Kernel Methods for Document Filtering

Nicola Cancedda?, Nicold Cesa-Bianchi*, Alex Conconi*, Claudio Gentile,
Cyril Goutte*, Thore Graepelf, Yaoyong Lif, Jean-Michel Renders!, John Shawe-Taylor!,
Alexei Vinokourov!

$CRII

Universita dell’Insubria, Italy
<FamilyName>@dsi.unimi.it

tDepartment of Computer Science
Royal Holloway, University of London
<FirstName>@Qcs.rhul.ac.uk

*Dipartimento di Tecnologie dell’informazione
Universita degli Studi di Milano
<FamilyName>@dti.unimi.it

#Xerox Research Centre Europe
<FirstName>.<FamilyName>@xrce.xerox.com

4th February 2003

Abstract

This paper describes the algorithms imple-
mented by the KerMIT consortium for its
participation in the TREC 2002 Filtering
track. The consortium submitted runs for
the routing task using a linear SVM, for the
batch task using the same SVM in combi-
nation with an innovative threshold-selection
mechanism, and for the adaptive task using
both a second-order perceptron and a combi-
nation of SVM and perceptron with uneven
margin. Results seem to indicate that these
algorithm performed relatively well on the ex-
tensive TREC benchmark.

1. Introduction

The KerMIT IST European project is concerned with
the investigation of kernel methods for applications re-
lated to the categorization, retrieval, clustering and
ranking of text documents and of images'. The Ker-
MIT consortium participated in the TREC 2002 Fil-
tering track as a means of evaluating the methods de-
veloped within the project on a large-scale benchmark.
Six runs were submitted, out of which four for the

More information on the KerMIT IST project is avail-
able from the project website:
http://www.euro-kermit.org.

1

adaptive task and one each for the batch and for the
routing task. As the objective of our participation was
the comparison of different techniques, submitted runs
are actually issued from several different systems:

e Runs ’afl’ and ’af2’ were obtained using a variant
of the "second-order perceptron" (Cesa-Bianchi
et al. 2002)(Section 3);

e Runs ’af3’ and ’af4’ were obtained using a com-
bination of the SVM algorithm and the Percep-
tron Algorithm with Uneven Margin (Li et al.
2002)(Section 4);

e Runs ’bf2’ and ’rr2’ are the output of SVMs,
the former in combination with an improved
threshold-selection mechanism (Section 5).

The paper is organised as follows. Section 2 sketches
the data preparation process. Sections 3 to 5 describe
the systems listed above in turn, together with the per-
formance achieved on the respective tasks. Section 6
presents some additional experiments on intersection
topics. Section 7 contains some concluding remarks.

2. Data preprocessing

Before turning to the description of the individual
systems, we will outline the data preparation process

that we followed. The original NewsML files are pre-
processed in the following way:

e The “title” and the “text” portions of the files are
extracted and cleaned from tags;

e Each file is tokenised into words using a finite-
state based tokeniser;

e All digit characters are replaced with a single spe-
cial character;

e Stopwords are removed;

e A dictionary file is built associating a numeric
code with each token occurring at least three
times in the training set. Terms occurring only
once or twice are ignored;

e For every document body and every title a sparse
term vector is built;

e The title and the body vector for each document
are combined giving double weight to the title;

e All document vectors are finally modified accord-
ing to a tf*idf weighting scheme and normalised
to unit norm.

In the case of the batch and the routing runs, idf is
computed for every term based on the training set only.
Idf weights for all other terms are set to zero. In other
words, only terms in the test documents which also
occur in the training set are considered.

In the case of the adaptive filtering runs, idf weights
are initialized on the training corpus in the same way
as for the batch and the routing runs. However, as
more and more test documents come in, idf weights are
updated. Similarly for the lexicon, new lexical items
are added to the dictionary as soon as the number of
occurrences in the training set combined with the test
set up to the document itself reaches a threshold of
three.

The adopted tf*idf weighting is the usual log-log one:

i = (1 -+ 1og(tfs,)) o (57)
if
where tf; ; is the number of occurrence of term % in
document j, N is the total number of documents in
the collection, and df; is the number of documents con-
taining the term <.

