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1 Introduction

For an undirected graph G = (V,E), we say that S ⊆ V

is a dominating set of G if every node in V \ S is adja-
cent to some node in S. If S also induces a connected
subgraph of G, then S is a connected dominating set
(CDS) of G. The problem of finding a CDS with the
fewest vertices, or minimum CDS (MCDS), in a given
graph has been of interest for a long time because of
its application in networking. If G represents a com-
munication network, a small CDS S of G can be used
to form a routing “backbone” [6]. The advantage of a
CDS-based approach is that all nodes are close to some
“backbone” node, and long distance communication is
achieved within the sparser subgraph induced by the
CDS; potentially expensive routing infrastructure is re-
quired only within the small set S.

The problem has also been explored in the special case
of ad-hoc wireless networks, where geometric graphs are
of particular interest [6,14]. In a geometric graph, nodes
correspond to points in a metric space, and two nodes
are connected if they are sufficiently close to each other.
More recently, there has been a growing interest in ad-
hoc networks whose nodes can join and leave arbitrarily,
causing the node set and the induced geometric graph
to change over time. The topic of this paper is the
problem of maintaining a small CDS in such dynamic
graphs. The CDS may require repair when a node is
inserted or deleted, so the challenge is to maintain a
CDS that is sufficiently sparse, while also minimizing
the necessary repair work.

1.1 New Results

We show that maintaining an exact MCDS is expensive.
Not only can a single insertion or deletion require Ω(n)
work (where n is the number of nodes), but the same
bound also holds in the amortized sense, and even when
restricted to sequences of highly correlated insertions
and deletions emulating a continuous, bounded degree
algebraic motion.
Our main contribution is a pair of algorithms that

efficiently maintain a constant-approximate MCDS for
geometric graphs in R

d with rectilinear (ℓ1 and ℓ∞) met-
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rics. In particular, our algorithms maintain an O(1)-

approximate MCDS with Õ(1) work1 per operation (in-
sertion or deletion).
For geometric graphs in R

1 (omitted from this ab-
stract), the CDS that we maintain is an alternating
independent set. In R

d, the CDS that we maintain
comprises a maximal independent set (MIS) of nodes –
which is already a dominating set – along with a small
set of paths chosen to make the MIS connected while
retaining the constant approximation factor. While the
idea of augmenting a MIS with a small set of connec-
tors to form a CDS is not new [2], our paper is the first
to address the challenge of efficiently selecting such a
sparse structure from an arbitrarily complex underlying
dynamic network. Our construction ensures that graph
topology changes affect the CDS only locally, while a
small set of range queries and bichromatic closest pair
queries is sufficient to repair the CDS.

1.2 Related Work

The MCDS problem is very well-studied, long known
to be NP-complete [9] for general graphs, but also
for unit-disk graphs [5], the context that we are con-
sidering. While difficult to approximate in general
graphs [4, 10], several polynomial-time approximation
schemes for MCDS in static unit-disk graphs have been
developed [4, 12,15].
However, there has been relatively little work on

maintaining a CDS under node insertions and dele-
tions. Gao et al. [8] and Hershberger [11] presented
algorithms for the related minimum dominating set
(MDS) problem, and in the weaker kinetic setting,
where nodes follow continuous (typically bounded de-
gree algebraic) trajectories instead of entering and leav-
ing at arbitrary locations, and the quantity of inter-
est is the total computational cost for the whole mo-
tion. Gao et al. [8] give a randomized algorithm for
maintaining an O(1)-approximation to the MDS, requir-

ing Õ(n2) cumulative work. Hershberger [11] offers a
constant-approximate deterministic algorithm for main-
taining a covering of nodes by axis-aligned unit boxes.
Observe that we achieve the same (up to constant fac-

1For any function g, the notation Õ(g(n)) is equivalent to
O(g(n) logc n), for a constant c. Furthermore, the constant hid-
den in the big-Oh may depend on d.
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tors) approximation2 and cumulative work3 bounds as
these solutions, but with the additional challenge that
our structure be connected (a key requirement for net-
working applications), and that the time bound holds
per-operation, instead of only in the amortized sense.
Unlike Gao et al. [8], our solution is deterministic, but
as in both previous MDS solutions, we work with rec-
tilinear norms, so our solution comprises a covering of
the nodes by a connected set of axis-aligned unit boxes,
each centered at a node.
Alzoubi et al. [2] maintain an O(1)-approximate

MCDS solution with mobile nodes, but a change in
topology can require Ω(∆) work in repairs (∆ is the
maximum node degree), aggregating to potentially
Ω(n3) total work over the course of the motion.

