
A Logic for Act ing,

Paolo Traverso
Mechanized Reasoning Group

IRST
38050 Povo, Trento

Italy

Abs t rac t

We present a logic which allows us to reason
about acting, and more specifically about sens­
ing, i.e. actions tha t acquire in format ion f rom
the real wor ld , and planning, i.e. actions that
generate and execute plans of actions. Th is
logic takes in to account the fact that , as it hap­
pens in real systems, actions may fa i l , and pro­
vides the ab i l i ty of reasoning about failure han­
d l ing in act ing, sensing and planning. We see
this work as a first step towards a formal ac­
count of systems which are able to plan to act,
p lan to sense and plan to p lan, and therefore,
to integrate act ion, perception and reasoning.

1 I n t r o d u c t i o n
The idea of using logic for reasoning about actions and
plans has been extensively studied in the past. So far,
most of th is research has main ly focused on two issues.
The first is the problem of provid ing an adequate ax-
iomat izat ion of actions that a system can perform in
the external environment. The second is the problem
of p rov id ing a powerful and efficient deductive planning
mechanism able to generate plans automatical ly. The
idea under ly ing most of th is research is that a logic can
be used to predict action executabi l i ty and effects, and
therefore to generate "good" plans, i.e. plans that when
executed are l ikely to achieve the desired goals.

Our research is related but different in focus. Our
work starts f rom an analysis of planning systems that
work in real wor ld appl icat ions. Most of these systems,
beyond plan generat ion, need to perform many different
act ivi t ies. For instance, they have to moni tor executions,
react to env i ronmenta l changes, interleave planning, ex­
ecution and percept ion, recover f rom failures, e.g. by
replanning or by executing exception handl ing routines.
In order to per form these act iv i t ies, they need three ba­
sic capabi l i t ies: act ing, sensing and planning. Act ing
capabil i t ies are usually provided by a repertoire of ac­
tuators which per form actions in the external environ­
ment (e.g. wheels, gripper fingers and hands). Sens­
ing capabi l i t ies are usually provided by a set of sensory
devices which acquire in format ion f rom the real world
(e.g. sonars, odometers, cameras, microphones). Plan-

Sensing and Planning

Luca Spalazzi
Istituto di Informatica
University of Ancona

Via Brecce Bianche, 60131 Ancona
Italy

ning capabilit ies are usually provided by planning mod­
ules which generate plans to achieve given goals (e.g.
modules for plan search, interactive systems for plan
reuse) and execute plans. A p lanning system has to
activate, coordinate and control al l these devices and
modules Several systems which control act ing, sensing
and planning have been proposed so far (see for instance
[Beetz and McDermot t , 1994; Georgeffand Lansky, 1986;
Simmons, 1990]) and have been successfully applied in
part icular appl icat ion domains (l ike mobile robots and
fault diagnosis for real t ime systems). In spite of this
fact, no principled and theoretical account has been
given of the behaviours of these systems.

The goal of this paper is to provide a logic which al­
lows us to represent and reason about act ing, sensing and
planning. The mot iva t ion is twofold. Fi rst , the logic can
be used to provide a specification of real systems which
allows us to understand their requirements. Second, the
logic can be used as a basic formal framework for bu i ld­
ing reasoning modules w i th in real wor ld applications. I t
can in fact be used to plan to act, plan to sense and plan
to p lan, and therefore to decide how to interleave act ing,
sensing and planning. We see this work as a first step
towards a formal account of systems which are able to
integrate reasoning, perception and act ion.

In order to achieve this goal, the logic we propose has
some novel features. Fi rst , it is based upon an extended
notion of action. The logic represents expl ic i t ly sensing
actions, i.e. actions that acquire in format ion and mod­
ify the state of knowledge of the agent, and planning
actions, i.e. actions that generate and execute plans of
actions. As a consequence, not only can the logic rea­
son about the effects of actions in the real wor ld , but
also about the fact that a sensor has (not) been used
to update the knowledge of the system about the world
and the fact that the system has (not) a proper plan at
hand which can be executed to t ry to achieve a given
goal. Second, in real systems, no act ion, even if appar­
ently simple, is guaranteed to succeed. Th is is ma in ly
due to the intr insic complexity of reality, to the fact
that the external environment is usually incompletely
known and unpredictable, and to the fact that actua­
tors, sensors and models of the world are not perfect.
As a consequence, neither act ing, nor sensing, nor p lan­
ning is guaranteed to succeed. The logic we propose has
in its language the basic operations for fai lure handl ing

TRAVERSO AND SPALAZZI 1941

and can therefore reason about fai lure detection and re-
covery in ac t ing, sensing and p lanning.

