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Abstract

We present Confidence-Based Autonomy (CBA), an interactive algorithm for policy
learning from demonstration. The CBA algorithm consists of two components which take
advantage of the complementary abilities of humans and computer agents. The first com-
ponent, Confident Execution, enables the agent to identify states in which demonstration
is required, to request a demonstration from the human teacher and to learn a policy based
on the acquired data. The algorithm selects demonstrations based on a measure of action
selection confidence, and our results show that using Confident Execution the agent re-
quires fewer demonstrations to learn the policy than when demonstrations are selected by
a human teacher. The second algorithmic component, Corrective Demonstration, enables
the teacher to correct any mistakes made by the agent through additional demonstrations
in order to improve the policy and future task performance. CBA and its individual com-
ponents are compared and evaluated in a complex simulated driving domain. The complete
CBA algorithm results in the best overall learning performance, successfully reproducing
the behavior of the teacher while balancing the tradeoff between number of demonstrations
and number of incorrect actions during learning.

1. Introduction

Learning from demonstration is a growing area of artificial intelligence research that explores
techniques for programming autonomous agents by demonstrating the desired behavior or
task. In demonstration-based approaches, a teacher, typically a human, shows the agent
how to perform the task. The agent records the demonstrations as sequences of state-
action pairs, from which it then learns a policy that reproduces the observed behavior.
Many learning from demonstration approaches are inspired by the way humans and animals
teach each other, aiming to provide an intuitive method to transfer human task knowledge
to autonomous systems. Compared to exploration-based methods, demonstration learning
often reduces the learning time and eliminates the frequently difficult task of defining a
detailed reward function (Smart, 2002; Schaal, 1997).

In this article, we present an interactive demonstration learning algorithm, Confidence-
Based Autonomy (CBA), which enables an agent to learn a policy through interaction with
a human teacher. In this learning approach, the agent begins with no initial knowledge and
learns a policy incrementally through demonstrations acquired as it practices the task. Each
demonstration consists of a training point representing the correct action to be performed
in a particular state. The agent’s state is represented using an n-dimensional feature vector
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that can be composed of continuous or discrete values. The agent’s actions are bound to a
finite set A of action primitives, the basic actions that can be combined together to perform
the overall task. Given a sequence of demonstrations (si, ai), with state si and teacher-
selected action ai ∈ A, the goal is for the agent to learn to imitate the teacher’s behavior
by generalizing from the demonstrations and learning a policy mapping from all possible
states to actions in A.

The method for gathering demonstrations is at the heart of all demonstration learning
algorithms. CBA performs this function through two algorithmic components: Confident
Execution, which enables the agent to select demonstrations in real time as it interacts
with the environment using automatically calculated confidence thresholds, and Correc-
tive Demonstration, which enables the teacher to improve the learned policy and correct
mistakes through additional demonstrations. The complete Confidence-Based Autonomy
algorithm provides a fast and intuitive method for policy learning, incorporating shared
decision making between the learner and the teacher. In our experimental evaluation, we
highlight the strengths of both learning components and compare learning performance of
five different demonstration selection techniques. Our results indicate that in a complex
domain, the Confident Execution algorithm reduces the number of demonstrations required
to learn the task compared to demonstration selection performed by the human teacher.
Additionally, we find that the teacher’s ability to correct mistakes performed by the agent
is critical for optimizing policy performance.

In Section 2, we discuss related work in learning from demonstration. We then present
an overview of the complete Confidence-Based Autonomy learning algorithm in Section 3,
followed by detailed descriptions of the Confident Execution and Corrective Demonstration
components in Sections 4 and 5, respectively. In Section 6, we present an experimental
evaluation of the complete algorithm and its components in a complex simulated driving
domain. Section 7 presents a summary and discussion of possible extensions to this work.

2. Related Work

A wide variety of algorithms for policy learning from demonstration have been proposed
within the machine learning and robotics communities. Within the context of reinforcement
learning (Sutton & Barto, 1998), demonstration has been viewed as a source of reliable
information that can be used to accelerate the learning process. A number of approaches
for taking advantage of this information have been developed, such as deriving or modifying
the reward function based on demonstrations (Thomaz & Breazeal, 2006; Abbeel & Ng,
2004; Papudesi, 2002; Atkeson & Schaal, 1997), and using the demonstration experiences
to prime the agent’s value function or model (Takahashi, Hikita, & Asada, 2004; Price &
Boutilier, 2003; Smart, 2002; Schaal, 1997).

Demonstration has also been coupled with supervised learning algorithms for policy
learning, including Locally Weighted Regression for low level skill acquisition (Grollman &
Jenkins, 2007; Browning, Xu, & Veloso, 2004; Smart, 2002), Bayesian networks for high level
behaviors (Lockerd & Breazeal, 2004; Inamura, Inaba, & Inoue, 1999), and the k-nearest
neighbors algorithm for fast-paced games and robot navigation tasks (Saunders, Nehaniv,
& Dautenhahn, 2006; Bentivegna, Ude, Atkeson, & Cheng, 2004). A recent survey covers
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these and other demonstration learning algorithms in detail (Argall, Chernova, Browning,
& Veloso, 2009).

In addition to policy learning from demonstration, several areas of research have also
explored algorithms for demonstration selection. Within machine learning research, active
learning (Blum & Langley, 1997; Cohn, Atlas, & Ladner, 1994) enables a learner to query
an expert and obtain labels for unlabeled training examples. Aimed at domains in which
a large quantity of data is available but labeling is expensive, active learning directs the
expert to label the more informative examples with the goal of minimizing the number of
queries. In the context of reinforcement learning, the ‘Ask For Help’ framework enables an
agent to request advice from other agents when it is “confused” about what action to take,
an event characterized by relatively equal quality estimates for all possible actions in a given
state (Clouse, 1996). Similarly motivated techniques have been used in robotics to identify
situations in which a robot should request a demonstration from its teacher (Grollman &
Jenkins, 2007; Lockerd & Breazeal, 2004; Nicolescu, 2003; Inamura et al., 1999). Most
closely related to our work is the Dogged Learning algorithm (Grollman & Jenkins, 2007),
a confidence-based learning approach for teaching low-level robotic skills. In this algorithm,
the robot indicates to the teacher its certainty in performing various elements of the task.
The teacher may then choose to provide additional demonstrations based on this feedback.
While similarly motivated, our work differs from the Dogged Learning algorithm in a number
of ways, most important of which are our use of classification instead of regression in policy
learning, and our algorithm’s ability to adjust the confidence threshold to the data instead
of using a fixed value.

