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Two-Hybrid (Y2H) Protein-Protein interaction (PPI) data suffer from high False
Positive and False Negative rates, thus making searching for protein complexes in

PPI networks a challenge. To overcome these limitations, we propose an efficient
approach which measures connectivity between proteins not by edges, but by edge-

disjoint paths. We model the number of edge-disjoint paths as a network flow

and efficiently represent it in a Gomory-Hu tree. By manipulating the tree, we
are able to isolate groups of nodes sharing more edge-disjoint paths with each

other than with the rest of the network, which are our putative protein complexes.

We examine the performance of our algorithm with Variation of Information and
Separation measures and show that it belongs to a group of techniques which

are robust against increased false positive and false negative rates. We apply our

approach to yeast , mouse, worm, and human Y2H PPI networks, where it shows
promising results. On yeast network, we identify 38 statistically significant protein

clusters, 20 of which correspond to protein complexes and 16 to functional modules.

1. Introduction

We wish to propose a new efficient and robust algorithm to infer protein
complexes correctly from Y2H experiments. If the protein-protein interac-
tion data were flaw-less and error free, then a fairly direct graph-theoretic
algorithm working on graphs whose edges represent pair-wise interactions
would have sufficed. The intuitively direct algorithms (e.g., clique detec-
tion, clustering or density-based methods) tend to be efficient, and work
reasonably well with small number of errors that mislabel the edges falsely
(both false positive and negative, errors). Our challenge is to devise more
sophisticated algorithms that enjoy a comparable computational efficiency,
and yet work robustly as the quality of the experimental data degrade
substantially, as is common with practically all currently available PPI
data. The fundamental conceptual innovation in our algorithm is to ana-
lyze structure of the graphs through their collections of edge-disjoint paths
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that remain relatively immune to the corrupting noises in the experiment,
and yet lead to an efficient implementation through Gomory-Hu tree rep-
resentations. Below, we further elaborate on these points.

Complexes of proteins are at the heart of many fundamental biologi-
cal processes, including e.g. RNA metabolism, signal transduction, energy
metabolism, and translation initiation. As noted, the process of efficiently
purifying 5,4 protein complexes and identifying their structure and func-
tion has remained a challenge. The most common experimental techniques
result in the Yeast two-hybrid protein-protein interaction networks, which
encode pair-wise interactions between proteins, and thus hold the promise
to yield information about large-scale phenomena such as participation in
protein complexes, as examined in 3,12,7,9,13. It has been a well-known
problem that Y2H experiments suffer from high false positive (FP) and
false negative (FN) rates. To overcome these limitations, one needs al-
gorithmic approaches robust against high FP and FN rates. Thus, even
when the details of protein complexes become “disguised” by FN or be-
come intertwined with each other by FP, these algorithms could exploit the
fact that proteins within complexes still remain connected by adequately
many paths in the network. However, this qualitative statement requires a
quantitative justification, namely, as the number of false edges (positive or
negative) increases, how and when do these algorithms break down? What
is the nature of the algorithmic degradation: slow and graceful, or sudden
and catastrophic? What is the best algorithmic framework, in which they
could be studied? Our main results are as follows:
Algorithmic Results: We devise and implement a novel algorithm based
on max-flow and their representations through the classical Gomory-Hu
tree data structures. We perform both theoretical and practical complexity
analysis. We describe and conduct its performance and robustness analysis
with respect to practical data using Meila’s variational information 21 and
Separation 22.
Experimental results: We consider Saccharomyces cerevisiae as a model
organism for our study, since its Y2H network as well as its protein complex
data are most complete. Data for protein Y2H pairwise interactions and
protein complexes were taken from the BioGRID 2 and MIPS 1 databases
(3930 proteins and 6219 Y2H interactions). On yeast network, we iden-
tify 38 statistically significant protein clusters, among which there are 20
protein complexes and 16 functional modules. Identified protein complexes
cover 61% of all existing BioGRID/MIPS complexes, which have sufficient
data coverage (or 72% of non-broken complexes, as described in Section 6).
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Supplementary material: Supplementary and output data are available
from http://research.rutgers.edu/∼ amitrofa/predictions.html

We begin in section 2 with motivation and intuition behind our algo-
rithm and its formal presentation in section 3. We present the robustness
agains FP and FN by measuring the Variation of Information and Separa-
tion for several clustering techniques in section 4. In section 5 we discuss
the criteria for statistical significance of computed clusters, and show re-
sults on yeast Y2H PPI data in section 6. Finally, we compare our results
to previously published work in section 7 and conclude the paper.

