
A knowledge-modeling approach for multilingual Regulus lexica

Marianne Santaholma and Nikos Chatzichrisafis
University of Geneva, ETI/TIM/ISSCO

40, bd du Pont-d’Arve, CH-1211 Geneva
E-mail: Marianne.Santaholma@eti.unige.ch; Nikos.Chatzichrisafis@vozzup.com

Abstract

Development of lexical resources is, along with grammar development, one of the main efforts when building multilingual NLP
applications. In this paper, we present a tool-based approach for more efficient manual lexicon development for a spoken language
translation system. The approach in particular addresses the common problems of multilingual lexica including the redundancy of
encoded information and inconsistency of lexica of different languages. The general benefits of this practical tool-based approach are
clear and user-friendly lexicon structure, inheritance of information inside of a language and between different system languages, and
transparency and consistency of coverage between system languages. The visual tool-based approach is user-friendly to linguistic
informants that don’t have previous experience of lexicon development, while at the same time, it still is a powerful tool for expert
system developers.

1. Introduction
One of the main efforts in developing multilingual
applications that are based on linguistic knowledge is to
build the required language resources. These resources
include grammars and lexica. The grammar may contain
rules for both analysis of system input, and for producing
grammatical output by combining words into larger
constituents. The lexica store the lexical entries including
different type of linguistic information, like
syntactico-semantic features. The information encoded in
the lexicon depends on the grammar theory applied and the
underlying grammar development environment. Due to
their complexity, these resources are habitually constructed
by hand, which makes maintenance labor-intensive and
time-consuming task, especially in systems where multiple
languages are developed.

Recent efforts to facilitate the construction of lexical
resources have concentrated on exploiting the available
digital resources like machine readable dictionaries and
multilingual corpora. These automatic methods of lexical
acquisition can currently help to derive lexical entries, but
the learning of required complex linguistic information
included in the entries remains problematic. Only some
particular, well-defined linguistic properties, like verb
subcategorization in a certain language can be defined
automatically (e.g. Korhonen, 2002). Consequently, these
data-based methods are primarily used to extend the
already existing lexica (as in Baldwin, 2005) instead of
building a lexicon for a new language from scratch.
Despite of increasing amount of electronic data available,
many languages and application domains are still scarce of
resources required for this type of lexical acquisition.

As automatic methods do not yet provide a global solution
we focus on assisting manual lexicon development with a
tool that improves following aspects of multilingual system
lexicon development:
Porting of lexica into new languages and domains. The
manual creation of new system lexica commonly includes

the involvement of expert developers in many stages
(set-up, structuring, refactoring, entering data and
maintenance). However, ideally populating the lexicon and
its maintenance would be performed by linguistic
informants who are familiar with the system specific
expressions but do not necessarily have deep knowledge
about language engineering. Hence extending the lexical
coverage and maintaining it should be made simple. This
favors visual tools over the basic coding environments.

Redundancy of information. Multilingual systems cover
the equivalent expressions in several languages and in
consequence include the equivalent lexical entries for all
these languages. These entries are highly similar: they are
written in the same application specific formalisms and
they express the same type of information. Hence, there is a
fair amount of repetition in lexica of different languages
and even inside a lexicon of a language. Sharing the
representations and information between different
languages and inside of a language would reduce this
redundancy and consequently facilitate and speed up the
development of multilingual lexica.

Structure of multilingual lexica. Multilingual
applications, as for example translation systems, often have
the same coverage for all supported languages. A visually
assisted browsing across system languages helps the
system developer to verify the coverage and locate possible
lexical gaps and inconsistencies between languages.

Focusing on above aspects we have implemented a
development and management tool for writing multilingual
Regulus lexica. Regulus is an Open-Source toolkit for
developing feature grammars and lexica for spoken
language (Rayner, Hockey & Bouillon, 2006; Regulus,
2008). These lexica are used, among others, in multilingual
medical domain spoken language translator, MedSLT
(Bouillon et al, 2005; MedSLT, 2008). MedSLT translates
doctor-patient spoken dialog in medical diagnosis situation.
The currently covered system languages include Arabic,
Catalan, English, Finnish, French, Japanese, and Spanish.

