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Abstract

This paper presents an approach to temporal reasoning in
which prediction is deduction but explanation is abduction. It is
argued that all causal laws should be expressed in the natural
form effect if cause. Any given set of laws expressed in this
way can be used for both forwards projection (prediction) and
backwards projection (explanation), but abduction must be used
for explanation whilst deduction is used for prediction. The
approach described uses a shortened form of Kowalski and
Sergot's Event Calculus and incorporates the assumption that
properties known to hold must have explanations in terms of
events. Using abduction to implement this assumption results in
a form of default persistence which correctly handles problems
which have troubled other formulations. A straightforward
extension to SLD resolution is described which implements the
abductive approach to explanation, and which complements the
well-understood deductive methods for prediction.

1. Introduction

Temporal reasoning involves both prediction and
explanation. Prediction is projection forwards from causes to
effects whilst explanation is projection backwards from effects
to causes. That is, prediction is reasoning from events to the
properties and events they cause, whilst explanation is
reasoning from properties and events to events that may have
caused them. Although it is clear that a complete framework for
temporal reasoning should provide facilities for solving both
prediction and explanation problems, prediction has received far
more attention in the temporal reasoning literature than
explanation.

Frequently, outside of the temporal reasoning literature,
explanation problems are seen as deductive. Domain knowledge
is captured in a theory T, the effects that require explanation are

represented by a set of sentences A, and the causes of A are

amongst the logical consequences G such that 7 U G. For
example, in Mycin a set of rules T relates symptoms to
diseases. Each rule is roughly of the form cause ifeffect. The

symptoms are represented by A and the disease which causes

those symptoms is a logical consequence of T U A

Mycin rules look rather peculiar, since they invert the
relationship between cause and effect. This is because Mycin
treats explanation as deduction rather than abduction. This kind
of "compilation" of causal laws into inverted implications is
counter-intuitive and is not always appropriate or possible.
Furthermore, a set of Mycin rules is no good for predicting
what symptoms are caused by a given disease, even though
intuitively it is clear that if the rules ir T adequately capture the
domain, they should be equally good for both prediction and
explanation.

This confusion of explanation with deduction is possible

not only with Mycin's shallow sort of causal reasoning, but
also with temporal reasoning in general, in which time is
represented explicitly. Domain knowledge is captured in a
theory T, events and properties are represented by a set of

sentences 4, and amongst the logical consequences G such that
T'U A = G are both predictions and explanations. That is, G

represents projections both forwards and backwards from A.

An alternative and more natural approach is one in which
prediction is deductive but explanation is strictly abductive.
Causal laws are captured in a theory T, and each law has the
more intuitive form effect if cause. For prediction, a set of

events is represented by a set of sentences A, and the task is to
find the causal consequences of A by finding the logical

consequences G such that T U A = G. For explanation, events
and properties are represented by G, and the task is to find sets

of events A which could have caused G, in other words, to find

A's such that TUA=G. The same theory T is used for both
prediction and explanation.

In combination with the assumption that all properties
which are known to hold must be explained by events, the
abductive approach deals correctly with default persistence.
Suppose we are told that a property p holds at time t7. In order
to apply default persistence to conclude that it still holds at a
later time {2, we postulate through abduction the occurrence of
an event e before t; which initiates p. In other words, it is
necessary to explain why p holds at t;. Then default persistence
can be applied to show that the property p persists from the time
of e through t; and through t,.

This paper presents the abductive approach to explanation
and shows how it deals with default persistence. To illustrate
this approach 1 introduce a shortened form of the Event
Calculus of Kowalski and Sergot [1986], which is similar to
that presented in [Kowalski, 1986J. To demonstrate its practical
realisability, 1 describe an abductive mechanism which is related
to the techniques of Finger and Genesereth f [1985] and Cox and
Pietrzykowski [1986], and is a simplification of the mechanism
described by Eshghi [1988], tailored for the shortened form of
the Event Calculus.

2. The Invent Calculus

In Kowalski and Sergot's Event Calculus |1986] and its
variants [Kowalski, 1986], the ontological primitives are
events, which initiate and terminate periods during which
properties hold. The Horn clause subset of the Predicate
Calculus is used, augmented with negation-as-failure. The
Event Calculus used in this paper is a simplified version of that
given by Kowalski and Sergot [1986]. Only two clauses are
necessary, as follows.
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holds-at(P,T) if
happens(E) and E <T and
initiates(E,P) and not clipped(E,P, T)

clipped(E,P,T) if (1.2)
happens(E') and terminates(E\P) and
not T <E'andnotE'< E

(1.1)

'he formula holds-at(P, T) represents that property P holds
at time T. The formula happens(E) represents that the event E
occurs. The time of event E is named by the term time(E).
Times are ordered by the usual comparative operators, but for
brevity | will sometimes write E instead of time(E) in
expressions involving temporal ordering. The formula
initiates(E, P) represents that the event E initiates a period during
which property P holds, and terminates(E, P) represents that the
event E terminates any ongoing period during which property P
holds. The not operator is interpreted as negation-as-failure.
The use of negation-as-failure in Axiom (1.1) gives a form of
default persistence.

The formula cligped(E,P,T) represents that there is a
possible mapping of events onto time points in which the
property P ceases to hold at some time between event E and
time 7. The use of negation-as-failure in the definition of
clipped ensures that holds-at works correctly even when events
and times are only partially ordered and this mapping is not
fully known.

Part of the domain theory is captured in a set of initiates and
terminates clauses. For example, the Blocks World is described
by the following clauses. The term on(X, Y) names the property
that block X is on top of block Y or at location Y, and the term
clear(X) names the property that block or location X has
nothing on top of it. The term move(X,Y) names the event or
act type of moving block X onto block or location Y.

initiated (E,on(X)Y)) if act(E,move(X,Y)) (2.1)
Initiates(E,clear(Z)) if (2.2)
act(E,move(X,Y)) and
holds-at(on(X,Z),time(E)) and Z#Y
terminates(E,clear(Y)) ifact(E,move(X,Y)) (2.3)
terminates(E,on(X,Z)) if (2.4)

act(eE,move(X,Y)) and Z#Y

To simplify examples, these clauses do not account for the
preconditions of events, such as the need for X to be clear if
move(X,Y) is going to have any effect. If necessary,
preconditions can easily be incorporated by adding extra
conditions to the bodies of in7itiates and terminates clauses, or
can be expressed as integrity constraints [Eshghi, 1988).

The importance of supplying a clear semantics for
formulations of default persistence has been demonstrated by
Hanks and McDermott [1987]. The example here has a clear
semantics because Axioms (1.1) to (2.4) are stratified and
therefore have a unique standard model [Apt et al., 1988],
[Przymusinski, 1988]. But note that Axiom (2.2) has a holds-at
In its body. If a terminates clause had a holds-at in its body,
then we would no longer have stratification, because holds-at is
defined in terms of terminates via a negation, and terminates
would be defined in terms of holds-at. Such cases are quite
likely to arise. Intuitively, it is clear that this does not cause a
problem because of the partial ordering of the events. To show
this formally, we need to perform a construction which | will
sketch briefly. Each terminates clause defined in terms of holds-
at is folded up with Axioms (1.1) and (1.2) giving a
replacement clause of the form

holds-at(P, T2)if (3.1)
Tl <T2and.. . and not holds-at(P'Jl)
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This can be replaced by a set of clauses, one for each pair
of times t,,f, in the Herbrand universe such that ¢, < t,, of the
form

holds-at(P,t2) if. . . and not holds-at(P'tj) (3.2)

Since times are ordered, any set of such clauses is locally
stratified [Przymusinski, 1988], and accordingly has a clear
semantics. So, for example, the Yale shooting problem can be
formulated by a simple set of initiates and terminates clauses,
without the attendant semantic problems described by Hanks
and McDermott [1987].