The paper is s t ructured as fol lows. We describe the
language of the logic in section 2 and i ts semantics in
section 3. We give some axioms and theorems of the logic
in section 4. We discuss some related work in section 5.

2 Language
The logic is a var ia t ion of process logic [Harel ex a/.,
1982], an extension of dynamic logic [Harel, 1984]. In
section 2.1 we describe a language for act ion. In sections
2.2 and 2.3 we extend the language to represent sensing
and p lann ing actions, respectively.

2.1 Act ing
The syntax of the logic is based upon two sets of symbols:
Po, the set of a tomic (or basic) proposit ions and 7o, the
set of a tomic (or basic) tactics. From Vo and 7o we
induct ive ly construct the set V of proposit ions and the
set T of tactics. V and T are the smallest sets such tha t :

We use V, —► and <-> as abbreviat ions in the standard
way and, in add i t i on , we abbreviate -[a]-»p to {a}p as
in dynamic logic1 .

Proposit ions are either t rue or false in behaviours (we
say that they are behaviour proposit ions), where, i n tu ­
i t ively, a behaviour is a finite sequence of states of the
wor ld . For example, if w1, w2, w3, w4 and w5 are states,
then w1 w2 w3 w4 w5 is a behaviour. A single state
is a par t icu lar case of behaviour, W is the proposi t ion
which holds over any behaviour which consists of a sin­
gle state. The operator chop is appl ied to proposit ions p
and q to y ie ld a new proposi t ion p chop q. chop is used
to reason about concatenations of behaviours, where, for
example, the concatenat ion of w1 w2 w3 and W3 W4 w5
is W1 w2 w3 w4 w5. p chop q holds in a behaviour b i f f
there exist two behaviours b1 and b2 such that the con­
catenation of by and b2 is b, p holds in b1 and q holds in
b2- We extend the language w i t h the operator last which
is appl ied to a propos i t ion p to yield a new proposi t ion
last(p).

last(p) holds in a behaviour b i ff p holds in the final state
of b.

Tact ics represent act ions. For instance, goto(A) can
be a basic (even if very complex) act ion which moves a

1 Actually, the language allows for tactics that include con-
ditional expressions of the form if p then a else B and loops
of the form while p do a. For lack of space, in this paper we
do not describe the full syntax. The language, as well as its
semantics, can be easily extended.

We define the usual construct ; for sequences of actions.
In a;/? the second action is executed anyway, indepen­
dently of the failure/success of the f irst act ion. Notice
that ; is a p r im i t i ve construct in most of the logics pro­
posed so far, e.g. in dynamic logic [Harel, 1984], in pro-
cess logic [Harel et a/., 1982], in (extended versions of)
s i tuat ion calculus [Lesperance el al, 1994] and in al l the­
ories of actions, e.g. in [Li fschitz, 1993]. Th i s is due to
the fact tha t ; constructs sequences w i t hou t handl ing
fai lure and these logics do not take in to account fai lure.
A sequential composi t ion which takes in to account fa i l ­
ure is then. If the first act ion fai ls, then does not execute
the second, but s imply terminates execution w i t h fai lure.
then captures the behaviour of sequential executions in
real systems where, if the first act ion fai ls, the second is
not executed and control is passed to a module for fai l ­
ure recovery, or else is the construct for fa i lure recovery.
o re lse(a ,B) reacts to fai lure of a by execut ing B. repeat
controls fai lure over the repeated execution of a tactic.
I t is recursively defined. It repeats the execution of a t i l l
a fai ls. If a never fai ls, execut ion does not terminate.
Notice tha t i f i t terminates, repeat(a) always succeeds,

2 More precisely, basic tactics are constructed from a set
of terms, e.g. A, and a set of tactic symbols, that, intuitively
represent action types, e.g. goto. For lack of space we skip
the formal definition of the syntax of basic tactics.

