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Planning in Information Space for a Quadrotor Helicopter in a
GPS-denied Environment

Ruijie He, Sam Prentice and Nicholas Roy

Abstract— This paper describes a motion planning algorithm
for a quadrotor helicopter flying autonomously without GPS.
Without accurate global positioning, the vehicle’s ability to
localize itself varies across the environment, since different
environmental features provide different degrees of localization
If the vehicle plans a path without regard to how well it can
localize itself along that path, it runs the risk of becoming lost.

We use the Belief Roadmap (BRM) algorithm [1], an
information-space extension of the Probabilistic Roadmap al-
gorithm, to plan vehicle trajectories that incorporate sensing.
We show that the original BRM can be extended to use the
Unscented Kalman Filter (UKF), and describe a sampling
algorithm that minimizes the number of samples required to
find a good path. Finally, we demonstrate the BRM path-
planning algorithm on the helicopter, navigating in an indoor
environment with a laser range-finder.

Fig. 1. Our quadrotor helicopter.
into its decision making, then the vehicle can plan trajeeto
I. INTRODUCTION that are robust to sensor limitations.

Unmanned air vehicles (UAVS) rely heavily on accurate " this paper, we describe a planning algorithm for the

knowledge of their position for decision-making and conguadrotor helicopter, shown in Figure 1, and built by As-

trol. As a result, considerable investment has been ma&gnding Technologies [4]. We Ol.Jtﬁt this.\{ehicle with a laser
towards improving the availability of global positioning range-finder capable of estimating position, yaw angle and

infrastructure, including utilizing satellite-based GB@tem altitude information from environmental features withidra
and developing algorithms to leverage existing RF signaf@nge in a240° field of view. The limited range and field
such as WiFi. However, most indoor environments and marf} V'€W of the sensor lead to position estimates that vary in
parts of the urban canyon remain without access to exterridfcuracy and confidence over the environment.

positioning systems. Autonomous UAVs thus currently have, OUr algorithm is based on the Belief Roadmap (BRM)

limited ability to fly through these areas. algorithm [1], which is a generalization of the Probabitist
Vehicle localization using sonar ranging [2] or laser rangR0@dmap (PRM) algorithm [5]. The BRM performs searches
the information space of the vehicle efficiently by using

ing [3] has been used extremely successfully in a number . ;
applications and is now essentially a commodity technqlogt e .sympletlc _fqrm of the Extended Kalman Filter (EKF)
find the minimum expected cost path for the vehicle.

especially aboard ground robots. Unfortunately, the UA K ibuti . di h in thi

community has not been able to leverage the ground vehiclle Make two COQU' l;]tlons in extenl_ mght e BRM in t 'f]

successes for two reasons. First, some of the most succes&@Per- First, we show how to generalize the BRM to use the
Jnscented Kalman Filter (UKF) [6] for position tracking,

demonstrations of long-term robot autonomy have used pl - . . . i,
g y P éowdlng better approximation of the non-linearities of\WUJ

nar laser ranging based on the ubiquitous SICK laser ranﬁ] ! q | . S d h A f
finder, which normally provides localization informatioorf TMotion and laser sensing. Second, we use the notion of a
Sensor Uncertainty Field” [7] and show how a model of

three dimensions without additional specialized hardware X b d fici
While this is sufficient for ground vehicle localization, &e ~SENSOF uncertainty can be used to generate a more efficient

ization in six dimensions during flight requires considéyab '€Presentation of the information space. Finally, we cotel

more data. Second, UAVs are severely constrained by weigi{e Paper with a demonstration of the quadrotor helicopter
and, consequently, power limitations. A vehicle small agtou using the BRM algorithm to navigate autonomously indoors.