3. Confidence-Based Autonomy Overview

The Confence-Based Autonomy algorithm enables a human user to train a task policy
through demonstration. The algorithm consists of two components:

• Confident Execution (CE): an algorithm that enables the agent to learn a policy based
on demonstrations obtained by regulating its autonomy and requesting help from the
teacher. Demonstrations are selected based on automatically calculated classification
confidence thresholds.

• Corrective Demonstration (CD): an algorithm that enables the teacher to improve
the learned policy by correcting mistakes made by the agent through supplementary
demonstrations.

Figure 1 shows the interaction between these components. Using the Confident Execu-
tion algorithm, the agent selects states for demonstration in real time as it interacts with
the environment, targeting states that are unfamiliar or in which the current policy action is
uncertain. At each timestep, the algorithm evaluates the agent’s current state and actively
decides between autonomously executing the action selected by its policy and requesting
an additional demonstration from the human teacher.

We assume the underlying model of the agent’s task to be an MDP. The agent’s policy
is represented and learned using supervised learning based on training data acquired from
the demonstrations. Confidence-Based Autonomy can be combined with any supervised
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Figure 1: Confidence-Based Autonomy learning process.

learning algorithm that provides a measure of confidence in its classification. The policy
is represented by classifier C : s → (a, c, db), trained using state vectors si as inputs, and
actions ai as labels. For each classification query, the model returns the model-selected
action a ∈ A, action selection confidence c, and the decision boundary db with the highest
confidence for the query (e.g. Gaussian component for GMMs).

To effectively select demonstrations, the learner must be able to autonomously identify
situations in which a demonstration will provide useful information and improve the policy.
Confident Execution selects between agent autonomy and a request for demonstration based
on the measure of action-selection confidence c returned by the classifier. Given the current
state of the learner, the algorithm queries the policy to obtain its confidence in selecting
an action for that state, and regulates its autonomy based on this confidence. The learner
executes the returned action ap if confidence c is above a threshold τ , which is determined
by the decision boundary of the classifier, db. Confidence below this threshold indicates that
the agent is uncertain about which action to take, so it seeks help from the teacher in the
form of a demonstration. Receiving an additional demonstration, ad, in a low confidence
situation improves the policy, leading to increased confidence, and therefore autonomy, in
future similar states. As more training data becomes available, the quality of the policy
improves and the autonomy of the agent increases until the entire task can be performed
without help from the teacher. In Section 4 we compare two methods of using classification
confidence to select states for demonstration.

Using the Confident Execution algorithm, the agent incrementally acquires demonstra-
tions as it explores its environment. As it practices its task, the agent uses the policy it
learned up to that point to make decisions between demonstration and autonomous execu-
tion. However, by relying on the policy before learning is complete, the algorithm is likely
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to make mistakes due to factors such as overgeneralization of the classifier or incomplete
data in some area of the state space. To address this problem this article introduces the
second algorithmic component, Corrective Demonstration, which allows the teacher to pro-
vide corrections for the agent’s mistakes. Using this method, when an incorrect action is
observed, the teacher provides an additional demonstration to the agent indicating which
action should have been executed in its place. In addition to indicating that the wrong ac-
tion was selected, this method also provides the algorithm with the correct action to perform
in its place, ac. The correction is therefore more informative than negative reinforcement
or punishment techniques common in other algorithms, leading the agent to learn quickly
from its mistakes.

Together, Confident Execution and Corrective Demonstration form an interactive learn-
ing algorithm in which the learner and human teacher play complementary roles. The
learner is able to identify states in which demonstration is required; in fact, our results
show that the algorithm is able to do this better than the human teacher due to differences
in perception and representation abilities. The teacher, on the other hand, possesses expert
knowledge of the overall task, which is applied to performing demonstrations and spotting
execution mistakes. This is a function the agent cannot perform on its own as it has not
yet learned the desired behavior. In this way, Confidence-Based Autonomy takes advantage
of the complementary abilities of both human and agent. Sections 4 and 5 present the
Confident Execution and Corrective Demonstration components in detail.

4. Confident Execution Algorithm

Confident Execution is an policy learning algorithm in which the agent must select demon-
stration examples, in real time, as it interacts with the environment. At each timestep, the
algorithm uses thresholds to determine whether a demonstration of the correct action in
the agent’s current state will provide useful information and improve the agent’s policy. If
demonstration is required, the agent requests help from the teacher, and updates its pol-
icy based on the resulting action label. Otherwise the agent continues to perform its task
autonomously based on its policy.

There are two distinct situations in which the agent requires help from the teacher,
unfamiliar states and ambiguous states. An unfamiliar state occurs when the agent en-
counters a situation that is significantly different from any previously demonstrated state,
as represented by the outlying points in Figure 2. While we do not want to demonstrate
every possible state, and therefore need our model to generalize, we would like to prevent
over-generalization to truly different states.

Ambiguous states occur when the agent is unable to select between multiple actions with
certainty. This situation can result when demonstrations of different actions from similar
states make accurate classification impossible, as in the region of overlapping data classes in
Figure 2. In these cases, additional demonstrations may help to disambiguate the situation.

The goal of the Confident Execution algorithm is to divide the state space into regions
of high confidence (autonomous execution) and low confidence (demonstration) such that
unfamiliar and ambiguous regions fall into the low confidence areas. Given a world state,
two evaluation criteria are used to select between demonstration and autonomy:
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• Nearest Neighbor distance: Given d = NearestNeighbor(s), the distance from the
current state to the nearest (most similar) training datapoint, the agent may act
autonomously if d is below the distance threshold τdist.

• Classification confidence: Given c, the classification confidence of the current state,
the agent may act autonomously if the value of c is above the confidence threshold
τconf .

The methods for calculating thresholds τdist and τconf are presented in Sections 4.1 and 4.2.
In this section, we continue the discussion of the Confident Execution algorithm assuming
that these values are given.

