跳转到内容

轉向架

本页使用了标题或全文手工转换
维基百科,自由的百科全书
(重定向自转向架
轉向架
轉向架引導車輛運行作動圖

轉向架(英語:bogie,在美國稱為:truck[1]),又稱台車(來自日语:台車),鐵道車輛上最重要的部件之一[2]:30,由於位於車輛底部,因此一般很難可以看清全貌[3]:56,主要功能為承載車體自重和載重[4],以及引導車輛沿鐵路軌道運行[5],確保車輛在直線上和曲線上順利行駛[6]:19,並具有減緩來自車輛運行時帶來振动和衝擊的作用[7]:144,因此轉向架的設計也直接決定了車輛的穩定性和車輛乘坐的舒適性[8]:70[9]

概要

[编辑]

轉向架是由車軸、軸承[10]:148、轉向架框、懸吊系統、驅動裝置[8]:70、制軔裝置、傳動單元等裝置組成[10]:148,按照支撐方式分成了三種類型,有兩軸車、平台車及連接車[11][12]:134,早期大多車輛採用兩軸車,但是兩軸車的舒適性不高[13]以及受限軸距因素,每輛車長度較短[14]:72,因此現今大多採用可加車體延長的平台車[11]。而連接車可以減少轉向架的數量與列車重量,但受限軸距因素,每輛車長度無法太長,因此車輛長度較短[註 1][8]:70,因此部分輕量化的列車有採用[11]

轉向架對於車體以及軌道間具有密切的相互影響,轉向架不只是支撐車體的工具[6]:19,還肩負了列車行進運轉[9]、乘坐舒適度以及行車安全[5][15]

簡史

[编辑]

轉向架的雛形最早出現於1820年代的馬車軌道,在當時為了提升馬車的舒適度,因此開始裝設防震結構[5],為了能讓車輛能夠順利通過彎道,1821年由英國威廉·查普曼 (William Chapman)工程師研發出類似轉向架的結構。1832年美國鐵路運輸需求急速提升,於1834年美國工程師羅斯·溫南斯(Ross Winans)成功重新開發出可大負重,並且能夠高速行駛的轉向架 [16]

轉向架的類型

[编辑]

基本類型

[编辑]

兩軸車最早是由馬車改造而成的[1],將木製車輪改成可行駛於鐵道上的車輪[17],是所有轉向架中構造最簡單的,構造與馬車相同利用兩個板簧支撐車軸與車廂,在由車軸與車輪支撐車輛的所有重量[17],車輛的大小大多也與馬車相同[1],且一般皆為拖車車廂,僅有少數路面電車設有動力系統[18],也是所有轉向架中沒有轉向架框的結構。平台車是現今最主流的轉向架類型,並且能裝設更多的車軸[19],增加車輛的乘載重量[17],亦是所有轉向架中種類最多,舒適度高[4],且能載重最大的類型[18]。連接車又稱關節式轉向架、雅各式轉向架或連接台車(來自日语:連接台車),其支撐方式為將相鄰的車廂用同一個轉向架連接起來[20],在二十世紀初期的時候曾被大量採用,但因車廂要分開或加掛時,都必須進入鐵路機廠作業等因素,因此漸漸又減少使用[19],而連接車構造除二次懸吊的部分與平台車不同,其餘大致與平台車相同[13]

輪軸的數目

[编辑]

可分成單軸、雙軸、三軸等[6]:21。大型的特種貨車大多採用更多個輪軸轉向架,或是多個轉向架相連的轉向架群。以雙軸最常使用,三軸大多用於大型動力機車或是貨車[14]:72,三軸的結構複雜且不利於軌道運行的順暢性,因此很少使用於客車車廂[2]:36。單軸大部分是雙軸車使用,僅少數平台車或連接車有採用。另外也有铁路机车采用罕见的四轴转向架,如DD35型柴油机车

有枕樑或無枕樑

[编辑]

