元素氧化态列表
外观
元素氧化态列表列出目前已知的118種化学元素之所有已知的整数氧化态,其中最常见的氧化态以粗体标记。所有元素以单质存在時(無論單原子或多原子,包括同素異形體)氧化态均为0,因此下表中氧化態0的欄位只列出已發現在化合物中存在氧化態0的元素。
该列表主要参考《元素化学》(Chemistry of the Elements)[1],显示出元素周期律在元素价态上的一些趋势。
+1 粗體表示其為該元素之主要氧化態
化學元素氧化態列表 | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
元素 | 負氧化態 | 正氧化態 | 族 | 註解 | |||||||||||||||
−5 | −4 | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | |||||
Z | |||||||||||||||||||
1 | 氫 | H | −1 | +1 | 1 | ||||||||||||||
2 | 氦 | He | 0 | 18 | [2] | ||||||||||||||
3 | 鋰 | Li | 0 | +1 | 1 | [3][4] | |||||||||||||
4 | 鈹 | Be | 0 | +1 | +2 | 2 | [5][6] | ||||||||||||
5 | 硼 | B | −5 | −1 | 0 | +1 | +2 | +3 | 13 | [7][8][9] | |||||||||
6 | 碳 | C | −4 | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | 14 | |||||||
7 | 氮 | N | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 15 | [10] | ||||||
8 | 氧 | O | −2 | −1 | 0 | +1 | +2 | 16 | |||||||||||
9 | 氟 | F | −1 | 0 | 17 | [11][12] | |||||||||||||
10 | 氖 | Ne | 0 | 18 | [13] | ||||||||||||||
11 | 鈉 | Na | −1 | 0 | +1 | 1 | [3][14] | ||||||||||||
12 | 鎂 | Mg | 0 | +1 | +2 | 2 | [15][16] | ||||||||||||
13 | 鋁 | Al | −2 | −1 | 0 | +1 | +2 | +3 | 13 | [17][18][19][20] | |||||||||
14 | 矽 | Si | −4 | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | 14 | [21] | ||||||
15 | 磷 | P | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 15 | [22] | ||||||
16 | 硫 | S | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | 16 | |||||||
17 | 氯 | Cl | −1 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | 17 | [23] | |||||||
18 | 氬 | Ar | 0 | 18 | [24] | ||||||||||||||
19 | 鉀 | K | −1 | +1 | 1 | [3] | |||||||||||||
20 | 鈣 | Ca | +1 | +2 | 2 | [25][26] | |||||||||||||
21 | 鈧 | Sc | 0 | +1 | +2 | +3 | 3 | [27][28][29] | |||||||||||
22 | 鈦 | Ti | −2 | −1 | 0 | +1 | +2 | +3 | +4 | 4 | [30][31][32][33] | ||||||||
23 | 釩 | V | −3 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 5 | [31] | |||||||
24 | 鉻 | Cr | −4 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | 6 | [31] | |||||
25 | 錳 | Mn | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | 7 | |||||
26 | 鐵 | Fe | −4 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | 8 | [34][35][36] | ||||
27 | 鈷 | Co | −3 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 9 | [31] | |||||||
28 | 鎳 | Ni | −2 | −1 | 0 | +1 | +2 | +3 | +4 | 10 | [37] | ||||||||
29 | 銅 | Cu | −2 | 0 | +1 | +2 | +3 | +4 | 11 | [36][38] | |||||||||
30 | 鋅 | Zn | −2 | 0 | +1 | +2 | 12 | [36][39][40][41] | |||||||||||
31 | 鎵 | Ga | −5 | −4 | −3 | −2 | −1 | 0 | +1 | +2 | +3 | 13 | [18][42][43][44] | ||||||
32 | 鍺 | Ge | −4 | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | 14 | [45][21] | ||||||
33 | 砷 | As | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 15 | [18][46][47][48] | ||||||
34 | 硒 | Se | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | 16 | [49][50][51][52][53] | ||||||
35 | 溴 | Br | −1 | +1 | +2 | +3 | +4 | +5 | +7 | 17 | [54] | ||||||||
36 | 氪 | Kr | 0 | +1 | +2 | 18 | |||||||||||||
37 | 銣 | Rb | −1 | +1 | 1 | ||||||||||||||