Algorithm 1 presents the details of the Confident Execution algorithm. We assume no
preexisting knowledge about the task, and initialize the algorithm with an empty set of
training points T . Since a classifier is not initially available, threshold τconf is initialized
to infinity to ensure that the agent is controlled through demonstration during the initial
learning stage. Distance threshold τdist is initialized to 0.

The main learning algorithm consists of a loop (lines 4-20), each iteration of which
represents a single timestep. The behavior of the algorithm is determined by whether the
agent is currently executing an action. If an action is in progress, the algorithm performs
no additional computation during this timestep (line 20). Once an action is complete, the
algorithm evaluates its state to determine the next action to perform (lines 6-18).

Evaluation begins by obtaining the agent’s current state in the environment (line 6).
This information is then used to calculate the nearest neighbor distance and to query the
learned classifier C to obtain policy action ap and confidence c. These values are then
compared to the confidence and distance thresholds to decide between demonstration and
autonomy (line 9). If similar states have previously been observed, and the learned model is
confident in its selection, the algorithm finishes the timestep by initiating the autonomous

Figure 2: Outlying points and regions of overlapping data classes represent unfamiliar and
ambiguous state regions, respectively.
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Algorithm 1 Confident Execution Algorithm

1: T ← {}
2: τconf ← inf
3: τdist ← 0
4: while true do

5: if actionComplete then

6: s← GetSensorData()
7: d = NearestNeighbor(s)
8: (ap, c, db)← C(s)
9: if c > τconf and d < τdist then

10: ExecuteAction(ap)
11: else

12: RequestDemonstration()
13: ad ← GetTeacherAction()
14: if ad 6= NULL then

15: T ← T ∪ {(s, ad)}
16: C ← UpdateClassifier(T )
17: (τconf , τdist)← UpdateThresholds()
18: ExecuteAction(ad)
19: else

20: //do nothing

execution of the policy selected action ap (line 10). Otherwise it initiates a request for
teacher demonstration (lines 12-18).

The agent requests a demonstration by pausing and indicating to the teacher that a
demonstration is required. Note that we assume the domain allows the agent to pause
execution. Following a demonstration request, the algorithm checks whether a demonstra-
tion has been performed (lines 13-14). If the teacher’s response is available, a new training
datapoint consisting of the current state and the corresponding demonstrated action ad is
added to the training set (line 15). The model classifier is then retrained, and the threshold
values updated, before executing the teacher selected action (lines 16-18).

If the teacher’s response is not immediately available, the timestep terminates and the
whole process is repeated at the next iteration. The agent again senses its state, performs
the threshold comparison and checks for a demonstration. This non-blocking mechanism
enables the agent to wait for a demonstration from the teacher without losing awareness
of its surroundings. In cases where the agent’s environment is dynamic, maintaining up
to date information is important as the state may change in the time between the initial
request and the demonstration. Associating the action label with the agent’s most recent
state, the one the teacher is most likely responding to, is therefore critical to learning an
accurate model. Additionally, changes in the environment can result in the agent attaining
a high confidence state without any actions of its own. In these cases, autonomous execution
of the task is automatically resumed. In summary, once a demonstration request is made,
no further actions are taken by the agent until either a demonstration is received from the
teacher, or changes in the environment result in a high confidence state.

7



Chernova & Veloso

Using this approach, Confident Execution enables the agent to incrementally acquire
demonstrations representing the desired behavior. As more datapoints are acquired, fewer
states distant from the training data are encountered, the performance and classification
confidence improve, and the autonomy of the agent increases. Task learning is complete
once the agent is able to repeatedly perform the desired behavior without requesting demon-
strations. In the following sections we present the methods for calculating the distance and
confidence thresholds.

4.1 Distance Threshold

The purpose of the distance threshold is to evaluate the similarity between the agent’s
current state and previous demonstrations. Our evaluation metric uses the nearest neighbor
distance, defined as a the Euclidian distance between a query and the closest point in the
dataset. For each agent state query, we obtain its nearest neighbor distance representing the
most similar previously demonstrated state. This value is then compared to the distance
threshold τdist.

The value of the distance threshold τdist is calculated as a function of the average nearest
neighbor distance across the dataset of demonstrations. Evaluating the average similarity
between states provides the algorithm with a domain-independent method for detecting
outliers, points unusually far from previously encountered states. For trials in this article,
the value of τdist was set to three times the average nearest neighbor distance across the
dataset.

An alternate method for detecting outliers would be to use classification confidence and
request demonstrations in low confidence states. However, situations can arise in which
confidence is not directly correlated with state similarity. For example, for many classifiers
a set of datapoints encircling an empty region, similar to the shape of a donut, would result
in the highest classification confidence being associated with the empty center region far
from previous demonstrations. Distance provides a reliable prediction of similarity, even in
these cases.

4.2 Confidence Threshold

The confidence threshold is used to select regions of uncertainty in which points from
multiple classes overlap. From the agent’s perspective, points in these regions represent
demonstrations of two distinct actions from states that appear similar, and are difficult
to distinguish based on the sensor data. This problem frequently arises in demonstration
learning for a number of reasons, such as the teacher’s inability to demonstrate the task
consistently, noise in the sensor readings, or an inconsistency between the agent’s and
teacher’s sensing abilities. We would like to set the confidence threshold to a value that
prevents either model from classifying the overlapping region with high confidence1. In the
following section we will discuss the use and limitations of a single fixed threshold value.
We then present an algorithm for using multiple adjustable thresholds in Section 4.2.2.

1. See Section 7.2 for further discussion of these data regions.
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(a) (b) (c)

Figure 3: Examples of fixed threshold failure cases: (a) Fully separable data classes with an
overly conservative threshold value (b) Overlapping data classes with an overly
general threshold value (c) Data classes with different distributions and common
threshold value

4.2.1 Single Fixed Threshold

A single, fixed confidence threshold value provides a simple mechanism to approximate the
high confidence regions of the state space. Previous algorithms utilizing a classification con-
fidence threshold for behavior arbitration have all used a manually-selected single threshold
value (Inamura et al., 1999; Lockerd & Breazeal, 2004; Grollman & Jenkins, 2007). How-
ever, choosing an appropriate value can be difficult for a constantly changing dataset and
model. Figure 3 presents examples of three frequently encountered problems.