1942 TEMPORAL REASONING

since orelse in the def in i t ion of repeat reacts to fai lure
by executing , which always succeeds.

2 .2 S e n s i n g
We extend the language w i th a set C of symbols that
we call sensors. For any sensor, we add a tactic and a
proposi t ion to the set of basic tactics and propositions.

In tu i t i ve ly , sensors denote values which can be acquired
through sensory devices. For instance, wall-distance can
be the sensor which gets the value of the distance of the
robot f rom the wa l l . We call sense(c) a sensing action
(for c). I ts intended meaning is "acquire the value of
the sensor c". For example, sense(wall-distance) can
activate a sonar and /o r a camera to acquire the value of
wall-distance.

Sensing actions formal ize act ivi t ies that real systems
have to per form extensively. Indeed, while most theories
of actions are based on the assumption that , after act­
ing is per formed, the agent has at hand all the desired
in fo rmat ion about the new state of the wor ld , this is not
what happens in real systems. Most often, in real sys­
tems, the only way to get to know some facts about the
state of affairs is to activate sensory devices and acquire
in fo rmat ion f rom the external environment, i.e. to exe­
cute sensing actions. Suppose for instance that a robot
moves successfully to a given posit ion A. At this point,
the wor ld around the robot has changed: i ts posit ion
has changed, as well as the distance f rom the wal l , the
distance f rom the nearest window, and so on. It is not
realistic tha t the robot gets to know all these facts au­
tomat ica l ly after execution. For instance, after act ing,
knowledge about i ts posit ion might be updated auto­
mat ica l ly , bu t it may have instead to measure (e.g. by a
sonar or a camera) the distances f rom the wal l , objects
and landmarks to get to know their new values. Real
systems have therefore to execute sensing actions explic­
i t ly . For instance, suppose that goto(A) is a tactic which
does not update the value of the sensor wall-distance.
A possible tact ic which moves the robot to A and then
acquires the value of the distance f rom the wall is the
fo l lowing.

(i)
A sensing act ion may fa i l . For instance,
sense{wall-distance) may fai l since the sonar may not
work or the camera may fai l to detect the wal l . In exam­
ple (1) , if sensing fails then the value of wall-distance is
not updated.

Successful sensing actions update the state of knowl­
edge of the agent since, at the end of their execution,
the value of the sensor is acquired. Th is knowledge is
expressed by the proposi t ion Sensed(c), which holds in
any behaviour which is the final state of a successful sens­
ing act ion for c. The idea here is tha t Sensed(c) holds
if we have jus t executed a successful sensing action for c
and therefore the value of c is "up to date" . For instance,
consider the fo l lowing proposit ions.

(2)

Proposit ion (2) states that goto(A) does not update au­
tomat ica l ly the distance f rom the wal l , i.e. after execut­
ing goto(A) either w i t h success or fai lure (Ex(goto(A)))t

then we get to a final state where wall-distance is not up
to date (l a s t (Sensed{wall-distance))). Proposi t ion (3)
is the analogous statement for the tact ic goto(B). The
value of the sensor is up to date if the sensing action
succeeds (proposit ion (4)) . If we execute goto(B) after
sensing, then the value is not up to date (proposit ion
(5)). Indeed, the last act ion might change the actual
distance f rom the wal l . Notice that the fact tha t the
t ru th value of Sensed(c) changes does not depend on
the fact that the value of c changes or not. For instance,
proposit ions (2) - (5) may hold even if wall-distance is
constantly the same before and after the executions of
goto(A), goto(B) and sense(wall-distance).

2.3 P l a n n i n g

We add to the language a set II of symbols, that we call
names of tactics, which is based upon an in i t ia l set of
symbols π, and we extend the set of basic tactics and
propositions as follows,

We call " a " the name of the tactic a. Names of tac­
tics denote tactics. For example, the name of goto(A)
denotes the syntactic expression goto(A). The idea here
is tha t p lanning generates a syntactic expression denot­
ing a plan which can thereafter be executed. We call
planfor(-jr,p) a plan generation action (of π for p). I ts
intended meaning is: "generate a plan denoted by Π to
achieve the goal p". For example, if Robot-at-A is a
proposit ion whose intended meaning is " the robot is in
posit ion A", then plan for {π, Robot-at-A) can be a tac­
tic that generates the name n which denotes the s im­
ple plan goto(A). We call exec(Tr) a (plan) execution
action (of IT). Its intended meaning is: "execute the
plan denoted by TT" . For example, the intended mean­
ing of exec{ugoto{A)") is: "execute the plan denoted by
"goto(A)"". We call plan generation and execution ac­
t ions, planning actions. As an example of combinat ion
of planning actions, consider the fol lowing tact ic which
generates a plan and then executes i t .