38 | 鍶 | Sr | +1 | +2 | 2 | ||||||||||||||
39 | 釔 | Y | 0 | +1 | +2 | +3 | 3 | ||||||||||||
40 | 鋯 | Zr | −2 | 0 | +1 | +2 | +3 | +4 | 4 | ||||||||||
41 | 鈮 | Nb | −3 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 5 | ||||||||
42 | 鉬 | Mo | −4 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | 6 | ||||||
43 | 鎝 | Tc | −3 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | 7 | ||||||
44 | 釕 | Ru | −4 | −2 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | 8 | |||||
45 | 銠 | Rh | −3 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | 9 | ||||||
46 | 鈀 | Pd | 0 | +1 | +2 | +3 | +4 | +5 | 10 | ||||||||||
47 | 銀 | Ag | −2 | −1 | 0 | +1 | +2 | +3 | 11 | ||||||||||
48 | 鎘 | Cd | −2 | +1 | +2 | 12 | |||||||||||||
49 | 銦 | In | −5 | −2 | −1 | 0 | +1 | +2 | +3 | 13 | |||||||||
50 | 錫 | Sn | −4 | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | 14 | |||||||
51 | 銻 | Sb | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 15 | |||||||
52 | 碲 | Te | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | 16 | |||||||
53 | 碘 | I | −1 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | 17 | ||||||||
54 | 氙 | Xe | 0 | +2 | +4 | +6 | +8 | 18 | |||||||||||
55 | 銫 | Cs | −1 | +1 | 1 | ||||||||||||||
56 | 鋇 | Ba | +1 | +2 | 2 | ||||||||||||||
57 | 鑭 | La | 0 | +1 | +2 | +3 | f區元素 | ||||||||||||
58 | 鈰 | Ce | +2 | +3 | +4 | f區元素 | |||||||||||||
59 | 鐠 | Pr | 0 | +1 | +2 | +3 | +4 | +5 | f區元素 | ||||||||||
60 | 釹 | Nd | 0 | +2 | +3 | +4 | f區元素 | ||||||||||||
61 | 鉕 | Pm | +2 | +3 | f區元素 | ||||||||||||||
62 | 釤 | Sm | 0 | +1 | +2 | +3 | f區元素 | ||||||||||||
63 | 銪 | Eu | 0 | +2 | +3 | f區元素 | |||||||||||||
64 | 釓 | Gd | 0 | +1 | +2 | +3 | f區元素 | ||||||||||||
65 | 鋱 | Tb | 0 | +1 | +2 | +3 | +4 | f區元素 | |||||||||||
66 | 鏑 | Dy | 0 | +2 | +3 | +4 | f區元素 | ||||||||||||
67 | 鈥 | Ho | 0 | +2 | +3 | f區元素 | |||||||||||||
68 | 鉺 | Er | 0 | +2 | +3 | f區元素 | |||||||||||||
69 | 銩 | Tm | 0 | +1 | +2 | +3 | f區元素 | ||||||||||||
70 | 鐿 | Yb | 0 | +1 | +2 | +3 | f區元素 | ||||||||||||
71 | 鎦 | Lu | 0 | +2 | +3 | 3 | |||||||||||||
72 | 鉿 | Hf | −2 | 0 | +1 | +2 | +3 | +4 | 4 | ||||||||||
73 | 鉭 | Ta | −3 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 5 | ||||||||
74 | 鎢 | W | −4 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | 6 | ||||||
75 | 錸 | Re | −3 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | 7 | ||||||
76 | 鋨 | Os | −4 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | 8 | ||||
77 | 銥 | Ir | −3 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | +7 | +8 | +9 | 9 | ||||
78 | 鉑 | Pt | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | +6 | 10 | ||||||
79 | 金 | Au | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +5 | 11 | ||||||||
80 | 汞 | Hg | −2 | +1 | +2 | 12 | |||||||||||||
81 | 鉈 | Tl | −5 | −2 | −1 | +1 | +2 | +3 | 13 | ||||||||||
82 | 鉛 | Pb | −4 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | 14 | ||||||||
83 | 鉍 | Bi | −3 | −2 | −1 | 0 | +1 | +2 | +3 | +4 | +5 | 15 | |||||||