The very limited availability of positive examples
called for ways to take advantage of the topic de-
scriptions as well. We considered two alternative ap-
proaches, one consisting in building an additional pos-
itive training example from the descriptions and an-
other consisting in building a vector from the descrip-
tion and then adding to each document, as a new fea-
ture, the value of its (cosine) similarity with the de-
scription. The second alternative proved superior and
was thus retained for the batch and the routing tasks,
whereas time constraints did not allow its adoption in
the adaptive case.

3. The second-order perceptron
algorithm for adaptive filtering

In this section we describe the first of the two algo-
rithms used in the adaptive filtering track. This first
algorithm is defined by a pair (w,7), where w € RV is
the profile vector and 7 € R is the relevance threshold.
A document & = (21,...,2zx) € RV is judged relevant
if and only if the margin w "z (i.e., the inner product
between w and) is not smaller than the threshold 7.

We model the filtering problem under the assumption
that relevance judgments are generated using an un-
known probabilistic linear function. Assuming all doc-
uments &, &, ... are normalized such that ||z¢|| = 1
for all t > 1, the relevance of x; is given by a {—1,1}-
valued random variable Y; (where Y; = 1 means “rel-
evant”) such that there exists a fixed and unknown
“target” profile vector u € RY, |lu|| = 1, for which
EY, =u'a; forall t =1,2,...,n, where E indicates
the expected value. Hence ; is relevant with prob-
ability (1 + u'=;)/2 € [0,1]. The random variables
Y1,Y5,... are assumed to be independent, whereas we
do not make any assumption on the way the sequence
x1,Is,... of documents is generated.

The profile vector of our filtering rule is a (biased)
estimator of the target profile u constructed as fol-
lows. Let S; be the matrix whose columns are the for-
warded documents after the first ¢ time steps and let
Y ; be the vector of corresponding observed relevance
labels. Note that EY; = S, u holds. Drop the index
t for clarity and consider the least squares estimator
(SST)ISY of u, where (S ST)t is the pseudo-inverse
of SST. For all u belonging to the column space of
S, this is an unbiased estimator of u, that is

E[(SSTISY]=(SSHISEY =(SST)'SSTu=u.
To remove the assumption on w, we make S ST full

rank by adding the identity matrix I. This also allows
us to replace the pseudo-inverse with the standard in-

verse, obtaining the biased estimator

(I+SS") 'Sy (3.1)
with expectation E[(I+SST)7'SY] = u — (I +
S ST)~lu (this immediately follows from the matrix
identity (I + SST)™1SST =T—-(I+SST)™!). Es-
timator (3.1) is a “sparse” variant of the ridge regres-
sion estimator (Hoerl and Kennard 1970), where the
sparseness is due to the fact that we only store in S
the documents for which we have a relevance label (i.e.,
those that were forwarded).

We use a variant of (3.1) that tries to estimate di-
rectly the margin u " z rather than estimating u. More
precisely, we estimate w2 with the quantity W'z,
where the profile vector W' is defined by

W=(I+SS"+zz")'SY . (3.2)

Using the Sherman-Morrison formula, we can then
write out the expectation of W 'z as
To —u' (I Ty—1
E[WTw]:u z—u I+SS") 'z
1+2™(I+SST)la

which holds for all w, x, and all matrices S. Com-
paring the bias of W to the bias of (3.1) in estimat-
ing the margin, we may observe that W introduces a
multiplicative bias whose effect is to shrink the ex-
pectation of the margin W 'z. In fact, the term
x " (I+S ST)~lz is always nonnegative due to the pos-
itive definiteness of (I + 5SS ") 1. In the experiments
W turns out to perform better than (3.1), though at
present we do not have a convincing theoretical expla-
nation of this fact. This algorithm can be turned into
an equivalent dual form, which is needed when we use
the feature expansion facility provided by the kernel
functions. As a matter of fact, since the document
vectors x in the dataset at hand have a large number
of components, we found it convenient to run the dual
form even without kernels. As a final remark, we note
that W is strongly related to the second-order Per-
ceptron algorithm for binary classification introduced
in (Cesa-Bianchi et al. 2002).