(6)
Since plan execution actions may perform actions in

the real wor ld , they may fa i l . Failure in plan execution
can be handled in different ways. Most classical p lan­
ners (e.g. [Wi lk ins, 1985]) handle fai lure by replanning,
i.e. by searching for a new plan. Reactive planners (e.g.

TRAVERSO AND SPALAZZI 1943

1944 TEMPORAL REASONING

[Georgeff and Lansky, 1986; Simmons, 1990]) sometimes
have no time for replanning, and therefore handle fail­
ure by executing precompiled special purpose exception
handling routines. Our logic is expressive enough to rep­
resent these different failure handling mechanisms. For
instance, tactic (7) reacts to failure of exec(π) by re-
planning (planfor(π1i , p)), while tactic (8) reacts to fail­
ure by executing the plan denoted by π2, which can be
a precompiled exception handling routine.

In most classical planners, plan generation searches for
a plan by using an internal model and does not operate
in the real world. This is not what happens in most
of the reactive planners (e.g. in [Georgeff and Lansky,
1986; Beetz and McDermott, 1994]) where, sometimes,
the only way to decide for a plan is to do something in
the world. For instance, a mobile robot which has to look
for something in a building and does not know the map
may have to "turn around the corner and open a door" in
order to decide what to do next. In order to capture this
extended notion of plan generation, plan for has to be
thought simply as a tactic which constructs a plan, with
no constraints on whether it operates in the real world
or not. As a consequence, in our view, plan generation
may fail in the same way as acting, sensing and plan
execution may fai l . The constructs for failure handling
defined in section 2.1 can be used to handle failure in
plan generation. For instance, in example (6), if plan/or
fails, then captures failure and does not execute TTJ.

Successful plan generation actions update the state
of knowledge of the agent since they produce a plan
that is available for execution. This knowledge is ex­
pressed by the proposition Planned(π,p), which holds
in any behaviour which is the final state of a success­
ful plan generation action of π for p. The idea here is
that Planned(π,p) holds if we have just executed a plan
generation action of Π for p and therefore the plan at
hand, i.e. the plan denoted by π, is "the proper plan
for that situation". For instance, consider the following
propositions.

Proposition (9) states that moving the robot to A makes
the plan denoted by Π obsolete. Proposition (10) states
that success in planning leads to a final state where the
plan at hand is "the proper plan for that situation".
Proposition (11) states that after planning and executing
goto(A), the plan denoted by Π1 may be obsolete (even
if sti l l available for execution). Indeed, acting in the
world may change the world and invalidate old plans.
Proposition (12) states that after plan generation, plan
execution, and finally plan generation again, the plan at
hand is "the plan for that situation".

TRAVERSO AND SPALAZZI 1945

5 Related work
Th is paper is an elaborat ion and extension of the i n tu ­
i t ions or ig inal ly presented in [Giunchig l ia et at., 1994].

Compared to the previous research in theories of ac­
t ions, the work described in this paper is l im i ted in at
least three respects. F i rs t , we do not al low for variables
and quantif iers in our logic. Second, we do not deal w i t h
asynchronous and paral lel events and actions. T h i r d ,
we do not discuss how our logic deals w i t h the frame
problem. Ma jo r future goals include these issues. How­
ever, these issues, though very impo r tan t , are somehow
orthogonal to the ma in message of th is paper, which is
about describing a theory of act ing, sensing, and p lan-
n ing, i.e. a theory which integrates in a un i fo rm frame-
work impor tan t basic features of p lann ing systems for
real wor ld appl icat ions. As far as we know, the approach
presented in this paper has never been proposed before.

