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Abstract

We present a logic which allows us to reason
about acting, and more specifically about sens-
ing, i.e. actions that acquire information from
the real world, and planning, i.e. actions that
generate and execute plans of actions. This
logic takes into account the fact that, as it hap-
pens in real systems, actions may fail, and pro-
vides the ability of reasoning about failure han-
dling in acting, sensing and planning. We see
this work as a first step towards a formal ac-
count of systems which are able to plan to act,
plan to sense and plan to plan, and therefore,
to integrate action, perception and reasoning.

1 Introduction

The idea of using logic for reasoning about actions and
plans has been extensively studied in the past. So far,
most of this research has mainly focused on two issues.
The first is the problem of providing an adequate ax-
iomatization of actions that a system can perform in
the external environment. The second is the problem
of providing a powerful and efficient deductive planning
mechanism able to generate plans automatically. The
idea underlying most of this research is that a logic can
be used to predict action executability and effects, and
therefore to generate "good" plans, i.e. plans that when
executed are likely to achieve the desired goals.

Our research is related but different in focus. Our
work starts from an analysis of planning systems that
work in real world applications. Most of these systems,
beyond plan generation, need to perform many different
activities. For instance, they have to monitor executions,
react to environmental changes, interleave planning, ex-
ecution and perception, recover from failures, e.g. by
replanning or by executing exception handling routines.
In order to perform these activities, they need three ba-
sic capabilities: acting, sensing and planning. Acting
capabilities are usually provided by a repertoire of ac-
tuators which perform actions in the external environ-
ment (e.g. wheels, gripper fingers and hands). Sens-
ing capabilities are usually provided by a set of sensory
devices which acquire information from the real world
(e.g. sonars, odometers, cameras, microphones). Plan-
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ning capabilities are usually provided by planning mod-
ules which generate plans to achieve given goals (e.g.
modules for plan search, interactive systems for plan
reuse) and execute plans. A planning system has to
activate, coordinate and control all these devices and
modules Several systems which control acting, sensing
and planning have been proposed so far (see for instance
[Beetz and McDermott, 1994; Georgeffand Lansky, 1986;
Simmons, 1990]) and have been successfully applied in
particular application domains (like mobile robots and
fault diagnosis for real time systems). In spite of this
fact, no principled and theoretical account has been
given of the behaviours of these systems.

The goal of this paper is to provide a logic which al-
lows us to represent and reason about acting, sensing and
planning. The motivation is twofold. First, the logic can
be used to provide a specification of real systems which
allows us to understand their requirements. Second, the
logic can be used as a basic formal framework for build-
ing reasoning modules within real world applications. It
can in fact be used to plan to act, plan to sense and plan
to plan, and therefore to decide how to interleave acting,
sensing and planning. We see this work as a first step
towards a formal account of systems which are able to
integrate reasoning, perception and action.

In order to achieve this goal, the logic we propose has
some novel features. First, it is based upon an extended
notion of action. The logic represents explicitly sensing
actions, i.e. actions that acquire information and mod-
ify the state of knowledge of the agent, and planning
actions, i.e. actions that generate and execute plans of
actions. As a consequence, not only can the logic rea-
son about the effects of actions in the real world, but
also about the fact that a sensor has (not) been used
to update the knowledge of the system about the world
and the fact that the system has (not) a proper plan at
hand which can be executed to try to achieve a given
goal. Second, in real systems, no action, even if appar-
ently simple, is guaranteed to succeed. This is mainly
due to the intrinsic complexity of reality, to the fact
that the external environment is usually incompletely
known and unpredictable, and to the fact that actua-
tors, sensors and models of the world are not perfect.
As a consequence, neither acting, nor sensing, nor plan-
ning is guaranteed to succeed. The logic we propose has
in its language the basic operations for failure handling
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and can therefore reason about failure detection and re-
covery in acting, sensing and planning.

The paper is structured as follows. We describe the
language of the logic in section 2 and its semantics in
section 3. We give some axioms and theorems ofthe logic
in section 4. We discuss some related work in section 5.

2 Language

The logic is a variation of process logic [Harel ex al.,
1982], an extension of dynamic logic [Harel, 1984]. In
section 2.1 we describe a language for action. In sections
2.2 and 2.3 we extend the language to represent sensing
and planning actions, respectively.

