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Abstract 
Finding a solution to the frame problem that is 
robust in the presence of actions with indirect effects 
has proven to be a difficult task. Examples that 
feature the instantaneous propagation of interacting 
indirect effects are particularly taxing. This article 
shows that an already widely known predicate 
calculus formalism, namely the event calculus, can 
handle such examples wi th only minor 
enhancements. 

Introduction 
The ramification problem, that is to say the frame problem 
in the context of actions with indirect effects, has attracted 
considerable attention recently [McCain & Turner, 1995], 
[Lin, 1995], [Gustafsson & Doherty, 1996], [Sandewall, 
1996], [Shanahan, 1997], [Thielscher, 1997], [Kakas & 
Miller, 1997], [Denecker, et al, 1998]. The purpose of this 
paper is to demonstrate that the standard benchmark 
scenarios for the ramification problem can be handled by 
the event calculus, as presented in Chapter 16 of 
[Shanahan, 1997], without introducing any significant new 
logical machinery. 

Following [Shanahan, 1997], this article presents the event 
calculus in the first-order predicate calculus, augmented 
with circumscription. In this form, it can be used to 
represent a variety of phenomena, including concurrent 
action, actions with non-deterministic effects, and 
continuous change [Shanahan, 1997]. 
The event calculus can also be used to represent actions 
with indirect effects, as shown in [Shanahan, 1997]. 
However, certain types of domains are problematic. These 
involve the instantaneous propagation of interacting 
indirect effects, as exemplified by Thielscher's circuit 
benchmark [1997]. Staying within the framework of the 
event calculus, and introducing just two new predicates and 
two new axioms, this article presents a general technique 
for representing actions with indirect effects that 
encompasses such domains. 

1 Event Calculus Basics 
The event calculus used in this paper is drawn directly from 
Chapter 16 of [Shanahan, 1997]. Its ontology includes 

actions (or events), fluents and time points. The 
formalism's basic predicates are as follows. Initiates 
means fluent starts to hold after action at time , 
Terminates means fluent ceases to hold after 
action at time Releases means fluent is not 
subject to inertia after action at time Initiallyp 
means fluent holds from time 0, InitiallyN(P) means 
fluent does not hold from time 0, Happens(a,) means 
action a occurs at time and HoldsAt means fluent 
holds at time 
Given a collection of effect axioms, expressed as Initiates, 
Terminates and Releases formulae, and a narrative of 
events, expressed as Happens, Initially N, Initiallyp and 
temporal ordering formulae, the axioms of the event 
calculus yields HoldsAt formulae that tell us which fluents 
hold at what time points. Here are the axioms, whose 
conjunction will be denoted EC. 

The frame problem is overcome using circumscription. 
Given a conjunction of Initiates, Terminates and Releases 
formulae, a conjunction of Initiallyp, Initially N, Happens 
and temporal ordering formulae, and a conjunction of 
uniqueness-of-names axioms for actions and fluents, we're 
interested in, 

Initiates, Terminates, Releases 
; Happens] 

In all the cases we're interested in, and are in a form 
which, according to a theorem of Lifschitz, guarantees that 
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these circumscriptions are equivalent to the predicate 
completions of Initiates, Terminates, Releases and 
Happens. 

2 State Constraints 
The ramification problem is the frame problem for actions 
with indirect effects, that is to say actions with effects 
beyond those described explicitly by their associated effect 
axioms. Although it's always possible to encode these 
indirect effects as direct effects instead, the use of 
constraints describing indirect effects ensures a modular 
representation and can dramatically shorten an 
axiomatisation. One way to represent actions with indirect 
effects is through state constraints, the focus of this 
section. These express logical relationships that have to 
hold between fluents at all times. 
In the event calculus, state constraints are HoldsAt 
formulae with a universally quantified time argument. 
Here's an example, whose intended meaning should be 
obvious. 

Note that this formula incorporates fluents with arguments. 
Actions may also be parameterised, as in the following 
effect axioms. 

