
A Method for Data Consistency Support in Mobile Ad hoc

Distributed Systems
♣

© Maxim Galkin

University of Saint-Petersburg

Universitetsky pr. 28, Peterhof, Saint-Petersburg, Russia

maksim.galkin@gmail.com

Abstract

This paper presents a research-in-progress

report on a method for data consistency

support in ad-hoc mobile distributed systems,

based on the concept of high-level operations

“compatibility” and operation history

reconciliation. The proposed method also

utilizes tuple spaces as a communication model

and accumulators as data structures for

efficient conflict resolution.

1 Introduction

In this paper we present a method for data consistency

support in an ad-hoc mobile distributed system. This

method combines some of the practices known for

“nomadic” distributed systems with loose data

structures such as tuple spaces that can serve as a

medium hiding the intermittent mobile network

connection.

Why do we consider methods for consistency

support in ad-hoc distributed system at all? One of the

advantages of such system is in the absence of a “single

point of failure”. That is, all of the network nodes are

equally important, and if we keep their replicas

consistent then our system can continue working even if

it loses most of the nodes. Of course, that also creates

more requirements for the reconciliation protocol, as we

need to “handle” nodes, which were “offline” for a

period of time.

Another advantage is the potentially unlimited

extensibility as there is no bottleneck like main server

performance or main server connection bandwidth. A

new node can join the network at any time, locate its

“neighbors” and obtain the latest available data.

Finally, in a mobile world it’s a possible scenario

that the known main servers are inaccessible, while the

“neighbor devices” can be still available. The proposed

protocol can serve as a failover tool in such scenario.

The advantage of the proposed method is in its

indifference to an underlying data model. It demands all

nodes to be aware of some initial data state (which can

possibly be empty, it is only required as a common

“starting point” for nodes operation history) and of a set

of high-level operations. After that is defined, the nodes

become autonomous and start applying those operations

to their local replicas. At some points in time nodes

perform reconciliations of their replicas according to the

proposed protocol and through this achieve a consistent

and actual data. Due to the general approach this

method can be used to build a middleware platform for

consistency support in ad-hoc distributed systems.

2 Data Model and Operations

For the sake of the proposed method, a set of defined

high-level operations over the data is more significant

than the data model itself and further in this paper we

will only discuss operation set properties. At the same

time we must note that in some related works [1, 2]

special data model was crucial in defining such

operations, which caused less conflicts and therefore

were better suitable for collaborative work.

In general, we can name two sides or two states of

the data in the system. One side is the real data, which

resides in the mobile agents, and which is continuously

updated by them and another side is the ideal data, that

can be achieved by a full semantically-correct

reconciliation of all data replicas. In the process of work

our cloud of local data replicas strives to become closer

to the ideal state, where every agent knows the current

and actual state of data. Of course, in reality the degree

of consistency depends on many factors, like the

connection quality between agents and the intensity of

the continuous local updates.

In most cases, a table of compatibility conditions is

filled together with operations definition. We call two

operations “compatible” if none of them depends on

another. In the CoACT model [3] such conditions are

called “activity interleaving rules” and given in a form

of predicates for each pair of operations. In general,

operations compatibility may depend on both their

nature (e.g., two “read” operations will never create a

conflict) and data they are applied to.

♣♣♣♣ Proceedings of the Spring Young Researcher's

Colloquium On Database and Information Systems

SYRCoDIS, St.-Petersburg, Russia, 2009.

This work is partially supported by Russian

Foundation for Basic Research under grant 07-07-

00268.

To successfully maintain consistency the set of

operations for ad-hoc mobile distributed system must

ensure as few conflicts as possible, in other words

operations must be as compatible as possible, because

every conflict in such a system is a serious problem:

two mobile nodes, which discover a data inconsistency

during their interaction don’t possess any advantage

over each other, unlike it happens in “nomadic”

distributed systems, where the fixed nodes have the

priority, the most consistent state. Usually in ad-hoc

distributed system it’s also impossible to draw a human

operator into the process of conflict resolution, because

the inconsistent state can be discovered at nodes that

aren’t the authors of the conflicting operations.

Therefore every conflict resolution must be

automatic in accordance with some pre-defined rules of

consistency. Such rules can be of two major types:

differential (e.g. when the system takes one of two

conflicting operations basing on its timestamp) and

integral (if the system, for example, has some pre-

defined objective function or cost function over the data

model and it discards one of the conflicting operations

basing on the value of the function).

3 Transactional Properties of the System

The above-stated implies that even if some operation

has been committed at one of the nodes and lived in the

system for some period of time it is not guaranteed to be

fixed in the system forever as one of the other nodes

could have submitted a conflicting operation that will

eventually overcome the first one. In other words, the

Durability property from the ACID set is not guaranteed

by our system for the sake of Consistency. Here we can

also notice that in ad-hoc distributed system no “global

commit” or “strong” [4] operations are possible. On the

contrary, all operations in the system are “weak”, that is

they are only applicable to the local replica of the data

and they are only guaranteed to be “safe” until next data

reconciliation with another node.