枕樑又稱「承梁」[21],現今大多車輛採用零件數少,較易維修的無枕樑式的轉向架[12]:135。枕梁主要吸收列車的前後或左右的震動[12]:136-137,以及列車過彎時的超高及離心力,列車在過彎時枕梁會因離心力發生位移,通過彎道後再次復原[13]。而有枕樑轉向架又細分搖枕式與直接安裝式[7]:147-148,其中搖枕式是所有轉向架中零件最多、構造最複雜以及各種耗材最多的型式,詳細構造如下圖。直接安裝式是由搖枕式改良而來[22],是近年少數車輛出廠時仍是採用有枕樑轉向架的車輛會採用的型式[7]:147-148。有枕樑轉向架現今已漸漸被無枕樑轉向架取代,其因為無枕樑轉向構造簡單可輕量化[20]、空氣彈簧容許旋轉的範圍比枕梁多元[3]:59、乘坐舒適度高[21]等優點,因此現今大多車輛採用無枕樑式的轉向架[7]:147-148[8]:82-83。此種類型僅有平台車才有區分,兩軸車與連接車無此構造[13]

有動力或無動力

[编辑]

主要差在轉向架使否裝有動力設備,裝有動力設備為有動力轉向架[22],若無安裝則為無動力轉向架[6]:21

有動力轉向架備有減速齒輪、動力裝置的轉向架,電力列車裝有主電動機的電動轉向架[23]:1000。舊型電力機車因配置有輔助輪與動力輪,因此有動力的稱為「主轉向架」[23]:1000。無動力轉向架一般用於客車、貨車以及動車組的拖車[23]:1000[23]:1002。一般皆設有制軔設備(煞車系統)[5]。一般動車組或是動力機車透過拖動比調配也會使用到無動力轉向架。但是,通常在蒸汽機車和舊型電力機車的前後,為了增加通過曲線時能夠平穩運行,此種轉向架稱為「引導輪」或「從動輪」[23]:1000。在一些蒸汽機車中,它被稱為助推器,少數情況是將小型蒸汽機的驅動裝置安裝在後輪上,僅用於啟動時的加速輔助,但這不包括在驅動輪[5]

有無列車傾斜功能

[编辑]

有傾斜功能的傾斜式列車,通過一般彎道時會以較快速度行駛[24]:46-47,可以節省行駛時間以及乘車舒適度[2]:38。一般轉向架則無法提高過彎時的行駛速度,詳細原理請參見傾斜式列車

依照傾斜原理可分:自然傾斜式、強制傾斜式以及自然控制傾斜式[24]:46-47

轉向架的構造

[编辑]

車軸

[编辑]

車軸一般使用高韌度的鍛造而成[19],主要連接與固定兩側車輪,並將所有重量傳遞給車輪,車軸的尺寸越粗可乘載的重量越大,尺寸越細列車種重量越輕,可提升列車行駛速度[8]。一個車軸固定裝有一對車輪,並透過軸箱、懸吊系統等結構與車廂連接[4]

軸箱支撐架

[编辑]

軸箱(英語:Axle box[2]:30)主要用來支撐車體與車軸重量[2]:33,並將輪軸保持在轉向架框內的適當位置[8]:79,軸箱箱支撐方法五花八門,詳細如下:

  • 軸箱導架式:零件最多,構造最複雜型式,容易發生車軸蛇行,造成列車激烈震動,此種支撐方式在橡膠彈簧問世之前最廣泛用於各種車輛[2]:30
  • 圓錐多層橡膠式:利用圓錐橡膠彈簧吸收上下震動[2]:30
  • 阿爾斯通式:又稱雙連桿式,透過兩側的樑作為連結,透過軸簧緩衝,此種類型由阿爾斯通發明[8]:78
  • 多層橡膠式:又稱雪弗龍式,利用多層橡膠承受上下的剪斷力[8]:78
  • 單連桿式:由阿爾斯通式改良型,以一根連趕支撐軸箱與轉向架[8]:78
  • 支撐板式:由兩片版彈簧黃固定軸箱與轉向架。此種方法可減少轉向架長度[8]:78
  • 軸板彈簧式:又稱明登式,軸箱兩側裝有臥式鋼板彈簧,並與轉向架架相連支撐。板簧的翹曲抑制垂直運動。此種類型是由德國發明[12]:146-147
  • 軸樑式:零件最少,構造最簡單,廣泛用於現代各種車輛[8]:78[12]:146-147。利用橡膠襯套進行緩衝作用,由於軸圍繞軸樑的支點旋轉,因此車軸與轉向加框的距離會隨著軸的上下震動而變化[5]
  • 圓筒軸橡膠式:又稱Tandem 式,由日本車輛研發,在各方向的剛性有很高的自由度,主要用於高速行駛的車輛[25]:23-24

