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Abs t rac t 

We present a logic which allows us to reason 
about acting, and more specifically about sens­
ing, i.e. actions tha t acquire in format ion f rom 
the real wor ld , and planning, i.e. actions that 
generate and execute plans of actions. Th is 
logic takes in to account the fact that , as it hap­
pens in real systems, actions may fa i l , and pro­
vides the ab i l i ty of reasoning about failure han­
d l ing in act ing, sensing and planning. We see 
this work as a first step towards a formal ac­
count of systems which are able to plan to act, 
p lan to sense and plan to p lan, and therefore, 
to integrate act ion, perception and reasoning. 

1 I n t r o d u c t i o n 
The idea of using logic for reasoning about actions and 
plans has been extensively studied in the past. So far, 
most of th is research has main ly focused on two issues. 
The first is the problem of provid ing an adequate ax-
iomat izat ion of actions that a system can perform in 
the external environment. The second is the problem 
of p rov id ing a powerful and efficient deductive planning 
mechanism able to generate plans automatical ly. The 
idea under ly ing most of th is research is that a logic can 
be used to predict action executabi l i ty and effects, and 
therefore to generate "good" plans, i.e. plans that when 
executed are l ikely to achieve the desired goals. 

Our research is related but different in focus. Our 
work starts f rom an analysis of planning systems that 
work in real wor ld appl icat ions. Most of these systems, 
beyond plan generat ion, need to perform many different 
act ivi t ies. For instance, they have to moni tor executions, 
react to env i ronmenta l changes, interleave planning, ex­
ecution and percept ion, recover f rom failures, e.g. by 
replanning or by executing exception handl ing routines. 
In order to per form these act iv i t ies, they need three ba­
sic capabi l i t ies: act ing, sensing and planning. Act ing 
capabil i t ies are usually provided by a repertoire of ac­
tuators which per form actions in the external environ­
ment (e.g. wheels, gripper fingers and hands). Sens­
ing capabi l i t ies are usually provided by a set of sensory 
devices which acquire in format ion f rom the real world 
(e.g. sonars, odometers, cameras, microphones). Plan-
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ning capabilit ies are usually provided by planning mod­
ules which generate plans to achieve given goals (e.g. 
modules for plan search, interactive systems for plan 
reuse) and execute plans. A p lanning system has to 
activate, coordinate and control al l these devices and 
modules Several systems which control act ing, sensing 
and planning have been proposed so far (see for instance 
[Beetz and McDermot t , 1994; Georgeffand Lansky, 1986; 
Simmons, 1990]) and have been successfully applied in 
part icular appl icat ion domains (l ike mobile robots and 
fault diagnosis for real t ime systems). In spite of this 
fact, no principled and theoretical account has been 
given of the behaviours of these systems. 

The goal of this paper is to provide a logic which al­
lows us to represent and reason about act ing, sensing and 
planning. The mot iva t ion is twofold. Fi rst , the logic can 
be used to provide a specification of real systems which 
allows us to understand their requirements. Second, the 
logic can be used as a basic formal framework for bu i ld­
ing reasoning modules w i th in real wor ld applications. I t 
can in fact be used to plan to act, plan to sense and plan 
to p lan, and therefore to decide how to interleave act ing, 
sensing and planning. We see this work as a first step 
towards a formal account of systems which are able to 
integrate reasoning, perception and act ion. 

In order to achieve this goal, the logic we propose has 
some novel features. Fi rst , it is based upon an extended 
notion of action. The logic represents expl ic i t ly sensing 
actions, i.e. actions that acquire in format ion and mod­
ify the state of knowledge of the agent, and planning 
actions, i.e. actions that generate and execute plans of 
actions. As a consequence, not only can the logic rea­
son about the effects of actions in the real wor ld , but 
also about the fact that a sensor has (not) been used 
to update the knowledge of the system about the world 
and the fact that the system has (not) a proper plan at 
hand which can be executed to t ry to achieve a given 
goal. Second, in real systems, no act ion, even if appar­
ently simple, is guaranteed to succeed. Th is is ma in ly 
due to the intr insic complexity of reality, to the fact 
that the external environment is usually incompletely 
known and unpredictable, and to the fact that actua­
tors, sensors and models of the world are not perfect. 
As a consequence, neither act ing, nor sensing, nor p lan­
ning is guaranteed to succeed. The logic we propose has 
in its language the basic operations for fai lure handl ing 
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and can therefore reason about fai lure detection and re-
covery in ac t ing, sensing and p lanning. 