Figure 3(a) presents a case in which two action classes are distinct and fully separable. A
model trained on this dataset is able to classify the points with complete accuracy, without
misclassifications. However, the current threshold value classifies only 72% of the points
with high confidence, marking the remaining 28% of the points as uncertain. In this case,
a lower threshold value would be preferred that would allow the model to generalize more
freely. The resulting larger high confidence region would reduce the number of redundant
demonstrations without increasing the classification error rate of either data class.

Figure 3(b) presents an example of the opposite case, in which a stricter threshold value
would be preferred. In this example the data classes overlap, resulting in a middle region
in which points cannot be classified with high accuracy. A higher threshold value would
prevent the classification of points in this region into either data class, initiating instead a
request for demonstration that would allow the teacher to disambiguate the situation.

Figure 3(c) presents a case in which the datapoints of the two data classes have very
different distributions. While the fixed threshold value is appropriate for the left class, 42%
of the points in the right class are labeled as low confidence.

Classification of complex multi-class data depends upon multiple decision boundaries.
Using the same value for all decision boundaries can exacerbate the problems highlighted
above, as a single value often cannot be found that constrains model classification in some
areas while allowing generalization in others. The resulting effect is that the agent requests
too many demonstrations about things it already knows, and too few demonstrations about
unlearned behavior. To address this problem, we present an algorithm for calculating a
unique threshold value for each decision boundary.
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(a) (b) (c)

Figure 4: Autonomy threshold calculation: (a) Example dataset, with highlighted over-
lapping region (b) Learned decision boundary, misclassified points marked with
confidence values (c) Learned threshold values for each data class, a low confi-
dence region containing most of the overlapping points remains in the center.

4.2.2 Multiple Adjustable Thresholds

In this section, we contribute an algorithm for calculating a confidence threshold for each
decision boundary, customized to its unique distribution of points. In our analysis, we
assume that we are able to query the classifier and obtain a confidence score representing
the likelihood that a particular input belongs within a specified decision boundary.

The algorithm begins by dividing the dataset into a training and test set and training the
classifier C. The resulting learned model is used to classify the withheld test set, for which
the correct action labels are known. The algorithm then calculates a unique confidence
threshold for each decision boundary based on the confidence scores of misclassified points.
Given the confidence scores of a set of points mistakenly classified by a decision boundary,
we assume that future classifications with confidences at or below these values are likely to
be misclassifications as well. The threshold is therefore calculated as a function of these
confidence scores.

Specifically, we define a classified point as the tuple (o, a, am, c), where o is the original
observation, a is the demonstrated action label, am is the model-selected action, and c

is the model action confidence. Let Mi = {(o, ai, am, c)|am 6= ai} be the set of all points
mistakenly classified by decision boundary i. The confidence threshold value is set to the

average classification confidence of the misclassified points: τconf i
=

∑
Mi c

|Mi|
. We take the

average to avoid overfitting to noisy data. Other values, based on the maximum or standard
deviation, can be used if a more conservative estimate is required. A threshold value of 0
indicates that no misclassifications occurred and the model is able to generalize freely.

Figure 4 presents an example of the threshold calculation process. Figure 4(a) presents
a small sample dataset, the rectangular box in the figure highlights a region of the state
space in which points from both classes overlap. Figure 4(b) shows the learned decision
boundary (in this case a SVM) separating our two data classes. Six misclassified points are
marked with the (mis-)classification confidences returned by the model. Misclassified points
on each side of the decision boundary will be used to calculate the respective confidence
thresholds. Figure 4(c) shows the confidence threshold lines and values based on the above
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(a) (b) (c)

Figure 5: Multiple adjustable thresholds applied to the failure cases shown in Figure 3.

calculations. The resulting low confidence region in the middle of the image captures most
of the noisy datapoints.

Given this multi-threshold approach, classification of new points is performed by first
selecting the action class with the highest confidence for the query. The comparison on
line 9 of Algorithm 1 is then performed using the threshold of the decision boundary with
the highest confidence for the query. Using this method, the threshold value of the most
likely decision boundary to represent the point is used to decide between demonstration
and autonomy.

Figure 5 shows how the example failure cases discussed in Section 4.2.1 are addressed
by the multi-thresholded approach. Customizing the threshold value to each unique data
distribution enables the algorithm to correctly classify 100% of the points in Figures 5(a)
and (c). Since there are no misclassifications, the model generalizes freely in these examples.
For the dataset in Figure 5(b), in which perfect classification is not possible, the confidence
thresholds are set such that the overlapping region falls into a low confidence area. This
example uses a Gaussian mixture model, in which the elliptical confidence gradient around
the mean results in a large low confidence area even far from the overlapping region. Other
classification methods, such as Support Vector Machines, do not have this drawback.

The presented multi-threshold approach is algorithm independent, and Figure 6 presents
classification results of four different classification methods: Gaussian mixture models, ran-
dom forests (RF), Support Vector Machine with a quadratic kernel, and SVM with a radial
basis function (RBF) kernel. The table below summarizes the classification performance of
each algorithm and lists the threshold values for each of the models.

Algorithm Correct-Misclas.-Unclass. Thresholds

GMM 98.6% – 0.4% – 1.0% (0, 0, 0.012)
RF 99.1% – 0.1% – 0.8% (0.14, -0.355)
SVM quad. 98.5% – 0.1% – 1.4% (335.33, -68.77)
SVM RBF 98.9% – 0.1% – 1.0% (0.825, -0.268)

Table 1: Classifier comparison.
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(a) Gaussian mixture model (b) Random Forest

(c) SVM (quadratic) (d) SVM (RBF)

Figure 6: Classification of dataset into high and low confidence regions using different clas-
sification methods.

5. Corrective Teacher Demonstration

The presented Confident Execution algorithm enables the agent to identify unfamiliar and
ambiguous states and prevents autonomous execution in these situations. However, states
in which an incorrect action is selected with high confidence for autonomous execution
still occur, typically due to over-generalization of the classifier. In this article we present
the Corrective Demonstration algorithm which, coupled with Confident Execution, enables
the teacher to correct mistakes made by the agent. Algorithm 2 combines Corrective
Demonstration (lines denoted by ⋆) with Confident Execution and presents the complete
Confidence-Based Autonomy algorithm.