懸吊系統

[编辑]

又稱為避震系統[5],主要用於吸收列車的震動與衝擊[11]

  • 主懸吊系統:又稱一次懸吊[10]:150[11]、軸簧[21][8]:79或一次簧[26]:45,主要連結軸箱與轉向架框,負責吸收大部分行進間的震動、碰撞以及噪音[8]:79[26]:45。一般使用金屬卷簧,但也有使用橡膠簧、合成橡膠金屬簧、板簧等[8]:79[2]:41
  • 次懸吊系統:又稱二次懸吊[10]:150[11]、枕簧[21]或二次簧[8]:83,主要連接車體與轉向架框,用於減少轉向架與車體間的碰撞[2]:43,承受車體垂直負荷、橫向負荷及旋轉運動[26]:47。可大幅提升乘車舒適度。過去使用卷簧與阻尼器組合為主[8]:83,現今改採用舒適度高的空氣彈簧[3]:61[27]

轉向架框

[编辑]

轉向架框為車軸、車體、動力系統、制軔系統、懸吊系統等設備安裝之框架[21],早期使用型鋼與鉚釘鉚接製作,後來改以鑄鋼製造,近年則採用鋼板衝壓成型焊接製造[8]:81[28]:97,除兩軸車無此結構,其餘支撐種類皆有此結構[19]

轉向架框依照形狀可分成以下類別:

  • 菱形式轉向架:轉向架架側面形狀為菱形之車架,軸箱由扁鋼組裝而成,其上設有枕簧座,並附有搖枕和輪組。 之所以有這個名字,是因為轉向架框架的形狀是菱形[23]:1002
  • 弓形條板菱形轉向架:1920年代的貨車和部分客車採用。車架的主要構件為拱形,固定式軸箱[23]:1002
  • 貝騰多夫式轉向架:(英語:Bettendorf truck),由美國發明,用於固定軸式貨車,提高拱桿的強度和剛度。 有些是由早期成型鋼材組裝而成的,為了提高了批量生產效率,有些是整體鑄造的。是貝騰多夫公司的公開專利,種類繁多[29]
  • 安德魯式轉向架:用於貨車。車架的形狀與鑄鋼製成的貝騰多夫式相似,但軸箱是分離的,軸箱夾在上下底架之間[20]
  • 火神式轉向架:用於貨車。安德魯式簡化版本,軸箱設有1顆固定螺栓[29]
  • 內框式轉向架:又稱側梁式或側架式,軸承位於車輪的內側,一般用於膠輪有軌電車或路面電車[30][31]
  • 板架框式轉向架:框架由薄鋼板組裝而成。 自19世紀開始廣泛用於歐洲鐵路,甚至在二戰後歐洲製造商仍在製造,主要用於貨車。
  • 連桿式轉向架:由日本近畿車輛研發[32],適合行駛於多小曲線彎道的路線,並且可減少行駛中的噪音[33]

軸承

[编辑]

軸承具有支撐車軸旋轉,並保持車軸在正確位置,減少旋轉阻力的功能[8]:79

驅動裝置

[编辑]

將列車動力源產生的旋轉力傳遞給車輪的裝置稱為驅動裝置[34]