In fact, using negation-as-failure, the correct handling of
not holds-at in all cases requires some extensions, since holds-
at can fail simply because the ordering of events and times is
not known. There is a distinction between necessarily-holds-at,
meaning that holds-at is true in all possible orderings of times
and events, and possibly-holds-at, meaning holds-at is true in
some possible ordering of times and events. Likewise there is a
distinction between possibly-clipped and necessarily-clipped.
The existing definitions are for necessarily-holds-at in terms of
not possibly-clipped. But a symmetrical definition is required
for possibly-ho Ids-at in terms of not necessarily-clipped. Then,
we write not possibly-holds-at where we would previously
have written not holds-at, meaning that holds-at fails in all
possible orderings of events. To make all this clear would
require considerable further discussion, and to incorporate the
extensions in this paper would only make the examples more
confusing, so | won't mention the mutter again.

3. Prediction and Explanation

The Event Calculus as described can be used to solve
prediction problems, that is problems of reasoning from causes
to effects, through deduction. The domain is captured by a

theory T which includes a set of initiates and terminates clauses
and other causal laws as well as the Event Calculus Axioms
(1.1) and (1.2). A particular history of events is represented by

a set A of happens and temporal ordering clauses. Then, the
properties which hold as a consequence of these events are
represented by the set G of atomic holds-at clauses which are

logical consequences of T U A. In other words prediction is

determining members of Gwhere TUA G.

The domain theory T is strictly causal in the sense none of
its rules is of the form cause if effect. The intuitive and correct
way to express the relationship between causes and effects is
with the implication the other way around. Rules of the form
cause If effect, like those used in Mycin, are almost invariably
false, since a given effect usually has many potential causes.
Only in particular domains is it possible to assume that there is a
unique cause for a given effect, and even then expressing causal
laws as inverted implications is counter-intuitive.

However, this begs the question of how explanation, that is
reasoning from effects to causes, is to be done. It is tempting to
add further clauses to facilitate explanation, possibly of the
cause If effect form criticised above. But this temptation should
be resisted. If the theory T adequately captures the relationship
between causes and effects it should be equally good for both
prediction and explanation. It is important to recognise that
explanation can be done through abduction with the same
theory. Suppose we are given the theory T and we wish to find

possible histories of events A which would explain a set of
properties G expressed as holds-at clauses. Then we wish to

find A's such that TUA |= G, and this is abduction.
We can be a bit more precise about what sorts of A

constitute good explanations. First, A should describe a history
of events. So it should contain only atomic happens, act and



temporal ordering clauses. Second, it should be minimal in the
sense that there should not be a A* such that A* Aand T U

A*E G. There can, of course, be many minimal A's. A third
criterion for a good explanation is that it should postulate the
fewest events possible. This suggests a preference relation on

A's such that Al is preferable to A2 if it contains fewer happens
clauses. Of course, there may still be many equally preferable

minimal As. Clauses which appear in all A's for a given G can
be thought of as the defeasibly necessary conditions for G.
They are only defeasibly necessary since the addition of new
causal laws to T could render G explicable in other ways. Each

separate A is a set of defeasibly sufficient conditions for G.
They are only defeasibly sufficient, because of default

persistence — the addition of further events to A could mean
that G is no longer explicable by A

4. Persistence

This section shows how default persistence is handled by
the abductive approach to explanation. Suppose we are told that
property p holds at time t7. In the absence of any further
iInformation, what inferences may we reasonably make about a
time t2 after t4? The usual notion of default persistence which
licenses the inference that P still holds at t2, and which is built
in to the Event Calculus as well as many other formalisms, is
based on two epistemological assumptions and one
metaphysical assumption. First, it is assumed that no events
occur other than those which are known to occur. Second, it is
assumed that no types of event can affect a given property other
than those which are known to do so. Third, it is assumed that
properties do in fact persist until something happens which
affects them.

Incorporated into the framework presented here is a fourth
assumption; that every property which is known to hold has an
explanation in terms of events. The conclusion that p holds at t,
Is derived partly through deduction and partly through
abduction. An event is postulated to explain why p holds at t;,
which initiates p and which occurs before f/, and then default
persistence is applied to conclude that p still holds at t2.
Suppose that the domain theory T comprises Axioms (1.1) to

(2.4), that we have a set of axioms A which represents a history
of events, and that we are told that block a is at location x at
time t;. So we have

holds-at(on(a,x),t1) (4,1)

This fact is not added directly to the set of axioms A and

used to predict new consequences G such that T U A= G.
Rather, since it is a holds-at fact, it requires explanation. So it is

added to the set of theorems G, and suitable As must be sought
through abduction which rebalance the sequent T UA F G. We

do not wish to extend the domain theory, so A must contain
only happens, act and temporal ordering axioms. For this

example all such A's include three axioms of the following
form.

happens(e) (5.1)
act(e,move(a,x)) (5.2)
e<t1 (5.3)

In the absence of further axioms, these plus Axioms (1.1)
to (2.2) allow us to conclude the default persistence of the
property on(a,x) through time t7 and through any time t2 after
t1. The new constant e is invented by abduction to name the

event it has postulated. The only thing known about the time of
this event is that it is before t;. If such an event were already a

part of A then it would not of course be necessary to add
anything to A

Suppose that in addition to (4.1), we are also told that the
block a is at location y at time t3 which is after {1. So we have

holds-at(on(a x),t]) (4.1)
holds-at(on(a,y),t3) (6.1)
<t <13 (6.2)

Let us be clear how default persistence should behave with
this information. In general, if we are told that a property holds
at a time t1, we assume that it still holds at any later time t2
unless we have reason to believe that it changes some time
between t1 and t2. But in this case, we know that at some time
between t1 and r? the block ceases to be at location x and starts
to be at location y. In fact, since we do not know when between
t1 and t3 this change occurs, it is not reasonable to conclude
anything about whether the book is on the table or the shelf at
any given point between these times. This problem is analogous
to Kautz's "stolen car" problem [Kautz, 1986], and many
approaches to default persistence do not deal with it correctly.
For example, with Shoham's logic [Shoham, 19881, default
persistence postpones change until as late as possible, and it is
then a logical consequence of the information in (4.1), (6.1)
and (6.2) that the block is still at location x immediately before
time t3.

