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This paper presents a novel method for recovering signgiiiigways from protein-protein interaction
networks automatically. Given an undirected weightedgirointeraction network, finding signaling
pathways is treated as searching for the optimal subnesrfookn the network according to some cost
function. To approach this optimum problem, an integerdinprogramming model is proposed in
this work to model the signal pathways from the protein iat&ion network. The numerical results on
three known yeast MAPK signal pathways demonstrate théesffig and effectiveness of the proposed
method.

1. Introduction

Signal transduction is the primary means that cells resptmthe external stimulus of the
environment such as growth factors, nutrients, and so orih&umore, signal transduction
plays an important role in coordinating metabolism, cetiliperation and differentiation.
Generally, external signal or stimulus is transduced intelathrough an ordered sequence
of biochemical reactions inside the cell. In many signais@uction processes, the number
of proteins and other molecules participating in these &vigrcreases as the process pro-
ceeds from the initial stimulus, which results in a “signascade”. Despite the success of
traditional methods in detecting components involved gmaling networks, they can only
generate specific linear signal pathways. The knowledg®woiptex signaling networks
and their internal interactions is still unclear now. THere, it is necessary to develop new
computational methods to capture the details of signalmtpyways by exploiting high-
throughout genomic and proteomic data.

Recently, with the advance in high-throughput bio-tecbgg| the large-scale genomic
and proteomic data provide insights into the componentsiwed in signal transduction.
For example, protein interactions and microarray data Heeen utilized to reconstruct
signaling networks234, Since signal transduction is a process of biochemicati@as
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achieved by a cascade of protein interactions, proteirraoten data can provide an al-
ternative approach to understanding signaling networklskeret al. 4 have proposed a
variant of the color coding algorithm to reconstruct sigmginetworks from yeast protein
interaction networks. In the color coding method, a numldetamdidate pathways are
found, with a score assigned to each candidate. The higbashg candidate is assumed
to be the putative pathway and the top scoring pathways aregbsembled into a signaling
network. Stefferet al. 2 have developed an algorithm, namely Netsearch, to reagistr
signaling networks by utilizing both gene expression dai rotein interaction data. In
the Netsearch method, they also rank the candidate pathavaysggregate top scoring
pathways into a signaling network. Zhabal. ! have also proposed a method for rank-
ing signal transduction pathways by utilizing both proteiteraction and microarray data.
In the methods described above, signaling network is netoted as a whole, on the other
hand, the separate linear pathways are detected and usesittalale the signaling network.

In this work, we present a new simple and efficient method fetedting signaling
pathways from protein interaction data by an integer lirragramming technique. In our
method, we treat the finding of signal pathways as an optiiiz@roblem and wish to find
out an optimal subnetwork starting from membrane proteirs ending at transcription
factors with respect to some cost functions. The objectiveuo method is similar to the
color coding method. The difference lies in that our methredts a signaling network as
a whole entity and detect it by running the model once instdadnking individual linear
pathways and assembling them into a network. The numeriparenents on yeast protein
interaction data demonstrate the effectiveness of theqzegpmethod.

The rest of the paper is organized as follows: Section 2 de=xthe proposed integer
linear programming model; Section 3 presents the expetiahegsults; Section 4 draws
conclusions.

2. Methods

In this section, we present a method for detecting a siggalgtwork given the possible
end points (e.g. membrane proteins and transcriptionfa¢id-s)) of signal pathways and
a protein interaction network. Given a protein interacti@twork, it can be represented as
a weighted undirected gragh(V, E'), where the vertices are proteins and the efgg ;)
denotes the experimentally observed interaction betweeteips: andj. In this study,
the weight of each edge represents the interaction rahalhietween the corresponding
proteins. In literature, there are many methods proposeddtmating the reliability of
protein interactions-%7. In this work, we utilize the method proposed by Shaearal.
8 to estimate the reliability of protein interactions. Withetassumption that proteins in
the same signal pathway will interact with one another withtprobability, the weighted
protein interaction network can be utilized to find putasignaling pathways.

In the weighted network, given a starting node, the linedh jpd a specific length of
m from the starting node to another node can be assigned awbirk equals to the sum
or the product of the weights for the edges in the path. Witerges of paths of length
m starting from specific proteins generated this way, the tmking paths are possible
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candidates for true linear signal transduction pathwapsthis case, the specific starting
proteins are membrane proteins because the signal traiimapoocess starts from receptor
proteins.

In this work, the weight of each edd®(¢, j) is defined ag; ; = —p(i, j), wherep(s, j)
is the interaction reliability between proteinand;j. The score for each linear path is the
sum of the weights for the edges in the path, and the lengtheopath is the number of
proteins involved in the path. Similarly, the score of a setlrork is the sum of the weights
for the edges it contains, and the network size is the numijanodeins it contains. Given
an undirected weighted netwofkV, E, w) and the possible end points of signal pathways,
i.e. membrane proteins and TFs, we wish to find out the minimxeight subnetwork of
specific size from the network.