2 Model

We assume a graph G = (V,E) (with |V | = n), embed-
ded in R

d for d fixed. Graph topology is determined by
the unit-ball graph model with respect to the ℓ∞ norm
in the plane4, i.e., nodes are joined by an edge if and
only if their ℓ∞-distance is at most 1. We use d(·, ·) to
denote the ℓ∞-distance, and dG(·, ·) to denote the hop-
distance in G. We assume that G remains connected as
nodes are inserted and deleted.
For a hyperplane h = {x ∈ R

d | (x − a)b = 0}
we define h+ = {x ∈ R

d | b(x − a) ≥ 0} and
h− = {x ∈ R

d | b(x − a) < 0}. A set of d hy-
perplanes H = {h1, h2, . . . , hd} (whose normals B =
{b1, b2, . . . , bd} are a basis of Rd) defines a (polyhedral)

cone
⋂d

i=1 h
+
i . We use H to denote both the set of hy-

perplanes and the cone that they define. The apex of H
is
⋂d

i=1 hi. For a cone H with apex p, the angle of H is
maxx,y∈H ∠(x− p, y− p). Clearly, this depends only on
normals, so we also call it the angle of B. We say that H
(or B) is δ-narrow, if its angle is at most δ. We say that
H separates a pair of points (x, y) if p− x, y − p ∈ H.
We will require the following technical fact.

Lemma 1 For any δ > 0, one can compute in
O((d−1

δ
)d−1) time a collection B = B(δ) of O((d−1

δ
)d−1)

δ-narrow bases of R
d such that any vector is “well

inside” the cone defined by some B ∈ B, i.e.,
∀x ∈ R

d, ∃B ∈ B, ∀y ∈ R
d, ∠(x, y) ≤

1
2 arctan

(
1

d−1 tan
δ
2

)
⇒ b1y, b2y, . . . , bdy ≥ 0.

In this paper, we think of a basis as a set of normals
to hyperplanes which define the boundary of a cone.
Lemma 1 ensures that we can precompute a collection of
bases B, such that the space around any point p can be
sufficiently covered by a collection of narrow cones, each

2We prove the approximation bounds for our CDS by showing
it is within a constant factor of the MDS.

3Over the course of a bounded degree algebraic motion there
are O(n2) “events” that trigger updates to the MDS.

4For simplicity, the results in this paper are described in terms
of the ℓ∞ norm, but also hold for the ℓ1 norm.

having apex at p, and each defined by one of the bases
B ∈ B. Given a metric space (X, d), we call Y ⊆ X an
r-packing (in (X, d)) if for any y1, y2 ∈ Y , d(y1, y2) ≥ r,
and an r-cover (in (X, d)) if for any x ∈ X, d(x, Y ) ≤
r. The r-ball (in (X, d)) with center c and radius r is
denoted by B(X,d)(c, r), where the subscript is omitted
if clear from context.

3 Data Structures

To repair a CDS after a graph change, our algorithms
use a number of range queries and bichromatic closest
pair queries. In this section we precisely define queries
of interest and argue that data structures that support
those queries can be maintained in Õ(1) time under
node insertions/deletions. In subsequent sections we as-
sume correctness of the data structures and show how
they are used to maintain correctness of the CDS output
after graph changes.
We reduce the problem of maintaining an O(1)-

approximate MCDS to two fundamental problems of
dynamic computational geometry. Let P be a set of n
points in R

d, where d is fixed (independent of n). An or-
thogonal range searching (ORS) problem asks to report
all points in P contained in a given axis-aligned box,
including its boundary. The bichromatic closest pair
(BCP) problem asks for a closest red-blue pair, given
a BCP instance (i.e., a labeling) that designates each
point as either red or blue. A BCP instance separates
point pair (x, y) if x is red and y is blue in that instance.
We say that a BCP instance is separated by a cone C

if any red-blue pair in the instance is separated by the
cone C. We say that a BCP instance is δ-narrow if it is
separated by a δ-narrow cone.
The d.s. of Willard and Lueker [13] solves the ORS

problem in O(k + logd n) time, where k is the number
of reported points. It can be updated to reflect a sin-
gle point insertion/deletion in O(logd n) time, and uses
O(n logd−1 n) space. Given a basis B = {b1, b2, . . . , bd}
of Rd, the d.s. of Agarwal et al. [1] maintains set I(B) of
O(n logd−1 n) BCP instances on subsets of P . Each in-
stance is separated by some cone with normals B. The
d.s. uses O(n log2d−1 n) space, outputs the solution to
an arbitrary instance in O(1) time, and can be updated
in time O(log2d n) per insertion/deletion [7]. The fol-
lowing is its key property.

