
An Incrementa l Theorem Prover 

M u r r a y Shanahan 
Un ivers i ty o f Cambr idge 
C o m p u t e r Labora to ry , 
Cambr idge C B 2 3 Q G . 

Eng land . 

A b s t r a c t 1 

When states of affairs are represented by theories, reasoning 
about them often involves making a small change to a set of 
axioms, and computing the consequences of that change for 
the set of theorems derivable from those axioms. A Prolog-like 
theorem prover is described which, as it explores the space of 
possible proofs for a set of formulae, records the structure of 
that space. This information can be used to search efficiently 
for proofs for the same formulae w i th a slightly changed set 
of axioms. Existing Prolog interpreters throw away all such 
information, so that the entire space of possible proofs for each 
formula must be explored from scratch every time the set of 
axioms is changed, no matter how l i t t le that change affects the 
search space's structure. 

Introduction 

A robot has to reason about actual or possible states of affairs. 
The problem of propagating the effects of changes in a state of 
affairs through a representation of that state of affairs, updating 
only those parts which are affected by the change and leaving 
the rest alone, is one aspect of the frame problem (Hayes 1973, 
Dennett 1984). If a logic is used as the representation formal­
ism, then information about a state of affairs wi l l consist in a 
set of axioms and a set of inferred theorems. If a small change 
occurs in a state of affairs, bringing about a small change in 
the set of axioms, then it may be more economical to propa­
gate the consequences of this change through the set of inferred 
theorems than to regenerate them from scratch. This paper is 
concerned to show how a Prolog-like theorem prover may be 
bui l t to work in this way, where the set of axioms is a set of 
definite clauses and the set of inferred theorems is a set of goal 
clauses, each wi th a corresponding set of answer substitutions. 

A Prolog interpreter (Kowalski 1979) is a top-down resolu­
t ion Horn clause theorem prover. Presented w i th a goal clause 
Co and a set of definite clauses P, it searches for refutations of 
Go in the form of a sequence of goal clauses Co ,C 1 . . .C n where 
Cn is the empty clause and each C1+1.i is obtained by resolving 
G1 w i th some clause in P whose head unifies wi th the leftmost 
l i teral in C,. Each such refutation generates a corresponding 
set of variable bindings, called an answer substitution. Since 
there may be many clauses in P whose heads wi l l unify wi th 

'This work it supported by the Science and Engineering Research Coun­
cil of Great Britain. 

the leftmost literal of any given C,, the theorem prover has to 
search a space of possible refutations, and for each refutation 
discovered it outputs the corresponding answer substitution. 
Most extant Prolog interpreters use backtracking to effect a 
depth-first search, choosing clauses from P in top to bot tom 
order. 

Having fully explored the search space, a non-incremental 
theorem prover throws away all record of how each substitution 
was computed - what sequences of resolutions were tr ied, which 
were successful and which were not. Addit ions and deletions of 
clauses are then straightforward database operations, but every 
t ime refutations have to be found for a goal clause, the search 
space has to be explored from scratch. Now, suppose that the 
use of the interpreter is characterised by the repeated presen­
tat ion of the same set of goal clauses for a slightly changed 
set of definite clauses. The search spaces explored for each 
slightly modified set of definite clauses are then likely to over­
lap considerably. Under these circumstances it is economical to 
employ an incremental theorem prover which maintains depen­
dency structures showing how each set of answer substitutions 
is obtained. Then, if a small change takes place in the set of 
definite clauses, the consequences of this change are propagated 
through the dependency structures to the set of answer substi­
tutions. It is not necessary to regenerate the answer substitu­
tions from scratch. The burden of computation is then shifted 
to the incremental modification of these dependency structures 
when the set of definite clauses is modified, reducing the search 
for answer substitutions to a simple lookup Clearly, for this to 
be a viable proposal, the resulting savings must outweigh the 
overheads of recording the dependency structures and propa­
gating the consequences of change. In this paper I w i l l outline 
the construction of an incremental top-down resolution Horn 
clause theorem prover, in which the maintenance of dependency 
structures incurs acceptable overheads. 