84 | 釙 | Po | −2 | +2 | +4 | +5 | +6 | 16 | |||||||||||
85 | 砈 | At | −1 | +1 | +3 | +5 | +7 | 17 | |||||||||||
86 | 氡 | Rn | +2 | +6 | 18 | ||||||||||||||
87 | 鍅 | Fr | +1 | 1 | |||||||||||||||
88 | 鐳 | Ra | +2 | 2 | |||||||||||||||
89 | 錒 | Ac | +3 | f區元素 | |||||||||||||||
90 | 釷 | Th | −1 | +1 | +2 | +3 | +4 | f區元素 | |||||||||||
91 | 鏷 | Pa | +2 | +3 | +4 | +5 | f區元素 | ||||||||||||
92 | 鈾 | U | −1 | +1 | +2 | +3 | +4 | +5 | +6 | f區元素 | |||||||||
93 | 錼 | Np | +2 | +3 | +4 | +5 | +6 | +7 | f區元素 | ||||||||||
94 | 鈽 | Pu | +2 | +3 | +4 | +5 | +6 | +7 | +8 | f區元素 | |||||||||
95 | 鋂 | Am | +2 | +3 | +4 | +5 | +6 | +7 | f區元素 | ||||||||||
96 | 鋦 | Cm | +3 | +4 | +5 | +6 | f區元素 | ||||||||||||
97 | 鉳 | Bk | +2 | +3 | +4 | +5 | f區元素 | ||||||||||||
98 | 鉲 | Cf | +2 | +3 | +4 | +5 | f區元素 | ||||||||||||
99 | 鑀 | Es | +2 | +3 | +4 | f區元素 | |||||||||||||
100 | 鐨 | Fm | +2 | +3 | f區元素 | ||||||||||||||
101 | 鍆 | Md | +2 | +3 | f區元素 | ||||||||||||||
102 | 鍩 | No | +2 | +3 | f區元素 | ||||||||||||||
103 | 鐒 | Lr | +3 | 3 | |||||||||||||||
104 | 鑪 | Rf | +4 | 4 | |||||||||||||||
105 | 𨧀 | Db | +5 | 5 | |||||||||||||||
106 | 𨭎 | Sg | 0 | +6 | 6 | ||||||||||||||
107 | 𨨏 | Bh | +7 | 7 | |||||||||||||||
108 | 𨭆 | Hs | +8 | 8 | |||||||||||||||
109 | 䥑 | Mt | 9 | ||||||||||||||||
110 | 鐽 | Ds | 10 | ||||||||||||||||
111 | 錀 | Rg | 11 | ||||||||||||||||
112 | 鎶 | Cn | +2 | 12 | |||||||||||||||
113 | 鉨 | Nh | 13 | ||||||||||||||||
114 | 鈇 | Fl | 14 | ||||||||||||||||
115 | 鏌 | Mc | 15 | ||||||||||||||||
116 | 鉝 | Lv | 16 | ||||||||||||||||
117 | 鿬 | Ts | 17 | ||||||||||||||||
118 | 鿫 | Og | 18 |
下图是欧文·朗缪尔1919年在研究八隅体规则时所画:[55]
参考资料
- ^ Greenwood, N. N.; Earnshaw, A. (1997). Chemistry of the Elements, 2nd Edition, Oxford:Butterworth-Heinemann. ISBN 0-7506-3365-4, p. 28.
- ^ Disodium helide, (Na+)2He(e-)2, has been synthesized at high pressure, see Dong, Xiao; Oganov, Artem R.; Goncharov, Alexander F.; Stavrou, Elissaios; Lobanov, Sergey; Saleh, Gabriele; Qian, Guang-Rui; Zhu, Qiang; Gatti, Carlo; Deringer, Volker L.; Dronskowski, Richard; Zhou, Xiang-Feng; Prakapenka, Vitali B.; Konôpková, Zuzana; Popov, Ivan A.; Boldyrev, Alexander I.; Wang, Hui-Tian. A stable compound of helium and sodium at high pressure. Nature Chemistry. 6 February 2017, 9 (5): 440–445. Bibcode:2017NatCh...9..440D. PMID 28430195. S2CID 20459726. arXiv:1309.3827 . doi:10.1038/nchem.2716.
- ^ 3.0 3.1 3.2 Na(−1), K(−1), Rb(−1), and Cs(−1) are known in alkalides; the table by Greenwood and Earnshaw shows −1 only for Na and also erroneously for Li; no lithides are described.
- ^ Li(0) atoms have been observed in various small lithium-chloride clusters; see Milovanović, Milan; Veličković, Suzana; Veljkovićb, Filip; Jerosimić, Stanka. Structure and stability of small lithium-chloride LinClm(0,1+) (n ≥ m, n = 1–6, m = 1–3) clusters. Physical Chemistry Chemical Physics. October 30, 2017, (45). doi:10.1039/C7CP04181K.
- ^ Be(0) has been observed; see Beryllium(0) Complex Found. Chemistry Europe. 13 June 2016.