2.1 Acting

The syntax of the logic is based upon two sets ofsymbols:
Po, the set of atomic (or basic) propositions and 70, the
set of atomic (or basic) tactics. From Vo and 70 we
inductively construct the set V of propositions and the
set T of tactics. V and T are the smallest sets such that:

Po CP; True € P;

If p,q € P, then -p,pAg €P.

WeP;

If p,g € P then p chop¢ge P.

Te C T, L,eeT,

Ife, 2,y €T, then iflail o then felseye 7T.
Ifp€P,aeT7,then [a]p e P.

If « € T, then Fail(a), Succ(a) € P.

We use V, —P» and <-> as abbreviations in the standard
way and, in addition, we abbreviate -[a]-»p to {a}p as
in dynamic logic’.

Propositions are either true or false in behaviours (we
say that they are behaviour propositions), where, intu-
itively, a behaviour is a finite sequence of states of the
world. For example, if wq, wy, w;, w, and ws are states,
then w1 w2 w3 w4 wb is a behaviour. A single state
is a particular case of behaviour, W is the proposition
which holds over any behaviour which consists of a sin-
gle state. The operator chop is applied to propositions p
and g to yield a new proposition p chop q. chop is used
to reason about concatenations of behaviours, where, for
example, the concatenation of w7 w2 w3 and W3 W4 w5
is W1 w2 w3 w4 wb. p chop g holds in a behaviour b iff
there exist two behaviours by and b, such that the con-
catenation of by and b, is b, p holds in by and g holds in
b,- We extend the language with the operator last which
is applied to a proposition p to yield a new proposition
last(p).

® N oLt W e

last(p) — True chop (p A W)

last(p) holds in a behaviour b iff p holds in the final state
of b.

Tactics represent actions. For instance, goto(A) can
be a basic (even if very complex) action which moves a

1Actually, the language allows for tactics that include con-
ditional expressions of the form if p then a else B and loops
of the form while p do a. For lack of space, in this paper we
do not describe the full syntax. The language, as well as its
semantics, can be easily extended.
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robot to a position A, e.g. by means of an in-door navi-
gation system?. T and & represent the primitive actions
that generate success and failure, respectively. £ (&)
does nothing but terminate execution with success (fail-
ure). The intended meaning of iffail o then 7 else 4
is: “do a, if « fails do A, otherwise do ¥”. The intended
meaning of [alp i8 “every possible execution of a leads
to a behaviour in which p holds”. Fail(a) and Suec(a)
hold iff a fails and succeeds, respectively. Foranya € 7T,
we extend the language with the proposition Fz{a), de-
fined as follows:

Ez(a) — Suec(a) V Fail(e)

A proposition p can be seen .as a goal to be achieved.
Notice that success/failure of a tactic does not coincide
necessarily with the achievement/not-achievement of a
related goal. The former is a property of tactics, the
latter is a relation between tactics and goals. A tactic
may {ail and, nevertheless, achieve the goal the tactic has
been executed for. Vice versa, a tactic may succeed and
may not achieve the goal. For example, let pui-on(a,b)
be a tactic that moves the block a on the block b. H a is
on the block ¢, put-on{a,b) may fail, e.g. by moving a
on the table, and nevertheless achieve the goal Clear(c).
If ¢ is near b, put-on(a,b) may succeed and not achieve
the goal Far-from(a, c).

Constructs for failure handling are definable using L,
® and iffail. For instance, we extend the language with
the following definitions.

o; 3 = iffail o then 3 else 3,

then(e, §) = iffail o then @ else 3,
orelse(a, 3) = iffail o then 8 else E,
repeat(a) = orelse(then(u, repeat(a)), I)