Lemma 2 Given a cone C with normals B, one can
compute in O(logd n) time a set I(B,C) ⊆ I(B) of
O(logd n) instances, such that each pair separated by C

is separated by some instance in I(B,C).

The set of all nodes is given by V , while T (defined
in Section 4) is a subset of V . We maintain two ORS
d.s.’s, one for V and one for T . In addition, we main-
tain one BCP d.s. for each basis B ∈ B(δ) (defined in
Lemma 1), where δ is a constant that depends on d only.
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By Lemma 1 and property (i), all BCP instances that
we maintain are δ-narrow.

4 Maintaining a CDS in R
d

We first observe that maintaining the optimal MCDS
cannot be done significantly faster than recomputing it
from scratch after each graph update. In fact, this holds
even for very simple dynamics — continuous motion of
vertices (the so-called kinetic setting [3]) — and even
when the speed of each vertex does not change with
time.

Theorem 3 For any sufficiently large n, one can as-
sign initial positions and constant speeds to n nodes so
that the MCDS undergoes Ω(n3) total state changes dur-
ing the motion.

In the rest of the section we describe an O(1)-

approximate MCDS with Õ(1) update time.

4.1 Defining the CDS

Let V be the input node set, and let G be its unit-ball
graph. Consider a maximal 1-packing on G, which we
denote T . For each point v ∈ T , consider the set Sv

of v’s connectors, defined as follows. Let Uv be the set
of all nodes u ∈ T with dG(v, u) ≤ 3, plus some nodes
u ∈ T ∩ B(v, 3) with dG(v, u) ≤ 5. Pick a v–u path
of length ≤ 5 for each u ∈ Uv. The connectors of v

comprise all points on these chosen paths, including the
endpoints.

Definition 1 S =
⋃

v∈T Sv. Clearly, S ⊃ T .

Lemma 4 If G is connected, S is a CDS for G.

Lemma 5 If G is connected, S is an O(1)-approximate
MCDS in G.

4.2 Dynamic Maintenance

In this section, assume that a CDS S as in Definition 1
already exists; we show how to repair the maximal in-
dependent set T and connectors {Sv}v∈T according to
Definition 1 after each insertion/deletion event. For
each such event, we execute the following three-step
procedure. Let v denote the node that was inserted
or deleted.
(A) Update V . Update the ORS d.s. on V .
(B) Update T . If node v is inserted, it may not be

dominated by T . Check this by querying ORS d.s. on
T with B(v, 1). If query returns empty, add v to T and
update ORS d.s. on T .
If node v is deleted and v ∈ T , remove v from T and

update ORS d.s. on T . The new T may no longer be
maximal. We must check if all nodes in B(v, 1) are still

adjacent to a node in T . Observe that R = T ∩B(v, 2)
comprises the only current nodes of T that may be ad-
jacent to a node in B(v, 1). Compute R by querying
ORS d.s. on T with B(v, 2). By packing, |R| = O(1).
Decompose B(v, 1)\

⋃
r∈R B(r, 1) into O(1) axis-aligned

boxes. Query the ORS d.s. on V with each box and re-
turn a node w contained in any of them, if it exists. If
not, T must be maximal, and we are done. Otherwise,
add w to T (with default Sw = ∅) and update the ORS
d.s. on T . Repeat, starting by recomputing R. There
are O(1) repetitions, since by packing there can only be
O(1) independent nodes in B(v, 1).

(C) Update connectors. Now, we need to ensure
that the connectors are built according to Definition 1.
If v was removed from T in step (B), remove Sv from S.
Any node w added to T in step (B) (including possibly
v itself) does not yet have connectors (i.e., Sw = ∅), so
they must be built; note that any such w is located in
the ball B(v, 1).
Moreover, observe that for any other node z ∈ T , the

insertion or deletion of v can only affect the correctness
of Sz if z ∈ B(v, 4). Hence, to repair all connectors
according to Definition 1, it suffices to recompute Sw for
all w ∈ T∩B(v, 4), using the subroutine in Section 4.2.2.

4.2.1 Analysis

Step (A) requires one update of the ORS d.s. on V . Step
(B) requires O(1) updates of T and its ORS d.s., O(1)
range queries on T with constant-sized result R, O(1)
decompositions into boxes each taking O(1) time, and
O(1) range queries on V . Step (C) requires one range
query on T and O(1) invocations of the subroutine. By
the discussion in Section 3, and assuming O(log2d n)
runtime for the subroutine (Lemma 9 in Section 4.2.2),
the entire procedure takes O(log2d n) time per opera-
tion. We conclude the following.