2. Background

The Y2H experiments are known for high false positive and false negative
rates: two adjacent proteins might not belong to the same protein complex
(FP; Figure 1 A: b) as well as proteins from the same complex might not
share an edge (FN; Figure 1 A: a). These phenomena raise questions about
the validity of the direct statistical examination of pure Y2H networks.

With current data coverage and high FN rates, protein complexes of the
Y2H PPI networks suffer from low connectivity within. Among all existing
Y2H edges, only 6.14% connect protein pairs which participate in the same
protein complex. In fact, there are 788 protein complexes (from BioGRID
and MIPS) with at least 3 nodes. Of those, 463 do not have a single Y2H
edge in the complex, 129 have only one Y2H edge, and 71 have two edges.
There are only 125 complexes which contain at least three Y2H edges in the
complex and can potentially have a minimum level of connectivity necessary
to be identified by a connectivity-based computational method.

The majority of graph-based methods for extracting protein complexes
look for densely connected, clique-like regions of the PPI network 9,13,12,3.
However, the problem of noise in Y2H experiments required these methods
to supplement pair-wise interactions with other biological markers, as co-
expression 7, functional annotation 12, small-scale immunoprecipitation 13,
microarrays 19, or inter-specie data for conserved protein complexes 3,20.

If a protein complex corresponds to a clique-like subgraph in the Y2H
PPI graph, then increased FP and FN rates might at least interfere with
and at most preclude the search for such structures. For example, as shown
in Figure 1 A: b high FP rate can produce areas of “false” density or
increase the connectivity between complexes making them impossible to be
identified in the network. Likewise, high FN rate can disguise clique-like
protein complexes. However, even if proteins from a complex lose a few
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Figure 1. A: (a)Protein complexes that have low Y2H connectivity. (b) Protein com-
plexes with “fused” out-of-complex proteins. B: Examples of protein complexes that

contain 2-edge connected subgraphs. C. Gomory-Hu tree and its matrix representation.

D. Cutting the small-weight edges of a Gomory-Hu tree to induce a partition on the
nodes.

edges, they should still be connected by enough paths in the network.
If we take a path between two proteins as evidence that they are in

the same complex, then the number of edge-disjoint paths is related to the
degree of confidence we have of complex co-membership (an edge is also a
path, but a path is not limited to an edge).

We examined the yeast Y2H PPI network for the number of edge-disjoint
paths between protein pairs that belong to the same protein complex (in-
complex) vs those that do not belong to the same protein complex (non-
complex), thus covering all possible protein pairs. In Figure 2,A, we show an
example of a distribution of edge-disjoint paths in each group: it is more
common for non-complex group to share just one path, and in-complex
group shows a clear evidence of sharing two and more paths compared to
non-complex group. Overall, the fraction of protein pairs sharing one path
over those sharing more than one path for the in-complex group is 1.059 and
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Figure 2. A.Distribution of edge-disjoint paths for protein pairs that belong to the

same protein complex ( thick dark color) vs pairs that do not belong to the same protein
complex (light color). The embedded chart shows the same values in log2 scale. B.

Number of clusters as a function of cluster size in the whole yeast Y2H PPI network

(thick dark upper line) and in the random graphs (light lower line). On the lower line:
rectangles represent standard deviation, with max and min as up/down bars.

for non-complex group is 2.868, emphasizing the importance of the greater
number of edge-disjoint paths for proteins from the same complex. For
pairs of proteins that do not share an edge, the same dynamics is observed:
the above is 1.081 for in-complex and 2.873 for non-complex group.

The number of edge-disjoint paths between a pair of nodes in the net-
work (in our case unweighted and undirected) corresponds to the value of
the maximum flow between that pair. However, there is no need to consider
all
(
n
2

)
node pairs in the network, since the number of edge-disjoint paths

(or maximum flow) for all pairs of nodes can be calculated in only n − 1
steps and succinctly represented in a Gomory-Hu tree 6, as detailed below.

3. Methods

We begin by computing a Gomory-Hu tree for each connected component
of the PPI graph. A Gomory-Hu tree is a weighted tree that spans nodes of
a graph such that the max-flow between any two nodes in the graph is the
same as the max-flow between them in the tree. That is, the max-flow from
pα to pβ in the network has value equal to the minimum edge on the path
between these nodes in the Gomory-Hu tree, as shown in Figure 1 C. To
compute max-flow value, we use a Ford-Fulkerson method: the best known
deterministic max-flow algorithm for the undirected unweighted graph is
one proposed by Matula 10 and Nagamochi and Ibaraki 11 that runs in
O(|P ||E|) steps (where |P | is the number of nodes/proteins and |E| is the
number of edges). Thus, the time complexity of our algorithm is O(|P |2|E|).