We define the usual construct ; for sequences of actions.
In a;/? the second action is executed anyway, indepen-
dently of the failure/success of the first action. Notice
that ; is a primitive construct in most of the logics pro-
posed so far, e.g. in dynamic logic [Harel, 1984], in pro-
cess logic [Harel et al/., 1982], in (extended versions of)
situation calculus [Lesperance el al, 1994] and in all the-
ories of actions, e.g. in [Lifschitz, 1993]. This is due to
the fact that ; constructs sequences without handling
failure and these logics do not take into account failure.
A sequential composition which takes into account fail-
ure is then. If the first action fails, then does not execute
the second, but simply terminates execution with failure.
then captures the behaviour of sequential executions in
real systems where, if the first action fails, the second is
not executed and control is passed to a module for fail-
ure recovery, or else is the construct for failure recovery.
orelse(a,B) reacts to failure of a by executing B. repeat
controls failure over the repeated execution of a tactic.
It is recursively defined. It repeats the execution of a till
a fails. |If a never fails, execution does not terminate.
Notice that if it terminates, repeat(a) always succeeds,

?More precisely, basic tactics are constructed from a set
of terms, e.g. A, and a set of tactic symbols, that, intuitively
represent action types, e.g. goto. For lack of space we skip
the formal definition of the syntax of basic tactics.



since orelse in the definition of repeat reacts to failure
by executing X, which always succeeds.

2.2 Sensing

We extend the language with a set C of symbols that
we call sensors. For any sensor, we add a tactic and a
proposition to the set of basic tactics and propositions.

If ¢ € C, then sense(c) € Ty.
If ¢ € C, then Sensed(c) € Py.

Intuitively, sensors denote values which can be acquired
through sensory devices. For instance, wall-distance can
be the sensor which gets the value of the distance of the
robot from the wall. We call sense(c) a sensing action
(for ¢). Its intended meaning is "acquire the value of
the sensor c". For example, sense(wall-distance) can
activate a sonar and/or a camera to acquire the value of
wall-distance.

Sensing actions formalize activities that real systems
have to perform extensively. Indeed, while most theories
of actions are based on the assumption that, after act-
ing is performed, the agent has at hand all the desired
information about the new state of the world, this is not
what happens in real systems. Most often, in real sys-
tems, the only way to get to know some facts about the
state of affairs is to activate sensory devices and acquire
information from the external environment, i.e. to exe-
cute sensing actions. Suppose for instance that a robot
moves successfully to a given position A. At this point,
the world around the robot has changed: its position
has changed, as well as the distance from the wall, the
distance from the nearest window, and so on. It is not
realistic that the robot gets to know all these facts au-
tomatically after execution. For instance, after acting,
knowledge about its position might be updated auto-
matically, but it may have instead to measure (e.g. by a
sonar or a camera) the distances from the wall, objects
and landmarks to get to know their new values. Real
systems have therefore to execute sensing actions explic-
itly. For instance, suppose that gofo(A) is a tactic which
does not update the value of the sensor wall-distance.
A possible tactic which moves the robot to A and then
acquires the value of the distance from the wall is the
following.

goto( A); sense(wall-distance) (i)

A sensing action may fail. For instance,
sense{wall-distance) may fail since the sonar may not
work or the camera may fail to detect the wall. In exam-
ple (1), if sensing fails then the value of wall-distance is
not updated.

Successful sensing actions update the state of knowl-
edge of the agent since, at the end of their execution,
the value of the sensor is acquired. This knowledge is
expressed by the proposition Sensed(c), which holds in
any behaviour which is the final state of a successful sens-
ing action for ¢. The idea here is that Sensed(c) holds
if we have just executed a successful sensing action for ¢
and therefore the value ofc is "up to date". For instance,
consider the following propositions.

&z(goto(A)) — - last(Sensed(wall-distance))

Exz(goto(B)) — — last(Sensed(wall-distance)) (3)

Suce(goto( A); sense(wali-distance)) — 4
last(Sensed(wall-distance))

Ez(goto( A); sense(wall-distance); goto( B)) — 5

~last(Sensed(wall-distance)) (&)
Proposition (2) states that goto(A) does not update au-
tomatically the distance from the wall, i.e. after execut-
ing goto(A) either with success or failure (Ex(goto(A))):
then we get to a final state where wall-distance is not up
to date (/ast (Sensed{wall-distance))). Proposition (3)
is the analogous statement for the tactic goto(B). The
value of the sensor is up to date if the sensing action
succeeds (proposition (4)). If we execute gofo(B) after
sensing, then the value is not up to date (proposition
(5)). Indeed, the last action might change the actual
distance from the wall. Notice that the fact that the
truth value of Sensed(c) changes does not depend on
the fact that the value of ¢ changes or not. For instance,
propositions (2)-(5) may hold even if wall-distance is
constantly the same before and after the executions of
goto(A), goto(B) and  sense(wall-distance).

