the right side in the blue box, select the title; 
2) select the mode: 1 nm, 3 nm, 5 nm, or approximate; 3) input 
the light source information from the dropdown box; 4) input 
units, amount, and additional light source parameters; and, 5) 
on the right side, input raw data file from the Excel spreadsheet.

The current rodent toolbox calculates radiometric and pho-
tometric values (Photon flux [cm2/s], irradiance [µW/cm2], 
photopic illuminances [lux; ν(λ)], and rodent retinal photopig-
ment weighted illuminances [α-opic lux]) for small, medium, 
and long cones (just small and medium in mice), and the 
melanopsin-ipRGCs, where photon flux represents the number 
of light photons per second per unit area of the retina. For a 
more complete definition of all terminology employed in this 
section, readers are directed to the CIE website.79 Melanopic 
lux (mLux) represents the final component of the new metric. 
This value is the basis for all other calculations for visible light 
that quantify the impact of the biological (melanopic) effect of 
lighting on animals. It is associated with the response of the non-
visual ipRGC system, rather than the cones and rods, as is the 
case for traditional lux; therefore, the new metric term ‘mLux.’ 
The rodent toolbox provides several straightforward examples 
that include user-measured SPDs, comparison of light source, 
and simple light conversions that include calculation of mLux 
values. The ideal tool for measuring α-opic irradiances will oc-
cur with the development of an inexpensive, widely available 
light meter that returns the relevant metrics without requiring 
the user to manually perform these calculations. While such 
devices could be produced by combining a spectrophotometer 
with the appropriate data processing system, manufacturers 
have not yet developed this technology. However, the recent 
development of portable multichannel light sensor technolo-
gies provides a means to this end. Such devices could directly 
and accurately provide species-specific measurements with a 
minimal error rate. Until that time, we strongly encourage the 
use of this toolbox to report vivarium light measures that influ-
ence animal health and well-being and support reproducibility, 
transparency, and accountability,77 particularly if the goal is to 
provide a comprehensive description of light as it affects circa-
dian, neuroendocrine, and neurobehavioral systems.

Conclusions
Light is an extrinsic factor that much like noise, vibration, 

temperature, humidity, and air and water quality profoundly 
influences animal physiology, behavior, health, and well-being. 
Consistent light exposure beneficially modulates intrinsic 
factors that include circadian rhythms, genetics, aging, and 
immune and endocrine status. Whether emitted by the 
emerging LED or conventional light technologies, light regu-
lates our circadian systems in an intensity-, duration-, and 
wavelength-dependent manner.

Biomedical research and engineering rely on accurate meas-
urement and reporting. Our increasing understanding of the 
visual and nonvisual systems and their role in regulating physi-
ology and behavior have revealed that the current methods of 
light measurement and reporting are inadequate. Exactly how 
these methods should be updated is a question that remains 
and will no doubt be revisited as our understanding of both 
systems evolves. The current state of the science, nonetheless, 
has now reached a point that compels us to take important steps 
forward in this process. To this end, our team participated in the 
aforementioned expert working group in Manchester, England, 
on the effects of light on rodent physiology and behavior. While 
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the aim of this international meeting was to develop simple 
lighting guidelines for housing and testing research animals, 
particularly rodents, based on scientific consensus with regard 
to published data, the results of this important meeting will 
soon be available.

Understanding the influence of light on animal physiology, 
metabolism, and behavior must take into account the functions 
of both the visual and nonvisual (circadian) systems, including 
their differing sensitivities to light intensity, wavelength, dura-
tion, how they interact, differences in lighting technologies, as 
well as a multitude of species-specific differences in responses 
to light. We hope that this overview of the influence of light on 
circadian rhythms, current industry standards for appropriate 
light measurement in the vivarium, the visual and nonvisual 
systems, simple recommendations for improving control of 
vivarium light/dark cycles, and appropriate recording and 
reporting light measurements has helped to clear up some of 
the currently misunderstood aspects of light as an extrinsic 
factor influencing animal research. The consistency and qual-
ity of lighting technology used to control photoperiods during 
research animal experiments are of paramount importance in 
maintaining normal animal biologic rhythms of metabolism 
physiology and behavior in positively influencing scientific 
outcomes. We, therefore, encourage the animal research com-
munity to be cognizant of the critical impact of light as an 
extrinsic factor, lighting technologies, and lighting protocols 
on the research animals that we use and care for, as well as on 
our own daily lives.
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