to fly indoor_s or _through populated urban areas saf_ely can II. TRAJECTORY PLANNING
carry very little in terms of sensor payload, leading to ) ) )
reduced range and field of view. We first formulate the problem of motion planning for

bility for localization; they simply cannot carry sensohst We have full control authority, allowing us to ignore velkicl
enable themselves to localieverywherelf the vehicle can dynamics and treat the problem as a kinematic motion
use its sensor model to incorporate predicted measuremeR8nning problemC denotes the configuration space [8], the

space of all vehicle pose8y,.. is the set of all collision-
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find a sequence of actions to move the vehicle from sigte where u; is a control action, andv; and ¢; are random,
to a goal state, without collisions. Our UAV has 6 degrees unobservable noise variables. The EKF computes the state
of freedom ¢, vy, z, roll, pitch, yaw), soC = RS, which is distribution at timet in two steps: a process step based
of moderately high dimension. only on the control input:; leading to an estimate(s;) =

The Probabilistic Roadmap (PRM) is a common algoN (7, ¥;), and a measurement step to complete the estimate
rithm [5] for planning in high-dimensional problems, inof p(s;). The process step follows as
which a discrete graph is used to approximate the connec- — T T
tivity of Cy... The PRM builds the graph by sampling a #¢ = 9(pe—1, ), Y =GB Gy + ViWLVE, (4)
set of states randomly fro (adding the start state, and

goal states, to the .Saf“p'e set), and then' evaluating' €aCHacobian ofy with respect tav. For convenience, we denote
state for membership i..; the assumption is that it is R, £ V;W,V,T. Similarly, the measurement step follows as:
much cheaper to evaluate randomly sampled poses in higher

dimensions than it is to build an explicit representation of _ — o g _ Y — ([ - K.H)S,. (5
Cfree. Samples that lie withiy,.. constitute the nodes of pe = P Ko(Hipl, = ), o=l )% )
the PRM graph and edges are placed between nodes wheiitere 7, is the Jacobian of. with respect tos and K is
a straight line path between nodes also lies entirely withiknown as the Kalman gain, given by

Ctree. Given this graph, a feasible, collision-free path can be

hereG; is the Jacobian of with respect tos andV; is the

found using a standard graph search algorithm from the startyg, = %, 1" (HtithT + Qt)‘l . (6)
node to the goal node. The path can be executed by using a ) )
simple controller to follow each edge to the goal. An alternate form of the EKF represents the covariance by its

However, the PRM and its variants are not yet well-suiteéhverse, the information matrix [9]. The information matri
to the problem of a GPS-denied UAV, in that executing &pdates can be written as
plan requires a controller that follows the straight-lirges e -1
joining graph points. If the UAV executing the plan does =%, =(G:2G] + Ry) @)
not have a good estimate of its state, it may not be able to Q=Q,+H'Q  H,. (8)
determine when it has arrived at a graph node and should . A orT -1
start to follow a new edge. Even more seriously, vehiclEOr convenience, we denot®/; = H; ;" H, such that
stability typically depends on accurate state estimatibn % = (& + M;. The distribution p(s;|ui.;,214) can be
higher order terms (such as velocity). Without enviromentd€Presented by the information vectgrand the information

. 71 '] .
feedback, IMU estimation can quickly drift causing catasfatrix {2; = 33, and may be more efficient to compute in
trophic control failures. domains where the information matrix is sparse.

I1l. VEHICLE POSITION ESTIMATION IV. BELIEF SPACE PLANNING
If the UAV does not have access to perfect state knowl- Recall from section Il that the PRM planning algorithm

edge, such as through GPS, it can still localize itself bygnstructs a graph in the state spabe.. of the vehicle.
using sensors to measure environmental features and g ever, the vehicle does not know its actual state but only

registering those measurements against a pre-existing mrgs access to the EKF state estiniate (1, ¥); by planning