2.3 Planning

We add to the language a set |l of symbols, that we call
names of tactics, which is based upon an initial set of
symbols 1, and we extend the set of basic tactics and
propositions as follows,

1, C 1.
If # € llp and p € P, then planfor(x,p) € Tp.
If # € I, then ezec(w) € Tp;

If # € 1ly and p € P, then Planned(w, p) € Po.
If « €T, then “a” € II.

We call "a" the name of the tactic a. Names of tac-
tics denote tactics. For example, the name of gofo(A)
denotes the syntactic expression goto(A). The idea here
is that planning generates a syntactic expression denot-
ing a plan which can thereafter be executed. We call
planfor(-jr,p) a plan generation action (of m for p). Its
intended meaning is: "generate a plan denoted by I to
achieve the goal p". For example, if Robot-at-A is a
proposition whose intended meaning is "the robot is in
position A", then planfor {mr, Robot-at-A) can be a tac-
tic that generates the name n which denotes the sim-
ple plan goto(A). We call exec(Tr) a (plan) execution
action (of IT). lts intended meaning is: "execute the
plan denoted by TT". For example, the intended mean-
ing of exec{'gotofA)") is: "execute the plan denoted by
"gofo(A)"™. We call plan generation and execution ac-
tions, planning actions. As an example of combination
of planning actions, consider the following tactic which
generates a plan and then executes it.

then(planfor(x,p), exec(n1)) (6)

Since plan execution actions may perform actions in
the real world, they may fail. Failure in plan execution
can be handled in different ways. Most classical plan-
ners (e.g. [Wilkins, 1985]) handle failure by replanning,
i.e. by searching for a new plan. Reactive planners (e.g.
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[Georgeff and Lansky, 1986; Simmons, 1990]) sometimes
have no time for replanning, and therefore handle fail-
ure by executing precompiled special purpose exception
handling routines. Our logic is expressive enough to rep-
resent these different failure handling mechanisms. For
instance, tactic (7) reacts to failure of exec(m) by re-
planning (planfor(rr1i , p)), while tactic (8) reacts to fail-
ure by executing the plan denoted by 12, which can be
a precompiled exception handling routine.

orelse(exec(m, ), planfor(m,,p)) (7)
orelse(exec(m))), exee(ms}) (8)

In most classical planners, plan generation searches for
a plan by using an internal model and does not operate
in the real world. This is not what happens in most
of the reactive planners (e.g. in [Georgeff and Lansky,
1986; Beetz and McDermott, 1994]) where, sometimes,
the only way to decide for a plan is to do something in
the world. For instance, a mobile robot which has to look
for something in a building and does not know the map
may have to "turn around the corner and open a door" in
order to decide what to do next. In order to capture this
extended notion of plan generation, plan for has to be
thought simply as a tactic which constructs a plan, with
no constraints on whether it operates in the real world
or not. As a consequence, in our view, plan generation
may fail in the same way as acting, sensing and plan
execution may fail. The constructs for failure handling
defined in section 2.1 can be used to handle failure in
plan generation. For instance, in example (6), if plan/or
fails, then captures failure and does not execute TTJ.

Successful plan generation actions update the state
of knowledge of the agent since they produce a plan
that is available for execution. This knowledge is ex-
pressed by the proposition Planned(m,p), which holds
in any behaviour which is the final state of a success-
ful plan generation action of 1 for p. The idea here is
that Planned(m,p) holds if we have just executed a plan
generation action of 1 for p and therefore the plan at
hand, i.e. the plan denoted by T, is "the proper plan
for that situation". For instance, consider the following
propositions.