We now move on to the choice of the threshold 7.
A possible route, which has been followed in (Cesa-
Bianchi et al. 2003), is to approximately compute
for each document z an interval centered on W'z,
around which u "z falls with high confidence. Then,
whenever x is such that the left-hand border of the
interval for W "z is negative, x is judged relevant and
forwarded. This approach corresponds to setting 7 to
a negative value chosen as a function of both and the
current profile. The primary effect of this approach is
to boost recall at the expense of precision, resulting in

an increased net performance when precision and recall
are scored the same (see the results in (Cesa-Bianchi
et al. 2003)). However, this goes exactly against the
TREC evaluation measures which put an emphasis on
precision. To reduce recall we then decided to set 7
to a positive (instead of negative) value in the interval
[0,1/10]. This choice reduces dramatically the number
of forwarded documents, thus pushing precision up,
but it also slows down the convergence of the profile to
the target w, which results in a decrease of precision.
Hence, unlike the one based on confidence intervals,
this setting of 7, needs a reasonably good profile to
start with.

3.1. TREC results

Based on the above discussion, we set the threshold 7
to 0.1 for the first run (KerMITT11afl) and to 0.05
for the second run (KerMIT11af2). We then built an
initial profile for each topic using a training set with 4
positive examples (three provided with the data plus
one we built using the topic description). The table
below shows the average results over TREC11 topics
for KerMITT11afl and KerMITT11af2 runs.

Topics range | KerMITT11afl | KerMITT11af2
T11U | T11F | T11U | T11F
Assessor 0.456 | 0.378 | 0.459 | 0.376
Intersection | 0.323 | 0.049 | 0.310 | 0.047
All 0.389 | 0.213 | 0.385 | 0.211
Assessor 0.473 | 0.395 | 0.475 | 0.392
ext. reljs

The last row contains results for assessor topics with
the extended relevance judgments provided after the
TREC conference. The positive threshold helped to
control the number of false positives for the assessor
topics (R101-R150), on which afl and af2 obtained
relatively good results. This did not happen on the in-
tersection topics (R151-R200), where the average nor-
malized linear utility measure (T11U) turns out to be
slightly worse than the one of the trivial algorithm
which retrieves nothing, and the F 5 measure (T11F)
is remarkably low.

In the Reuters corpus with TREC11 topics only a
small amount of positive examples is available for each
topic. This leads to two problems:

e explorative predictions (i.e. when the algorithm
judges a document as relevant because it is in-
terested in obtaining the true label rather than
scoring a good prediction) are not useful, because
most of the times the obtained label is negative
and conveys no information.

TIIF ¥
TIU ——
#REL/1000 --------
R —
*
08 | |
* X * *
*K
N
§ 06 -, * ¥ x% " ¥ |
: X X ¥ x) «
; X x
i } «
& o0ap| | y |
‘ X 4]
&
* y N |
02 L |
b % |¥
v * 4
T et K
A S
0 X 14
ASSESSOR TOPICS i
1
TIIF ¥
T11U
#REL/1000 --------
333 —-mmm
08 | |
w *
W06 |
z
<
=
o
o
Iy
o
4 o4t w |
b
T * i
x| IF SLL LS & x
x* * R L]

0 g

INT ECTION TOPICS

Figure 3.1. Performance for KerMITT1lafl on assessor
(top) and intersection (bottom) topics.

e wrong predictions are very likely to be false pos-
itives, which badly affect the TREC evaluation
measures.

Figure 3.1 plots the performance for the run
KerMITT11afl on each of the assessor and intersec-
tion topics. The topics (x-axis) are ordered according
to their decreasing frequency. The horizontal line at
.333 marks the T11U measure of the trivial algorithm
which retrieves nothing. As the plots clearly show, the
T11F measure exhibits a dramatic drop on almost all
of the intersection topics (except a few of the most
frequent ones). The T11U measure does not drop so
badly on the intersection topics, even though its aver-
age value remains slightly below the .333 threshold.

Our future plan is to use a separate self-tuning thresh-
old for each topic, using the current number of false
positives as an indicator of whether it is better to bias
the threshold towards positive or negative predictions.

