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Abstract 

This paper describes a logic-based framework for 
interpretation of sequences of scenes captured by a 
stereo vision system of a mobile robot. An algo­
rithm for anchoring and interpretation of such se­
quences is also proposed. 

1 Introduction 

In this work we extend the logic-based spatial reasoning sys­
tem for scene interpretation proposed in [Santos and Shana­
han, 2002] and develop an algorithm that encodes the inter­
pretation process. This algorithm also accounts for the pro­
cess whereby mappings between logical symbols and sensor 
data are built up and maintained over time. This is an aspect 
of the so-called symbol anchoring problem [Coradeschi and 
Saffiotti, 2000]. 

This paper assumes a stereo vision system embedded in a 
mobile robot as the source of data about the world. A sym­
bolic representation of the sensor data from the vision system 
is constructed assuming a horizontal slice of each snapshot. 
A horizontal slice is, in effect, a 2D depth profile of the scene 
before the robot, taken at a particular height. Within these 
depth profiles, peaks occur that are caused by nearby objects 
or collections of objects, these peaks are called depth peaks. 
The size and disparity values of single depth peaks, the dis­
tance between pairs of peaks and the transitions that occur in 
these attributes through consecutive pairs of profiles are the 
building blocks for our spatial reasoning theory. 

Within this framework scene understanding is understood 
as a process of hypothesising the existence and the dynamic 
relationships between physical objects (and between physi­
cal objects and the observer) assuming temporally ordered se­
quences of depth profiles. This process recalls sensor data as­
similation as abduction first proposed in [Shanahan, 1996], In 
fact the initial motivation for the present research was to pro­
pose a new qualitative background theory about space-time 
within this framework by using notions from qualitative spa­
tial reasoning theories such as [Randell et al., 1992]. 

2 Depth Profiles 
This work assumes sequences of depth profiles as temporally 
ordered snapshots of the world. A sketch of a depth profile is 
shown in Figure lb. 

* Supported by CAPES. 

Figure 1: a) Two objects a, b noted from a robot's viewpoint 
v\ b) Depth profile (relative to the viewpoint v in a) repre­
senting the objects a and b respectively by the peaks p and 
q. 

The axis disparity in depth profiles is constrained by the 
furthest point that can be noted by the robot's sensors, this 
limiting value is represented by L in these charts (Figure lb). 
In fact, L is determined by the specification of the robot's 
sensors. 

Differences in the size (and/or disparity) of peaks and tran­
sitions of the size (disparity) of a peak in a sequence of pro­
files encode information about dynamical relations between 
objects in the world and between the objects and the observer. 
This is the initial insight upon which the scene interpreta­
tion system proposed in this paper is based. The next section 
presents some relations that represent transitions in depth pro­
files. 

3 Relations on Depth Profile Transitions 
This work assumes a relation 
for short, representing that there is a peak p assigned to the 
physical body b with respect to the viewpoint v. In this work 
we are dealing with the viewpoint of a single robot, therefore 
we abbreviate to p-o(p, b). The relation p_o/2 
plays a similar role of the predicate grounding relation de­
fined in [Coradeschi and Saffiotti, 2000]. 

Assuming that the symbols a and b represent physi­
cal bodies, p and q depth peaks, and t a time point, 
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the following relations are investigated in this paper: 
extending(p-o(p,b),t), states that the disparity value of 
a peak p is increasing at time t\ shrinking(p-o(p,b),t), 
states that the disparity value of a peak p is de­
creasing at time t; approaching(p-o(p,a),p-o(qib),t), 
represents that two peaks p and q are approaching 
each other at time t; receding(p_o(jp,a),p-o(q,b),i), 
states that two peaks p and q are receding each 
other at time t; coalescing(p_o(p,a),p_o(q,b),t), states 
that two peaks p and q arc coalescing at time t; 

states the case of one peak 
splitting into two distinct peaks p and q at time t. These rela­
tions are hypotheses assumed to be possible explanations for 
transitions in the attributes of a peak (or set of peaks). 