Terminates(Feed(x),Hungry(x),t) (H2.1) 
Terminates(Clothe(x),Cold(x),t) (H2.2) 

Here's a narrative for this example. 
Initially P(Hungry (Fred)) (H3.1) 
InitiallyN(Cold(Fred)) (H3.2) 
Happens(Feed(Fred), 10) (H3.3) 

Finally we need some uniqueness-of-names axioms. 
UN A[Feed, Clothe] (H4.1) 
UNA[Hungry, Cold] (H4.2) 

The incorporation of state constraints has negligible impact 
on the solution to the frame problem already presented. 
However, state constraints must be conjoined to the theory 
outside the scope of any of the circumscriptions. Given a 
conjunction of Initiates, Terminates and Releases 
formulae, a conjunction of Initiallyp, InitiallyN, Happens 
and temporal ordering formulae, a conjunction of state 
constraints, and a conjunction of uniqueness-of-names 
axioms for actions and fluents, we're interested in, 

; Initiates, Terminates, Releases] 
; Happens 

For the current example, if we let be the conjunction of 
(H2.1) and (H2.2), be the conjunction of (H3.1) to 
(H3.3), be (H l . l ) , and be the conjunction of (H4.1) 
and (H4.2), we have, 

; Initiates, Terminates, Releases 
; Happens 

Holds At(Happy (Fred),11). 
State constraints must be used with caution. As can be seen 
by inspection, Axioms (EC1) to (EC6) enforce the 

following principle: fluent that has been 
initiated/terminated directly through an effect axiom cannot 
then be terminated/initiated indirectly through state 
constraint, unless it is released beforehand. Similarly, a 
fluent that holds at time 0 because of an Initiallyp formula 
cannot then be terminated indirectly through a state 
constraint, unless it's released beforehand, and a fluent that 
does not hold at time 0 because of an InitiallyN formula 
cannot then be initiated indirectly through a state 
constraint, unless it's released beforehand. 
Suppose, in the present example, we introduced an 
Upset(x) event whose effect is to terminate Happy(x). Then 
the addition of Happens(Upset(Fred),12) would lead to 
contradiction. Similar ly, the addition of 
InitiallyN(Happy(Fred)) would lead to contradiction. 
State constraints are most useful when there is a clear 
division of fluents into primitive and derived. Effect axioms 
are used to describe the dynamics of the primitive fluents 
and state constraints are used to describe the derived fluents 
in terms of the primitive ones. 

3 Effect Constraints 
State constraints aren't the only way to represent actions 
with indirect effects, and often they aren't the right way, as 
emphasised by Lin [1995] and McCain and Turner [1995]. 
To see this, we'll take a look at the so-called "walking 
turkey shoot", a variation of the Yale shooting problem in 
which the Shoot action, as well as directly terminating the 
Alive fluent, indirectly terminates a fluent Walking. 
The effect axioms are inherited from the Yale shooting 
problem. 

Initiates(Load,Loaded,t) (W1.. 1) 
Terminates(Shoot,Alive,t) Holds At(Loaded,t) (W1.2) 

The narrative of events is as follows. 
Initially p( Alive) (W2.1) 
Initiallyp(Loaded) (W2.2) 
Initiallyp(Walking) (W2.3) 
Happens(Shoot,Tl) (W2.4) 
Tl T2 (W2.5) 

We have two uniqueness-of-names axioms. 
UNA[Load, Shoot] (W3.1) 
UNA[Loaded, Alive, Walking] (W3.2) 

Now, how do we represent the dependency between the 
Walking and Alive fluents so as to get the required indirect 
effect of a Shoot action? The obvious, but incorrect, way is 
to use a state constraint. 

HoldsAt(Alive,t) HoldsAt(Walking,t) 
The addition of this state constraint to the above 
formalisation would yield inconsistency, because it violates 
the rule that a fluent, in this case Walking, that holds 
directly through an Initiallyp formula cannot be terminated 
indirectly through a state constraint. (The same problem 
would arise if the Walking fluent had been initiated directly 
by an action.) 
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A better way to represent the relationship between the 
Walking fluent and the Alive fluent in the walking turkey 
shoot is through an effect constraint. Effect constraints are 
Initiates and Terminates formulae with a single universally 
quantified action variable. The constraint we require for 
this example is the following. 