1406

The main components of the system (speech recognition,
parsing and generation) are built on the linguistically
motivated constraint-based Regulus grammars.

The lexical resources for MedSLT are not readily available
for the supported domains and languages, and therefore
they have to be separately developed. This becomes a
tedious task for new system languages, as already existing
coverage needs to be matched in a consistent matter. In
order to accelerate system development and help with
maintenance tasks we have implemented a tool-based
solution for multilingual lexica. Instead of designing a new
application for this, we use as starting point the
open-source platform Protégé.

The remainder of this paper is structured as follows. The
next section introduces Regulus lexica as they are used in
MedSLT. Section 3 then describes how multilingual
Regulus lexica can be represented in Protégé. Section 4
describes the implemented lexical hierarchy. The paper
concludes with Section 5.

2. Regulus MedSLT lexica
The Regulus lexical entries are based on Prolog syntax, and
are typically written in a text editor. The basic lexical entry
has the format illustrated in Example 1. It consists of four
parts:
(a) Lexical category name: verb
(b) Domain specific semantic representation:
sem=[[state,sleep], [tense,present]]
(c) Flat list of different constraints in form of
attribute-value pairs:
vform=infinitive,
agr=(sg/\3),subcat=intransitive,
sem_pp_type=duration
(d) Surface form of lexical entry: sleeps .

verb:[sem=[[state,sleep],[tense,present]],

vform=infinitive,agr=(sg/\3),

subj_sem_n_type=person,

subcat=intransitive, sem_pp_type=duration,

takes_adv_type=(frequency\/duration)]

--> sleeps.

Example 1: Regulus lexical entry for ‘sleeps’.

Characteristic for Regulus lexical entries is the heavy use
of sortal constraints. These features define the range of
context in which each word can occur. For example the
above illustrated verb ‘to sleep’ takes according to the
lexical rule of Example 1 as subject a noun that represents
the semantic ‘person’ (subj_sem_n_type=person).
Furthermore the allowed prepositional phrase complement
is of type “temporal” (sem_pp_type=duration).
Regulus grammars and lexica are compiled into context
free grammar (CFG) language models for the purposes of
speech recognition. These sortal features help to constrain
the representation to be suitable for this CFG compilation
procedure.

Morphological tools are not integrated in Regulus.
Currently the different forms of one lemma have to be
enumerated in the lexicon. Hence, the amount of entries
that only slightly differ from each other can be quite
extensive. This means a significant amount of repetition of
the same information in entries that are almost equal, like
‘sleep’ and ‘sleeps’. This type of redundancy is decreased
in Regulus lexica by macros. Macros are used as templates
that capture the common information. For example the
common features (like subcategorization, subject type,
allowed prepositional phrase complement type) of
intransitive verbs ‘sleep’ and ‘walk’, can be generalized
under one macro rule. This type of rule is illustrated in
Example 2 for verb ‘to sleep’. Instead of enumerating the
different surface forms of sleep (sleep, sleeps,
slept, slept, sleeping) as separate entries in the
lexicon, they are grouped in a single entry that begins with
the @v_intransitive macro invocation. The macro
rule v_intransitive assembles the information that is
shared between all the similar intransitive verbs.
Furthermore, this macro rule contains two other macro
invocations, @verb and @verb_sem. This way lexical
entries inherit information from several different sources
and consequently the redundancy in rule writing is
effectively reduced. Additionally required modifications
during reengineering of grammars and lexical entries have
to be introduced only in macro rules instead separately in
all lexical entries.

(a) Lexical entry for ‘to sleep’

@v_intransitive

([sleep, sleeps, slept, slept, sleeping],

[action, sleep], [agent], [takes_time_pp=y,

takes_frequency_pp=y,takes_duration_pp=y].