- ^ Be(I) has been observed in beryllium monohydride (BeH); see Shayesteh, A.; Tereszchuk, K.; Bernath, P. F.; Colin, R. Infrared Emission Spectra of BeH and BeD (PDF). J. Chem. Phys. 2003, 118 (3): 1158 [2007-12-10]. Bibcode:2003JChPh.118.1158S. doi:10.1063/1.1528606. (原始内容 (PDF)存档于2007-12-02). and in [(CAAC)2Be]+• [CAAC = cyclic (alkyl)(amino)carbene], see Wang, Guocang; Walley, Jacob E.; Dickie, Diane E.; Pan, Sudip; Frenking, Gernot; Gilliard Jr., Robert G. A Stable, Crystalline Beryllium Radical Cation. J. Am. Chem. Soc. 2020, 142 (10): 4560–4 [2020-11-17]. PMID 32088963. S2CID 211262005. doi:10.1021/jacs.9b13777.
- ^ B(−5) has been observed in Al3BC, see Schroeder, Melanie. Eigenschaften von borreichen Boriden und Scandium-Aluminium-Oxid-Carbiden. : 139 (德语).
- ^ B(−1) has been observed in magnesium diboride (MgB2), see Keeler, James; Wothers, Peter. Chemical Structure and Reactivity: An Integrated Approach. Oxford University Press. 2014. ISBN 9780199604135.
- ^ B(0) has been observed in diborynes, see Braunschweig, H.; Dewhurst, R. D.; Hammond, K.; Mies, J.; Radacki, K.; Vargas, A. Ambient-Temperature Isolation of a Compound with a Boron-Boron Triple Bond. Science. 2012, 336 (6087): 1420–2. Bibcode:2012Sci...336.1420B. PMID 22700924. S2CID 206540959. doi:10.1126/science.1221138.
- ^ Tetrazoles contain a pair of double-bonded nitrogen atoms with oxidation state 0 in the ring. A Synthesis of the parent 1H-tetrazole, CH2N4 (two atoms N(0)) is given in Ronald A. Henry and William G. Finnegan, "An Improved Procedure for the Deamination of 5-Aminotetrazole", _J. Am. Chem. Soc._ (1954), 76, 1, 290–291, https://doi.org/10.1021/ja01630a086.
- ^ Gold heptafluoride is calculated to be the pentafluoride with a molecular F2 ligand. Himmel, Daniel; Riedel, Sebastian. After 20 Years, Theoretical Evidence That 'AuF7' Is Actually AuF5•F2. Inorganic Chemistry. 2007, 46 (13): 5338–5342. PMID 17511450. doi:10.1021/ic700431s.
- ^ A cluster of elusive SF6+ with helium atoms is known to have fluorine(0) atom as a ligand; see Albertini, Simon; Bergmeister, Stefan; Laimer, Felix; Martini, Paul; Gruber, Elisabeth; Zappa, Fabio; Ončák, Milan; Scheier, Paul; Echt, Olof. SF 6 + : Stabilizing Transient Ions in Helium Nanodroplets. The Journal of Physical Chemistry Letters. 2021-04-22, 12 (17): 4112–4117. ISSN 1948-7185. PMC 8154854 . PMID 33886323. doi:10.1021/acs.jpclett.1c01024 (英语).
- ^ Ne(0) has been observed in Cr(CO)5Ne. Perutz, Robin N.; Turner, James J. Photochemistry of the Group 6 hexacarbonyls in low-temperature matrices. III. Interaction of the pentacarbonyls with noble gases and other matrices. Journal of the American Chemical Society. August 1975, 97 (17): 4791–4800. doi:10.1021/ja00850a001.
- ^ The compound NaCl has been shown in experiments to exists in several unusual stoichiometries under high pressure, including Na3Cl in which contains a layer of sodium(0) atoms; see Zhang, W.; Oganov, A. R.; Goncharov, A. F.; Zhu, Q.; Boulfelfel, S. E.; Lyakhov, A. O.; Stavrou, E.; Somayazulu, M.; Prakapenka, V. B.; Konôpková, Z. Unexpected Stable Stoichiometries of Sodium Chlorides. Science. 2013, 342 (6165): 1502–1505. Bibcode:2013Sci...342.1502Z. PMID 24357316. S2CID 15298372. arXiv:1310.7674 . doi:10.1126/science.1244989.
- ^ Low valent magnesium compounds with Mg(I) have been obtained using bulky ligands; see Green, S. P.; Jones C.; Stasch A. Stable Magnesium(I) Compounds with Mg-Mg Bonds. Science. December 2007, 318 (5857): 1754–1757. Bibcode:2007Sci...318.1754G. PMID 17991827. S2CID 40657565. doi:10.1126/science.1150856.