E:(goto(A)) —_ = Jast(PIanned(arl ,p)) (9)
Suce(planfor(m,p)) — last(Planned(m,p)}  (10)
Ez(planfor(my,p); goto(A)) — (11)

- last{ Planned(m,, p))

Suce(plan for(r,, p); exec(7y); plan for(xy, p)) — (12)
last(Planned(m,, p))

Proposition (9) states that moving the robot to A makes
the plan denoted by I obsolete. Proposition (10) states
that success in planning leads to a final state where the
plan at hand is "the proper plan for that situation".
Proposition (11) states that after planning and executing
goto(A), the plan denoted by M1 may be obsolete (even
if still available for execution). Indeed, acting in the
world may change the world and invalidate old plans.
Proposition (12) states that after plan generation, plan
execution, and finally plan generation again, the plan at
hand is "the plan for that situation".
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Two remarks are in order. First, having at hand “the
plan for that situation” does not mean that the execution
of the plan will actually achieve the goal. This is not re-
alistic in presence of uncertainty. The knowledge of the
agent is relative to its (possibly incomplete or wrong)
model of the world. Only the execution of the plan
will determine whether the plan has achieved the goal
or not. Second, the second occurrence of plan for(m,, p)
in (12) might or might not generate a new tactic dif-
ferent from the one generated by the first occurrence of
planfor(r;,p), i.e. the tactic denoted by m; might or
might not change. This depends on how planfor be-
haves and, for instance, on whether the execution of 1,
changes the world in a way that influences the secand
plan generation action.

3 Semantics

The semantics of the language 15 defined relative to a
given structure If, of the form

U={(DWI)

where D i1s the domasin of interpretation, W is an ab-
stract set of states and 7 is the interpretation func-
tion. D = D, U7Z,. D, is used to interpret sen-
sors and 7, is used to interpret names of tactics. The
set of behaviours B is the set of all finite-length se-
quences of states, repetitions allowed, i.e. 8= W*, Be-
haviour concatenation is defined as follows: if w; € W,
i=1,.. ., i-1,47+1,...n, b, b2 B, b =w...w,
by = w, ... wy, then by - by = w1 .. . wj_y w; wjgy ... wy.
Concatenation is extended over sets of behaviours in the
usual way.

Z assigns interpretations to sensors and names de-
pending on behaviours. For any 6 € B, we write ¢
and w; the interpretation of ¢ € C and * € 1l in the
behaviour &, respectively. For any ¢ € C, ¢, € D,, i.e. in
any behaviour, a sensor denotes an element of D,, that
we call the value of the sensor. For any = € I, my € T,,,
t.e. a name of a tactic denotes an element of 7, where
T, is the set of tactics in /. Notice that we have the
set of tactics 7 in the language and the set of tactics 7y
in the structure &. 7 and 7, contain exactly the same
elements. We need 7, in order to interpret names of
tactics. For any behaviour &, “a”; = a.

I assigns subsets of B to propositions and tactics. We
write p(p) and R(a) the sets of behaviours assigned by
ITtopePanda €T. Wewrite b = p iff b € p(p).
R(a) is divided into two subsets:

R(a) = S(a) U F(a) (13)

S(a) is the set of successful behaviours, that we call
the success sel of a, and F(«) is the set of behaviours
that fail, that we call the faslure sel of o. I assigns
an arbitrary subset of 88 to each basic proposition p and
arbitrary disjoint success and failure sets to basic tactics,
ie.

VaeTy S(a)NFla)=10 (14)

We have the following condition over R{a) of basic tac-
tics:



Va €Ty ¥b1,b2 € R(a) Vb3 € B 1
if bs@ W, then by #by-by (19
This condition states that we cannot have a behaviour
of an action whose final state is the same as the inter-
mediate state of a behaviour of the same action. This
corresponds to the fact that the agent, in a given state of
its computation machinery, always stops or always con-
tinues execution. Conditions (14) and (15) allow us to
prove that success and failure sets are mutually exclu-
sive:
Vo €T S(a)NFla)=10 (16)
and that condition (13) holds for any tactic.

T is extended inductively to supply meanings for the
full sets P and T.

1. b | True;

2.0 pifflblEp, bEpAqifbEpandbl=g
3.0 Wiffbe W,

4. b |= pchop qiff 3by,bs € B such that b = b, - b, and

by i=pandbg }= q.

STYy=W;, F(£)=0, S@®)=08; F(®)=Ww.