Terminates(a,Walking,t) Terminates(a,Alive,t) (W4.1) 
Notice that effect constraints are weaker than state 
constraints: the possibility of resurrecting a corpse by 
making it walk, inherent in the faulty state constraint, is not 
inherent in this formula. 

Effect constraints are adequate for the representation of 
many actions with indirect effects. But there is still a class 
of examples for which they don't work. Consider the 
following benchmark problem due to Thielscher [1997]. A 
circuit comprising a battery, three switches, a relay, and a 
light bulb is wired up as in Figure 1. 

Figure 1: Thielscher's Circuit 

Five fluents represent the state of each component in the 
circuit: Switch 1, Switch2, Switch3, Relay, and Light. Their 
initial configuration is as in Figure 1. There are various 
dependencies among the fluents. The light is on if switches 
one and two are closed. Switch two is open if the relay is 
on. Finally, the relay is on if switches 1 and 3 are closed. 
When switch 1 is closed, the relay becomes activated, 
switch 2 wil l open, and the light stays off. The awkward 
nature of this example derives from the fact that closing 
switch 1 has one indirect effect (closing the relay, which 
opens switch 2) that disables another indirect effect (the 
light coming on). 
A first, naive attempt to formalise this example might 
include an effect constraint like the following. 

Initiates(a,Light,t) 
Initiates(a,S witch 1 ,t) HoldsAt(S witch2,t) 

But this formula is obviously a false start, because in this 
scenario, initiating Switch 1 also indirectly terminates 
Switch2, and the event calculus axioms entail that Switch2 

still holds at the instant of termination. A better attempt 
would be the following effect constraint. 

Initiates(aJLighU) 
lnitiates(a,S witch l,t) Holds At(Switch2,t) 

-i Terminates(a,Switch2,t) 
This formula is adequate for this particular scenario, but 
doesn't fully capture the dependency between the fluents. 
Suppose, for example, that switch 1 is initially closed, 
while switch 2 and switch 3 are initially open. Then closing 
switch 2 causes the light to go on, something not captured 
by this constraint. We need a counterpart to the above 
formula for this case. 

lnitiates(a,Light,t) 
Initiates(a,Switch2,t) Holds At(S witch 1 ,t) 

-i Terminates(a,S witch l,t) 
Once again, while this is adequate for the present example, 
it's not a general solution. In particular, neither of these 
formulae accounts for the possibility of independent but 
concurrent switch events. 
In the following section, a method for representing the 
indirect effects of actions is presented whose generality is 
comparable to that of other recently published solutions to 
the ramification problem, but which doesn't require the 
development of significantly more logical machinery than 
is already present in the event calculus defined above. 

4 Causal Constraints 
Following a common practise in recent literature on the 
ramification problem, let's introduce some shorthand 
notation for expressing dependencies between fluents. 
Definition 4.1. A fluent symbol is any string of characters 
starting with an upper-case letter. 
Definition 4.2. Any fluent symbol is also a fluent formula. 
If and are fluent formulae, then so are 

Definition 4.3. Following the notation of IDenecker, et «/., 
1998], a causal constraint is a formula of the form, 

initiating causes 
or, 

initiating causes 
where is a fluent formula and is a fluent symbol. 
Here's a subset of the fluent dependencies in Thielscher's 
circuit expressed using this notation. 

initialing Switch l switch2 causes Light 
initiating Relay causes -> Switch2 
Moating Switchl Switch3 causes Relay 

There are other dependencies in the circuit. For example, 
this set of dependencies neglects to specify the conditions 
under which the light goes off. But these can be ignored for 
the example narrative we're interested in here. 
Formulae like these are intended to have an intuitive 
meaning. The translation into the event calculus detailed 
below could be thought of as one attempt to give them a 
precise semantics. Alternatively, these formulae can be 
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thought of simply as syntactic sugar for more long-winded 
event calculus formulae of the particular form defined 
below. 

4.1 Causal Constraints in the Event Calculus 
The key to correctly representing causal constraints in the 
event calculus is first to introduce new events that update 
each fluent whose value is dependent on other fluents, and 
second to write formulae ensuring that these events are 
triggered whenever those influencing fluents attain the 
appropriate values. (A related proposal is made by Pinto 
[1998] in the context of the situation calculus.) 