The approach to default persistence proposed here does not
suffer from this problem because of its insistence that every
property that holds has an explanation in terms of events.
Others have proposed similar solutions using deduction
[Morgenstern and Stein, 1988], [Lifschitz and Rabinov, 1988].
But using abduction, rather than adding (4.1) and (6.1) to the

set of axioms A, they are added to the set of theorems G. This

leads to the rebalancing of the sequent T U A G via the
abduction of axioms (5.1) to (5.3) to explain (4.1) as described
above, and also the abduction of the following four axioms to
explain (6.1).

happens(e’) (7.1)
act(e’,move(a,y)) (7.2)
e <13 (7.3)
ty< e’ (7.4)

With the addition of (7.1) to (7.4) to A, because the relative
ordering of e’ and t2 is not known, default persistence no
longer licenses the conclusion that holds-at(on(ajc),t2). Axioms

(7.1) to (7.4) will be present in any A which explains G, and
can be thought of as the necessary conditions for G given T. A

more complicated example might yield many A's, and each

such A is a set of (defeasibly) sufficient conditions for G given

T.

Unlike many formulations of persistence, that presented
here works forwards only. Suppose again that we are told that
property p holds at time t7. In the absence of any further
iInformation, what inferences may we reasonably make about a
time to before t1? The three assumptions which license the
default inference that p still holds at a time {2 after t7 do not
apply to a time before f/. With the additional assumption that
properties require explanations, we conclude that some event
must have occurred to initiate/?. But we have no idea when that
event occurred — it may have been before or after fo. So there
IS no reason to suppose that p holds at to. The correct way to
deal with persistence is to ensure that it works forwards only.
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5. The Abductive Mechanism

The abductive approach to explanation can be realised using
a mechanism which is a straightforward extension of SLD
resolution. Let us consider SLD resolution first. Given a set of

definite clauses T and a goal clause <—Go, an SLD refutation of
<—@Go...<—G,
<-G, is the empty clause and each <— Gi+1 is obtained from

<-GO0 is a sequence of goal clauses where

<— GI by resolving one of its literals with one of the clauses in
T. In a Prolog interpreter, the leftmost literal is always selected.
Since there may be many clauses in T which can be resolved
with the selected literal, a space of possible refutations is
defined, which may be searched, for example, depth-first by a
simple chronological backtracking procedure. Now suppose

that there is some *-G, whose selected literal g will not resolve
with any clause in T. Usually this means that sequences

beginning with <— Go . . . <— Gi are not worth exploring. But if
we are searching for a set of unit clauses A such that TuAkGo,
then clearly by letting A include a unit clause which resolves

with g, we can continue the search with <— Gi+1 equal to <—G

minus the literal g. This suggests the following extension to
SLD resolution.

A subset of the predicate symbols mentioned in T are
designated as the abducibles. A literal whose predicate symbol
Is abducible is also called abducible. To find a set of unit

TUA,EGO and A, mentions only
. <Gp,Anis
constructed, where each <G is a goal clause, each A; is a set

clauses A, such that
abducibles, a refutation of the form <—Go0AO0

of unit clauses mentioning only abducibles, <— G, is the empty
clause, A0 is the empty set, and each <—G/+1,A+71 is obtained

from <Gi,Ai as follows. If g, the selected literal of <—Gi, can
be resolved with one of the clauses in T, then a single

resolution step is taken as described above and Ai+71 is Ai. If g
Is abducible and cannot be resolved with any clause in T, then

Gi+1 is Gi minus g and Aj +71is Ai plus the unit clause g—
where g'is g with all its variables replaced by skolem constants
[Cox and Pietrzykowski, 1986]. If g were not skolemised, all

the variables in g'— would be universally quantified, which

would make it unnecessarily strong. Its variables only need to
be existentially quantified for it be resolvable with g. The

accumulated set of unit clauses A, is called the residue.

The basic mechanism can be extended to cope with
negation-as-failure (Eshghi and Kowalski [1988] and Poole
[1988) discuss the use of abduction as a general framework for
default reasoning). This is essential to cope with default
persistence in the Event Calculus. Suppose that the selected
literal of the current goal clause is not g. The usual negation-as-
failure method is adopted, and not g is assumed to be true if g
cannot be proved with the current residue. But later in the
refutation, additions to the residue can make g provable.
Accordingly, it is necessary to record all negated assumptions,
and whenever new clauses are added to the residue, these
assumptions must be rechecked. This is a potential
computational bottleneck, but some form of incremental
mechanism could be used to minimise this [Sadri and
Kowalski, 1988], [Shanahan, 1987]. The negated assumptions
that are recorded can be thought of as part of the residue, and
rechecking them is like checking for consistency with an
implicit integrity constraint. As with abducible literals, all the
variables in a recorded negated assumption are replaced by
skolem constants.
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A further complication arises with nested negation-as-

failure. Suppose that there is a clause of the form g <— not h’

and that h'is not provable with the current residue. Then an
attempt to prove not g using SLD resolution with negation-as-
failure will fail because it is not possible to prove h'. Yet it
might have been possible to render h' provable by adding
further clauses to the residue. So rather than using SLD
resolution to try to show h', abduction is used instead and is
allowed to add to the residue. This procedure can be generalised
to any level of nesting — SLD is used at even levels and
abduction is used at odd levels.

This general abductive mechanism can be specialised for the
Event Calculus axioms above. Any goal of the form happens
(E), act(EA) and T1 < T2 is abducible. The initial goal clause

Is of the form  <-holds-at(P;T4). . ., holds-at(P,,T,), and the
procedure is then the same as above. Of course, a complete

search space for a given G may contain many A's, as indeed
there may be many possible explanations for G. By ordering
the branches of the search space appropriately, the simplest
explanations — those which postulate the fewest events — will
be generated first. One heuristic for extracting the simplest
explanations first is to reuse old skolem constants rather than
generating new ones. For example, if the residue contains

act(s,move(a,b)), and the goal clause is <—act(E,move(a,b)),. .
. , where s is a skolem constant, then the simplest way of
resolving away the act literal is just to bind E to s, rather than to
postulate another event and add another act clause to the
residue. Later on though, this binding may lead to a failing
branch of the search, in which case backtracking takes place
and a new event has to be postulated after all. A similar case
arises if a skolem constant has already been created, but can be
eliminated later. For example, suppose the residue contains

act(e,move(s,b)) and the goal clause is <-act(e,move(a,b)). The

simplest way to resolve away the act literal this time is to
replace all occurrences of the skolem constant s by a, rather
than adding a new act clause to the residue. Again, later failure
may mean that backtracking undoes this decision. In general,
explanations can be generated in order of simplicity by
abandoning a depth-first search strategy in favour of one which
explores branches which don't postulate new events first.

Let us consider a trivial example of this mechanism applied

holds-at(on(a,x),10)
A ={]

happens(E),initiates(E,on(a,x)),E<10,
not clipped(E,on(ax).t0)

' = {happens(el )}

initiates(el ,on(a,x)),el <10,
not clipped(el,on{ax).t0)

|

act(el move(ax)).el <10,
not clipped(el ,on(ax),10)

A’ = [happens(el),
act(el move(ax))}

el <10, not clipped(el ,on(a,x),10)

A" = {happens(el),
act(el move(ax)),

' 1
not clipped(el,on(ax),tl) el <10}

4

Figure 1.



to explanation. Given Axioms (2.2) to (2.4) for the Blocks
World, suppose that we require an explanation for the fact that
holds-at(on(a,x),tO). The search space for this example is
shown in Figure 1. Abduction generates the residue

A'={happens(el), act(el,move(ajc)), el<t0).