7. S(iffail o then 3 else 4) =

S(a) - S(y) U Fla) - S(B);
F(iffail o then 3 else ) =
S(a) - F(v) U F(a) - F(B).
8. b= [a]piff ¥V € R(e), then b- ¥ = p.
9. b E Fail(a) if b € Fla),
b E Succ(a) iff b € S(a),

Some remarks. W is interpreted into W. Notice that W
is the identity w.r.t. concatenation, i.e. if B is any set of
behaviours, then B - W = W - B = B. The failure set of
¥ is empty. This corresponds to the fact that it always
succeeds. Its success set 1s W, This corresponds to the
fact that ¥ does nothing else but succeeding. Vice versa,
the success set of ¢ is empty while its failure set is W.

The constructs ;, then, orelse and repeat inherit their
meanings from their definitions in terms of X, ¢ and
iffail. For lack of space we do not describe the semantics
of repeat, which is recurgively defined and interpreted
by building a fix point. We give below the success and
failure sets for ;, then and orelse.

S(a; 8) = R(a) - S(3)

Fla; 8) = Ria) - F(5)

S(then(a, B)) = §(a) - 5()

F(then(a, B)) = F(a) U S(a)- F(B)

S(orelse(a, 8)) = S(a) U F(a) - 8(F)

F(orelse(a, B)) = Fla)  F(B)
Notice that, in case both o and J succeed, then(a, ()
behaves like a; 3. In case of failure of the first ac-
tion, the failure set of then(a,d) is the failure set of
the first action, i.e. F(a). This captures the idea that
when the first action fails, the second is not executed.
Analogously, notice that when the first action succeq_eds,
S(orelse(a, B) is the success set of a, ie. S(a), since
no recavery from failure is needed. When o fails, 8 18
executed and orelse(a, 8) might either fail or succeed,
depending on the failure/success of 3.

In the following, we give interpretation to Sensed(c)

and Planned(x,p).

o

b = Sensed(c) iff 3b, € S(sense(c))
such that b, - b = &;.
30, € S(planfor(w, p)}

such that b, - b = b;.

b = Planned(x,p) iff

Sensed(c) holds in all and only the states which
are final states of successful behaviours of sense(c).
Planned(w, p) holds in all and only the states which are
final states of successful behaviours of plan for(w, p).

Notice that, in order to keep the semantics general,
we have not given any condition on the interpretations
of sensing and planning actions. They are basic tactics,
and as such they are assigned arbitrary disjoint success
and failure sets. Their semantics depends on the partic-
ular sensing, planning and execution mechanisms which
are available to the system. Nevertheless, there are con-
ditions on planning that seem reasonable. We give some
of these conditions below.

I. S{exec(“a”)) = S(a);
II. S(ptanfor(m,p)) =
{6 ] ' € R(ms) such that b ¥ | p}

Condition ! states that execution, given a name denot-
ing a tactic, does nothing but executing the tactic it-
self. Condition Il states that there must exist at least
one behaviour &’ in the execution of a tactic denoted
by 7 (i.e. ;) and generated by the planning action
planfor(x, p), such that behaviours in the successful set
of planfor(w, p) concatenated with & achieve the goal p
we have planned for (i.e. b-¥ }= p). This condition al-
lows only for plan generations that produce a plan that,
when executed, has at least a possibility of achieving the
desired goal.

Flexee(“a™}) = F(a).

4 Some theorems

Given the language and its semantics, the goal is to pro-
vide a deductive system which is complete and correct.
In the following, we give some axiom schemas which we
have proved correct w.r.f, the given semantics and which
allow us to prove some interesting theorems about act-
ing, sensing and planning. We start with axioms inher-
ited from dynamic and process logic:

(A1) [o](pAg) — ([alp A [e]q)

(A2) {o](p ~ ¢) — (lalp — [o]g)
Some basic properties of W and chop:

(A3) ((p chop W) ~ p) A((W chop p) — p)

(A4} ((p chop g) chop r) — (p chop (q chop r})
Some axioms to reason about failure and success:

(A5) W — [a]Ex(a).

(AB) —(Suce(a) A Fail(a)).