(b) Macro rule v_intransitive

macro(v_intransitive

(SurfaceForms, [SemType, SemConstant],

[SubjSortalType], OtherFeats),

@verb(SurfaceForms, [@verb_sem(SemType,

SemConstant)], [subcat=intransitive, inv=n,

subj_sem_n_type=SubjSortalType|

OtherFeats])).

Example 2: Macro rule for intransitive verbs like ‘to sleep’

However, dealing with these macros, especially when
multiple inheritance levels are involved, is not a trivial task.
When different developers build several levels of macro
invocations for different languages, acquiring an overview
and performing simple maintenance tasks may become a
complex endeavor. This can be especially demanding for
inexperienced lexicon developers.

To make development easier for inexperienced users, and
to increase transparency throughout all languages, we

1407

considered using a visual development tool.

MedSLT lexica were customarily developed as
monolingual resources. In the context of the multilingual
shared grammar project (Santaholma, 2007), we required
an easy way for capturing generalizations not only in one
language but also between several languages.

3. Multilingual lexicon development and
management tool

Instead of implementing a new multilingual lexicon toolkit
from scratch, we based our development on the Protégé
platform. Protégé is a popular open source ontology editor
and knowledge base framework (Protégé, 2008). Protégé
supports the export to standard ontology languages as
OWL and RDF Schema, but it is easily extensible through
its plug-in interface. This makes it a flexible base for a
rapid prototyping and application development. We
extended Protégé with the Regulus exporter plug-in
(Chatzichrisafis & Santaholma, 2007). The plug-in exports
Regulus-compatible files directly from the Protégé user
interface. These files can then be included from Regulus
grammars or from Regulus configuration files as part of
Regulus based application.

Protégé has several built-in features that we found
advantageous for multilingual lexicon development and
management. These include a standardized graphical user
interface (GUI) and flexible platform for knowledge-based
domain modeling. The following sections describe the
Protégé features in detail, and demonstrate how we used
them for multilingual lexicon development.

3.1 Defining Regulus lexical entries with Protégé
The Protégé GUI consists of overlapping tabs that offer a
‘browser’ and ‘form’ for creation, viewing, editing, and
saving different type of information. These tabs include
‘classes’, ‘slots’ and ‘instances’ (Figure 1). Protégé classes
represent originally the abstract domain concepts. Each of
these abstract classes is described by a set of defined
attributes. These are in Protégé called slots. The concrete
class occurrences are represented in Protégé as instances.
We use these three forms to enter the different type of
information required in the Regulus lexical entries: lexical
categories, semantic representation, attributes and their
values, and the word form. Their associations and function
are presented in the following.

Figure 1: Protégé tabs.

Lexical categories. Lexical categories like (noun,
adjective, pronoun, verb, etc) are introduced as classes.

Semantic representation and attribute-value pairs. The
Regulus semantic representation and various features such
as sortal constraints are introduced in Protégé Regulus
lexicon as slots. Protégé slot form allows defining these
attributes with a fixed set of possible values. It also
supports a variety of values including the Boolean type
values ‘true’ and ‘false’ (takes_determinant=true)
and list of symbolic strings (‘temporal’ and ‘duration’ in
obj_sem_np_type=temporal\/duration).
Furthermore the slot form includes a facet where the
permitted amount of different values for an attribute can be
defined. The slot form provides a user-friendly interface
for defining all attributes and their value types that are
typical for the Regulus formalism.

Surface form. The word forms (like ‘sleep’ and sleeps’)
are introduced in Protégé as concrete instances of classes.
The instances form displays a collection of fields that
represent the attributes that are required for the lexical
category in question. The display and options for each
attribute-value field thus depend on the type of information
that has been defined in the slot form. The instance field for
Finnish noun ‘kuume’, feverI, is illustrated in Figure 2. The
lexical entry has attribute fields for surface_form,

sem_np_type , N_ type , can _be_pp , sem,

takes _det _type and case . In case the required value
is a symbolic string like ‘symptom’ in sem_np_type

=symptom , the field includes a combo box that contains
the possible value(s). The Boolean ‘true’ /’false’
value is displayed as check box as for can _be_pp .