- ^ Mg(0) has been synthesized in a compound containing a Na2Mg22+ cluster coordinated to a bulky organic ligand; see Rösch, B.; Gentner, T. X.; Eyselein, J.; Langer, J.; Elsen, H.; Li, W.; Harder, S. Strongly reducing magnesium(0) complexes. Nature. 2021, 592 (7856): 717–721. Bibcode:2021Natur.592..717R. PMID 33911274. S2CID 233447380. doi:10.1038/s41586-021-03401-w
- ^ Al(II) has been observed in aluminium(II) oxide (AlO); see Tyte, D.C. Red (B2Π–A2σ) Band System of Aluminium Monoxide. Nature. 1964, 202 (4930): 383–384. Bibcode:1964Natur.202..383T. S2CID 4163250. doi:10.1038/202383a0, and in dialanes (R2Al—AlR2); see Uhl, Werner. Organoelement Compounds Possessing Al—Al, Ga—Ga, In—In, and Tl—Tl Single Bonds. Advances in Organometallic Chemistry. 2004, 51: 53–108. doi:10.1016/S0065-3055(03)51002-4.
- ^ 18.0 18.1 18.2 Negative oxidation states of p-block metals (Al, Ga, In, Sn, Tl, Pb, Bi, Po) and metalloids (Si, Ge, As, Sb, Te, At) may occur in Zintl phases, see: Riedel, Erwin (编). Moderne Anorganische Chemie. 2007: 259 (德语), and Vorlesung Intermetallische Phasen § 6.2 Binäre Zintl-Phasen (德语).
- ^ Unstable carbonyl of Al(0) has been detected in reaction of Al2(CH3)6 with carbon monoxide; see Sanchez, Ramiro; Arrington, Caleb; Arrington Jr., C. A. Reaction of trimethylaluminum with carbon monoxide in low-temperature matrixes. American Chemical Society. December 1, 1989, 111 (25): 9110-9111. doi:10.1021/ja00207a023.
- ^ Al(−2) has been observed in Sr14[Al4]2[Ge]3, see Wemdorff, Marco; Röhr, Caroline. Sr14[Al4]2[Ge]3: Eine Zintl-Phase mit isolierten [Ge]4–- und [Al4]8–-Anionen / Sr14[Al4]2[Ge]3: A Zintl Phase with Isolated [Ge]4–- and [Al4]8– Anions. Zeitschrift für Naturforschung B. 2007, 62 (10): 1227. S2CID 94972243. doi:10.1515/znb-2007-1001 (德语).
- ^ 21.0 21.1 New Type of Zero-Valent Tin Compound. Chemistry Europe. 27 August 2016.
- ^ P(0) has been observed, see Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; King, R. Bruce; Schaefer, Iii; Schleyer, Paul v. R.; Robinson, Gregory H. Carbene-Stabilized Diphosphorus. Journal of the American Chemical Society. 2008, 130 (45): 14970–1. PMID 18937460. doi:10.1021/ja807828t.
- ^ The equilibrium Cl2O6⇌2ClO3 is mentioned by Greenwood and Earnshaw, but it has been refuted, see Lopez, Maria; Juan E. Sicre. Physicochemical properties of chlorine oxides. 1. Composition, ultraviolet spectrum, and kinetics of the thermolysis of gaseous dichlorine hexoxide. J. Phys. Chem. 1990, 94 (9): 3860–3863. doi:10.1021/j100372a094., and Cl2O6 is actually chlorine(V,VII) oxide. However, ClO3 has been observed, see Grothe, Hinrich; Willner, Helge. Chlorine Trioxide: Spectroscopic Properties, Molecular Structure, and Photochemical Behavior. Angew. Chem. Int. Ed. 1994, 33 (14): 1482–1484. doi:10.1002/anie.199414821.
- ^ Ar(0) has been observed in argon fluorohydride (HArF) and ArCF22+, see Lockyear, J.F.; Douglas, K.; Price, S.D.; Karwowska, M.; et al. Generation of the ArCF22+ Dication. Journal of Physical Chemistry Letters. 2010, 1: 358. doi:10.1021/jz900274p.
- ^ Ca(I) has been observed; see Krieck, Sven; Görls, Helmar; Westerhausen, Matthias. Mechanistic Elucidation of the Formation of the Inverse Ca(I) Sandwich Complex [(thf)3Ca(μ-C6H3-1,3,5-Ph3)Ca(thf)3] and Stability of Aryl-Substituted Phenylcalcium Complexes. Journal of the American Chemical Society. 2010, 132 (35): 12492–501. PMID 20718434. doi:10.1021/ja105534w.