電力車
  • 主電動機動力驅動方式與懸掛方式:動力傳動裝置為將馬達的旋轉功率傳遞至輪軸裝置[8]:85-89
  • 吊掛式:又稱為抱軸配置、軸懸式驅動方式、電車式、鼻懸式、半懸掛式驅動方式[12]:152-157,優點為輪軸組內大齒輪中心與馬達小齒輪中心之距離固定,安裝方便[35]:21—24,缺點為馬達一半重量由輪軸支撐,直接承受軌道衝擊力,因此馬達故障率較高,軸承震動大[26]:47。一般用於舊型電聯車電力機車柴電機車[35]:21—24
  • 車體裝架式:又稱為萬向接頭式、體懸式驅動方式,利用傘型齒輪與萬向接頭傳輸動力[12]:152-157,一般用於低地版電車或是部分柴聯車[14]:186-188
  • 半吊掛式:又稱為中空式,介於吊掛式與簧上懸掛式之間的方式[35]:21—24
  • 連桿式:由半吊掛式改良而來,使用橡皮吸收車輪與齒輪間的變化量[35]:21—24
  • 直接驅動式:將馬達軸與車軸作為一體,由電動機直接推動車輪[12]:152-157[14]:186-188,雖然機械損失小,但是轉子衝擊力大,馬達維護成本高[35]:21—24
  • 簧上懸掛式:又稱為架懸式[35]:21—24[8]:85-89,依照不同驅動方式有以下類型。
柴油車、蒸汽機車
動力傳動裝置:就柴油車而言,發動機安裝在車體上,但將這種動力傳遞給輪對的部分稱為動力傳動裝置[34]
減速齒輪、減速機:列車通過安裝在車輛上的發動機與車軸之間的減速齒輪將動力減速,並將旋轉力傳遞給車輪。 柴油車在轉向架上裝有減速齒輪,減速齒輪進一步降低了從推進軸上的液體變速機傳遞來的動力,從而將旋轉力傳遞給車輪[34]
推進軸:從車身延伸到輪組的軸,用於傳遞懸掛在車身上的發動機的動力。 配備萬向節以吸收車身與輪對之間的位移[7]:181
逆轉機:一種改變車輛行駛方向的裝置,逆轉齒輪組在減速器中進行轉向[34]

制軔設備

[编辑]

用於鐵道機車車輛的煞車系統系統[1],其主要作用是控制鐵道機車車輛的運轉速度[13] 。一般有額外的主控制器,利用主控制器控制整列火車的制軔[1]

制軔方式

[编辑]
  • 粘著制軔
    • 踏面制軔:是鐵道機車車輛最常用的制軔方式之一,依靠壓縮空氣推動制軔氣缸中的活塞,將空氣的壓力變成機械推力,使閘瓦緊壓滾動的車輪踏面而產生制軔[6]:24
    • 碟式制軔:又稱為碟式制軔或是碟煞,主要由煞車盤、制軔閘片和制軔鉗組成,煞車盤安裝在車軸上隨同車輪旋轉,制軔鉗像鉗一樣橫跨在煞車盤的兩側,制軔時用制軔鉗上的閘片壓緊煞車盤,使閘片與煞車盤摩擦而產生制軔作用[6]:24
    • 液力制軔:液力制軔的原理是通過液體的阻力作用使車輛減速,列車的動能通過液力偶合器及工作介質轉換成熱能,再透過冷卻裝置消散到大氣。
    • 電阻制軔:利用牽引馬達作為發電機,將所發出來電透過電阻器轉換成熱能消耗掉[3]:67
    • 再生制軔:利用牽引馬達作為發電機,將所發出來電透過集電弓返回變電站[8]:110,以供給同電區其他電車使用。再生電的電壓必須高過電車線電壓[35]:116
    • 旋轉渦電流制軔電磁感應進行制軔。渦電流剎車的主要優點是無機械磨損、制軔力在很大速度範圍內保持穩定,因此適用於重型汽車、高速列車、起重機械等場合[8]:111
  • 非粘著制軔
    • 磁軌制軔:將磁鐵安裝於轉向架前後兩輪對之間的側梁下部,非作用時磁鐵懸掛在距離軌面適當高度,當制軔時磁鐵通過壓縮空氣液壓控制裝置放下至軌面,並接通磁鐵使其以一定的吸力吸附在鋼軌上,使磁鐵底部的磨耗板與鋼軌摩擦而產生制軔作用[8]:111
    • 渦電流制軔電磁感應進行制軔。渦電流剎車的主要優點是無機械磨損、制軔力在很大速度範圍內保持穩定,因此適用於重型汽車、高速列車、起重機械等場合[8]:111
    • 風阻制軔:風阻制軔又稱為空氣動力制軔,這是一種特別為高速列車而設計的非粘著制軔方式,原理是在列車上設置可伸縮的制軔翼板,正常運轉時翼板收進車身內部,緊急緊軔時向車身外伸出翼板,利用空氣阻力以彌補粘著制軔力不足,以達到增大減速度和縮短制軔距離的目的。