The paper is s t ructured as fol lows. We describe the 
language of the logic in section 2 and i ts semantics in 
section 3. We give some axioms and theorems of the logic 
in section 4. We discuss some related work in section 5. 

2 Language 
The logic is a var ia t ion of process logic [Harel ex a/., 
1982], an extension of dynamic logic [Harel, 1984]. In 
section 2.1 we describe a language for act ion. In sections 
2.2 and 2.3 we extend the language to represent sensing 
and p lann ing actions, respectively. 

2.1 Act ing 
The syntax of the logic is based upon two sets of symbols: 
Po, the set of a tomic (or basic) proposit ions and 7o, the 
set of a tomic (or basic) tactics. From Vo and 7o we 
induct ive ly construct the set V of proposit ions and the 
set T of tactics. V and T are the smallest sets such tha t : 

We use V, —► and <-> as abbreviat ions in the standard 
way and, in add i t i on , we abbreviate -[a]-»p to {a}p as 
in dynamic logic1 . 

Proposit ions are either t rue or false in behaviours (we 
say that they are behaviour proposit ions), where, i n tu ­
i t ively, a behaviour is a finite sequence of states of the 
wor ld . For example, if w1, w2, w3, w4 and w5 are states, 
then w1 w2 w3 w4 w5 is a behaviour. A single state 
is a par t icu lar case of behaviour, W is the proposi t ion 
which holds over any behaviour which consists of a sin­
gle state. The operator chop is appl ied to proposit ions p 
and q to y ie ld a new proposi t ion p chop q. chop is used 
to reason about concatenations of behaviours, where, for 
example, the concatenat ion of w1 w2 w3 and W3 W4 w5 
is W1 w2 w3 w4 w5. p chop q holds in a behaviour b i f f 
there exist two behaviours b1 and b2 such that the con­
catenation of by and b2 is b, p holds in b1 and q holds in 
b2- We extend the language w i t h the operator last which 
is appl ied to a propos i t ion p to yield a new proposi t ion 
last(p). 

last(p) holds in a behaviour b i ff p holds in the final state 
of b. 

Tact ics represent act ions. For instance, goto(A) can 
be a basic (even if very complex) act ion which moves a 

1 Actually, the language allows for tactics that include con-
ditional expressions of the form if p then a else B and loops 
of the form while p do a. For lack of space, in this paper we 
do not describe the full syntax. The language, as well as its 
semantics, can be easily extended. 

We define the usual construct ; for sequences of actions. 
In a;/? the second action is executed anyway, indepen­
dently of the failure/success of the f irst act ion. Notice 
that ; is a p r im i t i ve construct in most of the logics pro­
posed so far, e.g. in dynamic logic [Harel, 1984], in pro-
cess logic [Harel et a/., 1982], in (extended versions of) 
s i tuat ion calculus [Lesperance el al, 1994] and in al l the­
ories of actions, e.g. in [Li fschitz, 1993]. Th i s is due to 
the fact tha t ; constructs sequences w i t hou t handl ing 
fai lure and these logics do not take in to account fai lure. 
A sequential composi t ion which takes in to account fa i l ­
ure is then. If the first act ion fai ls, then does not execute 
the second, but s imply terminates execution w i t h fai lure. 
then captures the behaviour of sequential executions in 
real systems where, if the first act ion fai ls, the second is 
not executed and control is passed to a module for fai l ­
ure recovery, or else is the construct for fa i lure recovery. 
o re lse(a ,B) reacts to fai lure of a by execut ing B. repeat 
controls fai lure over the repeated execution of a tactic. 
I t is recursively defined. It repeats the execution of a t i l l 
a fai ls. If a never fai ls, execut ion does not terminate. 
Notice tha t i f i t terminates, repeat(a) always succeeds, 

2 More precisely, basic tactics are constructed from a set 
of terms, e.g. A, and a set of tactic symbols, that, intuitively 
represent action types, e.g. goto. For lack of space we skip 
the formal definition of the syntax of basic tactics. 

1942 TEMPORAL REASONING 



since orelse in the def in i t ion of repeat reacts to fai lure 
by executing , which always succeeds. 

2 .2 S e n s i n g 
We extend the language w i th a set C of symbols that 
we call sensors. For any sensor, we add a tactic and a 
proposi t ion to the set of basic tactics and propositions. 