First we remove minimum-weighted edges from the Gomory-Hu tree.
Removing an edge induces a bipartition between the nodes of the tree.
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Thus an edge in the Gomory-Hu tree corresponds to an edge-cut in the
PPI graph. After such elimination we recompute a Gomory-Hu tree for
each induced connected component, since the forest obtained by removing
edges (of weight > 1) from the Gomory-Hu tree is no longer the Gomory-Hu
trees of the partitions, as for example shown in the Figure 1 D. We proceed
recursively, by eliminating least weighted edges and recomputing Gomory-
Hu tree for each induced connected component until there are no more
edges to eliminate (see full formal description in Supplementary material).

We call the set of nodes in each connected component of the Gomory-
Hu forest a cluster. We eliminate singleton nodes at each phase, saying
that they disappears. With every elimination phase, each Gomory-Hu tree
becomes smaller, splitting clusters or reducing their size until each cluster
disappears. Clusters found this way are then subjected to further selection
according to criteria of statistical significance, as described in 5.2.

4. Robustness via Statistical Analysis

We examine the robustness of our algorithm by computing Variation of
Information (VI) 21 and Separation 22 as we vary the number of FP and FN
in a randomly constructed network. Since we think of protein complexes as
highly connected “clique-like” structures in the network 9,13,12,3, we build
our random test graph in the following way: we introduce complete graphs
of size from 10 to 2 and singletons (following the power-law distribution: 10
graphs of size 10, 20 graphs of size 9, etc, 300 singletons), similarly to the
approach described in 22. These groups of nodes are our initial complexes.
Then we delete some % of random edges (FN) and/or add edges (FP).

Separation measure is relevant to the geometric mean of sensitivity and
positive predictive value, as defined in 22. High separation values indi-
cate bidirectional correspondence between a cluster and a complex and
thus are more favorable. Variation of Information is another useful metric
based information-theoretic criterion that measures how much information
is lost or gained in going from clustering C to C ′. In our case, C cor-
responds to the initial complexes. If we let n be the number of nodes
and K be the total number of clusters, with nk being a size of cluster
Ck, then the uncertainty (or entropy) of the clustering C is defined as
H(C) = −

∑K
k=1 P (k) log(P (k)), where P (k) = nk/n. The joint distribu-

tion that a point belongs to cluster Ck in C and to cluster C ′k′ in C ′ is

P (k, k′) = |Ck

⋂
C′

k′ |
n . Then the mutual information between clustering C

and C ′ is I(C, C ′) =
∑K
k=1

∑K′

k′=1 P (k, k′) log( P (k,k′)
P (k)P ′(k′) ) And finally, the
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Figure 3. A-F Each curve (black for our method and gray for MC) represents the
value of VI (first row) or Separation (second row) as the % of edges removed increases,

averaged over 10 random runs. (A-B) edge removal (C-D) edge removal with 5% of
randomly added edges. (E-F) edge removal with 10% of randomly added edges. G.

Results on the training set of the yeast Y2H PPI network: threshold d = 6, . . . , 17. All

nodes with degree ≥ d are eliminated.

Variation of Information is V I(C, C ′) = H(C)−I(C, C ′)+H(C ′)−I(C, C ′).
Higher VI corresponds to bigger deviation from the original clustering C.

We compare our method with Markov Clustering (MC) 23, which is
reported as the most robust clustering on PPI networks in 22. Since the
protein complexes in current PPI networks suffer from low connectivity,
it is more important to examine the robustness of the algorithms against
increasing FN rates. We present some results in Figure 3, which show that
our approach is equally or more robust compared to MC when examined
against increased FP (by 5% and by 10%, which are most likely to exist
in Y2H PPI networks) and varying FN rates. Both methods show smooth
curves toward increased FN rates.

5. Experiments

5.1. High degree nodes

To minimize the number of non-selective (possibly FP) interactions that
would give statistically insignificant clusters, the common practice is to
eliminate “excessive-degree” nodes from the Y2H PPI graph, as for ex-
ample exercised in 13. To learn the degree threshold, we select a so-called
“training set” , which corresponds to about 1

4 of the network (the remaining
part is called a “testing set”). To choose a training set, we start with a ran-
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dom protein in the graph and accumulate the desired number of nodes by
breadth-first search. In the learning, we eliminate nodes and the outgoing
edges according to various degree thresholds d and evaluate the node/edge
elimination effects by various performance measures. First, we calculate
the percent coverage, P , of how many final clusters fully correspond to
MIPS/BioGRID protein complexes. Additionally, we introduce a new mea-
sure of protein complex coverage, i.e., 2-edge connectedness. The graph is
2-edge connected if there are at least two edge-disjoint paths between every
pair of nodes in the graph, consider some examples shown in Figure 1,B.