軔機類型

[编辑]
  • 空氣軔機:是以壓縮空氣作為煞車原動力,以改變壓縮空氣的壓強來操縱控制列車的煞車,由美國企業家工程師喬治·威斯汀豪斯於1872年發明。
  • 電氣軔機:電力車輛在動力運轉時,利用制軔時將主電動機作為電機,使用此阻力作為制軔[8]:109
  • 保安軔機:當總風缸播破裂,總風缸洩漏殆盡,軔機無法做動時,作為緊急緊軔用[8]:109
  • 其他韌機:引擎韌機:將引擎與車輪直接連接,將出力軸旋轉力傳至引擎,利用旋轉所產生的摩擦阻力作為制軔[35]:120。排氣韌機:將引擎汽缸排氣管阻塞,使廢氣無法排出,讓引擎活塞上方產生阻力,達到減速效果[35]:120。手韌機:藉由旋轉韌機把手,使閘瓦制動車輪,一般用於車輛停留使用[8]:114。踏韌機:利用人體重量施於煞車桿,使閘瓦制動車輪,一般用於車輛停留使用[8]:114。停留韌機:主要作為車輛停留使用之韌機[35]:114

輔助排障器

[编辑]

為了保護車輪,避開石頭、木材等軌道上的障礙物,安裝於列車車頭轉向架框前端,一般皆會裝設輔助排障器[25]:27

牽引裝置

[编辑]

牽引裝置為支撐車體,將轉向架與車體連接[5],使轉向架在過彎時可以平穩的通過,使車輛減少跳動[8]:81,一般裝於轉向架框的主樑上[39]

相關條目

[编辑]