In tu i t i ve ly , sensors denote values which can be acquired 
through sensory devices. For instance, wall-distance can 
be the sensor which gets the value of the distance of the 
robot f rom the wa l l . We call sense(c) a sensing action 
(for c). I ts intended meaning is "acquire the value of 
the sensor c". For example, sense(wall-distance) can 
activate a sonar and /o r a camera to acquire the value of 
wall-distance. 

Sensing actions formal ize act ivi t ies that real systems 
have to per form extensively. Indeed, while most theories 
of actions are based on the assumption that , after act­
ing is per formed, the agent has at hand all the desired 
in fo rmat ion about the new state of the wor ld , this is not 
what happens in real systems. Most often, in real sys­
tems, the only way to get to know some facts about the 
state of affairs is to activate sensory devices and acquire 
in fo rmat ion f rom the external environment, i.e. to exe­
cute sensing actions. Suppose for instance that a robot 
moves successfully to a given posit ion A. At this point, 
the wor ld around the robot has changed: i ts posit ion 
has changed, as well as the distance f rom the wal l , the 
distance f rom the nearest window, and so on. It is not 
realistic tha t the robot gets to know all these facts au­
tomat ica l ly after execution. For instance, after act ing, 
knowledge about i ts posit ion might be updated auto­
mat ica l ly , bu t it may have instead to measure (e.g. by a 
sonar or a camera) the distances f rom the wal l , objects 
and landmarks to get to know their new values. Real 
systems have therefore to execute sensing actions explic­
i t ly . For instance, suppose that goto(A) is a tactic which 
does not update the value of the sensor wall-distance. 
A possible tact ic which moves the robot to A and then 
acquires the value of the distance f rom the wall is the 
fo l lowing. 

(i) 
A sensing act ion may fa i l . For instance, 
sense{wall-distance) may fai l since the sonar may not 
work or the camera may fai l to detect the wal l . In exam­
ple (1) , if sensing fails then the value of wall-distance is 
not updated. 

Successful sensing actions update the state of knowl­
edge of the agent since, at the end of their execution, 
the value of the sensor is acquired. Th is knowledge is 
expressed by the proposi t ion Sensed(c), which holds in 
any behaviour which is the final state of a successful sens­
ing act ion for c. The idea here is tha t Sensed(c) holds 
if we have jus t executed a successful sensing action for c 
and therefore the value of c is "up to date" . For instance, 
consider the fo l lowing proposit ions. 

(2) 

Proposit ion (2) states that goto(A) does not update au­
tomat ica l ly the distance f rom the wal l , i.e. after execut­
ing goto(A) either w i t h success or fai lure (Ex(goto(A)))t 

then we get to a final state where wall-distance is not up 
to date ( l a s t (Sensed{wall-distance))). Proposi t ion (3) 
is the analogous statement for the tact ic goto(B). The 
value of the sensor is up to date if the sensing action 
succeeds (proposit ion (4)) . If we execute goto(B) after 
sensing, then the value is not up to date (proposit ion 
(5)). Indeed, the last act ion might change the actual 
distance f rom the wal l . Notice that the fact tha t the 
t ru th value of Sensed(c) changes does not depend on 
the fact that the value of c changes or not. For instance, 
proposit ions (2) - (5) may hold even if wall-distance is 
constantly the same before and after the executions of 
goto(A), goto(B) and sense(wall-distance). 

2.3 P l a n n i n g 

We add to the language a set II of symbols, that we call 
names of tactics, which is based upon an in i t ia l set of 
symbols π, and we extend the set of basic tactics and 
propositions as follows, 

We call " a " the name of the tactic a. Names of tac­
tics denote tactics. For example, the name of goto(A) 
denotes the syntactic expression goto(A). The idea here 
is tha t p lanning generates a syntactic expression denot­
ing a plan which can thereafter be executed. We call 
planfor(-jr,p) a plan generation action (of π for p). I ts 
intended meaning is: "generate a plan denoted by Π to 
achieve the goal p". For example, if Robot-at-A is a 
proposit ion whose intended meaning is " the robot is in 
posit ion A", then plan for {π, Robot-at-A) can be a tac­
tic that generates the name n which denotes the s im­
ple plan goto(A). We call exec(Tr) a (plan) execution 
action (of IT). Its intended meaning is: "execute the 
plan denoted by TT" . For example, the intended mean­
ing of exec{ugoto{A)") is: "execute the plan denoted by 
"goto(A)"". We call plan generation and execution ac­
t ions, planning actions. As an example of combinat ion 
of planning actions, consider the fol lowing tact ic which 
generates a plan and then executes i t . 