To guarantee the instantaneous propagation of the effects of 
such events, they must be triggered not just when the 
influencing fluents already have their appropriate values, 
but also when they are about to get those values thanks to 
other events occurring at the same time. This motivates the 
introduction of four new predicates, Started, Stopped, 
Initiated and Terminated. The formula Started means 
that either already holds at or an event occurs at x that 
initiates Conversely, the formula Stopped means 
that either already does not hold at or an event occurs at 

that terminates The predicates Started and Stopped are 
defined by the following axioms. 

Started(f,t) (CC1) 
HoldsAt(f,t) 

[Happens(a,t) Initiates(a,f,t)] 
Stopped(f,t) (CC2) 

- i HoldsAt(f,t) 
a fHappens(a,t) Terminates(a,f,t)J 

Note that at the instant of a fluent's transition from one 
value to another, we have both Stopped and Started at the 
same time. 

The formula Initiated means that has been "started" 
at in the above sense, and furthermore no event occurs at 

that terminates Likewise, the formula Terminated 
means that has been "stopped" at in the above sense, 
and no event occurs at that initiates The predicates 
Initiated and Terminated are defined by the fol lowing 
axioms. 

Initiated(f,t) (CC3) 
Started(f,t) 

-i 3 a [Happens(a,t) Terminates(a,f,t)] 
Terminated(f,t) (CC4) 

Stopped(f,t) 
a [Happens(a,t) Initiates(a,f,t)] 

To represent the causal constraints in Thielscher's circuit 
example, we introduce three events, LightOn, Open2 and 
CloseRelay, which are triggered under conditions described 
by the following formulae. 

Happens(LightOn,t) (L 1.1) 
Stopped(LighM) Initiated(S witch l,t) 

Initiated(Switch2,t) 
Happens(Open2,t) ( L I .2) 

Started(Switch2,t) Initiated(Relay,t) 

Happens(CloseRelay ,t) (1.1.3) 
Stopped(Relay ,t) Initiated(S witch 1 ,t) 

Initiated(Switch3,t) 
These triggered events govern the transition of fluents from 
one value to another when certain conditions come about, 
as prescribed by the corresponding causal constraints. 
Hence the need for the Stopped and Started conditions in 
the above formulae. These ensure that an event occurs only 
at the time of the transition in question. The effects of 
these events are as fol lows. A Close 1 event is also 
introduced. 

Initiates(LightOn,Light,t) (L2.1) 
Terminates(Open2,Switch2,t) (L2.2) 

Initiates(CloseRelay,Relay,t) (L2.3) 

Initiates(Close 1 ,S witch 1 ,t) (12 A) 
The circuit's initial configuration, as shown in Figure 1, is 
as follows. 

Init iallyN(Switchl) (L3.1) 
Initially p(Switch2) (L3.2) 

Initiallyp(Switch3) (L3.3) 
InitiallyN(Relay) (L3.4) 
Initially N(Light) (L3.5) 

The only event that occurs is a Close 1 event, at time 10. 

Happens(Close 1,10) (L3.6) 
Two uniqueness-of-names axioms are required. 

UNA[LightOn, Close 1, Open2, CloseRelay] (L4.1) 

UNAfSwi tch l , Switch2, Switch3, Relay, Light] (L4.2) 
As the fol lowing proposition shows, this formalisation of 
Thie lscher 's c i rcu i t y ields the required logical 
consequences. In particular, the relay is activated when 
switch 1 is closed, causing switch 2 to open, and the light 
does not come on. 

Proposition 4.4. Let be the conjunction of (L2.1) to 
be the conjunction of ( L l . l ) to (LI.3) with (L3.1) 

to (L3.6), be the conjunction of ( C O ) to (CC4), and Q 
be the conjunction of (L4.1) and (L4.2). We have, 

CIRC ; Initiates, Terminates, Releases] 
CIRC ,; Happens] 

HoldsAt(Relay,20) -! HoldsAt(Switch2,20) 
- i HoldsAt(Light,20). 

