熔点
此條目可参照英語維基百科相應條目来扩充。 (2019年3月11日) |
熔點(M.P.)是在大氣壓下晶体將其物態由固態轉變為液態的过程中固液共存状态的溫度;各种晶体的熔点不同,对同一种晶体,熔点又与所受压强有关,壓強越大,熔點越高。物質的熔點取決於壓力,通常在1個大氣壓或100 kPa等標準壓力下指定。不過,與沸點不同,熔點受壓强的影響很小,因爲由固態轉變(熔化)為液態的过程中,物質的體積幾乎不變化。
進行相反動作(即由液態轉為固態)的溫度,稱之為凝固点、結晶點(對水而言也称為冰点),在一定大氣壓下,任何晶体的凝固点和熔点相同。習慣上,根據常溫(25℃)時物質的狀態使用凝固点或熔点稱呼這一個溫度:對於常溫下為固態的物質,這個溫度稱爲凝固点;對於常溫下為液態的物質,這個溫度稱爲熔点。
因為物質可能會过冷,可能會在溫度低於凝固点時才凝固。可以確認物質的「特徵凝固点」,而實際量測熔点的方式是觀察到物質如何開始變成液態,該溫度即為熔点[1]。
一般的,非晶体并没有固定的熔点和凝固点。
例子
大部份物質的熔點和凝固點是一樣的。例如汞的熔点和凝固点都是234.32 K(−38.83 °C;−37.89 °F).[2]。不過有些物質的熔点和凝固點不同,例如洋菜熔點是85 °C(185 °F;358 K),凝固點是31 °C(88 °F;304 K),這種差異稱為遲滯現象。冰在一大氣壓下力下的熔點很接近[3]0 °C(32 °F;273 K),這也稱為冰點。但因為成核物質的影響,水的熔點和凝固点不一定相同。若沒有成核物質,水可以过冷到−48.3 °C(−54.9 °F;224.8 K)才結冰。
熔點最高的化學元素是钨,熔點是3,414 °C(6,177 °F;3,687 K)[4],因此钨特別用在白熾燈的燈絲上。碳在常壓下不會熔化,而是會在3,700 °C(6,700 °F;4,000 K)直接升华,只有在壓力10 MPa(99 atm),溫度到4,030—4,430 °C(7,290—8,010 °F;4,300—4,700 K)時才會變液態。碳化钽铪(Ta4HfC5)是耐火材料,熔點可以到4,215 K(3,942 °C;7,127 °F)[5]。量子機械電腦的模擬預測合金HfN0.38C0.51的熔點更高(約4400 K)[6],是常壓下熔點最高的物質。此估計後來也經由實驗證實[7]。若考慮低凝固點的物質,氦在常壓下,就算溫度低到接近绝对零度也不會凝固,需要壓力超過20大氣壓才能使其凝固。
参考文献
- ^ Ramsay, J. A. A New Method of Freezing-Point Determination for Small Quantities. Journal of Experimental Biology. 1 May 1949, 26 (1): 57–64. PMID 15406812. doi:10.1242/jeb.26.1.57.
- ^ Haynes, p. 4.122.
- ^ 純水的熔點是0.002519 ± 0.000002 °C,參考Feistel, R. & Wagner, W. A New Equation of State for H2O Ice Ih. J. Phys. Chem. Ref. Data. 2006, 35 (2): 1021–1047. Bibcode:2006JPCRD..35.1021F. doi:10.1063/1.2183324.
- ^ Haynes, p. 4.123.
- ^ Agte, C. & Alterthum, H. Researches on Systems with Carbides at High Melting Point and Contributions to the Problem of Carbon Fusion. Z. Tech. Phys. 1930, 11: 182–191.
- ^ Hong, Q.-J.; van de Walle, A. Prediction of the material with highest known melting point from ab initio molecular dynamics calculations. Phys. Rev. B. 2015, 92 (2): 020104(R). Bibcode:2015PhRvB..92b0104H. doi:10.1103/PhysRevB.92.020104 .
- ^ Buinevich, V.S.; Nepapushev, A.A.; Moskovskikh, D.O.; Trusov, G.V.; Kuskov, K.V.; Vadchenko, S.G.; Rogachev, A.S.; Mukasyan, A.S. Fabrication of ultra-high-temperature nonstoichiometric hafnium carbonitride via combustion synthesis and spark plasma sintering. Ceramics International. March 2020, 46 (10): 16068–16073. doi:10.1016/j.ceramint.2020.03.158.
参见
这是一篇物理学小作品。您可以通过编辑或修订扩充其内容。 |