- ^ Octacarbonyl complexes isolated of Ca, Sr, Ba have been observed in a neon matrix, but it remains unclear whether these are metal(0) complexes because calculations disagree whether the metal is covalently or ionically bonded to the ligands; see Wu, X.; Zhao, L.; Jin, J.; Pan, S.; Li, W.; Jin, X.; Wang, G.; Zhou, M.; Frenking, G. Observation of alkaline earth complexes M(CO)8 (M = Ca, Sr, or Ba) that mimic transition metals. Science. 2018, 361 (6405): 912–916. Bibcode:2018Sci...361..912W. PMID 30166489. S2CID 52131470. doi:10.1126/science.aau0839
- ^ Sc(0) has been observed; see F. Geoffrey N. Cloke; Karl Khan & Robin N. Perutz. η-Arene complexes of scandium(0) and scandium(II). J. Chem. Soc., Chem. Commun. 1991, (19): 1372–1373. doi:10.1039/C39910001372.
- ^ Sc(I) has been observed; see Polly L. Arnold; F. Geoffrey; N. Cloke; Peter B. Hitchcock & John F. Nixon. The First Example of a Formal Scandium(I) Complex: Synthesis and Molecular Structure of a 22-Electron Scandium Triple Decker Incorporating the Novel 1,3,5-Triphosphabenzene Ring. J. Am. Chem. Soc. 1996, 118 (32): 7630–7631. doi:10.1021/ja961253o.
- ^ Sc(II) has been observed; see Woen, David H.; Chen, Guo P.; Ziller, Joseph W.; Boyle, Timothy J.; Furche, Filipp; Evans, William J. Solution Synthesis, Structure, and CO Reduction Reactivity of a Scandium(II) Complex. Angewandte Chemie International Edition. January 2017, 56 (8): 2050–2053. PMID 28097771. doi:10.1002/anie.201611758.
- ^ Ti(I) has been observed in [Ti(η6-1,3,5-C6H3iPr3)2][BAr4] (Ar = C6H5, p-C6H4F, 3,5-C6H3(CF3)2); see Calderazzo, Fausto; Ferri, Isabella; Pampaloni, Guido; Englert, Ulli; Green, Malcolm L. H. Synthesis of [Ti(η6-1,3,5-C6H3iPr3)2][BAr4] (Ar = C6H5, p-C6H4F, 3,5-C6H3(CF3)2), the First Titanium(I) Derivatives. Organometallics. 1997, 16 (14): 3100–3101. doi:10.1021/om970155o.
- ^ 31.0 31.1 31.2 31.3 Ti(−2), V(−3), Cr(−4), Co(−3), Zr(−2), Nb(−3), Mo(−4), Ru(−2), Rh(−3), Hf(−2), Ta(−3), and W(−4) occur in anionic binary metal carbonyls; see [1], p. 4 (in German); [2], pp. 97–100; [3], p. 239
- ^ Ti(−1) has been reported in [Ti(bipy)3]−, but was later shown to be Ti(+3); see Bowman, A. C.; England, J.; Sprouls, S.; Weihemüller, T.; Wieghardt, K. Electronic structures of homoleptic [tris(2,2'-bipyridine)M]n complexes of the early transition metals (M = Sc, Y, Ti, Zr, Hf, V, Nb, Ta; n = 1+, 0, 1-, 2-, 3-): an experimental and density functional theoretical study. Inorganic Chemistry. 2013, 52 (4): 2242–56. PMID 23387926. doi:10.1021/ic302799s. However, Ti(−1) occurs in [Ti(η-C6H6]− and [Ti(η-C6H5CH3)]−, see Bandy, J. A.; Berry, A.; Green, M. L. H.; Perutz, R. N.; Prout, K.; Verpeautz, J.-N. Synthesis of anionic sandwich compounds: [Ti(η-C6H5R)2]– and the crystal structure of [K(18-crown-6)(µ-H)Mo(η-C5H5)2]. Inorganic Chemistry. 1984, 52 (4): 729–731. doi:10.1039/C39840000729.
- ^ Jilek, Robert E.; Tripepi, Giovanna; Urnezius, Eugenijus; Brennessel, William W.; Young, Victor G. Jr.; Ellis, John E. Zerovalent titanium–sulfur complexes. Novel dithiocarbamato derivatives of Ti(CO)6: [Ti(CO)4(S2CNR2)]−. Chem. Commun. 2007, (25): 2639–2641. PMID 17579764. doi:10.1039/B700808B.
- ^ Fe(VII) has been observed in [FeO4]−; see Lu, Jun-Bo; Jian, Jiwen; Huang, Wei; Lin, Hailu; Zhou, Mingfei. Experimental and theoretical identification of the Fe(VII) oxidation state in FeO4−. Physical Chemistry Chemical Physics. 2016, 18 (45): 31125–31131. Bibcode:2016PCCP...1831125L. PMID 27812577. doi:10.1039/C6CP06753K.