The Corrective Demonstration technique comes into play each time the agent executes
an autonomous action. As an action is selected for autonomous execution, the algorithm
records the agent’s state that led to this decision and saves this value within the variable sc

(line 11). During the execution of an autonomously selected action, the algorithm checks
for a teacher demonstration at every timestep (lines 22-23). If a corrective demonstration is
made, a new training datapoint consisting of the recorded demonstration state sc and the
corrective action ac is added to the training set (line 24). The classifier and thresholds are
then retrained using the new information.
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Algorithm 2 Confidence-Based Autonomy algorithm: Confident Execution and Corrective
Demonstration
1: T ← {}
2: τconf ← inf
3: τdist ← 0
4: while true do

5: s← GetSensorData()
6: if actionComplete then

7: (ap, c, db)← C(s)
8: d = NearestNeighbor(s)
9: if c > τconf and d < τdist then

10: ExecuteAction(ap)
11: sc ← s ⋆

12: else

13: RequestDemonstration()
14: ad ← GetTeacherAction()
15: if ad 6= NULL then

16: T ← T ∪ {(s, ad)}
17: C ← UpdateClassifier(T )
18: (τconf , τdist)← UpdateThresholds()
19: ExecuteAction(ad)
20: else

21: if autonomousAction then ⋆

22: ac ← GetTeacherAction() ⋆

23: if ac 6= NULL then ⋆

24: T ← T ∪ {(sc, ac)} ⋆

25: C ← UpdateClassifier(T ) ⋆

26: (τconf , τdist)← UpdateThresholds() ⋆

Using this algorithm, the teacher observes the autonomous execution of the agent and
corrects any incorrect actions. Unlike our previous demonstration technique in which the
agent was given the next action to perform, the correction is performed with relation to
the agent’s previous state at which the mistake was made. For example, when observing
a driving agent approaching too close behind another car, the teacher is able to indicate
that instead of continuing to drive forward, the agent should have been merging into the
passing lane. In this way, in addition to indicating that the wrong action was performed,
Corrective Demonstration also provides the algorithm with the action that should have
been performed in its place. This technique is more effective than negative reinforcement,
or punishment, techniques common in other algorithms, leading the agent to learn quickly
from its mistakes.
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Figure 7: Screenshot of the driving simulator. The agent, the black car currently in the
center lane, drives at a fixed speed and must navigate around other cars to avoid
collisions. The road consists of five lanes: three traffic lanes and two shoulder
lanes.

6. Evaluation and Comparison

In this section we present an evaluation and comparison of the complete Confidence-Based
Autonomy algorithm and its components in simulated car driving domain (Abbeel & Ng,
2004), shown in Figure 7.

6.1 Domain Description

In the driving domain, the agent represents a car driving on a busy highway. The
learner’s car travels at a fixed speed of 60 mph, while all other cars move in their lanes
at predetermined speeds between 20 and 40 mph. The road has three normal lanes and
a shoulder lane on both sides; the agent is allowed to drive on the shoulder to pass other
cars, but cannot go further off-road. Since the learner cannot change its speed, it must
navigate between other cars and use the shoulder lanes to avoid collision. The agent is
limited to three actions: remaining in the current lane, or shifting one lane to the left or
right of the current position (A = {forward,left,right}). The teacher demonstrates the task
through a keyboard interface. The simulator has a framerate of 5 fps and is paused during
demonstration requests.

The agent’s state is represented by: s = {l, dl, dc, dr}. State feature l is a discrete value
symbolizing the agent’s current lane number. The remaining three features, denoted by
the letter d, represent the distance to the nearest car in each of the three driving lanes
(left, center and right). The distance features are continuously valued in the [-25,25] range;
note that the nearest car in a lane can be behind the agent. Distance measurements are
corrupted by noise to create a more complex testing environment. The agent’s policy is
relearned each time 10 new demonstrations are acquired.

The driving domain presents a varied and challenging environment; if car distances were
to be discretized by rounding to the nearest integer value, the domain would contain over
600,000 possible states. Due to the complexity of the domain, the agent requires a large
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number of demonstrations to initialize the classifier, resulting in nearly constant demon-
stration requests early in the training process. To simplify the task of the teacher, we add
a short 300 datapoint, or approximately 60 second, non-interactive driving demonstration
session to initialize the learning process. While this learning stage is not required, it sim-
plifies the task of the teacher for whom continuous demonstration is preferred over frequent
pauses for demonstration requests.

The performance of each learning algorithm was evaluated each time 100 new demon-
strations were acquired. For each evaluation, the agent drove for 1000 timesteps over a road
segment with a fixed and consistent traffic pattern. This road segment was not used for
training, instead each algorithm was trained using a randomly generated car traffic pattern.

Since the algorithm aims to imitate the behavior of the expert, no ‘true’ reward function
exists to evaluate the performance of a given policy. We present two domain-specific evalu-
ation metrics that capture the key characteristics of the driving task. Our first evaluation
metric is the agent’s lane preference, or the proportion of the time the agent spends in each
lane over the course of a trial. This metric provides an estimate of the similarity in driving
styles. Since the demonstrated behavior attempts to navigate the domain without collisions,
our second evaluation metric is the number of collisions caused by the agent. Collisions are
measured as the percentage of the total timesteps that the agent spends in contact with
another car. Always driving straight and colliding with every car in the middle lane results
in a 30% collision rate.

6.2 Experimental Results

We present the performance evaluation and comparison of the following demonstration
selection techniques:

• TG – Teacher-guided, all demonstrations selected by the teacher without any con-
fidence feedback from the algorithm and without the ability to perform retroactive
corrections

• CES – Confident Execution, all demonstrations selected by the agent using a single
fixed confidence threshold

• CEM – Confident Execution, all demonstrations selected by the agent using multiple
adjustable confidence thresholds

• CD – Corrective Demonstration, all demonstrations selected by the teacher and per-
formed as corrections in response to mistakes made by the agent

• CBA – The complete Confidence-Based Autonomy algorithm combining Confident
Execution using multiple adjustable confidence thresholds with Corrective Demon-
stration

For each demonstration selection method, the underlying policy of the agent was learned
using multiple Gaussian mixture models, one for each action class (Chernova & Veloso,
2007). Videos of the driving task are available at www.cs.cmu.edu/∼soniac.