Theorem 6 The O(1)-approximate MCDS S can be
maintained in O(log2d n) time per operation.

4.2.2 Connecting Path Subroutine

In this section we describe the key technical result: a
subroutine that efficiently computes connectors Sv for
a given node v ∈ T . We begin by computing the set of
“candidate nodes” U = T ∩ B(v, 3). Obviously, |U | =
O(1), and U includes all nodes of T within 3 hops of
v. The subroutine tries to connect each u ∈ U to v by
a path of length ≤ 5 and, if successful, adds the nodes
on the path to Sv. To prove correctness of output Sv,
it suffices to prove that the procedure succeeds when
dG(u, v) ≤ 3 (Lemma 8).
The strategy is to identify “waypoints”: intermedi-

ate nodes on the connecting paths. We know that
the waypoints are contained in B(v, 3), so we pick a
dense (but still constant-sized) sampling Q of this ball
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around v, comprising points of the space (not necessar-
ily nodes in V ). Suppose dG(u, v) ≤ 3. Define u′, v′

to be the neighbors of u and v, respectively, with min-
imum d(u′, v′). Notice that u′ and v′ may be the same
node (if dG(u, v) = 2). Nodes u′ and v′ are precisely
the type of waypoints we seek (because {u, u′, v′, v} is a
valid connecting path). Our subroutine, however, may
find two nodes which are not u′ and v′, but still suitable
as waypoints: we still manage to connect u and v via
these nodes.
Lemma 7 suggests that a good choice for the way-

points is the solution to any BCP instance in which u′

is red, v′ is blue, and a narrow cone separates red from
blue points. To find such an instance, first we must
find a narrow cone C which separates u′ and v′. Such
a cone is found by testing the cones generated by each
base B ∈ B, with apex at sample points q ∈ Q. We
prove that the construction of B (in Lemma 1) and the
density of Q is sufficient to identify the required cone
C. Then, using C, we solve O(logd n) BCP instances
drawn from I(B), each of which can be solved in time
O(1) (since they are in I(B)), and one of which we know
(by Lemma 2) outputs a good solution in the sense of
Lemma 7. From the solution of this good instance, we
get a suitable pair of waypoints.
If d(u′, v′) ≤ 3

4 , i.e., the middle hop is short, the
subroutine finds a 3-hop path {u, z, w, v} joining u and
v. If, on the other hand, d(u′, v′) > 3

4 , i.e., the mid-
dle hop is long, the subroutine finds a 5-hop path
{u, z, x, y, w, v} joining u and v.

Formally, the subroutine for a fixed u ∈ U pro-
ceeds as follows: let δ = 1

2 arctan
1

d+
√
d−1

, and ε =

3
8 sin

(
1
2 arctan

(
1

d−1 tan
δ
2

))
. Compute an ε-sample Q

of B(v, 3). Assume that the set of bases B = B(δ) (as
in Lemma 1) has been computed in preprocessing, and
that the set of BCP instances I(B) has been maintained
for each B ∈ B, as described in Section 3. For each
u ∈ U and q ∈ Q, try to find w ∈ V ∩B(q, 1

2 ) ∩B(u, 1)
and z ∈ V ∩ B(q, 1

2 ) ∩ B(v, 1). If for any of these, w
and z are found, we have found a 3-hop connecting
path {u,w, z, v}; add it to Sv. Otherwise, look for a
5-hop path to connect u and v: for each B ∈ B and
q ∈ Q, compute I(B,C) (as in Lemma 2), where C

is the cone with normals B and apex q. For each in-
stance in I(B,C), find its solution (x, y), and try to find
w ∈ V ∩B(x, 1)∩B(u, 1) and z ∈ V ∩B(y, 1)∩B(v, 1).
If for any of these, w and z are found and d(x, y) ≤ 1,
we have found a 5-hop connecting path {u,w, x, y, z, v};
add it to Sv.

Lemma 7 If a δ-narrow BCP instance contains a red-
blue pair (u, v) with d(u, v) ≤ 1, then its solution (x, y)
satisfies d(u, x), d(y, v) ≤ d(u, v).

Lemma 8 If dG(u, v) ≤ 3, the nodes added to Sv in-
duce a u-v path of length ≤ 5.

Lemma 9 The subroutine runs in O(log2d n) time.

5 Conclusion

Open problems include establishing similar bounds for
unit-ball graphs in arbitrary ℓp norms, improving the
approximation ratio to arbitrarily small constants, and
designing algorithms for distributed models of compu-
tation.
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