Proof. From CIRC ; Initiates, Terminates, Releases] we 
get the completions of Initiates, Terminates and Releases. 
From CIRC ; Happens] we get the completion of 
Happens, namely, 

Happens(a,t) 14.5) 
[a = Close 1 t=10J 
[a = LightOn Stopped(Light.t) 

lnitiated(S witch l,t) Inttiatcd(Switch2,t)J 
[a = Open2 Started(Switch2,t) Initiated(Relay,t)] 
[a = CloseRelay Stopped(Relay,t) 

Initiated(S witch l,t) Initiated(Switch3,t)|. 
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At the time of the first event, the fluents Switch2 and 
Switch3 hold and the fluents Switch1, Relay and Light 
don't hold. 
First we prove that the Close1 event at time 10 is the first 
event. Consider any 10. There can't be a Closel event at 
t, since, from [4.5], the only Closel event is at 10. Since we 
have - HoldsAt(Switchl,t) and only a Closel event can 
initiate Switch!, we have -i Initiated(Switchl,t), so, from 
[4.5], there can't be a LightOn or CloseRelay event at t. 
Since we have -i HoldsAt(Relay,t) and there can't be a 
CloseRelay event at t, we have -» lnitiated(Relay,t), and 
therefore, from [4.5], there can't be an Open2 event at t. 
From [4.5], this exhausts all the possible types of event, so 
there can't be any event occurrence at time t. So the Closel 
event at time 10 is the first event. 
Now we prove that a Closel event, a CloseRelay event and 
an Open2 event all occur at time 10, but that no LightOn 
event occurs at time 10. We know directly from [4.5] that a 
Closel event occurs at 10. Therefore, since there is no type 
of event that can terminate Switch 1, we have 
Init iated(Switchl,10), given (L2.4). We know that 
Stopped(Rclay,10) since we have -i HoldsAt(Relay, 10), 
and since we have HoldsAt(Switch3,10), we also have 
lnitiated(Switch3,10). So, from [4.5], we know that a 
CloseRelay event occurs at 10. Since a CloseRelay event 
occurs at 10 and there is no type of event that can initiate 
Relay, we have lnitiated(Relay,10), given (L2.3). We also 
know that HoldsAt(Switch2,10) and therefore 
Started(Switch2,10). So, from [4.5], we know that an 
Open2 event occurs at time 10. Since there is an Open2 
event at 10, which, from (L2.2), terminates Switch2, we 
have -i Initiated(Switch2,l0), and therefore, from [4.5] 
there cannot be a LightOn event at 10. 
Using a similar argument to the paragraph before last, we 
can show that no events occur after time 10. Given the 
events that occur at time 10, it's then straightforward to 
prove, from Axioms (EC2) and (EC5), that the fluent Relay 
holds at time 20, but the fluents Switch2 and Light do not.D 
Let's briefly consider a couple of minor variations on this 
example. First, suppose we augment the formalisation with 
a Close2 action which initiates Switch2. Then the addition 
of the formula Happens(Close2,15) wi l l give rise to a 
contradiction, since we would have both a Close2 event at 
time 15 and, from (LI.2), an Open2 event, enabling us to 
prove, for any time t after 15, both HoldsAt(Switch2,t) and 
-i HoldsAt(Switch2,15). In other words, switch 2 cannot be 
manually closed while switches 1 and 3 are closed, thanks 
to the relay. 
Now consider the original narrative of events, but with a 
different initial situation, one in which switch 3 is open, 
then, as desired, we get a different result: the relay isn't 
activated, switch 2 doesn't open, so the light does come on. 

InitiallyN(Switchl) (L5.1) 
lnitiallyp(Switch2) (L5.2) 
InitiallyN(Switch3) (L5.3) 
InitiallyN(Relay) (L5.4) 
InitiallyN(Light) (L5.5) 

Proposition 4.6. Retaining and as above, let 
be the conjunction of (L5.1) to (L5.5) with (L3.5). Then we 
have, 

CIRC[ ; Initiates, Terminates, Releases] 
CIRC ; Happens] 

HoldsAt(Light,20). 
Proof. The proof is similar to that of Proposition 4.4. 