The next example is more complicated and illustates most of
the features of the mechanism | have described. Suppose that
we are given that t0<t71 and t/I<t2, and we want an explanation
for holds-at(on(a,x),tO) and holds-at(on(a,x),t2) and holds-
at(clear(x),tl). This is an extension of the previous example,
and the search space in Figure 2 would be appended to the one
above if the extra goals were added. It is assumed that the

residue already contains A’, and the overall residue is A = A" U
A",

When abducing an event to explain holds-at(on(a,x),t2), the
mechanism has the option of supposing that it is the same event
as the one it has already postulated el, or of postulating a new
event e2. This gives rise to two branches in the search space.
Furthermore, el does initiate the property on(a,x) and does
occur before r2, and it cannot yet be shown that
clipped(el,on(a,x),t2). But when, in order to explain holds-
at(clear(x),tl), an event e3 has to be postulated which initiates
clear(x), clauses are added to the residue which make it possible

to show that clipped(el,on(a,x),t2), and this gives rise to a
failure. The mechanism backtracks and explores the second
branch of the search space, which succeeds with the overall

residue A = {happens(el), act(el,move(a,x)), el<tO,
happens(e2), act(e2,move(a,x)), e2<t2, happens(e3l),
act(e3,move(a,l)), e3<tl, e3<e2, el<e3}. The skolem constant
/ represents an unspecified location, and could later be replaced
by the name of a real location. Note that if the goals had been
presented in a different order, then the first branch might not
have been explored. Also, if the goal holds-at(clear(x),tl) were
not included then the first branch of the search space would
succeed with the simplest explanation, postulating only the
event el to explain both of the other holds-at goals. The
solution of the last not clipped goal shows how extra
constraints on temporal ordering can be generated even within a
negation. Without the addition of the clause el<e2, it would
have been possible to prove clipped(e3,clear(x),t!l

6. Concluding Remarks

Finger and Genesereth [19851 describe an extension to
resolution which is similar to the mechanism presented here,
but have applied it to design synthesis rather than temporal
reasoning. Cox and Pietrzykowski [1986] also describe a

holds-at(on(a,x),12),holds-at(clear(x),1])

A= (] |

happens(E ) initiates(E,on(a,x)), E<t2,

E=el
A= (]

initiates(el ,on(a,x)),el <12,

not clipped(E,on(ax),t2) holds-at(clear(x),t1)

/ \ A" = {happens(e?)]

initiates(e2 on(a,x)),e2<t2,

not Cﬁpp@d???] .on(ax),t2),
holds-at(clear(x),11)

act(el move(ax)),el <12,

not clipped(e2,on(ax),12),
holds-at(clear(x),11)

act(e2 move(a.x)),e2<12,

not clipped(el,on(ax),12),
holds-at(clear(x),t1)
"=1{]
el<i2, not clipped(el.,onf(a,x),t2),
holds-at(clear(x),t])

A" =] |
not clipped(el on{a.x).t2),

not clipped(e2,on{a.x),t2),

not clipped(e?,on(ax)12),
holds-at(clear(x),t1)

A" = {happens(e2),
act(e2,move(ax)))

el <12, not clipped(e2,on(a,x),12),
holds-at(clear(x),t1)

A" = {happens(e2),
act(e2 move(a,x)),

holds-at(clear(x),t1)

holds-at(clear(x),t1)

holds-at(clear(x),t1)

e2<12)

holds-at(clear{x),t!)

;

happens(E ), initiates(E clear(x)),
I'<tl not clipped(E,clear(x),t1)

A" = {happens(e3),
act(e3 move(aX),
e3<tl)

Fails because
clipped(el ,on(a,x),t2)
Is now provable

happens(E ) inttiates(E clear(x)),

E<tl not clipped(E,clear(x),tl)

A" = {happens(e2),
act{e2 move(a,x)),el2<12,
happens(el ),act(e3,move(a,l),
es<tl,e3<e?)

not clipped(e3.clear(x),t1)

A" = (happens(e2),
act(e2,move(a,x)),e2<12,
happens(e3),act(e3,move(a,l),
e3<tl e3<e2,el<el}

Figure 2.
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related technique. Eshghi [1988] has applied abduction to
temporal reasoning, specifically to planning, using a form of
Kowalski and Sergot's Event Calculus which is very different
from their original formulation. His approach employs meta-
level integrity constraints to represent preconditions for actions
as well as to handle default persistence, and uses an elaborate
mechanism to cope with explicit equalities which are generated
in place of the usual implicit bindings generated by a resolution
system.

The approach taken in this paper is to use stratification
semantics for negation-as-failure, and to use negation-as-failure
to give default persistence. Abduction is used only for
explanation. Eshghi and Kowalski [1988], however, present an
abduction semantics for negation-as-failure itself, and Poole
[1988] also presents an abductive framework for default
reasoning. This suggests that both persistence and explanation
could be done in a purely abductive framework, but this
possibility needs further investigation.

Morgenstem and Stein [1988] and Lifschitz and Rabinov
[1988] tackle a similar problem to the one addressed in this
paper, the former using model preference and the latter using
circumscription. The relationship between the three approaches
is not yet clear and warrants further study.

A prototype of the system described has been implemented
in Prolog. This has highlighted the need for a more
sophisticated control strategy than that provided by simple
chronological backtracking, since the system spends much time
exploring possible explanations which are clearly ridiculous,
and often loops in subtle and unexpected ways.
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A knowledge-level account of abduction

(preliminary version)

Hector J. Levesque®
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University of Toronto
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Abstract

In this paper, we consider a new definition of
abduction that makes it depend on an under-
lying formal model of belief. In particular, dif-
ferent models of belief will give rise to differ-
ent forms of abductive reasoning. Based on
this definition, we then prove three main the-
orems: first, that when belief is closed under
logical implication, the corresponding form of
abduction is precisely what is performed by
the ATMS as characterized by Reiter and de
Kleer; second, that with the more limited "ex-
plicit" belief defined by Levesque, the required
abduction is computationally tractable in cer-
tain cases where the ATMS is not; and finally,
that something is believed in the implicit sense
Iff repeatedly applying a limited abduction op-
erator eventually yields something that is be-
lieved in the explicit sense. This last result re-
lates deduction and abduction as well as limited
and unlimited reasoning all within the context
of a logic of belief.

1 Introduction

Using the terminology of C. S. Peirce, given sentences
a, B, and (a D, ﬁ) there are three operations one can
consider: from a and (a D ﬂ), one might deduce f; from
a and B, one might induce (@« D' #); and from B and
(a D, ﬂ) one might abduce a Of course, characterizing
precisely what should be deduced, induced, or abduced
In various circumstances is quite another matter, and the
last of these is the subject of this paper.

Abduction can be thought of as a form of hypothet-
ical reasoning. To ask what can be abduced from [3 is
to ask for an a which, in conjunction with background
knowledge,” is sufficient to account for B. When a and
B are about the physical world, this normally involves

*Fellow of The Canadian Institute for Advanced Research.
This research was made possible in part by a grant from
the Natural Sciences and Engineering Research Council of
Canada.

'"More likely, one would want to induce Vz(a D ﬂ) from
instances of a and g.

“The distinction between knowledge and belief is not im-
portant here, and we will use the terms interchangeably.