The closest work on fai lure is tha t described in [Rao
and Georgeff, 1991]. [Rao and Georgeff, 1991] presents
a formal f ramework for BDI-archi tectures and commi t ­
ment (we do not deal w i t h these issues in this paper)
which represents expl ic i t ly fai lure and success of events.
succeeds(e), fails(e), succeeded(e) and failed(e) are
state formulas (of a proposi t ional branching t ime logic)
which express immedia te fu ture and past performance,
respectively successfully and unsuccessfully, of event e.
Semantical ly, arc funct ions Sw and Fw map adjacent
t ime points to the event t ha t occurred w i t h success or
w i t h fai lure. Technical ly, our approach is different since
Succ(a) and Fail(a) are behaviour proposi t ions. Th is
captures the fact tha t the execution of an action may re­
sult in different sequences of states, and the fact tha t its
fai lure and success may depend on the whole sequence
and not only on a single state. The ma in conceptual dif­
ference is in the focus and objectives of the two works.
We are interested in a f ramework for fa i lure handl ing,
i.e. in how actions can be composed through constructs
which capture and react to fa i lure, since we see flexible
fai lure recovery as one of the ma jo r act iv i t ies tha t real
p lanning systems have to per form. For this reason we
have a logic which combines actions th rough <£, E, i fTai l .
;, then, or else and repeat. Wh i l e the theory proposed in
[Rao and Georgeff, 1991] does not deal w i t h act ion com­
posi t ion, and more impo r t an t , w i t h constructs for fai lure
handl ing. Moreover, our logic allows us to express and
reason about sensing and p lann ing actions, whi le [Rao
and Georgeff, 1991] does not .

In [Lesperance et a/., 1994], s i tua t ion calculus is ex­
tended w i t h complex actions, e.g. sequences, condi t ion­
als and loops, and w i t h "percept ion act ions" , or "knowl ­
edge produc ing act ions" , of the f o rm SENSEp and READ,-,

1946 TEMPORAL REASONING

where P and r are a fluent and a te rm, respectively.
Knowledge about perception is expressed by means of
wffs of the fo rm Knows(P,a) and Kref(r, s), where * is
a s i tuat ion. Technical ly, our approach is different since
we have no si tuat ions in the logic. Moreover, in this pa­
per we have described a class of sensing actions which is
less expressive than the class of perception actions de­
fined in [Lesperance et ai, 1994], However, the given
language, semantics and axiomat izat ion can be easily
extended to include sensing actions about proposit ions
and terms. Conceptual ly, our work differs main ly in two
aspects. F i rs t , our logic captures the fact that percep­
t ion is a complex task tha t , when it has to be performed
by real systems, is not guaranteed to succeed. Actions
of the fo rm sense(c) may actual ly fai l to acquire infor­
mat ion and therefore fa i l to produce knowledge. As a
consequence, in our logic we do not have theorems anal­
ogous to Kref(r,do(READr,s)), which can be read as
"after doing READ, the agent knows the denotat ion of
r", bu t we can prove theorem (T7) , i.e. "if sensing sue-
ceeds, then the agent has sensed c". Second, our logic
allows us to express and reason about planning actions,
while [Lesperance et ai, 1994] does not.

The closest work on p lanning actions is that described
in [Steel, 1994b] (see also [Steel, 1994a]), where dynamic
and epistemic logic are used to express formulas of the
form "plan to do an action that achieves a goal, then
do i t " . The ma in differences w i th our work are the fol­
lowing. Fi rst , in [Steel, 1994b] plan generation is seen
as "special izat ion" of "non operat ional" actions, i.e. ac­
tions which cannot be executed. We see instead plan
generation as an executable action which constructs a
plan. Th is corresponds to the fact that systems have
p lanning modules which can be activated to generate
plans. Second, in [Steel, 1994b], p lanning is seen as an
action which does not affect the external environment
while we do not rely on this assumption since many re-
active planners have to generate plans by acting in the
wor ld . F inal ly , our logic deals expl ic i t ly w i t h fai lure han­
dl ing in plan generations and executions.