Bayesian filtering is one of the most robust methods of locajy, ihe pelief space(or information space), the vehicle can

e . ) distinguish between state estimates where the norm of the
is inferred over the (unknown) vehicle statg at time ¢ oy arance is small (i.e., the vehicle has high confidence
following a series of noisy actions;;, and measurements j, jts mean state estimate) and state estimates where the

z1:¢- With some standard assumptions about the actions agfym of the covariance is large (i.e., the mean state estimat
observations, the posterior distribution (or belief) cad big uncertain). Ideally, beliefs with high uncertainty ae t

expressed as . be avoided, and if encountered, conservative sensingractio
p(se|uree, z1:¢) :Zp(zt|3t)/p(5t|ut7Stfl)p(stfl)dstfla (1) Would be a reasonable response.

s Conventional motion planners generally search for a
whereZ is a normalization factor. Equation (1), referred to asollision-free path that minimizes the distance to the goal
the Bayes'’ filter, provides an efficient recursion for updgti location. In belief space, every belief typically has some
the state distribution. probability that the robot is at the goal state. A more

The Kalman filter is a form of Bayes filtering that assumesppropriate objective function is therefore to maximize th
that all probability distributions are Gaussian, and thet t probability of the goal state.
transition and observation Gaussians are linearly paemmet A naive approach to planning in belief space would there-
ized by the state and control. The Extended Kalman filteiore involve sampling beliefs directly fronu, ), adding
(EKF) allows the same inference algorithm to operate witkthe initial belief by to construct the graph nodes, placing
non-linear transition and observation functions by lineag edges between pairs of beligfs, v/) for which a controller
these functions around the current mean estimate. Moexists that can take the vehicle from beliéfto 47, and then
formally, the next state; and observatiorr; are given by carrying out graph search as before. Unfortunately, it has
the following functions, been shown [1] that the likelihood is zero of sampling any
. beliefs that are actually reachable from the initial beligf
s¢ = g(s¢—1, ug, we), wy ~ N0, W), (2) However, the EKF representation of the belief space
and  z = h(si,qt), a~N(@O0,Q1), () carries an extremely useful property. Each belgfis a

ization [2], in which a probability distributiop(s:|u1.¢, 21.¢)



Step 1 Sampled nodes and edges | Algorithm 1 The Belief Roadmap (BRM) algorithm.

Require: Start belief(uo, X0), goal figoa: and mapC
1: Sample pose$pu;} from Csrc. to build belief graph node set
{TLZ} such thatni = {,u = U4, =0
2: Create edge sefe;;} between nodes$n;,n;) if the straight-
line path betweerin;[u], n;[u]) is collision-free
3: Build one-step transfer function;;} V e;; € {ei;}
4: Augment node structure with best pgth=0, such thatn;=

{1, 2, p}
5: Create search queue with initial position and covariafce-
no=1{to, Xo, 0}
6: while @ is not emptydo
. : : , 7. Popn —Q
Fig. 2. The Belief Roadmap with one-step transfer functicaksuated s: if 7= n,.y then
using the UKF. In step 1, the graph of mean poses is construeted o: Contirﬁue
mutually visible nodes are connected with edges. In step € ptisterior 10', end if

covariance is calculated through a series of process andunesasnt L I h th d , d
updates. In step 3, the one-step covariance transfer &micalculated 11 for all n” such thate,, ,,» and not n’ > n[p] do

from the individual multi-step updates. 12: C[IO[rEn]ri])Ute one-step update’ = (., - ¥, where U =
I

combination ofy and X. Under some mild assumptions of 13: pIUPEEE T T

unbiased motion and sensor models, the reachability ofany14: if tr(7) < tr(n[3]) then

is a function of the vehicle kinematics and the environn1enta}15f no {n'lu], X', nlp] U {n"}}

structure as in the PRM. For somethat is reachable along 13; end ‘ffs n—Q

a path from ug, the corresponding reachable covarianc@g. end for
can be predicted by propagating the initial covariange 19: end while
along the path using equations (4) and (5) and the motigt®: returnngoa:[p]
and sensing models. Therefore, to construct a graph of the

reachable belief space, the planner first samples a set of mea

poses{y;} from Cy,.. using the standard pose sampling of = (G,B-)(G;TC_1) " + R, (11)
the PRM algorithm, and places an edge between pairs ) L _lt
(wi, ;) if the straight line between poses is collision-free. = (Etft_ ) (12)

Forward search is used to search for a path through the graph, -
but each step of the search computes the posterior covarianehere D, = G[T(Jt_l andE; = GyBy_1 + Rt(G[TOt_l)
at each node instead of the standard cost-to-go. and equation (12) follows from a matrix inversion lemma.