We found that from 125 MIPS protein complexes with at least three
Y2H edges, 74 (59.2 %) are fully or partially 2-edge connected. However,
these protein complexes often overlap with each other or are the subsets of
each other, producing data redundancy that can negatively influence the
analysis. There are 33 not overlapping non-redundant 2-edge connected
protein complexes, which we use in our further statistical analysis.

We measure Q, the recall rate for 2-edge connected complexes, that are
in the training set. For example, in our training set initially there exist 6 2-
edge connected protein complexes and Q is the % of these 6 that we identify
in each run. We show P and Q for each run in Figure 3, G : the highest Q

values are observed with d = 13−16. Among those, d = 13 executes highest
P , which we consider our threshold and eliminate all nodes of degree higher
than 13 from our dataset (85 nodes or 2.16 % of total network nodes).

5.2. Statistical Significance of Clusters

As the algorithm proceeds, many clusters of different sizes are generated.
The final part of our algorithm is to estimate statistical significance of
computed clusters and decide which correspond to protein complexes and
functional modules. To measure the statistical significance of the cluster,
we need to account for the probability of finding such cluster in a random
graph. To generate random graphs, we use the Maslov-Sneppen proce-
dure 14, which shuffles the edges of the original Y2H PPI network so that
the number of interactions for each protein in the network is preserved.
Size-based p-value: First, we calculate p-value for clusters of different
sizes. The Figure 2,B shows enrichment in the number of clusters of sizes 2
to 6 in the original Y2H PPI graph, as compared to results on 100 random
graphs. Clusters of size 7 and higher, in contrast, appear more often at
random. For each cluster of size s, we calculate p-value as a probability of
finding a cluster of size s at random, fit to a normal distribution. Clusters
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of size 2, 3, 4 and 5 showed p-value p < 1 × 10−4, which we consider sta-
tistically significant. Clusters of size 6 showed p = 0.20 and therefore can
appear at random with reasonably high probability.
Density-based p-value: We define a “cluster-network density”, CND, as
the difference between the average number of edge-disjoint paths per pair
of proteins in the cluster, EDc, and the average number of edge disjoint
paths from the proteins of this cluster to the proteins in the rest of the net-
work (ignoring proteins from different connected components), EDr. Thus
CND = EDc−EDr reflects the difference between the connectivity inside
the cluster and connectivity of this cluster with the rest of the network. Of
course, all original clusters from the yeast Y2H PPI network show CND
greater than 0. Here we again consider 100 random graphs generated by
the Maslov-Sneppen procedure 14 and calculate p-value (fit to a normal
distribution) per cluster produced. For each cluster of the original Y2H
PPI network, p-value reflects the probability that CND at random would
be greater or equal to CND in the original network. To correct for multiple
hypothesis tested, we apply Bonferroni Correction (the number of hypothe-
sis tested is equal to the number of observed original clusters). We consider
those clusters with corrected p-values less than 1 × 10−4 as statistically
significant. It appeared that clusters with p-values < 10−4 do not violate
the statistically significant sizes shown in Figure 2,B. We report 38 out
of 56 clusters as being statistically significant according to the criteria de-
scribed above. Among clusters with p-value > 10−4, two represent protein
complexes and two correspond to functional modules.

6. Results

We consider a cluster as a match if all of its proteins belong to the same
protein MIPS complex (at the lowest hierarchical level). Also we use a
measure of biological importance, similar to one defined in 13 – a Functional
Module, as a group of proteins that participate in the same process in the
same location, however not necessarily at the same time. In order for a
cluster to be identified as a Functional module, its proteins should reside in
the same cellular location and should share similar/relevant functions (Gene
Ontology classification). Even stronger supporting evidence for Functional
modules includes co-expression and literature co-citation (we used tables
and criteria provided by 8 for pairwise log-odds scores). Since in many
cases we cannot say with certainty whether proteins enter a process at
different times or at the same time, clusters from this category are strong
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candidates for protein complex predictions.

Table 1. Final clusters of testing and training sets in the Yeast network.

Sets 1
4

3
4

1
4

⋃ 3
4

Total clusters with p < 10−4 10 28 38

Clusters that cover MIPS complexes 5 15 20

FM with co-location and (co-expression or co-citation 1 4 5

FM with co-location 4 7 11

FM with limited information 0 2 2

We present results for both the 1
4 and 3

4 of the network in Table 1.
Among 38 clusters with p-value < 10−4, there are 20 MIPS complexes and
18 functional modules. Five of the functional modules are supported by
co-expression of participating proteins or co-citation from the literature,
thus making a strongly grounded predictions for new protein complexes,
as shown in Supplementary material. Two clusters had weaker evidence of
forming a functional module primarily due to lack of information about the
functional annotation or cellular location of participating proteins.