Similarly to [Santos and Shanahan, 2002], the relations de­
scribed above can be connected to descriptions of transitions 
on sensor data and, further, to relations about changes in the 
robot environment by means of sets of axioms. Due to space 
restrictions, however, we do not present axioms for these re­
lations. 

Informally, and 
can be related, respectively, 

to the event of an object a occluding an object 6 and of a 
appearing from behind b. Therefore, once a hypothesis on 
peak transition has been obtained, a relative hypothesis on 
objects in the world can be inferred from the appropriate ax­
iom stating this connection. This is a central idea underlying 
our solution for anchoring. In fact, this solution assumes 
processes of explanation and expectation as described in the 
following sections. 

4 Sensor Data Assimilation 
Following the ideas proposed in [Shanahan, 1996] and [San­
tos and Shanahan, 2002], the task of the abductive process for 
sensor data assimilation is to infer the relations described in 
Section 3 as hypotheses given a description (observation) of 
the sensor data in terms of depth peaks transitions. More for­
mally, assuming that is a description (in terms of depth pro­
files) of a sequence of stereo images, and is a background 
theory comprising axioms connecting the relations in Section 
3 to sensor data transitions and to changes in the robot's envi­
ronment, the task of assimilation as abduction is to find a set 
of formulae such that 

5 Expectation 
Expected peak transitions are suggested by the conceptual 
neighbourhood diagram (CND) of the relations described in 
Section 3, shown in Figure 21. 

Given an abduced explanation for a transition on a pair of 
peaks, the expected future relations involving these peaks are 
the neighbours of this transition in the diagram in Figure 2. 
As this process generates multiple competing expectations, 
only those that are verified by further sensor data lead to the 

'For brevity, we are omitting from this diagram the relations 
extending/2 and shrinking/2. 

generation of new predictions. In practice, prediction in this 
work is, thus, reduced to a table look-up procedure. 

Figure 2: Conceptual neighbourhood diagram. 

6 Image segmentation 
From a practical point of view, horizontal slices defining 
depth profiles are comprised of a sequence of measure­
ments made by the considered off-the-shelf vision system. 
Each horizontal slice is then segmented into peaks and 
backgrounds via a simple threshold mechanism on disparity 
values. This segmentation procedure outputs a sequence of 
first-order terms of the form: peak (Lb, Disp, Size) and 
background( (Lb l , Lb2) , D i s p l , S i z e l ) , where Lb, 
Lb1 and Lb2 are variables for P-o/2 terms labelling peaks. 
In particular Lb l and Lb2 are the labels of the peaks bound­
ing the background segment; Disp and Size are the values 
of disparity and size of the peak Lb; and, D i s p l and S i z e l 
are the disparity and size values of the background segment 
labelled ( L b l , Lb2). If it is the case that a background is 
bounded by one of the end points of a depth profile (borders 
of the field of view), a corresponding symbol is assigned to 
compose its label. In other words, in such cases, either the 
symbol bo rde rLe f t or borderRight are part of the pair 
defining the label of a background segment. 

Subsequent pairs of horizontal-slice descriptions are input 
to an algorithm that provides the appropriate interpretation in 
terms of the dynamic relations discussed in Section 3. This 
algorithm is summarised in the next section. 

7 The anchoring and interpretation algorithm 
This section describes an algorithm for interpretation and an­
choring, so called A&I algorithm, that works by matching 
peak segments in consecutive pairs of profile descriptions 
that are depicting the same object in the world. Each profile 
description is comprised of a finite number of segments peak 
and background, which are provided by the segmentation 
routine described in the previous section. 

In order to describe the A&I algorithm let Pi and Pz+1 be 
one consecutive pair of profiles, we assume that Pi has n seg­
ments and P,+i has m. In this section we denote a segment r 
in a profile k by sk,r thus, Pi and P i + 1 can be denoted as: 

and  

Let PRED and INT be initially empty lists containing, 
respectively, a set of predictions and a set of interpretations 
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for the profile pair We assume also a symbol o 
denoting a physical body. 