(A7) Exr(a) — =(Ez(«) chop ~W)

(AB) (~Fail(X)) A (Suce(L) — W)

(A9) (—Succ(®)) A (Fail(®) — W)

(A10) ([E]p — p) A{[®]p — p)

(A11) Succ(iffail o« then § else ¥) —

((Fail{a) chop  Suec(fB)) Vv
(Suce(a) chop Suec(y)))
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(A12) Fail(iffail o then 3 else v) ~
((Fail(e) chop Fail(8)) v
(Succ(a) chop Fail(y)))
(A13) W — ([iffail & then 3 else y]p —
((le]Fait(a)  —  [a)([Blp)) A
(la)Suce(a) — [2}((+]))))

(AB) states that, if we are in the initial state of a be-
haviour of a, then the execution of a either leads to
success or failure. (A8) states that success and failure
are mutually exclusive. It corresponds to the condition
S(a) N F(a) = 8. (AT) states condition (15) for any
tactic. Indeed, for any p € P, for any b = w;...wy,
bl Epchop W ifwy...up Epwithl<k<n-1
(A7) states therefore that, if w;...w, € R{a) then
wy...wx € R(a), with 1 < & < n—1. (A8) and (A9)
state that X (®) never fails (succeeds) and that the suc-
cess {failure) set of & (®) is W. (Al0) states that &
and ® do not change the world, i.e. the set of proper-
ties which hold before the execution of £ and 9 also hold
after their execution and vice versa. (A11} and (A12) de-
scribe the success and failure set of iffail. {A13) states
that p holds after iffail o then £ else v iff it holds after

o and A if « fails, and after a and v if o succeeds.
The following axioms describe sensing and planning.

{A14) Succ(sense(c)) —
(Suce(sense{c)) chop Sensed(c))

(A15) Suce(planfor(x,p)) —
(Suce(planfor{r, p)) chop Planned(x,p))

(Al14) and (A1l5) state that semsing and planning with
success end up in a final state where Sensed(c) and
Planned(n, p) hold, respectively.

Conditions I and II (section 3) are stated as follows.

(A16) ([ezec(“a”)]p — [a]p) A
(Suce{erec(“a”}) — Suecc(a)) A
(Fail(ezec(“a”)) « Fail{a))

(A17) Succ(plan for(x,p)) — (exec(m))p

(A186) states that the effects of exee(“a”) are the same as
the effects of a. (A17) states that plan generation gener-
ates a plan that has at least one possibility of achieving
the desired goal.

From (A1)-(A13), we can prove the following theo-
rems which can be used to reason about success and
failure of the constructs ;, then and orelse.

(T1) Suce(a; ) — ((Fail(a) chop Suce(f)) V
(Suce(e) chop Suce(B)))

(T2) Fail(a;B) « ((Fail(a) chop Fail(3)) v
(Suce(a) chop Fail(8)))

(T3) Succ(then(a,B)) —
(Succ(a) chop Suce(8))
(T4) Fail(then(a, 8)) —
(Fail{a) vV (Succ(a) chop Fail(3)))

(T5) Succ(orelse(a,F})
(Suce(a) V (Fail(a) chop Suce(f)))
(T6) Fail{orelse(a,B)) —
(Fail(a) chop Fail(3))
From (A1)-{A14), we prove the following theorems.
(T7) Succ(sense(c)) — last(Sensed(c))
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(T8) Suce(o; sense(c)) — last(Sensed(c))

Moreover, from (T8) we can prove (4) and, given (3) as
an axiom, we can prove (§) from (T1) and (T2). From
(A1)-(A13) and (A15), we prove the following theorems.

(T9) Succ(planfor(r,p)) — last(Planned(w,p))
{T10) Suce{a; planfor(w, p)) — last{ Planned(w, p))

which can be used to prove propositions {10) and (12).
(9}, (T1) and (T2) can be used to prove proposition (11).

5 Related work

This paper is an elaboration and extension of the intu-
itions originally presented in [Giunchiglia et at, 1994].
Compared to the previous research in theories of ac-
tions, the work described in this paper is limited in at
least three respects. First, we do not allow for variables
and quantifiers in our logic. Second, we do not deal with
asynchronous and parallel events and actions. Third,
we do not discuss how our logic deals with the frame
problem. Major future goals include these issues. How-
ever, these issues, though very important, are somehow
orthogonal to the main message of this paper, which is
about describing a theory of acting, sensing, and plan-
ning, i.e. a theory which integrates in a uniform frame-
work important basic features of planning systems for
real world applications. As far as we know, the approach
presented in this paper has never been proposed before.