4. SVM plus the Perceptron Algorithm
with Uneven Margin for adaptive
filtering

This section describes the second system implemented
for the adaptive filtering task. In this system we
adapted the Support Vector Machine (SVM) for the
adaptive filtering. The SVM is quite suitable and
successful in batch filtering (Lewis 2001), which is es-
sentially normal text categorization (Joachims 1997).
However, the adaptive filtering task in TREC is differ-
ent from batch filtering in several aspects.

1. Only a small number of positive examples and a
great number of unjudged documents are provided
to create an initial profile 2.

2. The profile can be updated based on the retrieved
documents for adaptive filtering, whereas it is
fixed when it is applied to the test documents in
batch filtering.

3. There are three kinds of documents in adaptive
filtering, i.e. the positive, the negative and the
unjudged, which can be employed to update the
profile. The system can achieve good performance
if it takes into account the different contributions
of the documents toward the profile.

Our system deals with these issues by the following
strategies.

1. The Gram-Schmidt algorithm (Cristianini et al.
2002) was employed to choose the negative exam-
ples from the unjudged training documents, i.e.
these unjudged documents which are the furthest
away from the given positive examples. This re-
duces the likelihood of choosing an example that
is actually a positive example.

2. Use a fast and effective on-line version of the
SVM, the Perceptron Algorithm with Uneven
Margins (PAUM) (Li et al. 2002), to update the
profile by the latest retrieved document.

3. Introduce several so-called margin parameters
into the SVM as well as the PAUM to balance
the contributions of different kinds of documents
towards the profile.

21t is noted that the so-called one-class SVM can learn
only from positive examples. However, the experiments
have shown that the normal SVM using both the posi-
tive and negative examples can achieve much better per-
formance in text categorization than the one-class SVM.

In detail, the algorithm used in our system is as fol-
lows.

e Require: n, — the number of negative examples
chosen for training.
Require: v, and v, — the marginal parameters
in the SVM for the positive and negative exam-
ples, respectively.
Require: 7, 7, and 7, — the marginal parame-
ters in the PAUM for the positive, the negative
and the unjudged documents, respectively.
Require: ¢ — the threshold to retrieve the test
document.

e Training

— Training set — As we were given some pos-
itive training examples, we choose the neg-
ative training examples from the unlabeled
training documents by the Gram-Schmidt al-
gorithm. In detail, we apply the Gram-
Schmidt algorithm to the given positive ex-
amples and compute the residual norms of
the unjudged training documents. We then
chose the first n, documents with the largest
residual norms as the negative examples.

— Training method — After obtaining the
training set, solve the corresponding SVM
with uneven marginal parameters 7, and v,:

minimizey ¢ (W, w) + C Y _ &

subject to

(w,x;) + & > 7y, for the positive examples
(w,x;) — & < —v, for the negative examples
>0 fori=1,..,1

o Test

1. Apply the profile w to the test documents
sequentially. For the test document d;, apply
the profile w to the d;. If (w,d;) > t then
the document d; is retrieved and is used to
update the profile as shown in 2.

2. Update the profile w using the marginal per-
ceptron algorithm:

Let 7 = 7, and y; = +1, if the d; is relevant.
Let 7 = 7, and y; = —1, if the d; is irrelevant.
Let 7 = 1, and y; = —1, if the d; is unjudged.
while y; (w,d;) <7

endwhile

It is worth noting that, in the above algorithm, the
profile is updated by using only the latest retrieved

document d;. We will discuss a variation of the algo-
rithm later, which employs all the currently retrieved
documents to update the profile.

4.1. TREC results

In order to actually apply the described algorithm to
the TREC2002 dataset, the values of the parameters
Ng, Yps Yn, Tp> Tn, Tu; and t need to be fixed. As
part of previous experiments in the KerMIT project
—before any actual work on the TREC2002 evaluation
started— we had used part of the RCV1 corpus with
the original reuters categories —as in the TREC2001
evaluation— to evaluate this same algorithm. More pre-
cisely, the training set consisted of the documents of
the first 12 days, 20 through 31 August, 1996, and the
test set was made of the documents of 30 days chosen
from 1 October 1996 to 28 February, 1997. The topics
considered in the dataset were those categories of the
RCV1 classification scheme which had between 10 and
60 positive examples in the training set. Ten different
parameter configurations were tried. The one which
produced the best results was the following:

n, =80, =20, ya=5, 7,=10, 7, =2, t=5..

