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Preface

This volume contains a journey through the work of Italian research groups,
sharing an interest to methods and techniques which derive from computa-
tional logic. The volume gathers 15 papers that describe the recent experiences
of such groups and the future research lines that are considered as particularly
promising.

This volume is dedicated to Prof. Alberto Martelli, who is well-known in
the community for his studies on heuristic search and for term unification algo-
rithms, for proposals of extensions of logic languages with blocks and modules,
for his studies on non-monotonic reasoning techniques, on reasoning about ac-
tions and change, and, more recently, on the specification and verification of
properties in multi-agent systems and web services.

This collection is not exhaustive, there are many other groups which use
computational logic as a research instrument. We are, however, happy to wit-
ness the evergreen interest towards computational logic, which proved itself
to be a powerful tool with many applications in interesting contexts, ranging
from intelligent agent programming to (semantic) web, from the specification
and verification of interaction protocols to bioinformatics.

Special thanks to Laura Giordano, Evelina Lamma, Paola Mello, Nicola Oli-
vetti, Viviana Patti, Maria Luisa Sapino e Piero Torasso for their encouragement
and support.

June 3rd, 2008

Matteo Baldoni
Cristina Baroglio
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Viviana Mascardi Università degli Studi di Genova, Italy
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Recenti progressi basati su Programmazione Logica e/o a Vincoli
sulla soluzione del protein folding

Recent Constraint/Logic Programming based advances in the
solution of the Protein Folding Problem

Agostino Dovier
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SOMMARIO/ABSTRACT

In questo articolo desidero illustrare il contributo del mio
gruppo di ricerca alla disciplina Bioinformatica, con par-
ticolare riferimento alla risoluzione del problema della
predizione di struttura di una proteina usando metodologie
di programmazione logica e a vincoli.
In this paper, we summarize the contribution to Bioinfor-
matics of our research group. In particular, we will present
our approach to the solution of the protein structure pre-
diction problem based on constraint/logic programming
techniques.

Keywords: Logic Programming, Constraint Program-
ming, Bioinformatics

1 Introduction

In the last years we have witnessed the birth and the rapid
growth of a new research area whose results have a posi-
tive impact on traditional and fundamental disciplines such
as biology, chemistry, physics, medicine, agriculture, or
industry (briefly denoted globally as “Bio”). This area,
known as Bioinformatics uses algorithms and method-
ological techniques developed by Computer Sciences to
solve challenging problems in “Bio” areas. Moreover, new
emerging problems produce stimuli for Computer Sciences
to develop new algorithms and methods. Bioinformatics
deals with recognition, analysis, and organization of DNA
sequences, with biological systems simulations, with prob-
lems of prediction of the spatial conformation of a biolog-
ical polymer, among others.

We have worked in this field in the last years with the
double effort of solving real problems and of spreading
known techniques, methods, and languages to “Bio” re-
searchers.

In this spirit, we have been organizers of the work-
shops WCB (Constraint-Based Methods for Bioinformat-
ics) associated with ICLP in 2005 and 2007, with CP

in 2006, and with CPAIOR in 2008 (see, e.g., http:
//wcb08.dimi.uniud.it); we have organized the
International Summer Schools BCI (Biology, Communi-
cation, and Information) in Dobbiaco and Trieste (see,
e.g., http://bioinf.dimi.uniud.it/bci2006;
and we have been guest editors of a special issue of the
journal Constraints on these topics [17].

As far as the technical contribution is concerned, we
have worked on the Protein Structure Prediction problem
using, whenever possible, techniques coming from logic
programming and constraint programming. In the rest of
this paper we briefly introduce this challenging problem
and give an overview of our results.

2 The Protein Structure Prediction Problem

The Primary structure of a protein is a linked sequence
of aminoacids. There are 20 kinds of aminoacids, iden-
tified by a letter. For the scope of this paper, the pri-
mary structure of a protein is a string s1 · · · sn with si ∈
{A, . . . , Z} \ {B, J,O,U,X,Z}.