With respect to the other ACID properties such as

Atomicity and Isolation we should notice two levels of

their applicability. If we consider our high-level

operations as a specific form of transactions consisting

of some elementary read/write sub-operations, then

these transactions will satisfy both A and I properties. If

on the other hand we introduce even higher-level

transactions that consist of our original operations we

will need to give away the highlighted properties,

similar to how it happens in the “sagas” transaction

model [5]. Otherwise, long-running isolated

transactions will inevitably increase the number of

conflicts just like it is observed in other types of

distributed database systems [6]. Such an increase in

our system can lead to mobile nodes overload and

overall decline in data quality, as compensative

transactions can sometimes be ineffective in cleaning up

the database due to lack of transaction isolation.

4 The Proposed Protocol

We assume that numerous mobile nodes interact with

each other by establishing connection with some of the

other nodes in their “visibility range” and perform

reconciliation of their respective data replicas. During

the reconciliation nodes compare not the data itself, but

the history of operations made over some initial data

state: a common “starting point”, which is known to all

nodes. If a conflict is discovered it is resolved according

to the rules for the given operations, one of the

conflicting operations has to be compensated and

marked in history as rejected. This mark can make

future reconciliations faster.

After the reconciliation we need to recalculate all

the static data on the nodes that depend on the changed

operations. If the changes have only affected such

structures as accumulators [1] they don’t need the

recalculation.

As a communication model between the mobile

nodes we can use the tuple spaces mechanism, such as,

for example, LIME [7] or JavaSpaces [8]. In this case

nodes can create dynamic groups, sharing one tuple

space. In this tuple space a consistent set of operations

will be stored for each data element. If a new node

comes to the group, or a new operation is performed on

a present node it triggers the reconciliation process as

described above. All nodes also synchronize their local

replicas with the common space to be ready to go

offline any time.

In this scenario the common tuple space can be

found to correspond to a notion of a “cluster of

consistency” [4], with the only difference that in our

case no data in a cluster is durable. For example, if two

nodes from different clusters interact any of the

operations in their replicas can be potentially conflicting

and subject for removal.

5 Conclusion

We have introduced a method for consistency support

in a mobile ad-hoc distributed system, based on the

reconciliation process of high-level operations histories.

We also presented a description of supported data

models and the requirements for operations set. We

have analyzed the transactional properties of the

proposed system and outlined a protocol for nodes

interaction.

We plan to further develop this method with regards

to an experimental proof of concept. We also plan to

introduce metrics of the global consistency in such a

mobile system to be able to evaluate the efficiency of

the method and/or compare our method with other

methods. Another way of applying such metrics is to

use them in the described mobile system as an integral

rule for operational histories reconciliation, thus we can

sort out nodes, which have their replica so obsolete or

inconsistent that it doesn’t make sense to compare them

with the current data.

References

[1] A. Kozlova, D. Kochnev, B. Novikov. The

Middleware Support for Consistency in Distributed

Mobile Applications. Proc. of the Baltic

DB&IS'2004, 145-160, Riga, Latvia, Scientific

Papers University of Latvia, June 2004.

[2] O. Proskurnin, B. Novikov. Towards collaborative

video authoring. Proc. of ADBIS’03, 370-384,

Dresden, Germany, 2003.

[3] M. Rusinkiewicz, W. Klas, T. Tesch, J. Wasch, P.

Muth. Towards a Cooperative Transaction Model:

The Cooperative Activity Model. Proc. of the 21st

VLDB Conference, Zurich, Switzerland, 1995.

[4] E.Pitoura, B. Bhargava, O.Wolfson. Data

Consistency in Intermittently Connected

Distributed Systems. In Transactions on

Knowledge and Data Engineering, Nov 1999.

[5] H. Garcia-Molina, K. Salem. Sagas. ACM

SIGMOD Record, Volume 16, Issue 3, pp. 249-

259, 1987.

[6] J. N. Gray, P. Helland, P. O’Neil, D. Shasha. The

Dangers of Replication and a Solution. In

Conference on Management of Data, pp. 173-182,

Canada, June 1996.

[7] A. L. Murphy, G. P. Picco, G-C. Roman. LIME: A

Coordination Model and Middleware Supporting

Mobility of Hosts and Agents. ACM Transactions

on Software Engineering, Vol. X, No. X, pp. 1-48,

2006.

[8] E. Freeman, S. Hupfer, K. Arnold. JavaSpaces,

Principles, Patterns and Practice. Addison-Wesley,

1999.