- ^ Fe(VIII) has been reported; see Yurii D. Perfiliev; Virender K. Sharma. Higher Oxidation States of Iron in Solid State: Synthesis and Their Mössbauer Characterization – Ferrates – ACS Symposium Series (ACS Publications). Platinum Metals Review. 2008, 48 (4): 157–158. doi:10.1595/147106704X10801. However, its existence has been disputed.
- ^ 36.0 36.1 36.2 Fe(−4), Ru(−4), and Os(−4) have been observed in metal-rich compounds containing octahedral complexes [MIn6−xSnx]; Pt(−3) (as a dimeric anion [Pt–Pt]6−), Cu(−2), Zn(−2), Ag(−2), Cd(−2), Au(−2), and Hg(−2) have been observed (as dimeric and monomeric anions; dimeric ions were initially reported to be [T–T]2− for Zn, Cd, Hg, but later shown to be [T–T]4− for all these elements) in La2Pt2In, La2Cu2In, Ca5Au3, Ca5Ag3, Ca5Hg3, Sr5Cd3, Ca5Zn3(structure (AE2+)5(T–T)4−T2−⋅4e−), Yb3Ag2, Ca5Au4, and Ca3Hg2; Au(–3) has been observed in ScAuSn and in other 18-electron half-Heusler compounds. See Changhoon Lee; Myung-Hwan Whangbo. Late transition metal anions acting as p-metal elements. Solid State Sciences. 2008, 10 (4): 444–449. Bibcode:2008SSSci..10..444K. doi:10.1016/j.solidstatesciences.2007.12.001. and Changhoon Lee; Myung-Hwan Whangbo; Jürgen Köhler. Analysis of Electronic Structures and Chemical Bonding of Metal-rich Compounds. 2. Presence of Dimer (T–T)4– and Isolated T2– Anions in the Polar Intermetallic Cr5B3-Type Compounds AE5T3 (AE = Ca, Sr; T = Au, Ag, Hg, Cd, Zn). Zeitschrift für Anorganische und Allgemeine Chemie. 2010, 636 (1): 36–40. doi:10.1002/zaac.200900421.
- ^ Ni(−2) has been observed in Li2[Ni(1,5-COD)2], see Jonas, Klaus. Dilithium-Nickel-Olefin Complexes. Novel Bimetal Complexes Containing a Transition Metal and a Main Group Metal. Angew. Chem. Int. Ed. 1975, 14 (11): 752–753. doi:10.1002/anie.197507521. and Ellis, John E. Adventures with Substances Containing Metals in Negative Oxidation States. Inorganic Chemistry. 2006, 45 (8): 3167–86. PMID 16602773. doi:10.1021/ic052110i.
- ^ Cu(0) has been observed in Cu(tris[2-(diisopropylphosphino)- phenyl]borane), see Moret, Marc-Etienne; Zhang, Limei; Peters, Jonas C. A Polar Copper–Boron One-Electron σ-Bond. J. Am. Chem. Soc. 2013, 135 (10): 3792–3795. PMID 23418750. doi:10.1021/ja4006578.
- ^ Zn(0) has been observed; see Singh, Amit Pratap; Samuel, Prinson P.; Roesky, Herbert W.; Schwarzer, Martin C.; Frenking, Gernot; Sidhu, Navdeep S.; Dittrich, Birger. A Singlet Biradicaloid Zinc Compound and Its Nonradical Counterpart. J. Am. Chem. Soc. 2013, 135 (19): 7324–9. PMID 23600486. doi:10.1021/ja402351x. and Soleilhavoup, Michèle; Bertrand, Guy. Cyclic (Alkyl)(Amino)Carbenes (CAACs): Stable Carbenes on the Rise. Acc. Chem. Res. 2015, 48 (2): 256–266. PMID 25515548. doi:10.1021/ar5003494.
- ^ Zn(I) has been observed in decamethyldizincocene (Zn2(η5–C5Me5)2); see Resa, I.; Carmona, E.; Gutierrez-Puebla, E.; Monge, A. Decamethyldizincocene, a Stable Compound of Zn(I) with a Zn-Zn Bond. Science. 2004, 305 (5687): 1136–8. Bibcode:2004Sci...305.1136R. PMID 15326350. S2CID 38990338. doi:10.1126/science.1101356.
- ^ Zn(III) has been predicted to be stable in compounds with highly stabilized borane-based trianions, but no Zn(III) candidates are known experimentally; see Hong Fang; Huta Banjade; Deepika; Puru Jena. Realization of the Zn3+ oxidation state. Nanoscale. 2021, 13 (33): 14041–14048. PMID 34477685. S2CID 237400349. doi:10.1039/D1NR02816B (English).