These values were retained for the KerMIT submis-
sions based on this algorithm, namely KerMITT11af3
and KerMITT11af4, the assumption being that they
were obtained through experiences in all comparable
to a participation in the TREC2001 filtering track (see
the TREC 2002 filtering track overview paper for a dis-
cussion of the issue of prior use of RCV1). It is indeed
possible that results for those same runs would have
been somewhat worse, had we used an entirely differ-
ent document collection for chosing parameter values.
Notice that a version of the algorithm without 7, had
been used in the previous experiments, given that the
dataset we used did not contain any unjudged doc-
uments, and thus 7, remained still to be assigned a
value. It was decided to consider unjudged documents
as “weekly negative” examples, and choose 7, accord-
ing to

(pe; + ne;)
(pe; + ne; + ue;)’

Tu = —0.5

where pe;, ne; and ue; are the numbers of retrieved rel-
evant, irrelevant and unjudged documents up to doc-
ument %, respectively.

Finally, we adapted the threshold ¢ in our system ac-
cording to a simple rule whenever too few documents
or too many unjudged documents were retrieved. The

run ID Averaged over topics | T11SU TI11F Precision Recall
KerMITT11af3 | Assessor topics 0.458 0.426 0.527 0.302
Intersection topics 0.285 0.048 0.076 0.026
Ass. top. (ext. reljs) | 0.450 0.402 0.488 0.293
KerMITT11af4 | Assessor topics 0.454 0.409 0.506 0.304
Intersection topics 0.287 0.056 0.097 0.029
Ass. top. (ext. reljs) | 0.458 0.404 0.483 0.316

Table 1. The results of the two submitted runs. The last row for each run shows the result, on the assessor topics, with
the extended relevance judgments provided after the TREC conference.

Averaged over topics | T11SU T11F Precision Recall
Run_1 | Assessor topics 0.428 0.387 0.491 0.269
Intersection topics 0.274 0.040 0.064 0.021
Run_2 | Assessor topics 0.474 0.460 0.543 0.366
Intersection topics 0.276 0.074 0.114 0.037

Table 2. The results of two additional runs, to be compared with the submitted run KerMITT11af3.

Run_1is obtained by

choosing the negative training examples randomly. Run_ 2 is produced updating the profile by all the currently retrieved

documents.

idea is that the system checks the threshold t every-
time after a multiple of n, test documents has been
processed. In each check, if too few documents have
been retrieved then the system decreases the thresh-
old, otherwise, if too many unjudged documents have
been retrieved, the system increases the threshold. We
set n, = 10000 in our system.

We applied the algorithm with the above settings
to the dataset of TREC2002 adaptive filtering, and
submitted two runs from this system, namely Ker-
MITT11af3 and KerMITT11af4, with the initial values
of the threshold t set to 5.0 and 4.5, respectively. The
results for the two runs are listed in Table 1. We can
see that the results are very different between the as-
sessor topics (the first 50) and the intersection topics
(the last 50).

4.2. Results of additional runs

In addition to the two submitted runs, we did several
more experiments to test our algorithm. Table 2 lists
the results of two additional runs.

One additional run was used to check the gain of the
Gram-Schmidt algorithm in our system. This run had
the same settings as those of KerMITT11af3, except
that the negative examples for training were chosen
randomly from the training documents exclusive of
the three relevant documents. The results of this run,
listed in the Run_1 of Table 2, show that selecting
negative examples using the Gram-Schmidt algorithm
yields significantly better results then selecting them
at random.