Figure 8 presents performance results of the five algorithms with respect to the above
defined lane preference and collision metrics. We describe and discuss all elements of the

15



Chernova & Veloso

Figure 8: Evaluation of the agent’s driving performance at 100-demonstration intervals for
each of the five demonstration selection methods. The bar graphs indicate the
percentage of time the agent spent in each road lane. Values under each bar
indicate the percentage of collision timesteps accrued over the evaluation trial.
The teacher performance bar on the right of the figure shows the teacher’s driving
lane preference and collision rate over the evaluation road segment. The goal is
for each algorithm to achieve performance similar to that of the teacher.
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figure in detail in the following sections. For each evaluation, the figure presents a bar
representing a composite graph showing the percentage of time spent by the agent in each
lane. The value above the bar indicates the number of demonstrations upon which the
evaluated policy is based. The value below the bar indicates the percentage of incurred
collisions during the evaluation.

The bar on the right of the figure shows the performance of the teacher over the evalua-
tion road segment. This evaluation indicates that the teacher prefers to drive in the center
and left lanes, followed in preference by the left shoulder, right shoulder and right lane. The
teacher also successfully avoids all collisions, resulting in a collision rate of 0%. The goal of
the learning algorithm is to achieve a driving lane pattern similar to that of the teacher and
also without collisions. Note that, as described in the previous section, policy learning was
initialized with the same 300-demonstration dataset for all algorithms. This initialization
results in identical performance across all algorithms for this initial learning segment.

6.2.1 TG Demonstration Selection

The top row in Figure 8 summarizes the performance of the teacher-guided demonstration
selection approach. In this approach, the teacher performed training by alternating between
observing the performance of the agent and selecting demonstrations that, in her opinion,
would improve driving performance. The teacher selected all training examples without
receiving feedback about action selection confidence, and without the ability to provide
corrective demonstrations for incorrect actions that were already executed by the agent.
Instead, the teacher was required to anticipate what data would improve the policy. The
training process was terminated once the teacher saw no further improvement in agent
performance.

Figure 8 shows the results of the agent’s performance evaluations at 100-demonstration
intervals throughout the learning process. The similarity in the driving lane preference
of the agent improves slowly over the course of the learning, with significant fluctuations.
For example, after 500 demonstrations, the agent’s preference is to drive on the empty left
shoulder, thereby incurring few collisions. One hundred demonstrations later, the policy
has shifted to prefer the center lane. However, the agent has not yet learned to avoid other
cars, resulting in a 38.8% collision rate. The policy stabilizes after approximately 1100
demonstrations, representing a driving style similar to that of the teacher, with a small
number of collisions. Without confidence feedback from the agent, it is difficult for the
teacher to select an exact termination point for the learning. Training continued until,
after 1300 demonstrations, the learner’s policy showed little improvement. The final policy
resulted in a lane preference very similar to that of the expert, but with a 2.7% collision
rate.

6.2.2 CES Demonstration Selection

The second row in Figure 8 presents the results of the Confident Execution algorithm with
a single autonomy threshold. In this demonstration selection approach, all demonstrations
were selected by the agent and learning terminated once the agent stopped requesting
demonstrations and performed all actions autonomously. The autonomy threshold value
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was selected by hand and evaluated in multiple performance trials. Results of the best fixed
threshold are presented.

Compared to the teacher-guided approach, the policy learned using the CES algorithm
stabilizes quickly, achieving performance similar to the teacher’s after only 700 demonstra-
tions. The number of collisions is again low but persistent, even as the agent gains full
confidence and stops requesting demonstrations after 1008 demonstrations. The final lane
preference was again similar to that of the expert, with a collision rate of 3.8%.

6.2.3 CEM Demonstration Selection

The third row in Figure 8 presents the results of the Confident Execution algorithm with
multiple autonomy thresholds, which were calculated using the algorithm presented in Sec-
tion 4.2.2. Of all the demonstration selection methods, CEM required the fewest number of
demonstrations to learn the task, completing learning after only 504 demonstrations. This
result indicates that the use of multiple adjustable thresholds successfully focuses demon-
stration selection on informative areas of the state space while greatly reducing the number
of redundant demonstrations. Throughout the learning process, the number of Gaussian
components within the model varied between 9 and 41. This large variation highlights the
importance of automating the threshold calculation process, since hand-selecting individual
thresholds for each component would be impractical. The lane preference of the final policy
was again similar to that of the expert. However, the agent still maintained a small collision
rate of 1.9%.

6.2.4 CD Demonstration Selection

The evaluation of the first three algorithms highlights the difficulty of the driving problem.
Each of the approaches was able to select demonstrations that resulted in a policy that
mimics the overall driving style of the teacher. However, all of the policies resulted in
a small number of collisions, which typically occurred when the agent merged too close
to another vehicle and touched its bumper. Such mistakes are difficult to correct using
the techniques evaluated so far. Even within the teacher guided demonstration selection
method, in which the human teacher has full control of the demonstration training data,
by the time the collision has been observed the incorrect decision had already been made
by the algorithm. Instead, retroactive demonstration is required to correct already made
mistakes, as in the Corrective Demonstration algorithm.

In the fourth row of Figure 8 we present our evaluation of demonstration selection
using only the Corrective Demonstration algorithm. In this approach, all demonstrations
were selected by the teacher as corrections in response to mistakes made by the agent.
Behavior corrected by the teacher included collisions, as well as incorrect lane preference
(e.g. always driving on the shoulder) and rapid oscillations between lanes. To enable the
teacher to accurately perform corrections, the simulation was slowed from 5 to 2 frames
per second. Learning was terminated once the agent required no further corrections. As
shown in Figure 8, the complete training process using Corrective Demonstration took 547
demonstrations, achieving a final policy that correctly imitates the teacher’s driving style
with a 0% collision rate. In the following section, we discuss how this performance compares
to the complete CBA algorithm.
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6.2.5 CBA Demonstration Selection

The final row in Figure 8 presents the evaluation of the complete Confidence-Based Auton-
omy algorithm, which combines CEM with CD. Using this approach, learning is complete
once the agent no longer requests demonstrations and is able to perform the driving task
without collisions. Using CBA the agent required a total of 703 demonstrations to learn
the task, successfully learning to navigate the highway without collisions.