5 From Causal Constraints to Event Calculus 
This section presents a general translation from the 
shorthand notation for causal constraints presented above 
into the event calculus, along the lines suggested by the 
preceding example. 
Definition 5.1 . A negated fluent symbol is a fluent formula 
of the form where is a fluent symbol. 
First we define the function T c , which translates a single 
causal constraint into a pair of event calculus formulae. 
Definition 5.2. Let be a causal constraint of the form, 

initiating causes 
where is a fluent formula and is either a fluent symbol 
or a negated fluent symbol. The translation with 
new action name is the pair , where and are 
defined as follows. Let be with every negated fluent 
symbol , replaced by Terminated and every other 
fluent symbol replaced by Initiated I f i s a negated 
fluent symbol then is, 

Terminates 
and 8 is, 

Happens Started 
Otherwise is, 

Initiates(a,Y,t) 
and 5 is, 

Happens Stopped 
Next we define the function , which translates a set of 
causal constraints into a pair of conjunctions of event 
calculus formulae. 
Definition 5.3. Let be a finite set of causal constraints 

The translation with new action 
names is the pair where 
and , given that for any 
with new action name 

5.1 Limitations: The Gear Wheels Example 
Although the technique described here can represent the 
indirect effects of many different types of actions, it does 
not work well in scenarios involving mutually dependent 
fluents, such as the following example, which is taken from 
[Denecker, et al.y 1998]. There are two interlocking gear 
wheels. If one is turning, the other must be turning, and if 
one is stationary, the other must be stationary. The example 
is formalised using two fluents, Turning 1 and Turning2. 

initiating Turning 1 causes Turning2 
initiating Tuming2 pauses Turning 1 
initiating -Turn ing 1 causes -Turn ing2 
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initiating - Turning2 causes - Turning1 
The proposed event calculus translation of these causal 
constraints does not yield the desired conclusions, as it 
cannot rule out phantom self-starting events that cause the 
wheel to turn. (Note, however, that this example can be 
correctly formalised using the state constraints of 
Section 2.) As illustrated in the next section, other 
examples with cycles of dependencies are handled more 
satisfactorily. 

6 Vicious Cycles 
Consider the modification of Thielscher's circuit depicted 
in Figure 2. This circuit incorporates a potentially vicious 
cycle of fluent dependencies. If switch 1 is closed, the relay 
is activated, opening switch 2, which prevents the relay 
from being activated. Given Axioms (CC1) to (CCA) in 
their present form, the formalisation of this scenario using 
causal constraints wil l yield inconsistency. 
Here are the causal constraints 

Miiatjj2£ Relay causes -i Switch2 
initiating Switch 1 Switch2 Switch3 causes Relay 

Figure 2: A Modification of Thielscher's Circuit 

Let with new action names Open2 and 
CloseRelay. Then A is the conjunction of the following 
Happens formulae, and is the conjunction of the 
following Initiates and Terminates formulae. 

Happens(Open2,t) (V1.1) 
Started(Switch2,t) Initiated(Relay,t) 

Happens(CloseRelay ,t) (V1.2) 
Stopped(Relay,t) Initiated(S witch 1 ,t) 

Initiated(Switch2,t) Initiated(Switch3,t) 
Terminates(Open2,Switch2,t) (V2.1) 
Initiates(CloseRelay,Relay,t) (V2.2) 
Initiates(Close 1 ,S witch 1 ,t) (V2.3) 

The circuit's initial configuration is as follows. 
InitiallyN(Switchl) (V3.1) 
lnitiallyp(Switch2) (V3.2) 
Initiallyp(Switch3) (V3.3) 
InitiallyN(Relay) (V3.4) 

The only event that occurs is a Close 1 event, at time 10. 
Happens(CloseUO) (V3.5) 

Here are the customary uniqueness-of-names axioms. 
UNA[Closel, Open2, CloseRelay] (V4.1) 
UNA[Switchl, Switch2, Switch3, Relay] (V4.2) 

Proposition 6.1. Let be the conjunction of (VI.1) and 
(V1.2), be the conjunction of (V 1.1) and (VI.2) with 
(V3.1) to (V3.5), be the conjunction of (CC1) to (CC4), 
and be the conjunction of (V4.1) and (V4.2). The 
following formula is inconsistent. 