To accomplish the above mission, we proposed a novel intégsar programming
(ILP) model to find out signal pathways, given membrane fnsteTFs and a weighted
protein interaction network. The model is described a®fed!:
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€ij < Tj

Z e;; > 1, if i is a membrane protein or TF
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J

x; = 1 ,if 4is a membrane protein or TF

x; €{0,1},i=1,2,--- ,|V]

ei; €{0,1},4,j=1,2,--- ,|V|

whereq;; is the weight for edgév(i, j) of the undirected weighted network; is a binary
variable for protein to denote whether proteiris selected as a component of the signaling
network or not.e;; is also a binary variable to denote whether the biochemeattion
represented by protein-protein interactib(y, ;) is a part of the signaling network or not.
is the punishment parameter to control the subnetwork ﬂze.constrainEj eij > 2x; 1S
to ensure that; has at least two linking edges once it is selected in the Bignaetwork so
that the selected subnetwork is as connected as possitdecagithe constrai@jj e > 1
makes sure that each membrane protein or TF has at leastndni® lother proteins. On
the other hand, the constraintg < z; ande;; < z; ensure that only when proteirand
proteinj are selected as components of the signaling network, thehéiical reaction
denoted by the edgs; would be considered.

The first term of the above cost function implies that we warfirtd out the minimum-
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weight subnetwork, while the second term is used to contiIsubnetwork size and the
number of biochemical reactions involved in the subnetvimé&ause each protein interac-
tion is actually a biochemical reaction. The idea behindttuglel is that we want to find
out a minimum-weight subnetwork of specific size which acpbshes the signal transduc-
tion process with as few biochemical reactions as possiiiere biochemical reactions are
represented by protein interactions, ieg; in the cost function. The assumption is reason-
able because cells usually accomplish their missions vétless energy as possibl. This
criterion is also consistent with the parsimony principliel@ly adopted in other areas of
biology such as phylogeny tree construction and haplotyfezénce'!>'2.

The model described above is a standard integer linear @noming which can be
solved efficiently in polynomial time. To make the model doit large-scale interaction
networks, we can relax the constraints € {0,1},e;; € {0,1}t00 < z; < 1,0 <
e;; < 1 which make the ILP model become a linear programming (LP)ehdeixperiment
results show such a relaxation does not reduce the perfasnand at the same time highly
improve the computation efficiency. Although the model hpai@metep, it can be tuned
in a relatively easy manner.

3. Experimental results

Our proposed ILP model was applied to find the signaling neke/n the yeast protein-
protein interaction network. In this work, the protein irgetion data were obtained from
the DIP databas® which includes 4839 proteins and 14319 interactions. Tata set has
also been used by Ideket al. 4 To evaluate the performance of the proposed methods,
we applied it to find the three known yeast MAPK signaling paths. The three yeast
signal pathways are pheromone response, filamentous giowakion and cell wall in-
tegrity, respectively. To reduce the computation comyexine ILP model was applied to
a smaller protein interaction network generated by depshsearch (DFS) algorithm start-
ing from membrane proteins and ending at TFs. This smallevark consists of the paths
of length 6-8, and the interactions among proteins in thtavagk were borrowed from the
original protein interaction network. Therefore, threeadier protein interaction networks
were generated by DFS for the three MAPK signal pathwaypg@s/ely. The sequential
experiments were conducted on these three smaller protiraction networks.

For the pheromone response pathway, the ILP model was dppli@ok for the sig-
naling network starting from membrane protein STE3 and mydit transcription factor
STE12. By varying the\ in the ILP model, we can get signaling networks of differen¢s
e.g. linear pathway or signaling network. Fig.1 (a) shovesrttain chain of pheromone re-
sponse pathway deposited in KEGG, Fig.1 (b) shows the Isigaaling pathway found by
color coding, and Fig.1 (c) shows the linear path found by thiétel, where the blue point
is the starting point and the red one is the end point. Compgdh) against (c), we can see
that in the linear path we found, AKRL1 links directly to STHEtead of through STE4,
CDC24 and BEML1 like that detected by color coding becausetisea direct interaction
between AKR1 and STES5. Although we failed to detect STE4, bénd BEML1 in the
main chain compared with color coding, we can successfighgat the linear signaling
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pathway with fewer components involved in the main chainwéreproteins imply fewer
biochemical reactions which is biologically reasonablesaese signals may be transduced

in a parsimonious way that consume less energy.
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Figure 1. The linear signal pathways for pheromone respofeethe pathway from KEGG; (b) the pathway

detected by color coding; (c) the pathway detected by ILPehod

Fig.2 shows the signaling network detected by our metho@re/the blue point is the
starting point and the red one is the end point. This siggaigtwork consists of 19 genes.
By comparing the detected signaling network with those tblhip Netsearci and color
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coding#, we can learn that most of the components of the three signaktworks are the
same. Compared with the signaling network of the same siaaragletected by Netsearch,
the ILP model failed to detect proteins SST2, DIG1, DIG2 aRdH$, but detect four new
proteins (STE50, BEM3, BEM4 and CDC28) which are relatedhéogheromone response
pathway'®. Furthermore, protein STE50 has also been detected by cotting method,
which confirms the effectiveness of the ILP model. Comparitid tlee color coding model,
the ILP model failed to detect CDC42, DIG1 and DIG2, but det@ P T5 which has also
been detected by the Netsearch method. Such a result deatesghat our method can
be a helpful complement to existing algorithms. The ILP midaiéed to detect DIG1 and
DIG2 due to our assumption that signal transduction is assutm be accomplished with
as few biochemical reactions as possible, whereas DIG1 #&& ibtroduce many links to
other proteins that have already been detected by the ILReinod
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Figure 2. The signaling network for pheromone response.