M5S 1A4

finding a cause a for an observed effect B. For instance,
B might say that a symptom of some sort is observed
and a might say that a disease is present. We often say
In this case, that a explains . But not all abduction is
concerned with cause and effect. If we happen to known
that Marc is 3 or 4 years old, the fact that he is not yet
4 does not explain his being 3, although it does imply it,
given what is known.’ It would be more accurate to say
that the a is sufficient to tell us that the B is true. But
this is a bit cumbersome, so with this caveat in mind,
we will often use the explanation terminology here.

When it comes to formally characterizing abduction,
existing approaches fall into two broad camps: those, like
[Reggia, 1983, Allernand et a/., 1987], that are set-cover
based, and those, like [Poole, 1988, Eshghi and Kowalski,
1988], that are logic based. In the former case, abduc-
tion is defined over sets of observations and hypotheses,
iIn terms of coverings, parsimony, plausibility, and the
like. A disadvantage of this approach is that it is dif-
ficult to express how a small change in the background
knowledge can contribute to changing what counts as an
explanation. In the latter case, however, this knowledge
IS represented directly as a logical theory, and a is con-
sidered an explanation for B if (1) it is logically consistent
with what is known, and (2) together with this knowl-
edge, logically implies . The disadvantage of defining
abduction in this way is that it locks the specification
of reasoning into global properties of the logic such as
consistency and implication. Different reasoning abili-
ties, deductive or abductive, will then require different
notions of implication or consistency.

Here we take a different approach and characterize
abduction in terms of a model of belief. When belief is
closed under ordinary logical consequence, this account
will coincide with the idealized logic-based version. How-
ever, we can look at different forms of abduction by vary-
ing the underlying notion of belief, without changing the
meaning of implication. This knowledge-level approach
[Newell, 1982, Levesque and Brachman, 1986] will also

> Another reason for distinguishing this from explanation
is that we normally say that a explains B only when we be-
lieve B to be true, for example, when we have observed the
symptoms in question. So a true account of explanation per
se is complicated by the fact that it must consider what was
known prior to believing B [Gardenfors, 1988], or else there
will be nothing left to explain, given what is known.
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force us to characterize the abduction task independently
of how the knowledge is represented, and thus afford the
greatest freedom in how to represent and manipulate this
knowledge at the symbol level.

In the next section, we 1ntroduce notation, discuss
the need for a simplicity measure, and define a new
knowledge-level operator EXPLAIN. In Section 3, we
discuss the concept of regular belief and 1ts relation to
EXPLAIN. In Section 4, we examine a form of belief that
1s closed under logical consequence, and the ATMS as an
abductive reasoner. In Section 5, we consider the spec-
ification of a more hmited abductive reasoner. Finally,
we draw conclusions in Section 7.

2 Abduction at the knowledge level

To define abduction, we start with £, a standard proposi-
tional language (except that for convenience, we include
a special constant [, for falsity). All beliefs will be
expressed in L. We use p, ¢, and r to range over the
propositional letters of £; «, 3, and v to range over the
sentences of £; m to range over the literals of £; m to
mean the complement of m; and, A{a;} to conjoin a set
of sentences, and \/{«,} to disjoin them.

To talk about what 1s or 1s not believed, we use a
logical language L£* that 1s structured like £, except that
all of its atomic sentences are of the form Ba, where a
is a sentence of £.* For different kinds of belief, we use
a subscript on the behef operator. So, Bya says that o
1s a belief of type A.

The languages £ and L* are both interpreted in the
standard way in that the truth values of non-atomic sen-
tences are the usual functions of the truth values of their
components. For the atomic sentences of £, an assign-
ment 1s a total function from the propositional letters
to 10,1}, and w =« means that « is true with respect
to assignment w according to the ordinary truth table
(where 0O always comes out false). For the atomic sen-
tences of £*, we assume that an epistemic state of some
sort determines which sentences of £ are believed. The
notation e = Bja says that Bya 1s true at epistemic
state e, which we will take as a primitive notion for now,
until we look at specific types of belief.

For any sentence a of £, 1t will be useful to talk about
| ||, the proposition expressed by «. Nothing hinges
on how exactly propositions are defined, but for con-
creteness, they can be taken to be the set of all assign-
ments where the sentence in question is true. Simlarly,

[ {a1,...,an}|| is defined as {||a1 ||, .., || a@n]|}-

2.1 Simplicity and uniqueness

Deductive and abductive reasoning appear to be duals,
but one difference between the two is that in the case
of deduction, we are usually interested in testing if some
sentence is deducible, while in the case of abduction, we
want to produce a sentence that is abducible.”

For the purpose of this paper, therefore, we will not con-
sider beliefs about other beliefs.

*However, see Section 7 where the symmetry between de-
duction and abduction is reconsidered.
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For example, consider a medical domain where sen-
tences of £ stand for properties that may or may not
hold of a certain patient. Suppose we know that male
and (hepatitis D) jaundice) are both true. If we observe
jaundice in the patient, we might be interested in deter-
mining what might explain it, based on what we know
about the patient. In other words, we want to reason ab-
ductively from jaundice, to find something that accounts
for it, given what is known. In this case, the answer is
clearly hepatitis, but it is not obvious how to characterize
In general the answers we are looking for.

First of all, we cannot expect a single explanation
since, for example,

(( "~ hepatitis A migraines) V  (hepatitis A\ —~migraines))

also accounts for jaundice. But even if we factor out logi-
cally equivalent sentences and think in terms of proposi-
tions, there will be propositions that are logically too
strong, and others that are logically too weak. For
instance, (hepatitis A migraines) accounts for the jaun-
dice in that it is consistent with what is known, and
If it were true, then jaundice would be too. Similarly,
(hepatitis V- male) accounts for jaundice since it too is
consistent with what is known, and if it were true, then
Jjaundice would be also, since male is known to be true.
Yet (hepatitis/\ migraines) implies hepatitis which implies
(hepatitis V -"malc).

So what is it that distinguishes || hepatitis\\| from these
other propositions? Is there a way to sort this out purely
logically (in terms of sets of possible worlds and dis-
tance measures or whatever) and define an appropriate
explanation? As it turns out, the answer is no. To see
this, suppose to the contrary that there were a func-
tion F that given the proposition expressed by ( )
and the one expressed by B would always return the one
expressed by a. That is, suppose that for every a and

B, F(ll (¢« D B IlLl BI=I|| «||. Then, we would have
F(lte = ) LI elD=l¢ll and F(|[(O D g)|l.|[¢lD=]l O |-
However, || (¢ D ¢) {|=|[ (O D ¢) || since the two sen-
tences are logically equivalent.® But this implies that
| O ||=|| ¢ ||, which is incorrect. So such @ function F
cannot exist, and we are forced to go beyond the logic
of the sentences (that is, beyond the propositions ex-
pressed) to differentiate hepatitis from other potential
explanations.

One obvious approach is to maintain a list of sen-
tences that are marked as possible hypotheses as is done
iIn [Poole, 1988, Reiter, 1987] and to only consider sen-
tences appearing in this list. But this fails to account
for why we find hepatitis so compelling as the unique
explanation for jaundice in the above. Perhaps it is be-
cause hepatitis does not deal with any other conditions,
either to insist on (conjoin) irrelevant restrictions like
migraines, or to allow for (disjoin) possibilities known to
be false like -imalc. This suggests that we should be look-
ing for sentences that are as simple as possible in their
subject matter. With this notion of simplicity in mind,
we are ready to provide a formal definition of abduction
iIn terms of belief.