CIRC[L ; Initiates, Terminates, Releases] 
CIRC ; Happens] 

Proof. From CIRC ; Happens] we get, 
Happens(a,t) [6.2] 

[a = Close 1 =10] 
[a = Open2 Started(Switch2,t) Initiated(Relay,t)] 
[a = CloseRelay Stopped (Relay ,t) 

Initiated(S witch l,t) Initiated(Switch2,t) 
Initiated(Switch3,t)]. 

Using the techniques of the proof of Proposition 4.4, we 
can show that the formula entails that the first event occurs 
at time 10. At time 10, Switch2 and Switch3 hold, but 
Switch 1 and Relay do not hold. We know that a Closel 
event occurs at 10. Now suppose no Open2 event occurs at 
10. Then, since Open2 is the only event type that can 
terminate Switch2, we have Initiated(Switch2,10), which, 
since we have Stopped(Relay,10), Initiated(Switch 1,10) 
and lnitiated(Switch3,10), entails that a CloseRelay event 
occurs at 10 from [6.2], But if a CloseRelay event occurs at 
10, then we have Initiated(Relay,10) and, from 16.2], an 
Open2 event also occurs at 10, which contradicts out initial 
assumption. 
So an Open2 event must occur at 10. But then, from [6.2], 
we must have Initiated(Relay,10). From (CC3) and 16.2], 
this entails that a CloseRelay event must occur at 10. From 
[6.2], this gives us Initiated(Switch2,10). But since an 
Open2 event occurs at 10, which terminates Switch2, this 
contradicts (CC3). Therefore the formula has no models. 
Note that the cycle in this example is only "dangerous*' if 
switch 3 is initially closed. If switch 3 is initially open, the 
correspondingly modified theory is consistent, and yields 
the expected conclusion that the relay remains inactive after 
the Closel event. 
Arguably, inconsistency is not the most desirable response 
to an example with a vicious cycle. A formalisation that 
yielded non-determinism instead would at least permit 
other useful conclusions to be drawn. Moreover, suppose 
the initial state of switch 3 is unknown, and (V3.3) is 
omitted. Then, the threat of inconsistency ensures that 
InitiallyN(Switch3) follows from the theory, even though 
no Initially^ formula to that effect is included. This seems 
a little counter-intuitive. 
On the other hand, the aim of formalisation should be to 
avoid inconsistency. The fact that inconsistency can result 
here simply from selecting an inappropriate initial state for 
switch 3 indicates that the wrong level of abstraction has 
been chosen for representing this particular domain. If we 
want to represent it in earnest (not just for illustrative 
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purposes), a level of abstraction should be chosen in which 
every possible narrative that is itself consistent results in a 
consistent theory. (In the present case, this would demand 
the inclusion of explicit delays in the model.) 

Concluding Remarks 
The works of Lin [1995], of Gustafsson and Doherty 
[1996], and of Thielscher [1997] all share an important 
feature with the present paper. In each case, an existing 
predicate calculus-based action formalism, respectively the 
situation calculus, the fluent calculus, and PMON, is 
extended to handle actions with indirect effects. Moreover, 
in [Lin, 1995] and [Gustaffson & Doherty, 1996], as in the 
present article, circumscription policies are deployed which 
minimise parts of the theory separately. 
The solution to the ramification problem offered in the 
present article is also based on an existing predicate 
calculus action formalism, namely the event calculus. As 
such, it doesn't demand the introduction of any new 
semantic machinery. Moreover, the proposal is 
conservative in the sense that it only adds to the existing 
calculus, the extension comprising four new axioms and 
four new predicates. With these axioms in place, the 
proposed solution is little more than a novel style of writing 
certain event calculus formulae. 
No formal assessment has yet been undertaken of the range 
of applicability of the proposed solution to the ramification 
problem, as recommended by [Sandewall, 1996). This, 
along with a more formal comparison with other 
approaches, would be a good topic for future research. 
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