Figure 2: Instance form.

The developed Protégé Regulus lexicon is exported into
Regulus format by iterating through all instances of
relevant lexical classes and writing out lexical entries into
target files. The output of this export procedure is a regular
Regulus lexicon file, which can be included as part of
Regulus grammars.

1408

3.2 User-friendly tool for different user groups
By separating the different type of information in distinct
tabs Protégé offers customized working environments for
different type of lexicon developers, including expert
developers and linguistic informants. The expert
developers who are also responsible for the grammar
development can focus on tasks that are more complex.
These include the definition of set of attributes and their
allowed values for each lexical category.

When these are in place, the linguistic informants can
concentrate on introducing and modifying lexical entries
on instance field. The fact that the possible set of allowed
attributes and their values are ready in the place reduces the
common errors such as orthographic mistakes and entry of
incorrect values. Protégé also automatically controls and
validates the entered instances. If no value is introduced for
an attribute, the corresponding field of the instance form is
outlined in red. The same for the values that violate the
attribute conditions defined in the slot form. This on-line
validation feature helps non-experts port lexica into new
languages, while offering extended functionality to
experienced developers, which would have otherwise be
available through macro hierarchies.

The next section shows how Protégé is used for
construction of multilingual lexica.

4. Multilingual inheritance lexicon
Inheritance hierarchies are commonly used in both
monolingual and multilingual lexica as a way to capture
generalizations about languages (for example Briscoe, de
Paiva & Copestake, 1993; Cahill & Gazdar, 1999). The
Regulus lexica typically use macros for this purpose
(inside of a language). Here we show how we apply an
inheritance-based approach for a multilingual MedSLT
lexicon using Protégé.

Protégé allows the modeling of knowledge-domains. We
make use of this feature to model a domain specific lexical
entry hierarchy for MedSLT system. We do that in
multilingual fashion so that the features can be shared
between different types of languages. The general principle
is that the hierarchy is implemented as a top-down
inheritance hierarchy where siblings inherit information
from parent nodes. The classes cannot inherit from
different parent nodes. In consequence, the language
independent information that is inherited by all the
languages is stated always at higher point in the hierarchy.
The language specific information is stated on the lowest
level.

At the top of this MedSLT headache domain lexical
hierarchy is the ‘Lexical entry’ class (Figure 3). This
contains the information that applies to all words of
languages (here illustrated with English, Finnish, and
Japanese). The information of this class is directly
inherited by all its subclasses. These represent the basic

lexical categories such as ‘noun’, ‘verb’, and ‘adjective’.
The attributes that are common to categories of all these
languages (like sem and entry_type) are introduced at
this level.

Figure 3: Multilingual domain specific lexical hierarchy.

Each of the lexical categories has one or several subclasses.
These are defined based on the domain-specific
syntactico-semantic features. These replace the Regulus
(multilevel) macros illustrated in Section 2. For instance
the verbs ‘sleep’ and ‘walk’ could here be classified in the
same verb subclass. In this medical context these verbs are
not only both intransitive verbs that take a ‘person’ as
subject but in this particular medical context they both can
express the ‘cause’ or ‘relief’ of the pain. These verbs act
similarly in this context and thus share the same set of
attribute-value pairs.

This sharing of constraints is not only limited within one
language. Experience with the MedSLT system has shown
that on restricted domains and context the entries of the
same lexical category share features over languages
borders (Bouillon et al, 2007). We can actually capture the
generalizations about the different languages on the
specific domain and share efficiently the linguistic
information required by the system’s lexical entries.