°A stronger argument would be needed for a notion of
proposition that was finer-grained than logical equivalence.



2.2 A general definition

First, we define explanation wrt an epistemic state e for
a type of belief A:

Definition 1 «a expl, 8 wrt e iff
e =[Bx(a D B) A —'B)\-na].7

This definition does not distinguish between trivial and
non-trivial occurrences of B(a D f3). For example, as-
suming that (jaundice D jaundice) is believed but that
-jaundice is not, jaundice expl, jaundice wrt e holds,
that is, having jaundice is clearly (and trivially) suffi-
cient to account for having jaundice. More generally, if
nothing is believed about B other than logical truths,
then there will only be trivial explanations. In addition,
for many types of belief, we have that if [ is believed,
then there will be no explanations at all, whereas iff3 it-
self is believed, then =[] will be-the unique explanation.

As discussed above, the definition of explanation must
depend on some syntactic criterion of simplicity. Per-
haps the easiest one is the following:

Defimition 2 The literals of «, LITs(a), is defined by:
Lirs(0)=0;  irs(p)={p};
LITS(—a)={m | m € L1Ts(w)};
LITS(x A B)=LITS(ax V B)=1L1TS () U LITS(3).

Definition 3 « s simpler than 3 (written o < ) ff
LITS(cr) C LITS(S); also a < A ff L1Ts(ar) C 1.175().

So “sympler” « . | el
o “simpler” means “containing fewer propositional let
ters,” but keeping track of their polanty. For example

(p A —q) < (q.D (pVr)), but (p A—q) # (““{ D(pVr)
We define a simplest explanation in the obvious way:

Definition 4
a min-cxply, S wrt ¢ Il aexpl, f wrt ¢ and
for no @® < a 1s 1t the case that o* expl, [ wrt e.

Finally, since there may be more than one simplest- ex-
planation, and since we do not really care at this level
how each simplest explanation is expressed, the task of
abduction will be to return the set of propositions of all
simplest explanations:

Definition 5
EXPLAIN,)[e, 8] = || {e | @ min-expl, # wrt e} |].

These simplest explanations should be understood dis-
junctively. For example, if we know that (p;D q\) and
(P2 D q2), then pi is a simplest explanation of (g Vq2)
and so is P2. However, it is the disjunction (p1 VP2) that
fully and non-trivially accounts for (q\ V q2).

"In the final paper, various other options for these two
conjuncts will be examined. Instead of the first one, we might
want to say that if we were fold at, then we would believe G,
which need not be the same as believing (@« D f) in the
presence of defaults; instead of the second one, we might
prefer saying for a given 7 that we do not believe (@ D ¥)
(to handle negative evidence), which for regular belief (see
below) coincides with the above when 7 is 0O

°For some applications, we might wish to use a superset of
this relation. For example, we might want to say that p <gq
even though both are atomic, if we consider p to be much
more likely than q. But we should never have to consider a
subset of the relation.

This completes the knowledge-level characterization of
abduction. The theorems to follow below (especially the
relationship to the ATMS) are the best evidence that the
definition is apt. But it is worth noting here how simple
and general the account is. It is the first (to my knowl-
edge) that not only works for sentences [ of arbitrary
syntactic form, but is also sensitive to what is known
without requiring an explicit list of the known sentences.
In other words, it does not depend in any way on how
the epistemic state e is represented (and so is truly at
the knowledge level). Computations at the symbol level,
of course, will need to operate on finite symbolic rep-
resentations of that state. Typically, for each type of
belief A, there will be a function Ry that maps (finite)

sets of sentences into epistemic states. At the symbol
level, there will be a procedure of some sort that takes a
representation of knowledge KB and a sentence [ as ar-
guments, and produces a set of sentences by abductive
reasoning. For an abductive procedure to be correct,
the sentences it returns must express all and only the
simplest explanations of (3 wrt the epistemic state rep-
resented by KB. Thus, what we will want to establish
for various types of belief and associated computational
procedures explain[KB,B] is the following:®

EXPLAIN, [Rr(XB), 8] = || explain|kB, 3]]|.

Note that for this general account, correctness does not
require the sentences returned by the symbol-level pro-
cedure to be in a certain syntactic form, provided that
they express the right propositions.

3 A generic abduction operation

Before looking at two specific types of belief, we define
what it means for belief to be regular. In what follows,
we use the following notation: x, y, and z stand for
clauses, that is, finite sets of literals always understood
disjunctively; the empty clause is OO ; (x —y) is the clause
whose literals are those in the set difference of x and y; x
Is the set of complements of the literals in x, now under-
stood conjunctively; E and F stand for sets of clauses; for
any ., u2. is the set of smallest (in the sense of subset)

elements of 3; and finally, CNF(cx) is the set of small-
est clauses that result from converting a to conjunctive
normal form, and analogously for DNF(a).

Definition G A type of belief A is regular iff for every

epistemic state, the following sentences of £* are true:
1. B,—~0O;
2. (BxaVB,\3) D Bi(aVp);

. By(aAB) D (Bra ADBy\pB);

. (Bye ADByG) D Ba(a A pP);

B, = B,a*, if a* 1s a 1n CNF or DNF, or 1s

the result of replacing any subformula £ 1n « by g%,

where (recursively) B)f = B,(* is always true.'®

Cv oo O

We now define a very general operation on two sets of
clauses (which we will eventually use for both types of
belief below) as follows:

We use this font to indicate a symbol level procedure.
""Note that this does not sanction replacing 8 by every-
thing logically equivalent to it.
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Definition 7 V(X,T') =

_ WyeEST, ygz and
H ZIVa:GF,HyEE,xﬂy#@and(y-—-:n)Cz

This generalizes the MIN-SUPPORTS operation of [Re-
iter and de Kleer, 1987: MIN-SUPPORTS(z,L) =

V(mprs(X), {z}), where IMPS(X) 1s defined below. In-
formally, the elements of ¥ should be thought of as the
clauses that are believed, the elements of I' as the clauses
to be explained, and V(Z,I') as the minimal explana-
tions. For instance, if

E::{(pl ng), (p1 Vﬁs VP?): (szﬁe VP','), (-’53\/58)’ (-ﬁdlv—p-S)}
an

I'={p1, (p2 VP3)},

then V(Z, T)={(paAps AD7), (Ps APs AD7), (Ps AP7APs)}.
That is, if we take one of these explanations, (p4ApsAD,),

and assume that it and the elements of ¥ are true, we
get that (p; A p2) must be true, which implies that the
clauses of T must all be true. The other two explanations
work analogously. Note that (pg A ps) is not returned as
an explanation since it is believed to be false, that is, its
negation is an element of X.

The important property of V is that although it only
deals with clauses, it can be used to provide correct ab-
ductive reasoning for regular belief:

Theorem 1 For reqular belief,

expLaiNale, 4] = [[V({y | ¢ EBay), oNr(B))].
Proof: The proof depends on two key lemmas:

Lemma 1.1 If o expl, B wrt e then
Jdz € DNF(a), Z exply, § wrt e.

Lemma 1.2 7 exply, § wrt e iff
dz C z,Z7 € V({y | e =EByy}, CNF(F)).