(6) 
Since plan execution actions may perform actions in 

the real wor ld , they may fa i l . Failure in plan execution 
can be handled in different ways. Most classical p lan­
ners (e.g. [Wi lk ins, 1985]) handle fai lure by replanning, 
i.e. by searching for a new plan. Reactive planners (e.g. 
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[Georgeff and Lansky, 1986; Simmons, 1990]) sometimes 
have no time for replanning, and therefore handle fail­
ure by executing precompiled special purpose exception 
handling routines. Our logic is expressive enough to rep­
resent these different failure handling mechanisms. For 
instance, tactic (7) reacts to failure of exec(π) by re-
planning (planfor(π1i , p)), while tactic (8) reacts to fail­
ure by executing the plan denoted by π2, which can be 
a precompiled exception handling routine. 

In most classical planners, plan generation searches for 
a plan by using an internal model and does not operate 
in the real world. This is not what happens in most 
of the reactive planners (e.g. in [Georgeff and Lansky, 
1986; Beetz and McDermott, 1994]) where, sometimes, 
the only way to decide for a plan is to do something in 
the world. For instance, a mobile robot which has to look 
for something in a building and does not know the map 
may have to "turn around the corner and open a door" in 
order to decide what to do next. In order to capture this 
extended notion of plan generation, plan for has to be 
thought simply as a tactic which constructs a plan, with 
no constraints on whether it operates in the real world 
or not. As a consequence, in our view, plan generation 
may fail in the same way as acting, sensing and plan 
execution may fai l . The constructs for failure handling 
defined in section 2.1 can be used to handle failure in 
plan generation. For instance, in example (6), if plan/or 
fails, then captures failure and does not execute TTJ. 

Successful plan generation actions update the state 
of knowledge of the agent since they produce a plan 
that is available for execution. This knowledge is ex­
pressed by the proposition Planned(π,p), which holds 
in any behaviour which is the final state of a success­
ful plan generation action of π for p. The idea here is 
that Planned(π,p) holds if we have just executed a plan 
generation action of Π for p and therefore the plan at 
hand, i.e. the plan denoted by π, is "the proper plan 
for that situation". For instance, consider the following 
propositions. 

Proposition (9) states that moving the robot to A makes 
the plan denoted by Π obsolete. Proposition (10) states 
that success in planning leads to a final state where the 
plan at hand is "the proper plan for that situation". 
Proposition (11) states that after planning and executing 
goto(A), the plan denoted by Π1 may be obsolete (even 
if sti l l available for execution). Indeed, acting in the 
world may change the world and invalidate old plans. 
Proposition (12) states that after plan generation, plan 
execution, and finally plan generation again, the plan at 
hand is "the plan for that situation". 



TRAVERSO AND SPALAZZI 1945 



5 Related work 
Th is paper is an elaborat ion and extension of the i n tu ­
i t ions or ig inal ly presented in [Giunchig l ia et at., 1994]. 

Compared to the previous research in theories of ac­
t ions, the work described in this paper is l im i ted in at 
least three respects. F i rs t , we do not al low for variables 
and quantif iers in our logic. Second, we do not deal w i t h 
asynchronous and paral lel events and actions. T h i r d , 
we do not discuss how our logic deals w i t h the frame 
problem. Ma jo r future goals include these issues. How­
ever, these issues, though very impo r tan t , are somehow 
orthogonal to the ma in message of th is paper, which is 
about describing a theory of act ing, sensing, and p lan-
n ing, i.e. a theory which integrates in a un i fo rm frame-
work impor tan t basic features of p lann ing systems for 
real wor ld appl icat ions. As far as we know, the approach 
presented in this paper has never been proposed before. 