In another additional run we obtained even better re-
sults than our two submitted runs from the system.
In this run, we updated the profile by using all the
currently retrieved documents, instead of only the lat-
est retrieved document as we did in the two submitted
runs. In detail, for each topic, when a new document
was retrieved, we added it to the training set, and then
apply the SVM with uneven margins to this updated
training set to compute the new profile (i.e. the weight
vector of SVM). The initial value of the threshold ¢ in
this run was set as 7.0, and other experimental settings
are the same as those of KerMITT11af3. The result
of this run is listed in Table 2, in the row marked as
Run_ 2. It can be seen that, compared with the two
submitted runs KerMITT11af3 and KerMITT11af4,
we obtained better results in the Run_2 as we used
more information to update the profile. On the other
hand, Run_2 took much more processing time and
needed more memory than the two submitted runs.

5. A new threshold-selection
mechanism for the SVM for batch
filtering

This section describes the method used for runs bf2
and 772, for the batch and the routing subtasks re-
spectively.

Our choice for a basic classifier fell on the best scoring
system of the TREC 2001 evaluation - the SVM!ight
package (Joachims 2002). We trained an SVM on
the TREC preprocessed training corpus (see Section
2) and thus obtained predictions +; (distances from

the separating hyperplane taken with the appropriate
sign) of the labels for each document d; from the train-
ing corpus. Note that training data were separable for
all test queries and thus the sign of v; can be consid-
ered as the label.

The parameter C' for SVM training was chosen based
on machine learning theory (Vapnik 1998): C,pr =
[|R||~! (where R = max||z;|| is the radius of the ball
containing training datapoints z; and centered in the
origin). As the data vectors were normalised C' was
set to 1.

Full cross-validation for determining the relative im-
portance to be given to positive and negative exam-
ples in the training set (parameter j in SVM'9"?) was
impractical given the size of the training set and the
number of categories. We thus decided to use a fixed
value, namely 7, which seemed to give results reason-
ably close to those obtained with cross-validation on
some partial small-scale experiment using the training
corpus only.

5.1. Finding threshold

We needed to find an appropriate threshold which
would be optimal in some sense for one of the TREC
2002 evaluation measures - either T11SU or T11F. The
approach undertaken was to approximate positive and
negative datapoints distributions by two - "positive”
and "negative” - Gaussians appropriately and then use
a Monte-Carlo method to synthesize a new set of data
with the same proportion of positive and negative ex-
amples as in the training corpus. Further, a threshold
“optimal” in terms of the needed evaluation measure
from the generated data was induced (Fig. 5.1). The
Gaussians means m4 and standard deviations o4 were
estimated from appropriate sets of positive and nega-
tive ;’s.

The pseudocode is given below:
Input: v, i=1,.., M

Distances of training documents from the sepa-
rating hyperplane.

Output: threshold b

b = function Two_Gaussian_find_threshold({v;});
Niy =Wy >0 No=[{vi:v <0};
(m4, 04) = mean_and_std_dev({y; : v; > 0});

(m_, 0_) = mean_and_std_dev({y;: v; < 0});

'y = sample_normal(m., o4, 5000 % points);
I'_ = sample_normal(m_, o_, 5000 (1 — %)

600

~@— negative data mean

500 -

400 -

estimated threshold

200

positive data mean

100

Figure 5.1. An illustration of the method that was chosen
to find a threshold value.

points);

b=argmax +cp, T11SU (v, T4, T);
or T11F

end

Here function T11SU (v;F,T4,T_) computes the T11U
score for the threshold fy;'“ given predictions for the
“relevant” '} and "irrelevant” I'_ sets of documents.

5.2. TREC results

Results for the TREC batch and routing tasks are
shown in Table 3.

The comparative analysis reveals that the method per-
forms relatively well w.r.t. other submissions on the
first 50 (assessor) topics whilst on the intersection top-
ics its performance is rather uneven.

Table 4 displays the number of topics on which the
method exhibited the best, the 2nd best, etc. result
compared to the other 15 participants. Intersection
topics turned out to be harder for the Two_Gaussian
than for other methods.