. ] ] The covariance update in the information form can similarly
A. Belief Updating as a One-Step Operation be factored as

The most computationally demanding aspect of the graph- —1 o1 1
search algorithm described above is in propagating thialinit Se=0 +H Q Hp) (13)
covarianceX, to each graph node. Covariance propagation — (ﬁtE;I + M)t (14)
requires multiple EKF updates along each edgg and
while this operation is a constant multiplier of the asyntigto Using the same matrix inversion lemma,
search complexity, it can still dominate the overall search o -
time. Furthermore, these EKF updates are not a one-time =FEy(D; + ME,;)™* (15)
cost; the search process will find multiple paths to node =%, = BCy (16)
i. Each of these paths will lead to a different posterior o
covariance at node, and each such covariance must themwhere B, = E; = G Bi_1 + Ry(G;"C,—1) and C; =
be propagated outwards frofalong edge:;; to reach node (D, + M;E;) = G[T(Jt_l + MG B;_1 + Rt(G;TCt_l).
4, incurring the computational cost of propagating along thén both casespB, and C; are linear functions o,_; and
edge (a series of EKF updates) for each covariance. Tlig_;. Collecting terms, we can write the complete update
BRM algorithm avoids this complexity by using an alternatestep linearly, such that
representation of the covariance that allows multiple EKF B 0 I 0 G-T B
updates to be compiled into single linear transfer function ¥, = {C] = [I M} {G RG—T} {C} , @7
By pre-computing the transfer function for each edge, the t t t t—1

search complexity for belief space planning becomes conyherey, is the stacked block matrikZ ], consisting of the

parable to configuration space planning. , ovariance factors angl = [V ¥ ] is the one-step transfer
It has been shown previously [1] that the covariance qfncion for the covariance factors fet;, H;, R, and M,.
a Kalman filter-based state estimator can be factored asyiice that all of the elements ig are directly control-

¥ = BC™, where the combined process and measuremep|o except fotM;, which is related to the measurement
update for an EKF gived3; and C; as linear functions of ¢ i hot 4 function of the measurement itsalf, represents
By andCi-1. the total amount of information that the measurement pro-
Given: ¥,_; = B,_10;", ) vides at timet and depends on the measurement noise model
_ T @ (which is usually constant) and the measurement Jacobian
= Xt =GB 105Gy + Ry (10) ' H,. The accuracy of the EKF approximation assumes that



the measurement function is locally linear, which is exactlwhen computing the covariance, such t@ﬁzo wl = 1,
the approximation that the Jacobian is locally constantaAs Zfﬁo w!, = 1. The weights and tha parameters model the
result, whenever the EKF assumptions hold, then we can agidth of the covariance; the mechanism for choosing these
sume that)/; is constant and knowa priori. This allows us parameters can be found in [6]. The samples are propagated
to determine(; for any point along a trajectory; furthermore, according to the non-linear process model such that
the linearity of the update allows us to combine multigje _
matrices into a single, one-step update for the covariance X, = g(X},u,0), (21)
along the entire length of a trajectory. Therefore, for each ) )
edgeeij in the BRM graph, we can pre-compute e@h generating the process mean and covariance
along the edge from the relevant Jacobians and then multiply on
the set of(;'s into a single transfer functioq;; that will T, = wanyi (22)
propagate an initial (factored) covariance along the lengt =
of the edge in a single matrix multiply. Figure 2 shows this om
process of constructing the transfer function for each edge S P (P
Table 1 describes the complete Belief Roadmap algorithm. 2t = ;wC(Xt o) (X = 7o) + . (23)
Step 2 of the algorithm contains the pre-processing phase o . _ .
where each edge is labeled with the transfer functigthat  The sigma points are used to create sigma points in the
allows each covariance to be propagated in a single step.measurement space, which are then transformed to generate
the posterior mean and covariange, 3;), such that
V. THE UNSCENTED KALMAN FILTER