The logic we have proposed is based on work on MRG
[Giunchigl ia et at., 1991; Traverso ei ai, 1992], a reactive
p lanning system which executes tactics. At the moment,
MRG is used in a large scale, real world appl icat ion under
development at I R S T . Th is appl icat ion aims at the de­
velopment of a system that has to control and coordinate
mobi le robots, nav igat ing in unpredictable environments
inhabi ted by humans and per forming high level tasks,
like t ranspor ta t ion tasks in hospitals and offices. MRG
tactics are executed by means of systems that perform
sensing and act ing, e.g. a reactive sensor and actuator
controller for navigat ion tasks and a system for speech
recognit ion, and by means of systems that generate and
execute plans, e.g. path planners and act iv i ty sched­
ulers. We plan to use the formal framework to extend
the funct ional i t ies of MRG and to specify the requirements
of the appl icat ion under development.

Acknowledgments
We thank Fausto Giunchig l ia for his invaluable support ,
and for al l his many conceptual and technical comments

on early drafts of this paper. They have contr ibuted to
improve the paper signif icantly. We also thank Luciano
Serafini for f ru i t fu l discussions.

References
[Beetz and McDermo t t , 1994] M. Beetz and D. McDer-

mo t t . Improv ing Robot Plans Dur ing Thei r Execu­
t ion . In Proceedings 2nd International Conference on
AI Planning Systems (AIPS-94), Chicago, 1994.

[Georgeff and Lansky, 1986] M. Georgeffand A. L. Lan-
sky. Procedural knowledge. Proceedi ngs IEEE,
74(10):1383-1398, 1986.

[Giunchigl ia et ai, 1991] F. Giunchig l ia , P. Traverso,
A. C i m a t t i , and L. Spalazzi. Programming planners
w i th f lexible architectures. Technical Report 9112-19,
IRST, Trento, I ta ly, 1991.

[Giunchigl ia et ai, 1994] F. Giunchig l ia, L. Spalazzi,
and P. Traverso. Planning w i th Failure. In Proceedings
2nd International Conference on AI Planning Systems
(AIPS-94), Chicago, 1994.

[Hard et ai, 1982] D. Harel , D. Kozen, and R. Par ikh.
Process Logic: expressiveness, decidabi l i ty, complete­
ness. Journal of computer and system sciences,
25:144-170, 1982.

[Harel, 1984] D. Harel. Dynamic Logic. In D. Gabbay
and F. Guenthner, editors, Handbook of Philosophical
Logic, volume I I , pages 497-604. D. Reidel Publ ishing
Company, 1984.

[Lesperance et ai, 1994] Y. Lesperance, H. J. Levesque,
F. L i n , D. Marcu, R. Reiter, and R.B. Scherl. A Log­
ical Approach to High-Level Robot P rog ramming - A
Progress Report. In Control of the phisical world by
intelligent systems, working notes of the AAAI Fall
Symp., 1994.

[Lifschitz, 1993] V. Lifschitz. A Language for Describing
Actions. In Proceedings 2nd Symposium on Logical
Formalizations of Commonsense Reasoning, Aus t in ,
1993.

[Rao and Georgeff, 1991] A. S. Rao and M. P. Georgeff.
Model ing Rat ional Agents w i th in a BDI-Archi tecture.
In Proceedings KR'91, Principle of Knowledge Repre-
sentation and Reasoning, pages 473-484, Cambridge
Massachusetts, 1991. Morgan Kau fmann.

[Simmons, 1990] R. Simmons. An Architecture for Co-
ord inat ing Planning, Sensing and Ac t ion . In Pro­
ceedings of the Workshop on Innovative Approaches
to Planning, Scheduling and Control, pages 292-297,
1990.

[Steel, 1994a] S. Steel. Act ion under Uncertainty. Jour­
nal of Logic and Computation, Special Issue on Action
and Processes, 4(5):777-7y5, 1994.

[Steel, 1994b] S. Steel. Planning to Plan, 1994. Tech-
nical Report , Dept Computer Science, University of
Essex, Colchester C 0 4 3SQ, UK .

[Traverso et ai, 1992] P. Traverso, A. C i m a t t i , and
L. Spalazzi. Beyond the single p lanning paradigm: in ­
trospective planning. In Proceedings ECAI-92, pages
643-647, Vienna, Aust r ia , 1992. IRST-Technical Re­
port 9204-05, IRST , Trento, I ta ly.

[Wi lk ins, 1985] D.E. Wi lk ins . Recovering f rom execu­
t ion errors in SIPE. Computational Intelligence, 1:33-
45,1985.

TRAVERSO AND SPALAZZI 1947