The final paper proves these and the theorem. u

What this theorem establishes at a very abstract level is
that for regular belief, it is sufficient to work with the
set of clauses believed and the CNF of the sentence to be
explained. This will immediately lead to two abductive
procedures below.

4 Case 1: Implicit belief

The first notion of belief we consider is the "classical”
one where beliefs are closed under logical consequence.
Following [Levesque,
and use B, as the belief operator. An epistemic state for
implicit belief can be modeled by any set of assignments,
where we have the following:

e=Bja 1ff forevery we€e wioa.

If KB is a set of sentences, then R4{(KB), the epistemic
state represented by KB, is modeled by the set of all
assignments that satisfy every element of KB. What is
believed in this state is precisely what follows from KB,
that is, if e = Ry(KB), we have that e|=Ba iff KB | a.
From this it follows that

a expl, f wrt e 1ff
KBU{a} = f# and KB U {a} is consistent,

which is precisely the account of explanation given by
(among others) Poole in [Poole, 1988].
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1984], we call this implicit belief

4.1 The ATMS

One abductive procedure that is receiving considerable
attention is the ATMS [de Kleer, 1986]. Unfortunately,
descriptions of the overall function computed by the
ATMS have been largely in terms of how it goes about
computing it. The first account that attempted to pro-
vide a logical reconstruction was that of Reiter and de
Kleer in [Reiter and de Kleer, 1987]. Although idiosyn-
cratic terms like labels, nodes, and nogoods are no longer
part of the formulation, their definition is in terms of
clause intersections and differences, notions that are (ar-
guably) still best understood as symbol level manipula-
tions of sentences in a certain form. However, given their
characterization, they are able to show the following:

Definition 8
The tmplicants of £, IMPS(X) = {y | £ | y}.

Theorem 2 (Reiter and de Kleer) Given a set of
Horn clauses ¥ and a letier p, the ATMS procedure 1is
defined by atms[X,p] = {(¢1A...Aq) | k> 0 and

'{51, - - 1q—k’p} S ‘”MPS(E)}'

In fact, Reiter and de Kleer generalize the account of
the ATMS to where the first argument is not necessarily
Horn and the second argument is any clause. However,
we can go even further by noting that

atms[X, p] = {(¥ - {P}) | p € y and y € pmPs(Z)}
= pl{z |Vy € IMPS(X), y & 2 and
dy € MPs(X), p € y and (y — {p}) = 2}
= V(iMPs(X), {{p}})-

Using this as a pattern, we can define a generalized
ATMS as follows:"'

Definition 9 gatms[¥, 8] = V(iMPs(X), cNF(B)).

Clearly this coincides with the ATMS specification when
2. is a set of Horn clauses and B is a propositional letter.
But what do these operations mean, and why should
anyone care about them? The answer, we claim, is that
the ATMS procedure correctly performs abduction for
implicit belief:

Theorem 3 EXPLAIN{[R(X), A] = ||gatms[Z, 5] ]|.

Proof: It 1s not hard to show that implicit belief is reg-
ular, and we have that

Ri(X)EDBiz iff z €i1Mmps(X).
The theorem then follows from Theorem 1. =

However else it has been characterized in the past, this
theorem establishes that an ATMS can be understood
as computing all simplest explanations with respect to
this type of implicit belief. Among other things, this
guarantees that Poole's account of abduction (with the
addition of the notion of simplicity defined here) also
specifies the task performed by an ATMS.

5 Case 2: Explicit belief

The second notion of belief we consider is a variant ofthe
one introduced in [Levesque, 1984] called explicit belief.
We use Bg as the belief operator for beliefs of this type.

In the final paper, we will consider a very different way
of generalizing the ATMS to handle arbitrary sentences.



The motivation behind explicit beliefwas to study a form
of belief that was more computationally tractable than
implicit belief, but remained defined in terms of truth
conditions on the sentences believed. Since a sentence is
implicitly believed if it comes out true at each element of
a set of assignments (or alternatively, accessible possible
worlds), it follows that implicit belief is closed under
logical consequence. For explicit belief, instead of using
assignments, we use situations, which can be taken to
be total functions from the literals to {0,1}, such that
for every p, at least one of p or p is assigned to 1.1°
We can think of assignments as those situations where
s(p) = 1 — s(p) for every letter p. But because not every
situation is an assignment, we must define truth support
recursively over sentences and their negations:

skEpiff s(p)=1; sk=—-p ff s(p) =1,
sE(aAp)iff s=Eaand sk pg;
sE—(aApB)ff sE-aor sE-F;
sE——a iff skEa.

An epistemic state for explicit belief is modeled by a set
of situations where we have the following:

e=Bga iff foreverys€e, skEa.

As in [Levesque, 1984], it is also useful to talk about the
implicit beliefs of e:

e =Bia iff for every assignment s € e, sk a.

As before, Re(KB) is modeled by the set of all situa-
tions that satisfy every element of KB. What is explictly
believed in such a state is not what logically follows
from KB, but rather what is tautologically entailed by
the KB (once tautologies are taken into account) in the
sense of Relevance Logic [Anderson and Belnap, 1975,
Dunn, 1976]. More precisely, if e = Rg(KB), we have
that e =Bga iff KB U T tautologically entails a, where
T is the set of all clauses of the form {p,p}.

5.1 Limited abductivc reasoning

To establish what form of abductive reasoning is appro-
priate for explicit belief, we need something that will
play the role that IMPS(E) played for implicit belief:

Definition 10
EXPS(E) = {y | y is tautologous or dy* € T, y* C y}.

The abductive reasoning we will use for explicit belief
iIs the same as that performed by the ATMS, but using
EXPS(E) instead of IMPS(E):

Definition 11 abd[X, 8] = V(EXPS(X), CNF(f)).

To see the difference between this procedure and the
ATMS, suppose that KB1 = {{¢},{sVp}L,{PVTVr}}
In this case, atms[KBi,r]={r,s,{pA q}}, so there are
three simplest explanations for r wrt implicit belief; but
abd[KB1, r]={r, {p A q}}, so s is not a simplest explana-
tion for r wrt to explicit belief. The difference is that

"“This restriction on situations was not present in
[Levesque, 1984]. It has the effect of making explicit be-
lief similar to the knowledge retrieval of [Frisch, 1988] in that
tautologies are always believed. This does not adversely af-
fect the desirable computational properties of explicit belief,
since for (non-quantificational) CNF, tautologies can be de-
tected in linear time.

whereas (s V r) is implicitly believed (since it follows
from KBy), it is not explicitly believed. In other words,
unlike the ATMS, abd[2,B] will not chain backwards to
see what might explain [, and this is exactly what is
required for explicit belief:

Theorem 4 ExXPLAIN:Re(X), 8] = ||abd[L, F]||.

Proof: Like implicit belief,
Also we have that

%E(E) —Bgzx ff z € EXPS(E).

The theorem then follows from Theorem 1. m

explicit belief is regular.

This theorem establishes that abd[E, B] correctly calcu-
lates all simplest explanations with respect to this type
of explicit belief.