The closest work on failure is that described in [Rao
and Georgeff, 1991]. [Rao and Georgeff, 1991] presents
a formal framework for BDI-architectures and commit-
ment (we do not deal with these issues in this paper)
which represents explicitly failure and success of events.
succeeds(e), fails(e), succeeded(e) and failed(e) are
state formulas (of a propositional branching time logic)
which express immediate future and past performance,
respectively successfully and unsuccessfully, of event e.
Semantically, arc functions S, and F, map adjacent
time points to the event that occurred with success or
with failure. Technically, our approach is different since
Succ(a) and Fail(a) are behaviour propositions. This
captures the fact that the execution of an action may re-
sult in different sequences of states, and the fact that its
failure and success may depend on the whole sequence
and not only on a single state. The main conceptual dif-
ference is in the focus and objectives of the two works.
We are interested in a framework for failure handling,
i.e. in how actions can be composed through constructs
which capture and react to failure, since we see flexible
failure recovery as one of the major activities that real
planning systems have to perform. For this reason we
have a logic which combines actions through <£, E, ifTail.
;, then, or else and repeat. While the theory proposed in
[Rao and Georgeff, 1991] does not deal with action com-
position, and more important, with constructs for failure
handling. Moreover, our logic allows us to express and
reason about sensing and planning actions, while [Rao
and Georgeff, 1991] does not.

In [Lesperance et a/., 1994], situation calculus is ex-
tended with complex actions, e.g. sequences, condition-
als and loops, and with "perception actions", or "knowl-
edge producing actions", of the form SENSEp and READ,-,



where P and r are a fluent and a term, respectively.
Knowledge about perception is expressed by means of
wffs of the form  Knows(P,a) and Kref(r, s), where * is
a situation. Technically, our approach is different since
we have no situations in the logic. Moreover, in this pa-
per we have described a class of sensing actions which is
less expressive than the class of perception actions de-
fined in [Lesperance et ai, 1994], However, the given
language, semantics and axiomatization can be easily
extended to include sensing actions about propositions
and terms. Conceptually, our work differs mainly in two
aspects. First, our logic captures the fact that percep-
tion is a complex task that, when it has to be performed
by real systems, is not guaranteed to succeed. Actions
of the form sense(c) may actually fail to acquire infor-
mation and therefore fail to produce knowledge. As a
consequence, in our logic we do not have theorems anal-
ogous to Kref(r,do(READ,s)), which can be read as
"after doing READ, the agent knows the denotation of
r', but we can prove theorem (T7), i.e. "if sensing sue-
ceeds, then the agent has sensed c". Second, our logic
allows us to express and reason about planning actions,
while [Lesperance et ai, 1994] does not.

The closest work on planning actions is that described
in [Steel, 1994b] (see also [Steel, 1994a]), where dynamic
and epistemic logic are used to express formulas of the
form "plan to do an action that achieves a goal, then
do it". The main differences with our work are the fol-
lowing. First, in [Steel, 1994b] plan generation is seen
as "specialization" of "non operational" actions, i.e. ac-
tions which cannot be executed. We see instead plan
generation as an executable action which constructs a
plan. This corresponds to the fact that systems have
planning modules which can be activated to generate
plans. Second, in [Steel, 1994b], planning is seen as an
action which does not affect the external environment
while we do not rely on this assumption since many re-
active planners have to generate plans by acting in the
world. Finally, our logic deals explicitly with failure han-
dling in plan generations and executions.

The logic we have proposed is based on work on MRG
[Giunchiglia et at., 1991; Traverso ei ai, 1992], a reactive
planning system which executes tactics. At the moment,
MRG is used in a large scale, real world application under
development at IRST. This application aims at the de-
velopment of a system that has to control and coordinate
mobile robots, navigating in unpredictable environments
inhabited by humans and performing high level tasks,
like transportation tasks in hospitals and offices. MRG
tactics are executed by means of systems that perform
sensing and acting, e.g. a reactive sensor and actuator
controller for navigation tasks and a system for speech
recognition, and by means of systems that generate and
execute plans, e.g. path planners and activity sched-
ulers. We plan to use the formal framework to extend
the functionalities of MRG and to specify the requirements
of the application under development.
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