- ^ Ga(−2), Ga(−4), and Ga(−5) have been observed in the magnesium gallides MgGa, Mg2Ga, and Mg5Ga2, respectively; see Patrick Hofmann. Colture. Ein Programm zur interaktiven Visualisierung von Festkörperstrukturen sowie Synthese, Struktur und Eigenschaften von binären und ternären Alkali- und Erdalkalimetallgalliden (PDF). : 72 (德语).
- ^ Ga(−3) has been observed in LaGa, see Dürr, Ines; Bauer, Britta; Röhr, Caroline. Lanthan-Triel/Tetrel-ide La(Al,Ga)x(Si,Ge)1-x. Experimentelle und theoretische Studien zur Stabilität intermetallischer 1:1-Phasen (PDF). Z. Naturforsch. 2011, 66b: 1107–1121. 已忽略未知参数
|lang=
(建议使用|language=
) (帮助) - ^ Ga(0) has been observed in Gallium monoiodide among other gallium's oxidation states
- ^ Ge(−1), Ge(−2), and Ge(−3) have been observed in germanides; see Holleman, Arnold F.; Wiberg, Egon; Wiberg, Nils. Germanium. Lehrbuch der Anorganischen Chemie 101. Walter de Gruyter. 1995: 953–959. ISBN 978-3-11-012641-9 (德语).
- ^ As(0) has been observed; see Abraham, Mariham Y.; Wang, Yuzhong; Xie, Yaoming; Wei, Pingrong; Shaefer III, Henry F.; Schleyer, P. von R.; Robinson, Gregory H. Carbene Stabilization of Diarsenic: From Hypervalency to Allotropy. Chemistry: A European Journal. 2010, 16 (2): 432–5. PMID 19937872. doi:10.1002/chem.200902840.
- ^ As(I) has been observed in arsenic(I) iodide (AsI); see Ellis, Bobby D.; MacDonald, Charles L. B. Stabilized Arsenic(I) Iodide: A Ready Source of Arsenic Iodide Fragments and a Useful Reagent for the Generation of Clusters. Inorganic Chemistry. 2004, 43 (19): 5981–6. PMID 15360247. doi:10.1021/ic049281s.
- ^ As(IV) has been observed in arsenic(IV) hydroxide (As(OH)4) and HAsO−
; see Kläning, Ulrik K.; Bielski, Benon H. J.; Sehested, K. Arsenic(IV). A pulse-radiolysis study. Inorganic Chemistry. 1989, 28 (14): 2717–24. doi:10.1021/ic00313a007. - ^ Se(−1) has been observed in diselenides(2−) (Se22−).
- ^ A Se(0) atom has been identified using DFT in [ReOSe(2-pySe)3]; see Cargnelutti, Roberta; Lang, Ernesto S.; Piquini, Paulo; Abram, Ulrich. Synthesis and structure of [ReOSe(2-Se-py)3]: A rhenium(V) complex with selenium(0) as a ligand. Inorganic Chemistry Communications. 2014, 45: 48–50. ISSN 1387-7003. doi:10.1016/j.inoche.2014.04.003.
- ^ Se(I) has been observed in selenium(I) chloride (Se2Cl2); see Selenium: Selenium(I) chloride compound data. WebElements.com. [2007-12-10].
- ^ Se(III) has been observed in Se2NBr3; see Lau, Carsten; Neumüller, Bernhard; Vyboishchikov, Sergei F.; Frenking, Gernot; Dehnicke, Kurt; Hiller, Wolfgang; Herker, Martin. Se2NBr3, Se2NCl5, Se2NCl−6: New Nitride Halides of Selenium(III) and Selenium(IV). Chemistry: A European Journal. 1996, 2 (11): 1393–1396. doi:10.1002/chem.19960021108.
- ^ Se(V) has been observed in SeO−
3 and HSeO2−
4; see Kläning, Ulrik K.; Sehested, K. Selenium(V). A pulse radiolysis study. Inorganic Chemistry. 1986, 90 (21): 5460–4. doi:10.1021/j100412a112. - ^ Br(II) is known to occur in bromine monoxide radical; see [4]
- ^ Langmuir, Irving. THE ARRANGEMENT OF ELECTRONS IN ATOMS AND MOLECULES.. Journal of the American Chemical Society. 1919-06, 41 (6): 868–934 [2022-03-25]. ISSN 0002-7863. doi:10.1021/ja02227a002. (原始内容存档于2020-05-09) (英语).