6. Why are intersection topics so hard?

Intersection topics turned out to be extremely diffi-
cult, both in the adaptive and in the batch settings.
In order to gain some insight on the reasons for this,
some additional experiments were run after the TREC
conference. For six of the fifty intersection topics, rep-
resentative of different category sizes, the intersecting
Reuters categories from which they were obtained were
identified. These were the following:

run ID Averaged over topics | T11SU TI11F AvgP
KerMITT11bf2/rr2 Assessor topics 0.505 0.495 0.427
Intersection topics 0.245 0.101 0.061
KerMITT11bf2 Assessor topics 0.362 0.121 -
std. SVM thresh. selection | Intersection topics 0.330 0.010 -

Table 3. Results for the batch and routing tasks. The bottom part contains the results achieved when the “standard”
SVM threshold selection is adopted instead of the proposed one.

best 2nd best 3rd best || 2nd worst worst
Assessor topics 16 10 8 1 0
Intersection topics 11 4 9 11 9

Table 4. Relative performance for assessor and for intersection topics.

Query Categories Query Categories
R151 C31 | GSCI R157 || C331 | GPOL
R153 || C11 | M143 R199 || C31 | E13
R156 || M14 | E513 R200 || C41 | GOBIT

SVMs were trained independently for each of the in-
tersecting Reuters categories, using the threshold se-
lection mechanism described in Section 5, and tested
using the TREC split. We computed the performance
of the “intersection classifier” obtained by combining
the classifiers for the intersecting categories using a
logical AND. Results are presented in Table 5. In all
cases, the performance of the “intersection classifier” is
largely inferior to what one would expect from the per-
formance on the intersecting Reuters categories. This
shows that the hindsight provided by the query compo-
sition does not help in designing a better classifier for
the query, even though the classifiers for each compo-
nents have relatively good performance. This suggest
that the documents in the intersection are atypical in
at least one of the intersecting categories.

In order to verify this, we investigated the distrib-
ution of the output of the SVM classifers, f(z) =
> oy K (x;,x). By analogy with the large margin
argument, we call this the “margin” of an example. In
Figure 6.1, we display, for each category, the distrib-
ution of the margins of the documents that are 1/ in
the intersection (dashed) and 2/ in this category, but
not in the intersection (solid). For a perfect classifiers,
all margins should be on the right-hand side of the
threshold (dotted)—margins on the left-hand side in-
dicate misclassified examples. Figure 6.1 shows that in
most cases, the distribution of margins for intersection
documents is shifted towards the left, indicating that
the intersection documents tend to be misclassified, or
in other words, that these documents are either “atyp-
ical” for the category, or, at least, harder to learn for
the SVM categoriser. A more speculative conjecture

would be that intersections contain mostly annotation
errors. For query R151, for example, 22 relevant docu-
ments represent only 1% of category GSCI, and about
0.06% of C31.

7. Conclusions

The algorithms developed in the context of the Ker-
MIT project seem to perform relatively well on the
TREC filtering benchmark. Nevertheless, at least a
couple of points remain to be clarified. The first is the
very uneven performance on the assessor topics and on
the intersection topics. Despite falling short of provid-
ing an exhaustive explanation, our experiments show
at least that documents relevant to intersection top-
ics tend to be peripheral within the intersecting cat-
egories. The second point is the lack of improvement
in performance when more complex kernels, such as
polynomial kernels of degree higher than one or radial
basis function kernels, are used. This is somewhat in
contradiction with previous findings in document cate-
gorisation (Joachims 1997), which indicated that such
kernels do indeed perform better than the basic inner
product.

8. Acknowledgments

The authors would like to thank Eric Gaussier, Jaz
Kandola, Craig Saunders, and Yoram Singer for the
many useful suggestions. The work described in this
paper has been supported by the European Commis-
sion through the IST Programme under Contract IST-
2000-25431 (KerMIT).