The critical step of the BRM algorithm is the construction Z; = h(y;o) ;= Zw;nz (24)
of the transfer function, which depends on terRs and =0

M, the projections of the process and measurement noise 2n ‘ ‘

terms into the state spac®; and M; also represent the S, = <Z wt (2: *ﬁf)(z Mf)) +Q, (25)
information lost due to motion, and the information gained - )

due to measurements. When using the Extended Kalman 2n _ _

filter to perform state estimation, these terms are trivial t K, = (Z wi(yi —ﬁt)(z _ Mf)) S (26)
compute. However, the EKF is not always a feasible form e

of Bayesian filtering, especially when linearizing the coht e =T, + Ky (2 — 1i7) (27)
or measurement functions leads to a poor approximation. A —

particularly relevant application where EKF state estiorat By = Xy — KiK. (28)

fares poorly is localization in discrete or grid-based Mapsrye advantage to the UKF formulation is that the process

Grid map r%presentatlhons %onta}:n ahgtrr(])ng mdependenaﬁd measurement functions are not projected into the state
assumption between the grid cells, which causes measutes, .o py 5 linearization; instead, the Unscented Transform

a grid cell, however,_ the grad_ient of the measurement he UKF eliminates the need for linearization and captures
strongly correlated with the neighboring cells. As a resultyo gisyribution accurately up to the second order, rathen t
EKF localization requires high-level features such as zwall-ust the first order fidelity of the EKF

and corners to be extracted for use in both pomputing the in- Unfortunately, although the UKF provides a mechanism of
_rllcr)]\_/anon of lthe_ measufrementiandfcomé)lutlngt:]het JaCOb'aBﬁiciently tracking the posterior distribution as a Gaassi
IS €xamplé IS one or a number of problems that can 0CCHf;o avoiding linearization of the measurement model, the

W'tlh a Ztan(tjarddEKF u’;]rg])lelr_ne_rt]t?tlon. £li it It UKF no longer calculates th&/; matrix which is a critical
n order to address the imitations ot inearization, alter;qacq of the individual transfer functiolgs. However, we can

nate forms of the Bayes filter have been developed. O &ill recoverM, from the UKE u . .
. . pdate directly by working in
recent extension is the Unscented Kalman filter (UKF) [6]the informatio% form and noticing that/; is the information

Whifh. uses a_set” ofn + 1 deterministic samples, known o5y e 1o measurement. We can therefore combine
as “sigma points” from an assumed Gaussian density uation (8) and equation (28)

represent the probability density of a space of dimensitynal

n. These samples are generated according to: Q=0 + M, (29)
X0 =1y, (18) = M; = Q — (30)

. % _y-1 =1
Xi=pa+ (VNS i=1n (19) =20 % » (31)
= (5 — K1SiKy) ™' - %, (32)

&zmq—((n+M&),i:mL”w%/ (20)
In order to calculate thé/ matrix for a series of points along
i _ a trajectory, we can generate a prior covariance and compute
where( (”+/\)Zt) is theith column of the root of the e posterior covariance as in equation (28). Happily, the
matrix. Each sigma poinf’® has an associated weight, UKF covariance update does not depend on the actual mea-
used when computing the mean, am{l is the weight used surement received, exactly like the EKF covariance update.