We analyze the impact of the two CBA learning components by comparing the number
and distribution of demonstrations acquired by each algorithm during the learning process.
In this section we refer to the learning components of CBA as CBA-CE and CBA-CD
to differentiate from the algorithm evaluations presented in previous sections. Note that
the behavior of the Confident Execution component is dependent upon the method used
to set the autonomy thresholds. In this evaluation we use multiple adjustable thresholds
calculated as the average value of misclassified points.

In Figure 9(a), each datapoint along the x-axis represents the number of demonstrations
requested using CBA-CE (top) and initiated by the teacher using CBA-CD (bottom) during
a 100-timestep interval, or approximately 40 seconds of simulator runtime (excluding pauses
for demonstration requests). Since the first three 100-demonstration timesteps consist en-
tirely of non-interactive demonstration, the values for these timesteps are 100 and, due to
scaling, exceed the bounds of the graph. Figure 9(b) shows how the cumulative number of
demonstrations for each component, and in total, grows with respect to training time. The
complete training process lasts approximately an hour and a half.

Analysis of these graphs shows that most demonstrations occur early in the training
process. Importantly, Confident Execution accounts for 83% of the total number of demon-

(a) (b)

Figure 9: (a) Timeline showing how the number of demonstrations initiated by the agent
through Confident Execution (top) and initiated by the teacher through Correc-
tive Demonstrations (bottom) changes over the course of the training. (b) The
cumulative number of demonstrations acquired by each component, and in total,
over time.
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strations, indicating that the agent guides most of the learning. Most of these demon-
stration requests occur during the first few minutes of training when the agent encounters
many novel states and the classification confidence remains low. The agent requires few
corrections during this stage because many mistakes are prevented by requesting a demon-
stration instead of performing a low confidence action. Corrective Demonstration plays its
greatest role towards the end of training process, where it accounts for 73% of the final
100 demonstrations. At this stage in the learning the agent’s action selection confidence is
high enough that it rarely asks for demonstrations. Its policy already closely imitates the
teacher’s driving style but a small number of collisions remain. Corrective Demonstration
enables the teacher to fine-tune the policy and eliminate all collisions. This result highlights
the importance of Corrective Demonstration, whether alone or in conjunction with another
selection technique, for optimizing policy performance.

While CBA achieves similar final performance compared to the CD algorithm evaluated
in the previous section, it requires approximately 150 additional demonstrations to learn this
policy. The additional demonstrations can be attributed to Confident Execution demon-
stration requests that served to increase the classification confidence but did not change the
outcome of the agent’s action. Viewed another way, these datapoints correspond to states
in which the agent would have performed the correct action even if it had not asked for a
demonstration. From this result it appears that allowing the agent to make mistakes and
correcting them after the fact, as done in the CD evaluation, may be the best demonstration
selection approach with respect to the performance metrics defined above and the overall
number of demonstrations.

However, eliminating the ability to request demonstrations and utilizing only retroac-
tive correction has several drawbacks, namely requiring constant and full attention from the
teacher, and, most importantly, requiring our agent to make many mistakes before it learns
the correct policy. By comparison, the CBA algorithm enables the agent to request demon-
strations in low confidence states, thereby avoiding many incorrect actions. Our original
lane preference and collision metrics do not take this difference into account as they focus
only on the final policy performance of the agent.

To evaluate the difference between these algorithms, we additionally examine the number
of collisions each agent incurs over the course of the learning. Using the CD algorithm,
the agent incurs 48% more collisions (278 vs. 188) during training than by using CBA.
Therefore, by allowing the agent to request demonstrations in low-confidence states, the
CBA algorithm requires a slightly greater number of demonstrations while greatly reducing
the number of incorrect actions performed during learning. The reduction in the number
of action errors is significant due to its importance for many learning domains, especially
robotic applications in which such errors may pose dangers to the system.

In summary, our evaluation has shown that the ability to retroactively correct mistakes
is crucial to optimizing the policy and eliminating all collisions. The best performance
was achieved by the Corrective Demonstration and Confidence-Based Autonomy methods,
with CD requiring fewer demonstrations but incurring a greater number of collisions during
training. The choice between CD and CBA can therefore be viewed as a tradeoff between
the number of demonstrations and the frequency of undesired actions during training. In
fact, CD is a special case of CBA in which the autonomy threshold is set to classify all
points with high confidence. Adjusting the selectiveness of the CBA autonomy thresholds
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could, therefore, provide the user with a sliding control mechanism that effects the agent’s
tendency to perform autonomous actions versus demonstration requests. Importantly, we
note that the overall number of demonstrations required by either approach is less than the
teacher-guided method and only a tiny fraction of the overall state space.

7. Discussion

In this section, we discuss several promising directions for future work, as well as a number
of existing extensions to the presented learning methods.

7.1 Evaluation with Non-Technical Users

The presented demonstration learning algorithm provides a fast and intuitive method for
programming and adapting the behavior of autonomous agents. We believe that its general
representation and classifier-independent approach makes CBA usable for a wide range of
applications. One particular application of interest is the use of demonstration learning to
enable non-technical users to program autonomous agents. We believe that CBA would be
highly suitable for this application as it does not assume that the teacher has any technical
knowledge about policy learning, requiring only that the teacher be an expert at the task.
The results presented in this article were obtained using only a single teacher, one of the
authors. Additional studies could evaluate algorithm usability and performance for a wider
user base, and non-programmers in particular.