References

Cesa-Bianchi, N., A. Conconi, and C. Gentile
(2002). A second-order perceptron algorithm. In
Proceedings of the 5th Annual Conference on

R151 C31 GSCI C31 AND GSCI
relevant 20015 16186 1265 923 0 22
irrelevant 11958 674982 225 720728 0 723119
T11F 0.6099 0.7763 0
R153 C11 M143 C11 AND M143
positive | negative || positive | negative || positive | negative
relevant 9265 12292 18254 1376 0 37
irrelevant 8407 693177 2621 700890 33 723071
T11F 0.5022 0.8850 0
R156 E513 M14 E513 AND M14
relevant 1503 565 70382 5750 7 65
irrelevant 351 720722 4973 642036 7 723062
T11F 0.7924 0.9321 0.2734
R157 C331 GPOL C331 AND GPOL
relevant 482 596 40856 9726 3 34
irrelevant 143 721920 20437 652122 10 723094
T11F 0.6736 0.6907 0.1685
R199 C31 E13 C31 AND E13
relevant 20015 16186 4680 922 35 80
irrelevant 11958 674982 1489 716050 185 722841
T11F 0.6099 0.7728 0.1759
R200 C41 GOBIT C41 AND GOBIT
relevant 8308 1770 87 684 7 79
irrelevant 2559 710504 24 722346 19 723036
T11F 0.7758 0.3580 0.1842

Table 5. Confusion matrices and T11F scores for six pairs of intersecting classifiers and their intersections.

Computational Learning Theory, LNAI 2375, pp.
121-137. Springer.

Cesa-Bianchi, N., A. Conconi, and C. Gentile
(2003). Margin-based algorithms for informa-
tion filtering. In Advances in Neural Information
Processing Systems 15. MIT Press.

Cristianini, N., J. Shawe-Taylor, and H. Lodhi
(2002). Latent semantic kernels. Journal of In-
telligent Information System 18(2/3), 127-152.

Hoerl, A. and R. Kennard (1970). Ridge regression:
Biased estimation for nonorthogonal problems.
Technometrics 12, 55—67.

Joachims, T. (1997). Text categorization with sup-
port vector machines: Learning with many rel-
evant features. Technical report, Universitaet
Dortmund.

Joachims, T. (2002). SVM'9"" _ Support Vector
Machine. http://svmlight.joachims.org.

Lewis, D. D. (2001). Applying support vector ma-
chines to the trec-2001 batch filtering and rout-
ing tasks. In Proceedings of the Tenth Text RE-
trieval Conference (TREC 2001), pp. 286-292.

Li, Y., H. Zaragoza, R. Herbrich, J. Shawe-Taylor,
and J. Kandola (2002). The perceptron algo-
rithm with uneven margins. In Proceedings of
ICML 2002, pp. 379-386.

Vapnik, V. (1998). Statistical Learning Theory.
Chichester, UK: Wiley.

Category C31 (Query 151) Category GSCI (Query R151)
cat margins
3 o) Q. margins
3 = Threshold
= ™ = -
2 S 2 3
=3 =3
3 =
3 S
= = -
= =
T T T T T
-2 -1 o 1 2
Margin
Category M143 (Query R153)
-
cat margins 3
Q. margins
= Threshold -
S
2 o z 3
=3 &
S
p=]
< T T T T T T T T = T T T T
-3 -2 -1 o ES 2 3 a -2 o 2 a
Margin Margin
Category E513 (Query R156) Category M14 (Query R156)
=7 <
= cat marginsg
s N Q. margins
=2 DN Threshold
=
= =
z z <
2 3 2 o
=3 8 <=
= - o~
= =
<7 =
S T T T T = T T T T T T
-2 -1 o 1 2 —a -2 o 2 a 6
Margin Margin
Category C331 (Query R157) Category GPOL (Query R157)
o | cat margins R cat margin:
=) K) Q. margins 8) Q. margins
/ N Threshold i Threshold
z z 8
2 Z oS
s = B
s S =
=] =
< = T T T T T
—a -2 o 2 a
Margin
Category E13 (Query R199)
cat margin:
o Q. margins =
3 Threshold
3
Z o =
2 = 2
=3 8 o
= o
< = T T T T T
—a -2 o 2 a
Margin
Category GOBIT (Query R200)
© o
= 3
)
3
<
- =
z < =
g 3 g 3
=]
= o~
- s
=1
= = -
= 3
T T T T T T T T T T T
-2 o 2 a 6 -15 -10 -05 0.0 o.s 1.0
Margin Margin

Figure 6.1. Distributions of the margins of the documents within the intersections (dashed lines) and within the category
but out of the intersection (solid lines) with respect to the hyperplanes trained independently for the intersecting categories
(dotted line).