For the filamentous growth invasion pathway, the ILP moded eaplied to detect the
signaling network starting from membrane protein RAS2 amtireg at transcription factor
STE12. Fig.3 respectively shows the signal pathway of timeessize that are deposited
in KEGG, detected by color coding and ILP model, where the Iplaint is starting point
while the red one is the end point. It can be seen from Fig.ad)(c) that the signaling
pathway recovered by the ILP model matches the known sigathiyay to a large extent.
The CDC25 and HSP82 were detected due to the missing linkebatRAS2 and CDC42
in the protein interaction network. Comparing Fig.3 (b)wkig.3 (c), we can see that
the ILP model can find the identical signaling pathway of thme size as that detected by
color coding. Furthermore, the ILP model found out the ddddl links compared with the
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color coding method, where the additional links may implgalative signal pathways.
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Figure 3. The signal pathways for filamentous growth invasi@) the pathway from KEGG; (b) the pathway
by color coding; (c) the pathway by ILP model.

Furthermore, Fig.4 shows the signaling network of largee dietected by the ILP
model, where the blue point is starting point while the red mthe end point. The left fig-
ure in Fig.4 shows a signaling network of size 13. Compardtieémetwork generated by
NetsearcH, all of the proteins involved in the detected signaling rextnby ILP have also
been found by Netsearch except GIN4, NAP1 and RIM11. The GNM1 and RIM11
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were detected because they appear in the same complexadog@thCDC25'°, and GIN4
and NAP1 have the function of cell polarity and filament fotima '°. Therefore, they are
related to the filamentous signaling pathway. The right ggur Fig. 4 shows another
signaling network of size 19, where we assume that the protePA2, CYR1, FUS3 and
BEM1 are known to be involved in the signaling pathway. Aligb it is difficult to know
exactly all the proteins involved in a signaling pathway; assumption is reasonable be-
cause we can know some proteins in the signaling pathway fhenpublished results by
other researchers. It can be seen from Fig.4 that our deltsiealing network matches
that found by Netsearchto a large extent. The HSC82 detected by Netsearch was not
in our network because there is a direct interaction betw#Ha11 and HSP82. The ILP
model failed to detect proteins ABP1, DIG1, DIG2 and BNI1,ilelincluded two other
proteins COF1 and LAS17 because COF1, LAS17, BEM1, BUD6 &wPccur in the
same complex’ and therefore may have similar functions.
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Figure 4. The signaling network for filamentous growth ireas

For the cell wall integrity pathway, the ILP model was apglte detect the signalling
network starting from MID2 and ending at RLM1. Fig.5 shows timear signal pathways
detected by the ILP model and color coding, and the one diggbsi KEGG, where the
blue point is starting point while the red one is the end pdirtan be seen from Fig.5 that
the ILP model can detect the identical signaling pathwayastiy color coding. It is not
surprising to see the same results because we use the sametion data set as the one
used by color coding. The detected signal pathway matches ofidhe known pathway
except ROM2 due to the missing links between MID2 and RHOL1.

From the results described above, we can see that the pfdd3enodel is indeed ef-
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Figure 5. The linear signal pathways for cell wall integrifa) the pathway from KEGG; (b) the pathway by
color coding; (c) the pathway by ILP model.

fective for finding signaling networks from protein intetimy networks. Furthermore, the
ILP model is very simple and can detect the signalling nettvdinectly instead of working
in multiple-stage like Netsearch and color coding: find thedidate signal pathways, rank
the candidate pathway, and assemble the top scoring pashway

4. Conclusions

In this paper, we presented a new method for recovering kignaetworks from protein
interaction networks. The proposed method utilizes imtégear programming to find out
the subnetwork with minimum weight of specific size. The tesson three known MAPK
signal pathways using yeast protein interaction netwodwsthat the ILP model can re-
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cover most of the signaling pathway and the reconstructgthing networks match most
of those published results, which confirm the effectiversess efficiency of the proposed
method. Compared with existing methods, our method is munspler because it can de-
tect the signaling networks from protein interaction natwirectly instead of ranking the

candidate signal pathways and assembling the top scogmglspathways into a signal-
ing network. Despite the success of the proposed methodpirtls on the quality of the
protein interactions and the estimated probabilities efititeractions. In this work, the

probability of protein interactions are estimated prelgisélowever, most of the protein

interactions are not assigned reliable scores to represagatly the probability of protein

interactions. One alternative approach to this problero istilize the microarray data in-

formation because there are large amount of microarray aat#able nowadays, and the
combination of protein interactions and microarray datg peovide insights into signal

transduction discovery. In the future, we will explore thigint in reconstructing signaling

networks.
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