For completeness, we also studied a recall rate, which corresponds to
the proportion of 33 2-edge connected complexes covered. As we select our
training and testing sets, 5 2-edge connected complexes become broken,
resulting in 28 2-edge connected MIPS complexes in both sets, 20 of which
we identify (yielding recall rate of 72%). Additionally, we characterize the
performance of our method by a parameter M , the fraction of proteins
in the matched cluster over proteins in the 2-edge connected part of the
corresponding complex: 18 out of 20 clusters show M = 1.

In general, among the 2-edge connected complexes, there are 17 trian-
gles, 13 4-node, two 5-node, and one 7-node graphs. Thus, the clusters that
cover 2-edge connected complexes are partially bounded by the above sizes.

We have applied our method to other species: we list 31 clusters for
human, 17 for mouse, and 29 for worm, whose sizes satisfy our stringent
statistical-significance criteria, as shown in Supplementary material.

7. Discussion

In this section, we compare our method to those previously described in
the literature (the comparison is made with the best available results for
each method), as shown in Table 2 and discussed below.

King et al. 12 develop the restricted neighborhood search clustering
algorithm using a cost function. After generating clusters, proteins are
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selectively chosen from clusters using a filtering model. They identified 23
clusters matching MIPS protein complexes by 90 % of proteins in a cluster
(6 of which matched by 100% – identified by “→” in the Table 2). We
identify 35 new clusters not covered by their method, among which there
are 17 new protein complexes.

Table 2. Precision is the number of clusters covering complexes in 100% of cluster proteins

over total number of clusters. Recall is the number of 2-edge connected complexes covered by
clusters over a total number of 2-edge connected complexes. Intersection reflects the overlap

between complexes identified by us and other methods.

Precision Recall Intersection

Our method 20/38 = 53 % 20/33 =61% → 20/28=72% 20

King et al 12 23/30 → 6/30=20% 4/33 = 12% 4

Bader et al 9 54/209 = 26% → 0/209=0% 0/33=0% 0

Spirin et al 13 30/67 = 45% 18/33= 55% 16

Bader and Hogue 9 present algorithm that detects densely connected
regions in PPI networks. They generate 209 clusters, 52 of which matched
MIPS complexes in at least 20% of their proteins (with the highest over-
lap being 43%, thus bringing the number of clusters that match protein
complexes by 100% of their proteins to 0, as reflected in Table 2).

Spirin and Mirny 13 look for heavily connected, clique-like groups of
nodes in the network (supplemented with hypothesis-driven studies such as
coprecipitation, omitted by our method). The union of three different clus-
tering methods identified 30 clusters corresponding to protein complexes.
We identify 4 new protein complexes and 13 new functional modules. The
MCL clustering 23 has not been applied to search for protein complexes
yet, but only to cluster proteins based on their sequence similarity.

An interesting min-cut clustering approach of Tarjan et al 17, which was
applied to find communities in web and citation networks, introduced an
artificial sink node connected to all other nodes. We plan to expand our
understanding of competitive bounds for communities’ sizes addressed in 17.
Another interesting approach described by Newman in 15 (later extended
in 24) describes graph decomposition based on edge betweenness, defined as
the number of shortest paths which go through an edge. Hartuv et al. in 16

present an algorithm based on min cut idea, which shows an improved time
complexity and generates clusters with diameter 2 (two vertices are either
adjacent or share one or more common neighbors). We do not require nodes
in the cluster to be adjacent or to necessarily share a neighbor; however,
they can be connected by much longer edge-disjoint paths.
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One promising future direction for our method would be to assign a con-
fidence score for each Y2H interaction (i.e. conservation of the interaction
across species). It is possible to define a distance-based measure between
proteins and use a Diffusion Map for spectral clustering, as in 18. However,
this method is very computationally expensive and hard to scale to large
datasets. We plan to explore an efficient implementation of a continuous
approach of diffusion maps with discrete approach of Gomory-Hu trees.

8. Conclusions

We have presented an efficient algorithm for identifying protein complexes
through manipulation of the Gomory-Hu tree of the PPI Y2H network. Our
method is shown to be robust against high FP and FN rates and capable
of producing clusters of high quality when compared to other approaches.
Identified functional modules are strong candidates for complex predictions
and constitute reliable material for experimental research.
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