But why should we care about a procedure that can-
not find some perfectly reasonable explanations that can
be found by an ATMS? The problem is that we may
have to wait too long for an ATMS to find them. This
has caused researchers to look for parallel realizations
of the procedure [Dixon and de Kleer, 1988]. But this
Is not just an ATMS implementation problem; the task
it performs is inherently difficult: in general, there will
be an exponential number of clauses to find,'® and just
deciding if {p,p} has any explanations at all is equiv-
alent to determining whether or not the set of clauses
E is satisfiable. So although (a parallel version of) the
ATMS may work fine in many application areas, as a
general-purpose mechanism for abductive reasoning, it
has serious computational drawbacks.

On the other hand, just as explicit belief is easier than
implicit belief when it comes to deductive reasoning, a
similar result carries over to abductive reasoning:

Theorem 5 [fKB is in CNF, there is an O(|KB|-|X])
algorithm for calculating abd[KB, Xx].

Proof: We use the fact that
abd[KB,z] = {{y — T) | y € hEXPS(KB), x Ny # B}.
We construct the answer as follows: cycle through
the elements of yKB, and for each y that is not tau-
tologous and that has an intersection with x, put
(y — x) into a set T. Then, for each m € x, put m
into T, unless {m} € KB. Finally, return z for each

zeul'. =
So for single clauses anyway, abductive reasoning for ex-
plicit beliefis considerably easier than abductive reason-
ing for implicit belief.

For arbitrary sentences , the case is not so clear
even if (3 is in CNF. Although we can quickly calcu-
late abd[E, x] for each clause x in 3, putting the answers
together involves converting a sentence into DNF:

Theoreta 6 Suppose CNF(f) = {z1,...Tn}.
~bd[Y, A] = u{Z | Vy € EXPS(X), y € z and
z € DNF(AT, Vabd[E, 2.]))

Proof: The proof will appear in the final paper. =

To see how this works, let KB, be kKByU{{aVb}, {¢Vb}},
where KB; is defined above. Then abd[KBs2, (rAb)] can be

computed by calculating \/abd[KBz, r] (as above), which
gives (rV(pAq)), then \/abd[KBy, b}, which gives (aVbVc),

In an unpublished note, David McAllester shows that
this remains true even when X is a set of Horn clauses.
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and then conjoining and putting the result into DNF,
which gives

{{pAqgna},{pAgAb},{PAgAc}
{rAa},{rAb},{rAc}}.

The only potential difficulty here is calculating the DNF.
When [ has very few clauses, or when almost all of the
abd[2,x] return fewer than 2 simplest explanations, the
entire operation will be fast. But to guarantee that it
will work well in all cases appears to require an even
more restricted form of belief."”

6 From explicit to implicit belief

One of the reasons for introducing explicit belief in
[Levesque, 1984] was to specify a tractable deductive
service for Knowledge Representation in terms of a set
of beliefs which, unlike the implicit ones, could always
be reliably computed. However, one difficulty with this
whole approach is how exactly to go beyond what is ex-
plicitly believed. When deliberately trying to solve a
problem (in what is called puzzle mode in [Levesque,
1988]), it is necessary to combine beliefs and follow
through on their consequences in a controlled and sys-
tematic way. If all that is available at the knowledge
level is a way of finding out if something is explicitly
believed and a way of finding out if something is im-
plicitly believed (in one very large unsupervised step),
there is nothing the agent can do to begin exploring in
a controlled way the implications of what is explicitly
believed. For instance, the agent cannot simply perform
theorem proving over what is known without access to
the sentences at the symbol level used to represent that
knowledge.

With a limited abduction operation, on the other
hand, there is a way of moving under the control of the
agent from the explicit beliefs towards the implicit be-
liefs. To find out if a sentence Is implicitly believed, the
procedure (roughly) is this: first find out iff is explicitly
believed; ifit is, then exit with success; otherwise, calcu-
late the full (explicit) explanation for /?; if there is none
or it is trivial, then exit with failure; otherwise replace
by the explanation, and repeat. In other words, the pro-
cedure deals with the following questions, starting with
some ft’: according to what is believed,

is ft° true? what would it take for ft’
to be true? (call that B7)

is ft' true? what would it take for B’
to be true? (call that ft°)

is ft* true? efc.

This "backward-chaining" procedure terminates when it
either finds something that is believed or fails to find a
non-trivial explanation. Each step in this procedure is
tractable,' and the agent can exit the loop if it seems

It appears that a type of belief that is regular except for
condition 4, closure under conjunction, does the trick here,
but this needs further investigation.

Strictly speaking this is not true because of the DNF
problem noted in the previous section. | suspect, however,
that the procedure will also work for the more restricted no-
tion of belief, but this has yet to be established.

1066 Commonsense Reasoning

to be taking too long relative to the importance of the
original question. More formally, we have the following:

Definition 12 For any epistemic state e and any 3 from
L, a sequence of sentences 85, k =0,1,2, ... is defined

by =43 and pBf¥t! =\/ExprLAINg[e, §¥].1°
Theorem 7 eE=B18 iff for somek, el=Bgp*.

Proof: The proofis based on the following:

Lemma 7.1 IfX is satisfiable, XNI' = @, and there
extsts a linear set-of-support resolution refutation of

YUT, with ' as the set of support, then e=Bga*
where e = Re(X), o = \/{ZT | = € T'}, and k 1s the
depth of the refutation tree.

In the final paper, we prove this lemma and the
theorem. =

So a sentence is implicitly believed iffit is accounted for
ultimately by something that is explicitly believed.

To see this in action, let KB3;=KkB2 U {{s}, {a V c}},
where KB2 is defined above, and let e=Rg(KB3), the epis-
temic state represented by KB3. Although (r A b) is not
explicitly believed in state e, it is implicitly believed and
so should be derivable. First we set (3° to (r Ab), and
compute B' = EXPLAINg[e, 3°] = abd[kB3, 8°], which is

{{rAgna}, {pAgAd}, {PAgAc}
{rAa),{rAb},{rAc)).

as presented above for KB,. Putting this into CNF, we
get {{avbVe}, {qgVvr}, {pVr}}.!" Notice that the first two
clauses of B! are already explicitly believed by KB3. Now
calculate 32 = EXPLAINg[e, '] = abd[kB3,(pV r)] =
{r,p,s}. But then ° is explicitly believed (since s is),
and so we are done. Notice how the iterative procedure
works its way hack to s the way an ATMS would, but
now in bite-sized pieces under the control of the agent.'®

This theorem thus has the following perhaps surprising
conclusion: we can determine if something is a logical
consequence of what is (explicitly) believed without ever
getting access to the set of sentences that are believed.
We need only be able to ask for any specific sentence
two questions: is it believed? and if not, what would be
sufficient to account for it, according to what is believed?

The theorem also provides for the first time a
knowledge-level account, that is, an account that is inde-
pendent of how knowledge is symbolically represented, of
how a limited notion of belief can be extended systemati-
cally to include all ofits logical consequences. It also sug-
gests a knowledge-level account of how an agent's beliefs
could be made to evolve deductively over time: starting
with some beliefs in some state e0, the agent would be-
lieve a in state efc+i iff he believed an explanation of a

We are abusing notation here in treating the result of
EXPLAIN as a set of sentences.

In practice, one would not want to iterate an abductive
procedure that takes the trouble of putting its answer into
DNF, since the next step of the iteration requires an argu-
ment that is in CNF.

'® Similar iterative techniques, we suspect, will lead to a
procedure for full (implicit) abductive reasoning, as a con-
trolled alternative to the ATMS itsellf.