The benefits of this multilingual inheritance approach
include the reduced redundancy of information within and
between languages. The parallel hierarchic structure for
different languages allows also to better detect the gaps and
to keep the coverage consistent between the different
system languages. Furthermore a new system language can
be introduced in the multilingual lexicon simply by
following the existing domain specific inheritance
hierarchy and adding the required language specific classes
and features.

5. Summary
We have described a lexicon development and
management tool based on the Protégé platform that allows
developers to address common shortcomings of declarative
manual lexicon development approach.

1409

The main difficulties of this approach are the required
synchronization and mapping efforts for keeping the set of
attributes and their allowed values consistent across
languages, and complex macro hierarchies that are difficult
to be developed and maintained by non-experts.

We have demonstrated how a centralized feature-value
repository eliminates repetition and inconsistency of
representations throughout the languages. While this could
be equally implemented with the file-based declarative
approach, the visual tool is preferable because of the
user-friendly representation.

The described approach maintains the flexibility of the
declarative approach, where expert developers define the
lexical classes and required set of feature-value pairs, and
further modify and remove them. This tool-based approach
also simplifies the task for linguistic informants without
prior exposure to language engineering allowing them to
easily populate and maintain lexica.

Furthermore, this approach opens the door to the
possibility of integration of already existing knowledge
bases, which the knowledge-representation community
develops within the same framework. For medical systems
in particular, this approach could permit integration of
built-in reasoning and dialog enhancements using readily
available medical ontologies.

6. References
Baldwin, T. (2005). Bootstrapping Deep Lexical Resources:

Resources for Courses. In Proceedings of the
ACL-SIGLEX 2005 Workshop on Deep Lexical
Acquisition, Ann Arbor, USA, pp. 67–76.

Bouillon P., Rayner M., Novellas Vall Br., Starlander M.,
Santaholma M., Nakao Y. & Chatzichrisafis N. (2007).
Une grammaire partagée multi-tâche pour le traitement
de la parole : application aux langues romanes. In TAL
(Traitement Automatique des Langues), Volume 47,
3/2006, Hermes & Lavoisier.

Bouillon, P., Rayner, M., Chatzichrisafis, N., Hockey, B.A.,
Santaholma, M., Starlander, M., Isahara, H., Kanzaki, K.
& Nakao, Y. (2005). A Generic Multi-Lingual Open
Source Platform for Limited-Domain Medical Speech
Translation. In Proceedings of the Tenth Conference on
European Association of Machine Translation, Budapest,
Hungary.

Briscoe T., Paiva, de V. and Copestake, A. (Eds.)(1993).
Inheritance, defaults and lexicon. Cambridge University
Press, Cambridge.

Cahill, L. J. and Gazdar, G. (1999). The Polylex
architecture: Multilingual lexicons for related languages.
T.A.L., vol 40:1, pp.7-25.

Chatzichrisafis, N. and Santaholma, M. (2007). Regulus
Protégé Exporter. Manual,
http://regulus.cvs.sourceforge.net/regulus/Regulus/doc/
protege-regulus-exporter/regulusProtegePlugin.html?vi
ew=markup as of March 2008.

Korhonen, A. (2002). Subcategorization Acquisition. Ph.D
thesis, University of Cambridge.

MedSLT (2008) https://sourceforge.net/projects/medslt/.
As of March 2008.

Protégé (2008). http://protege.stanford.edu. As of March
2008.

Rayner, M., Hockey, B.A. and Bouillon, P. (2006). Regulus.
Putting Linguistics into Speech recognition. Stanford
University Center for the Study of language and
information, Stanford, California.

Regulus (2008). https://sourceforge.net/projects/regulus/.
As of March 2008.

Santaholma, M. (2007). Grammar sharing techniques for
rule-based multilingual NLP systems. In Proceedings of
NODALIDA 2007, the 16th Nordic Conference of
Computational Linguistics, Tartu, Estonia.

1410