The closest work on fai lure is tha t described in [Rao 
and Georgeff, 1991]. [Rao and Georgeff, 1991] presents 
a formal f ramework for BDI-archi tectures and commi t ­
ment (we do not deal w i t h these issues in this paper) 
which represents expl ic i t ly fai lure and success of events. 
succeeds(e), fails(e), succeeded(e) and failed(e) are 
state formulas (of a proposi t ional branching t ime logic) 
which express immedia te fu ture and past performance, 
respectively successfully and unsuccessfully, of event e. 
Semantical ly, arc funct ions Sw and Fw map adjacent 
t ime points to the event t ha t occurred w i t h success or 
w i t h fai lure. Technical ly, our approach is different since 
Succ(a) and Fail(a) are behaviour proposi t ions. Th is 
captures the fact tha t the execution of an action may re­
sult in different sequences of states, and the fact tha t its 
fai lure and success may depend on the whole sequence 
and not only on a single state. The ma in conceptual dif­
ference is in the focus and objectives of the two works. 
We are interested in a f ramework for fa i lure handl ing, 
i.e. in how actions can be composed through constructs 
which capture and react to fa i lure, since we see flexible 
fai lure recovery as one of the ma jo r act iv i t ies tha t real 
p lanning systems have to per form. For this reason we 
have a logic which combines actions th rough <£, E, i fTai l . 
;, then, or else and repeat. Wh i l e the theory proposed in 
[Rao and Georgeff, 1991] does not deal w i t h act ion com­
posi t ion, and more impo r t an t , w i t h constructs for fai lure 
handl ing. Moreover, our logic allows us to express and 
reason about sensing and p lann ing actions, whi le [Rao 
and Georgeff, 1991] does not . 

In [Lesperance et a/., 1994], s i tua t ion calculus is ex­
tended w i t h complex actions, e.g. sequences, condi t ion­
als and loops, and w i t h "percept ion act ions" , or "knowl ­
edge produc ing act ions" , of the f o rm SENSEp and READ,-, 
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where P and r are a fluent and a te rm, respectively. 
Knowledge about perception is expressed by means of 
wffs of the fo rm Knows(P,a) and Kref(r, s), where * is 
a s i tuat ion. Technical ly, our approach is different since 
we have no si tuat ions in the logic. Moreover, in this pa­
per we have described a class of sensing actions which is 
less expressive than the class of perception actions de­
fined in [Lesperance et ai, 1994], However, the given 
language, semantics and axiomat izat ion can be easily 
extended to include sensing actions about proposit ions 
and terms. Conceptual ly, our work differs main ly in two 
aspects. F i rs t , our logic captures the fact that percep­
t ion is a complex task tha t , when it has to be performed 
by real systems, is not guaranteed to succeed. Actions 
of the fo rm sense(c) may actual ly fai l to acquire infor­
mat ion and therefore fa i l to produce knowledge. As a 
consequence, in our logic we do not have theorems anal­
ogous to Kref(r,do(READr,s)), which can be read as 
"after doing READ, the agent knows the denotat ion of 
r", bu t we can prove theorem (T7 ) , i.e. "if sensing sue-
ceeds, then the agent has sensed c". Second, our logic 
allows us to express and reason about planning actions, 
while [Lesperance et ai, 1994] does not. 

The closest work on p lanning actions is that described 
in [Steel, 1994b] (see also [Steel, 1994a]), where dynamic 
and epistemic logic are used to express formulas of the 
form "plan to do an action that achieves a goal, then 
do i t " . The ma in differences w i th our work are the fol­
lowing. Fi rst , in [Steel, 1994b] plan generation is seen 
as "special izat ion" of "non operat ional" actions, i.e. ac­
tions which cannot be executed. We see instead plan 
generation as an executable action which constructs a 
plan. Th is corresponds to the fact that systems have 
p lanning modules which can be activated to generate 
plans. Second, in [Steel, 1994b], p lanning is seen as an 
action which does not affect the external environment 
while we do not rely on this assumption since many re-
active planners have to generate plans by acting in the 
wor ld . F inal ly , our logic deals expl ic i t ly w i t h fai lure han­
dl ing in plan generations and executions. 

The logic we have proposed is based on work on MRG 
[Giunchigl ia et at., 1991; Traverso ei ai, 1992], a reactive 
p lanning system which executes tactics. At the moment, 
MRG is used in a large scale, real world appl icat ion under 
development at I R S T . Th is appl icat ion aims at the de­
velopment of a system that has to control and coordinate 
mobi le robots, nav igat ing in unpredictable environments 
inhabi ted by humans and per forming high level tasks, 
like t ranspor ta t ion tasks in hospitals and offices. MRG 
tactics are executed by means of systems that perform 
sensing and act ing, e.g. a reactive sensor and actuator 
controller for navigat ion tasks and a system for speech 
recognit ion, and by means of systems that generate and 
execute plans, e.g. path planners and act iv i ty sched­
ulers. We plan to use the formal framework to extend 
the funct ional i t ies of MRG and to specify the requirements 
of the appl icat ion under development. 
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