註釋

[编辑]
  1. ^ 雖然車輛長度較短,但又可比兩軸車長,車輛長度介於2軸車與普通車輛之間。

參考文獻

[编辑]
  1. ^ 1.0 1.1 1.2 1.3 1.4 TD出版社編輯群. 黃正綱 , 编. 終極鐵道百科 史上最完整的鐵路與火車大圖鑑. 新北市: 大石頭國際文化. 2021-07-15: 308–311. ISBN 978-986-99809-7-5 (中文). 
  2. ^ 2.0 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 彭聖橋; 王宜達; 江耀宗. 轉向架系統之乘坐舒適度研究. 臺鐵資料季刊 (交通部臺灣鐵路管理局). 2009, (338): 29–53. ISSN 1011-6850. (原始内容存档于2021-07-10) (中文). 
  3. ^ 3.0 3.1 3.2 3.3 林仁生. 軌道電機系統導論. 高雄市: 雅立欣科技. 2020-08: 56–67. ISBN 978-986-98647-2-5 (中文). 
  4. ^ 4.0 4.1 4.2 張志榮. 都市捷運:發展與應用. 臺北市: 胡氏圖書. 1994-11-01: 96. ISBN 978-957-575-035-0 (中文). 
  5. ^ 5.0 5.1 5.2 5.3 5.4 5.5 5.6 5.7 洪致文. 台鐵全車輛:客車轉向架圖鑑. 台北市: 洪致文. 2019. ISBN 978-957-43649-3-0 (中文). 
  6. ^ 6.0 6.1 6.2 6.3 6.4 6.5 臺北市政府捷運工程局. 高運量捷運電聯車實務. 臺北市: 臺北市政府捷運工程局. 2006-02: 19–32. ISBN 986-00-3771-X (中文). 
  7. ^ 7.0 7.1 7.2 7.3 7.4 谷藤克也. 史上最強カラ-図解 プロが教る電車の運転としくみがわかる本. 東京都: ナッメ社. 2011-02-10: 134–143. ISBN 978-4-8163-4788-7 (日语). 
  8. ^ 8.00 8.01 8.02 8.03 8.04 8.05 8.06 8.07 8.08 8.09 8.10 8.11 8.12 8.13 8.14 8.15 8.16 8.17 8.18 8.19 8.20 8.21 8.22 8.23 8.24 8.25 8.26 8.27 8.28 邱家財. 軌道車輛概要. 桃園市: 邱家財. 2020-06: 70–122. ISBN 978-957-43-7789-3 (中文). 
  9. ^ 9.0 9.1 鄧志忠. [達人開講]鐵道迷的第一本書:100個鐵道愛好者必懂的常識與非常知識. 台北縣: 遠足文化. 2014-06: 132–133. ISBN 978-986-5787-35-6 (中文). 
  10. ^ 10.0 10.1 10.2 10.3 商躍進. 薛海 , 编. 动车组车辆设计技术. 四川省: 西南交通大學出版社. 2021-04-01: 148. ISBN 978-7-5643-7689-5 (中文(简体)). 
  11. ^ 11.0 11.1 11.2 11.3 11.4 11.5 川邊謙一. 劉冠宏 , 编. 鐵道的科學:默默支持每日運行的技術. 台中市: 晨星出版. 2016-06-15: 62–63. ISBN 978-986-177-857-0 (中文). 
  12. ^ 12.00 12.01 12.02 12.03 12.04 12.05 12.06 12.07 12.08 12.09 谷藤克也. 史上最強カラ-図解 プロが教る電車のメカニズム. 東京都: ナッメ社. 2016-04-10: 134–157. ISBN 978-4-8163-4990-4 (日语). 
  13. ^ 13.0 13.1 13.2 13.3 13.4 王總守. 電聯車工程. 台北市: 王總守. 2003-02-28 (中文). 
  14. ^ 14.0 14.1 14.2 14.3 14.4 井上孝司. 車両研究で広がる鉄の世界. 東京都: 秀和システム. 2016-04-10. ISBN 978-4-8163-4990-4 (日语). 
  15. ^ 李開熙; 邱東明. ME01 標電聯車工程─轉向架疲勞負荷測試 (报告). 交通部高速鐵路工程局: 1–27. 2010-11-02 [2021-09-16]. (原始内容存档于2021-09-16) (中文). 
  16. ^ 日本機械学会. 鉄道車両のダイナミクス ―最新の台車テクノロジー. 東京都: 電気車研究会. 1996-12-25. ISBN 4-88548-074-4 (日语). 
  17. ^ 17.0 17.1 17.2 弗朗科德.拉羅什福柯塔內爾. 世界鐵道歷史200年:從蒸氣火車到高速鐵路. 新北市: 遠足文化. 2014-12-31: 1–328. ISBN 978-986-57876-9-1 (中文). 
  18. ^ 18.0 18.1 張蓴著. 鐵路運輸學理論與實務. 臺北市: 臺灣商務. 1991-09-15: 61-500. ISBN 978-957-05037-0-8 (中文). 
  19. ^ 19.0 19.1 19.2 19.3 林文雄. 軌道配置之原理與實務. 臺北市: 臺灣鐵路管理局. 2011-11-01: 1-208. ISBN 978-986-029-374-6 (中文). 