7.2 Representation of Action Choices

Demonstration-based learning provides a natural and intuitive interface for transferring hu-
man task knowledge to autonomous agents. However, when operating in rich environments,
agents inevitably face situations in which multiple actions are equivalently applicable. For
example, an agent that encounters an obstacle directly in its path has the option of moving
left or right to avoid it. If the surrounding space is empty, both directions are equally valid
for performing the desired task. Human demonstrators faced with a choice of equivalent
actions typically do not perform demonstrations consistently, instead selecting among the
applicable actions arbitrarily each time the choice is encountered. As a result, training
data obtained by the agent lacks consistency, such that identical, or nearly identical, states
are associated with different actions. In the presented CBA algorithm, such inconsistent
demonstrations would result in a persistent region of low confidence, leading the agent to
repeatedly request demonstrations within the inconsistent domain region. We have success-
fully extended CBA to identify regions of the state space with conflicting demonstrations
and represent the choice between multiple actions explicitly within the agent’s policy (Cher-
nova & Veloso, 2008a).

7.3 Improvement Beyond Teacher Performance

The policy learned by the Confidence-Based Autonomy algorithm is inherently limited by
the quality of the demonstrations provided by the human teacher. Assuming that the
teacher is an expert at the task, our approach aims to imitate the behavior of the teacher.
However, in many domains teacher demonstrations may be suboptimal and limited by
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human ability. Several demonstration learning approaches have been developed that enable
an agent to learn from its own experiences in addition to demonstrations, thereby improving
performance beyond the abilities of the teacher (Stolle & Atkeson, 2007; Smart, 2002).
Extending the CBA algorithm to include similar capability remains a promising direction
for future work. Possible approaches include incorporating a high-level feedback (Argall,
Browning, & Veloso, 2007) or reward signal (Thomaz & Breazeal, 2006) from the teacher,
as well as filtering noisy or inaccurate demonstrations.

7.4 Policy Use After Learning

The CBA algorithm considers learning to be complete once the agent is able to perform
the required behavior, repeatedly and correctly, without requesting further demonstrations
and requiring corrections. Once policy learning is complete, the standard procedure for the
vast majority of policy learning algorithms is to turn off the learning process and freeze
the policy. While this approach can also be used with our algorithm, we propose that
the continuing use of the Confident Execution component may have long-term benefits
beyond policy learning. In particular, the algorithm’s ability to identify anomalous states
may enable the agent to detect and notify the user of system errors and unexpected input.
While further studies are needed to evaluate this use of the algorithm, we believe that such
a mechanism would provide a useful safety feature for long-term autonomous operation at
a negligible cost of performing the threshold comparison at each timestep.

7.5 Richer Interaction

The presented demonstration learning approach relies on a limited form of interaction be-
tween the agent and teacher. The agent requests demonstrations from the teacher, while
the teacher responds with a single recommended action. While this level of interaction
is typical of traditional active learning approaches, it fails to take full advantage of the
vast task knowledge that the teacher possesses. We believe that extending the algorithm
to include richer interaction abilities could provide a faster and more intuitive training
method. Many promising directions for future research exist in this area. For example,
developing a domain-independent dialog exchange between the agent and teacher that in-
corporates clarification questions and high level advice could speed up learning and enable
the agent to represent the high level goals of the task. The ability to play back or “rewind”
demonstration sequences would additionally enable both teacher and agent to reexamine
and reevaluate past learning experiences.

7.6 Application to Single-Robot and Multi-Robot Systems

Learning from demonstration techniques have been extensively studied within the robotics
community due to their interactive nature and fast learning times. In other work, we have
shown the CBA algorithm to be highly effective in learning a variety of single-robot tasks
(Chernova & Veloso, 2007, 2008a).

Furthermore, many complex tasks require the collaboration of multiple robots. Up
to now, one of the greatest challenges preventing most demonstration learning algorithms
from generalizing to multi-robot domains has been the problem of limited human attention,
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the fact that the teacher is not able to pay attention to, and interact with, all robots at
the same time. Based on the CBA algorithm, we have developed the first multi-robot
demonstration learning system that addresses the limited human attention problem by
taking advantage of the fact that the Confident Execution component of CBA prevents the
autonomous execution of actions in low-confidence states (Chernova & Veloso, 2008b). Our
flexMLfD system utilizes individual instances of CBA for each robot, such that each learner
acquires a unique set of demonstrations and learns an individual task policy. By preventing
autonomous execution in low-confidence states, CBA makes each learner robust to periods
of teacher neglect, allowing multiple robots to be taught at the same time.

8. Conclusion

In this article we presented Confidence-Based Autonomy, an interactive algorithm for policy
learning through demonstration. Using this algorithm, an agent incrementally learns an
action policy from demonstrations acquired as it practices the task. The CBA algorithm
contains two methods for obtaining demonstrations. The Confident Execution component
enables the agent to select demonstrations in real time as it interacts with the environment,
using confidence and distance thresholds to target states that are unfamiliar or in which
the current policy action is uncertain. The Corrective Demonstration component allows
the teacher to additionally perform corrective demonstrations when an incorrect action is
selected by the agent. The teacher retroactively provides demonstrations for specific error
cases instead of attempting to anticipate errors ahead of time. Combined, these techniques
provide a fast and intuitive approach for policy learning, incorporating shared decision
making between the learner and the teacher.

Experimentally, we used a complex simulated driving domain to compare five methods
of selecting demonstration training data: manual data selection by the teacher, confidence-
based selection using a single fixed threshold, confidence-based selection using multiple
automatically calculated thresholds, corrective demonstration, and confidence-based selec-
tion combined with corrective demonstration. Based on our evaluation, we conclude that
all confidence-based methods were able to select more informative demonstrations than the
human teacher. Of the single and multiple threshold approaches, the multiple adjustable
threshold technique required significantly fewer demonstrations by focusing onto regions of
uncertainty and reducing the number of redundant datapoints. The best final policy perfor-
mance, however, was achieved by the Corrective Demonstration and complete Confidence-
Based Autonomy algorithms, both of which achieved a lane preference similar to that of the
teacher without any collisions. Together, these demonstration selection algorithms represent
the tradeoff between the number of demonstrations and the frequency of undesired actions
during training. While Corrective Demonstration required slightly fewer demonstrations to
learn the final policy, compared to CBA it resulted in a significant increase in the number
of errors made by the agent over the course of the learning process. The CBA algorithm,
therefore, provides the best demonstration selection method for domains in which incorrect
actions are not desirable during the training process.
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