The incremental approach is exploited in reason mainte­
nance systems (Doyle 1979, deKleer 1986), which maintain a 
record of the logical dependencies w i th in a set of propositions, 
and ensure that consistency is restored after each modification 
to that set However, research in this area has concentrated on 
forward-reasoning mechanisms rather than backward-reasoning 
ones like Prolog. Dependency information of the sort described 
is also used in reason maintenance systems to effect dependency 
directed backtracking, and similar techniques have been used in 
Prolog interpreters (Bruynooghe and Pereira 1984). 

Shanahan 987 



The Incremental Mechanism 

The mechanism I wi l l describe performs the following opera­
tions, given a goal clause G0, a set of definite clauses P and 
corresponding dependency structures 5 add a clause p to P 
and update 5, delete a clause p from P and update 5, and 
output corresponding substitutions for all refutations of G 0 . Of 
course, many other sets of operations are possible For instance, 
facilities might be included for modifying parts of clauses, and 
this would permit a finer grain of incremental modification of 
S. The techniques described extend naturally to the incremen­
tal modification of the dependency structures for a set of goal 
clauses. It is also possible to incorporate negation as failure, 
but I wi l l not discuss this problem here, nor wi l l I discuss the 
problems of dealing w i th infinite proof trees 

Now, let us consider the exploration of a search space as a 
sequence of states S1 sn, where the transit ion from s, to s1+1 

corresponds to one resolution step and possibly some backtrack­
ing Assume that the search space for a goal clause G0 and a 
set of definite clauses P has been explored by passing through 
a sequence of states T and that this has generated a set of 
substitutions B Suppose that P' is the same set of clauses as 
P but w i th one addit ion Then, to explore the search space for 
GO and P' is to pass through a sequence of states V where T' 
is T w i th a number of extra subsequences inserted, and the set 
of answer substitutions generated B' wi l l be a superset of B 
Similarly, suppose Pi is the same set of clauses as. P bur wi th 
one deletion. Then, to explore the search space for G0 and P' 
is to pass through a sequence of states T' where V is T w i th a 
number of subsequences removed, and the set of substitutions 
generated & wi l l be a subset of B This analysis would be 
more complicated for a non-monotonic logic since the deletion 
of a clause could then add to the search space and the addit ion 
of a clause could subtract from it 

In each case, if a record of B and T is maintained then the 
search space for Go and P can be explored by propagating the 
consequences of changing P to P' through T thus obtaining 
T'. and then propagating the consequences of changing T to V 
through B thus obtaining B In addit ion to preserving B and 
T. it is necessary to record which substitutions in B depend on 
which subsequences in T, and which subsequences of T depend 
on which clauses in P respectively the answer dependencies 
and the clause dependencies Then, the deletion of a clause 
from P must bring about the remov.al of those subsequences in 
T which depend on i t . giving T', and each deletion of a state 
in T must bring about the deletion of those substitutions in B 
which depend on it giving B' Also, it is necessary to record 
the predicate dependencies for each predicate in P. the set of 
points in T at which backtracking took place because of the 
exhaustion of clauses for that predicate Then, the addition 
of a clause for a predicate must bring about the restoration of 
each state at which clauses for that predicate were exhausted. 
For each such restored state search is resumed, thus generating 
new subsequences to be inserted into T giving 7", and possibly 
producing new substitutions to be added to B, giving B' Each 
such resumed search continues unt i l a state is reached which is 
not dependent on the newly added clause, and wil l therefore 
already be in T 