converge to one that maintains the connectivity of the free
space but the graph nodes will be placed to generate sensor
measurements that maximize the localization accuracyeof th
vehicle. We call this sampling strateggensor uncertainty
4 sampling, after the “Sensor Uncertainty Field” (SUF) dedine
L N by Takeda and Latombe [7]. The sensor uncertainty field is
a mapping from location: to expected information gain,
R ) x — Z(x), where locations with high information gain
. L Mmoo correspond to locations that generate sensor measurements
(a) Comparison of covariance preb) Distribution of error using con- that we expect to maximize th'e I_()cal[zatlon accuracy of
dictions stant prior approximation the vehicle. Explicitly building this field is computatidha
‘ _ _ _ expensive in practice; by sampling from this field in builglin
Fig. 3. (a) Comparison of trace of covariance from full UKFeiilhg and  the BRM graph, we gain the benefits of focusing the search
trace of covariance from one-step transfer function usikd=U\/ matrix. ’ - . . . .
(b) Distribution of ratio of error induced by computing the matrix for ~ ON the states that lead to high information gain without the
the one-step transfer function using a constant prior. cost of explicitly building the sensor uncertainty field.

o o . Information gain is calculated from the difference in
_ The UKF is still a projection of the measurement NOIS&ntropy of the prior and posterior distributions,
into the state space, but is a more accurate projection

than an explicit linearization of the measurement model. I(z) = H(p(z)) — H(p(x|2)) (33)
By representing the belief update process with the one-ste
transfer function, we are approximating the non-linear UK
update. Figure 3(a) depicts the difference between cova
ances computed using the full UKF update and covarianc
computed using the one-step transfer function for a range
motions and randomized initial conditions. As expected, th
one-step transfer function using tii¢ matrix calculated in

race of One-Step UKF Covariance

v

ere entropy isH (p(z)) = — [ p(x)logp(x). Since our
ﬁ_nalysis (figure 3b) suggested that the measure of informa-
don gain was statistically insensitive to the choice ofopri
used a constant prignz) = X such thatH (p(z)) =
while evaluating sensor uncertainty, and Bayes’ rule to
computep(z|z) = p(z|x) - p(x), such that

equation (32) is an approximation to the UKF model but the I(z) = C — H(p(z|2)) (34)
induced error is low; the traces of the covariances are lglose
matched. wherez = argmax, p(z|z) andp(x|z) is calculated accord-

The UKF calculation of the information gain/, does, ing to the UKF. For each sample, we simulate the sensor
however, depend on the specific prior mafix As a result, measurement and find the probability of observing the sensor
different choices of prior for equation (32) may result inmeasurement at each of the sigma points. The lower the
different one-step transfer functions. Figure 3(b) shows Brobability of observation at the neighboring sigma paints
distribution of the ratio of the error of the one-step coande the smaller the entropy of the posterior distribution, and
to the full UKF covariance, where 7000 trials were performedherefore the greater the information gain. We normalize
using 100 different priors and a range of initial conditionghe posterior entropies so th@tz) lies in the rang€o, 1],
and trajectories were used to calculate flematrix. The allowing us to treat the information gain ofas a probability
error induced in the one-step transfer function for using Ehat the sample is accepted or rejected.

constantM is less than 2% with a significance pf= 0.955, Figure 4(a) shows a bird’s-eye view of an example en-

indicating low sensitivity to the choice of prior over a rang vVironment with limited structure and no GPS. The brick
of operating conditions. structures in figures 4(a) and (c) are the parking garagargill

and stairwell (top right). In figure 4(a), sample poses are

VI. SAMPLING IN BELIEF SPACE drawn uniformly. Figure 4(b) shows the sensor uncertainty

As the number of samples and the density of the gragield [7] where equation (33) is evaluated at each location
grows, the BRM planning process will find increasingly low-(z, y) for fixed height and attitude. (The lack of smoothness
covariances paths. However, as the density of the grapletween obstacles is an artifact of the rendering process
grows, the cost of searching the graph will also growand angular discretization.) The pixel intensity corresfs
searching the graph will have complexity(b?) for b edges to the information gain, where darker pixels have more
per node and path of lengtih edges. We can reduce thisinformation. This field is shown only to illustrate the copte
complexity by minimizing the size of the graph, samplingcomputing the field for realistic domains is impractical.
nodes that reflect the useful part of the information spaceFinally, figure 4(c) shows samples drawn according to the

The optimal sampling strategy would generate samplesnsor uncertainty. Note that the sample density is lowest
that lie only on the optimal path to the goal; this wouldfar from the environmental structure where sensing pravide
of course require knowing the optimal path beforehandhe least amount of information.