For every subsequent pair of profile descriptions 
the algorithm's task is to match pairs of 

segments in that depict the same 
object in the world. The segments are considered from left 
to right in the profile descriptions, starting with the first pair 
of segments The algorithm is summarised as 
follows. 
Begin: (A & J algorithm) 
While (Pi and P i + 1 are non-empty) 

1. if and are peak segments; then 
(a) if Si j is bound to a term then assign the 

term p~o(r, o) to the label of  
(b) else, create two new terms and 

and assign them respectively to the labels of 
and  

(c) compare the size and disparity measurements in 
both segments and put into INT the appropriate 
interpretation according to the relations extending 
and shrinking, in Section 3; 

(d) from these interpretations and the conceptual 
neighbourhood diagram in Figure 2 obtain the pre­
dicted predicates and insert them into PRED; 

(e) return the next pair of segments:  
2. if and are background segments; then 

(a) unify their labels; 
(b) compare the sizes of and and consider 

the difference between these values, which gives 
the difference in the distance between the two peaks 
bounding and  

(c) interpret this difference in terms of the relations 
approaching and receding, and insert the appro­
priate interpretation into INT; 

(d) from this interpretation and the CND in Figure 2 
insert the relative predictions into PRED; 

(e) return the next pair of segments:  
3. if Si,j is a background segment and is a 

peak segment then check in the prediction set PRED 
whether the two peaks bounding si,j have been expected 
to be coalescing or splitting, 
(a) if so, assume this expectation as explanation for Si,j 

and Si+1,r inserting it into INT. Execute the ap­
propriate unifications on peak variables and terms 
P-o/2 as explained in step la and lb. Then, ob­
tain the predicted predicates, inserting them into 
PRED. Return the pair to be con­
sidered for interpretation; 

(b) else explain away the peak Si,j as noise and assume 
the pair for interpretation; 

4. if is a peak segment and a background seg­
ment then proceed analogously to the previous case. 

End while. 
• If P{ is empty, get the next pair of profile descriptions 

• else, if is empty but Pi is not, then explain away the 
remaining peak segments in Pi and consider the next 
pair of profile descriptions 

The while loop above is repeated until there are no more depth 
profile descriptions. 
End. 

Informally, the algorithm above considers consecutive 
pairs of depth profile descriptions as lists. Pairs of elements 
from these lists are compared and a match for peak segments 
is obtained according to the expected transitions in depth pro­
files. The result of this process is the interpretation of peak 
transitions, which are related to changes in the objects de­
picted by peaks. 

The algorithm main processing is the while loop that con­
siders, in pairs, every segment in the depth profile descrip­
tions. The running time of this algorithm is, thus, linear on 
the size of the list: containing these descriptions. However, as 
the number of segments in these lists is related to the num­
ber of objects depicted by the considered depth profiles, and 
there are only a finite number of objects in each scene, the 
asymptotic upper bound of this algorithm is 0(1) . 

8 Conclusion 
This paper presents a new step towards an abductive frame-
work for sensor data interpretation of sequences of stereo-
vision images obtained by a mobile robot's vision system. 
We proposed a symbolic representation of the stereovision 
data based on depth profiles obtained from horizontal slices 
of snapshots of the world. These profiles encode information 
about objects in the world as peaks. Each profile was, then, 
segmented into first-order statements that were input of an al­
gorithm whose task was to unify pairs of segments, providing 
the interpretation for the occurred transition in depth peaks. 

Further research has to consider two main open issues in 
this framework. First, we have to develop of a qualitative the­
ory about object's shape from multiple horizontal slices of a 
scene. This theory would enhance the representation of the 
environment and, therefore, improve the capabilities of the 
reasoning system. A second issue is the development rea­
soning modules capable of explaining away noise patches in 
the image sequences according to common-sense knowledge 
about the world and about the sensor's limitations. 
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