Each state corresponds to a sequence of goal clauses 
Go ,G n , where G, - i is the result of resolving G, with some 
clause in P This can be conveniently represented by a list of 
clauses C0 . C n _ i . where C, is the clause resolved with G, to 
obtain G1+1, and in practise this can be simply a list of pointers 
or indices into the database of clauses (Clocksin and Alshawi 
1986). Then, a sequence of states so-.Sn could be represented 
by a sequence of such lists. But since, in general, a, wi l l be an 
extension of some s; where j < t, the sequence can be better 
represented as a tree, whose shape wil l mirror that of the search 
space Note that any given node in the tree wi l l have one child 
for each clause in P for a particular predicate 

The three dependency structures mentioned above must be 
maintained with respect to this tree, the answer dependencies, 
the clause dependencies and the predicate dependencies. For 
each leaf in the tree, a record is kept of whether the path from 
the root to that leaf constitutes a refutation, and if so, the 
corresponding answer substitution in B is indicated For each 
clause in P. a list is kept of those nodes in the tree which 
point to that clause Finally, for each predicate in P. a list 
is maintained of those nodes in the tree whose childrens' root 
nodes all point to clauses for that predicate 

The cost of building the dependency structures during 
search is one tree insertion and two list insertions (of the kind 
that do not require search) for each resolution step performed 
The time savings are obtained at the expense of a storage over­
head which wil l be directly proportional to the complexity of 
the search space 

The deletion of a clause C proceeds a,s follows For each 
node N in the clause dependencies fur C the tree from N 
downwards is removed The removal of a node requires that 
all references to that node are deleted from the dependency 
structures So that this does not involve search, the clause and 
predicate dependencies can be threaded through the tree, and 
the removal of a node is then preceded by the deletion of its 
entries in those lists Whenever a leaf is reached, if that leaf is 
at the end of a refutation then the corresponding answer sub­
st i tut ion is deleted from B So, the cost of deleting a clause 
is directly proportional to the total amount of search subspace 
whose existence depends on it If this is a small proportion of 
the overall search space then the savings resulting from adopt­
ing the incremental approach are correspondingly large. If it is 
a large proportion of the overall search space then the savings 
wil l be negligible and the extra cost wil l be of the same order 
as the cost of the original search 

The addition of a clause C for a predicate D proceeds like 
this. For each node S in the predicate dependencies of C the 
state reprsented by .V is restored and the search is resumed 
unti l an area of search space is reached which has already been 
explored (ie: unti l the interpreter backtracks past S) The 
state represented by the node N is restored by tracing back 
from N to the root of the tree, forming a list L of the nodes 
on that path (in root to node order), and start ing wi th the 
goal clause G 0 , generating the sequence of goal clauses G i . . . G n 

by resolving each G, wi th the (i + \)th member of L to obtain 
G.^i Since all the search subspaces thus explored have to be 
explored anyway, the only overhead of adopting the incremental 

988 REASONING 



approach is the init ial cost of storing the dependency structures 
plus the cost of retracing the paths from each N to the root. As 
for deletion, the savings obtained wi l l depend on the proportion 
of newly explored search space to overall search space. Instead 
of reconstructing the state, further time savings can be made, 
at the cost of further storage overheads, by recording the whole 
structure of the search space, including variable bindings. 

The incremental mechanism described so far is capable of 
making savings when the effects of additions to and deletions 
from the set of definite clauses are confined to the outermost 
parts of the tree, near the leaves, or when they are confined 
to only a few branches and the tree is wide. The mechanism 
wi l l also prove useful for clause replacements (the deletion of a 
clause followed by the addit ion of a clause for the same predi­
cate) But it is often the case that the effects of a replacement 
are confined to a region near the root of the tree, leaving the 
peripheral foliage untouched. A finer grain of incrementality 
would be obtained if the mechanism avoided duplicating the 
work done below the affected area. 