However, some samples are more likely to be useful than Figure 5 shows the advantage of sampling according to the
others: vehicle poses that generate measurements with higgnsor uncertainty. The graph constructed using sensor un-
information value are much more likely to lie on the optimalcertainty sampling consistently found a trajectory resglin

path than vehicle poses that generate measurements waticovariance with tracé.48 using 100 samples, whereas the
little information. If poses are initially sampled frold uniform sampling method required 1000 samples to achieve a
uniformly, but are retained according to the expected infoicovariance of siz8.43. By sampling uniformly, the standard
mation gain from sensing at each point, the graph will stiBRM requires a large and dense graph to achieve good
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(a) Samples drawn uniformly (b) Sample map of sensor uncertainty field (c) Samples from sensor uncertainty field

Fig. 4. Bird's-eye view of unstructured, GPS-denied envinent. The brick structures are pillars in the undergroundgg (a) Distribution of samples
drawn uniformly. (b) The sample map with the sensor uncertdiatgt. The intensity (darkness) of each pixel correspondiganformation gain available
by sensing there. (c) Distribution of samples drawn accgrdiinthe sensor uncertainty field.

environmental features. Figure 6(c) shows an example scan.
In practice, the measurement of the ground plane is relgtive
noisy, although sufficient for closed-loop altitude cohtro

The helicopter is required to plan a path from the starting
position to the end goal, shown in Figures 6(a-b), and must

race of Covariance

3 R rg localize itself using the laser while executing the trajegt
. We first plan a path for the helicopter using each method. We
J % then attempt to fly the the helicopter autonomously through

the environment using the planned trajectories, and déterm
Fig. 5. Comparison of uniform vs. sensor uncertainty sampdingtegies. if the helicopter is able to successfully reach the end goal

The sensor uncertainty sampler finds accurate trajectoitascansiderably DY Maintaining accurate localization. We compare the taser
fewer samples than the uniform sampler. localized state estimate against ground truth measured by a

localization accuracy. Table | shows a comparison of grap'ﬁ'o'[.'On capture system. .

construction and planning times. The conventional PRM is F|_g_ure 6(a) shows an examplg trajectory generated by the
clearly the fastest algorithm in both graph constructioeesh traditional PRM plan'ner, Wh.'Ch finds a dlreqt path from start
and path search, but as expected the localization perf(menarjfo goal._ Becaus_e this plan_lgn_ores the helu_:opters need for
is poor. The BRM with sensor uncertainty sampling require&€nSOr information to localize itself, the helicopter gesst
additional time during the graph creation phase, but thiF/hlle in flight incurring a position estimation error of at

time can be amortized across multiple queries, and resu st3.6m, falsely belie_ving that it is still in the center of
in measurably better paths ' e environment when it has already flown to the left.

Trace Goal| Graph Build | Path Search On the other hand, an example BRM trajectory using
race Goal rap ul al earc . . :
Covariance| Time (s) Time () sensor uncertainty sampling enables the helicopter to stay

PRM 16.046 0.036 0.001 well-localized incurring a position estimation error .afm,

BRM, Uniform Sampling | 4.223 18.920 0.039 as shown in Figure 6(b). The helicopter achieves this by

ggnl\:lbl'isnznsorUncertam 1.094 25.589 0.032 detouring from the shortest path toward areas of high sensor
TABLE | information, successfully reaching its desired goal wiijhh

certainty. This demonstrates that the BRM trajectory leads
to measurably more accurate performance.