  20. ^ 20.0 20.1 20.2 宮本昌幸. 日本鐵道科學完全探索:徹底圖解蒸氣火車到新幹線車輛的結構與設計!. 新北市: 瑞昇文化. 2013-10-14. ISBN 978-986-5957-858 (中文). 
  21. ^ 21.0 21.1 21.2 21.3 21.4 宮田道一; 守谷之男; 狄原俊夫; 小野田 滋. 林詠純 , 编. 徹底圖解 鐵道的奧秘. 新北市: 楓樹林出版. 2014-05: 62–63. ISBN 978-986-6023-97-2 (中文). 
  22. ^ 22.0 22.1 川村哲也. 2021年8月に営業運転を開始する半蔵門線用新形車両 東京地下鉄18000系. 鉄道フアン. 2021-09-01, 61 (725): 48–55 (日语). 
  23. ^ 23.0 23.1 23.2 23.3 23.4 23.5 23.6 日本国有鉄道編. 鉄道事典(下). 東京都: 日本国有鉄道発行. 1958-03-31. (原始内容存档于2021-07-12) (日语). 
  24. ^ 24.0 24.1 黃柏文. 普悠瑪,出發! 協式列車大蒐秘 普悠瑪VS太魯閣. 鐵道情報 (中華民國鐵道文化協會). 2013, 25 (211): 46–54. ISSN 2073-2163 (中文). 
  25. ^ 25.0 25.1 張良誠; 藍成邦. 102年「傾斜式電聯車136 輛購案」赴日本車輛製造廠監造檢驗 (报告). 交通部臺灣鐵路管理局: 22–50. 2014-02 [2021-07-10]. (原始内容存档于2021-07-10) (中文). 
  26. ^ 26.0 26.1 26.2 26.3 陳武昌; 陳俊安. 101年「傾斜式電聯車 136輛購案」赴日本車輛製造廠監造檢驗 (报告). 交通部臺灣鐵路管理局: 38–57. 2013-03-01 [2021-07-10]. (原始内容存档于2021-07-10) (中文). 
  27. ^ 朱德庫. 彈簧家族的一枝鮮花——空氣彈簧. 鐵道知識 (中國鐵道學會). 1987, (52): 40. ISSN 1000-0372 (中文). 
  28. ^ 野元浩. 電車基礎講座. 東京都: 交通新聞社. 2017-03-17. ISBN 978-4-330-28012-7 (日语). 
  29. ^ 29.0 29.1 吉雄長春. ファンの目で見た台車のはなし V. 東京都: エリエイ出版部プレス・アイゼンバーン . 1988-06. ISBN 4-87112-173-9 (日语). 
  30. ^ ČVUT.cz - Čapek, Kolář (PDF). 2017-04-17 [2010-05-12]. (原始内容 (PDF)存档于2011-07-18) (捷克语). 
  31. ^ 佐藤栄介. ALSTOMユーロデュプレックスの製造工場に学ぶ Le site Alstom de La Rochell. 鉄道ジャーナル. 2014-03-01, (569): 40–57. ISSN 0288-2337 (日语). 
  32. ^ 仙台市交通局 鉄道技術部 荒井管理事務所長 吉川正行. 仙台市地下鉄東西線の歴史を辿る (PDF). SUBWAY (日本地下鉄協会). 2020, (224): 38–42. ISSN 0289-5668. (原始内容存档 (PDF)于2021-07-20) (日语). 
  33. ^ 仙台市交通局 東西線建設本部 建設部 技術課 車両計画係長 中村 浩. 車両紹介「東西線2000系・新型車両の紹介」 (PDF). SUBWAY (日本地下鉄協会). 2015, (204): 50–54. ISSN 0289-5668. (原始内容存档 (PDF)于2021-07-13) (日语). 
  34. ^ 34.0 34.1 34.2 34.3 鐵道綜合技術研究所. 鉄道技術用語辞典. 東京都: 丸善. 2006-12. ISBN 978-4-621-07765-8 (日语). 
  35. ^ 35.00 35.01 35.02 35.03 35.04 35.05 35.06 35.07 35.08 35.09 35.10 35.11 35.12 35.13 35.14 35.15 35.16 邱家財. 鐵路運轉理論. 桃園縣: 邱家財. 2011-03. ISBN 978-957-41-8005-9 (中文). 
  36. ^ 36.0 36.1 36.2 井出萬盛. 馬達:21世紀的動力來源馬達進化論. 新北市: 瑞昇文化. 2012-03-01. ISBN 978-986-61-8590-8 (中文). 
  37. ^ 37.0 37.1 柳宇剛;顧振國. 牵引传动装置. 北京市: 中國鐵道出版社. 1985: 26-30 (中文(简体)). 
  38. ^ 38.0 38.1 高山茲之. 8000系の後継となる半蔵門線用約18年ぶりの新形式 東京地下鉄18000系. 鉄道ピクトリアル. 2021-09-01, 71 (989): 116–123 (日语). 
  39. ^ 張祐誠. 軌道車輛轉向架結構強度分析. 財團法人車輛研究測試中心. 2012 [2021-09-16]. (原始内容存档于2022-02-17) (中文). 

外部連結

[编辑]