A complete solution to this problem is very difficult, and 
a detailed description is far beyond the scope of this paper. 
The mechanism must remove those parts of the tree that are 
dependent on the replaced clause whilst saving the branches 
below. New nodes are grown to replace the removed sections, 
using the new clause, and the saved branches are grafted back 
onto each new section that did not lead to a failure. As a 
result of growing a new section, some variables may change 
their bindings, and the consequences of these changes must be 
propagated through the rest of the tree. This can involve a 
similar pruning, growing and grafting process to that already 
described, since some clauses that failed to match before wi l l 
match now, whilst others that did match before wi l l fail to 
now. Again, sections of the tree wi l l have to be lifted out and 
replaced, but this time a new section can have more offshoots 
than the one it replaces, so that when all the available saved 
branches have been grafted on, new ones have to be grown for 
any offshoots that are st i l l incomplete. 

I conclude with a brief discussion of how an incremental 
theorem prover might be embedded in a Horn clause planner 
similar to the one described by Kowalski (Kowalski 1979). The 
planner has to search for a sequence of actions A\ .An such that 
T1...Tn*i is a sequence of states of affairs where T{ is the init ial 
state and Tnr\ is the goal state and each T1+1 is the result of 
performing action A, in state Tx. Representing states of affairs 
as theories, the planner would be built on the meta-level, and 
would use meta-level predicates such as 'demonstrate (Theory, 
Goal) " , "add-clause (Theory 1, Clause, Theory'2)" (Bowen and 
Kowalski 1982) which would be buil t- in and whose implemen­
tat ion would be based on the incremental approach described 
Note that the single predicate ''add-clause'1, wi l l suffice for both 
addition and deletion of clauses. Any action performed in state 
T, can bring about changes to the axioms of the theory repre­
senting T, The planner would use "add-clause" to effect this 
change, and the incremental theorem prover would propagate 
its consequences through the theory. Then, in order to demon­
strate some property of T , - i , such as the nature or position 
of a given object the only computation required would be a 
simple lookup, assuming that the property was one that was 

also demonstrated for T,. 

Of course, it is not necessary to use Prolog for the meta-
level problem solver as well as for the object-level representation 
formalism. But if Prolog is used then the following extension 
to the incremental mechanism may be necessary. Consider the 
solution of a goal "add-clause It would be ineffi­
cient to keep entirely distinct copies of Tl and T2, since then 
the expense of copying Tl when a clause is added would obviate 
the advantages of the incremental approach. The same problem 
arises for deletion. Rather, what is required is a single struc­
ture which represents both theories. This could be obtained by 
labelling some of the nodes in the tree with the contexts (sets 
of axioms) in which those nodes (and their children) are to be 
considered part of the tree (deKleer 1986). A detailed investi­
gation of such an extension is a subject for further research 

References 

1. Bowen K.A. and Kowalski R A , Amalgamating Language 
and Metalanguage, in Logic Programming, ed Clark K.L. 
and Tarnlund S.A. Academic Press (1982). 

2. Bruynooghe M. and Pereira L.M., Deduction Revision by 
Intelligent Backtracking, in Implementations of Prolog, 
ed Campbell J.A., Ellis Horwood (1984). 

3. Clocksin W.F. and Alshawi H, A Method for Efficiently 
Executing Horn Clause Programs using Mult ip le Proces­
sors, Technical Report, University of Cambridge Com­
puter Laboratory (1986). 

4. deKleer J . , An Assumption-Based TMS, Art i f ic ial Intel­
ligence 28 (1986), p l27 . 

5. Dennett D., Cognitive Wheels: The Frame Problem of 
Art i f ic ial Intelligence, in Minds, Machines and Evolution, 
ed Hookway C, Cambridge University Press (1984). 

6. Doyle J. , A Truth Maintenance System, Art i f ic ia l Intell i­
gence 12 (1979), p231. 

7. Hayes P.J., The Frame Problem and Related Problems in 
Art i f icial Intelligence, in Arti f icial and Human Thinking, 
ed El i thorn A. and Jones D., Elsevier (1973). 

8. Kowalski R.A., Logic for Problem Solving, North Holland 
(1979). 

Shanahan 989 