VII. INDOOR NAVIGATION RESULTS VIIl. RELATED WORK

The BRM algorithm and sensor-maximizing sampling Modern approaches to planning with incomplete state
strategy were tested using the quadrotor helicopter, shovmformation are typically based on the partially obsereabl
in Figure 1. Equipped with auto-stabilization rate gyrosl anMarkov decision process (POMDP) model or as a graph
accelerometers, the helicopter has on-board attituderalontsearch through belief space [10]. While the POMDP provides
and thus acts as a stable sensor platform. The on-boadjeneral framework for belief space planning, the complex-
environmental sensor is a Hokuyo URG laser sensor —i@y of the solution grows exponentially in the length of the
planar laser rangefinder that provides a2fi6ld-of-view at  policy and the number of potential observations. Numerous
10 Hz, up to an effective range of 3m. The laser is mounted i@pproximation algorithms exist to mitigate the problem of
the X-Y plane of the helicopter, and we modified the laser tscalability [11], [12], but these techniques still face com
optically redirect 20 of its field-of-view to provide a small putational issues in addressing large problems. Alterelgti
set of range measurements in the (downwardjirection. the Augmented MDP uses the concept of information gain by
In a single scan, the vehicle is therefore able to estimathe sensor at each possible pose in freespace [13] to compute
its position, yaw orientation and altitude with respect ta dense policy. The Augmented MDP approach is strongly

PERFORMANCE AND TIME COSTS OF DIFFERENT PLANNERS
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Fig. 6. (a) and (b) show an example indoor environment for comgahe performance of the BRM algorithm. The green line shdvestelicopter’s
position estimate from the laser sensor measurements, whiged for localization and control. The red line shows the path of the helicopter. (a)
Localization performance of helicopter executing PRM ttjey. (b) Localization performance of helicopter execgtimajectory planned by the BRM
using sensor uncertainty sampling. (c) The perception maiddeoonboard laser range-finder, including the field of vidwhe X-Y plane and the field
of view of the ground plane.

related to the ideas in this paper, but does not scale well ¢alditional support in the development of the vehicle. Dirkhiel,
more than two dimensions. Karl Koscher, Jonathan Lester and Adam Rea provided considerable
The extended Kalman filter and unscented Kalman ﬁ|t§5|stance with the iMote2 package including the MSB and LSB

. . ards. Finally, Intel Labs Seattle and University of Washington
have been used extensively. Ko et al. [14] use the iMote nated the iMote hardware. The authors wish to thank this large

teChnOIOgy and the UKF for state estimation in aerial Vehigroup of people in support of this project.

cles, and Valenti et al. [15] were the first to demonstrate
reliable navigation and position estimation on quadrotor
helicopters. The sympletic form (and related Hamiltonian[1]
form) of the covariance update has been reported befor?Z]
most recently by Mourikis et al. [16]. Finally, laser range
finding on-board helicopters is not a novel technology [17],
[18], although we believe we are the first to demonstratéS]
reliable autonomous localization and motion planning on an
indoor helicopter using laser range finding. [4]

IX. CONCLUSION -

In this paper, we have addressed the problem of a he-
licopter localizing and navigating in GPS-denied environ-
ments. The helicopter uses laser range data and an existi
map to localize, but the laser has a limited field of view,
causing the helicopter to lose track of its own position in[7]
certain configurations and in some parts of the environment[8]
We showed how the Belief Roadmap algorithm [1] can
be used to plan trajectories through the environment thalfl
incorporate a predictive model of sensing, allowing the
planner to minimize the positional error of the helicopter
at the goal using efficient graph search. The original BRNIO]
algorithm assumed an extended Kalman filter model for pg;
sition estimation, and we showed how this algorithm can be
extended to use the unscented Kalman filter. Furthermore, Wél
showed that by choosing an appropriate sampling algorithm,
the BRM can find better trajectories with fewer samples thans]
using uniform sampling strategies.
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