The Tertiary Structure (native state) of the protein is a
3D conformation associated to the primary structure. The
protein structure prediction problem is the problem of pre-
dicting the tertiary structure, given the primary structure.

The Tertiary Structure usually assumes two types of lo-
cal conformation: α-helices and β-sheets. In Figure 1 we
report the primary and the tertiary structure of the protein
2K2P deposited in April 2008. In the top figure all atoms
of the amino acids are represented. In the lower figure we
report the abstract structure obtained linking the Cα atoms
(briefly, a central atom of each aminoacid). With this ab-
straction the secondary structure elements (three β-sheets
and two α-helices) are evident.

Let D be a set of admissible points for the amino acids.
Let c, d two fixed distances. For two points p, q ∈ D, we
say that next(p, q) if and only if |p − q| = d.1 For two

1For real proteins, d = 3.8Å corresponding to the distance between
two consecutive Cα in the sequence
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Figure 1: Primary and Tertiary structures (all-atoms and
Cα–Cα structure) of Protein 2K2P (amino acids 22–85).
Observe the presence of 2 α-helices (in red—dark gray)
and 3 β-sheets (in cyan—light gray)

points p, q ∈ D, we define the Boolean function contact
as follows: contact(p, q) = 1 if and only if |p− q| ≤ c.

A function ω : {1, . . . , n} −→ D is said a folding if

• for i, j ∈ {1, . . . , n} if i 6= j then ωi 6= ωj

• for i ∈ {1, . . . , n− 1} it holds that next(ωi, ωi+1)

Let Pot be a function from pairs of amino acids to inte-
ger numbers. The free energy of a folding E(ω) is com-
puted as follows:

E(ω) =
∑

1 ≤ i < n
i + 2 ≤ j ≤ n

contact(ωi, ωj)Pot(si, sj)

The protein structure prediction problem (PSP) is the
problem of determining the folding(s) ω with minimum en-
ergy. The problem contains some symmetries that can be
avoided by symmetry breaking search (see e.g. [2]). The
simplest way to remove some symmetries is to fix the po-
sitions of the first two points (ω1 and ω2).

Two main approximations can be made: (1) space: the
set of admissible points, and (2) energy: the details of
the Potential function used. It is well-known that lattice-
based models are realistic approximations of the set of
the admissible points for the Cα atoms of a protein [24].
Lattices are basically 3D graphs with repeated patterns.
For instance the face centered cube (FCC) lattice is de-
fined as: D = {(x, y, z) ∈ N3 : x + y + z is even},
E = {(p, q) ∈ D2 : |p−q| = √2}. Thus, d =

√
2, c = 2.

Three are the main contact energy models used in litera-
ture for Pot: the HP model [19], the HPNX model [4], and
the 20x20 model [6].

3 Related Work

In the HP model [19], amino acids are split in two fam-
ilies: hydrophobic (H) and polar (P). Two hydrophobic
amino acids in contact contribute -1 to the energy. The
other contacts are not relevant. The NP-completeness even
in the simple spatial model constituted by the N2 lattice2 is
proved in [9]. In particular, it is proved that the problem:
Given a sequence of P and H, stating the existence of a
folding with at least k contacts between H is NP-complete.

Backofen and Will solved this problem using constraint
programming for protein of length 160 and more on the
FCC (see [3, 1, 2]). Efficiency is obtained using a clever
symmetry breaking and the notion of core. Basically, the
folding is analyzed layer by layer and the various con-
formations of each layer that maximize contacts are pre-
computed. This kind of approach is unapplicable to a
more detailed energy models and with the adding of other
structural constraints (e.g., known α-helices and β-sheets).
Slightly more complex energy models have been proposed
by the same group for the protein structure prediction prob-
lem. In [4] they consider an energy model in which amino
acids are split into 4 families. Other researchers (e.g. [23])
instead approximated the solution to the same problem us-
ing local search and refined meta-heuristics.

Barahona and Kripphal, instead, work on off-lattice
space model where space is discretized into small cubes.
They also deal with protein docking and develop the tool
Chemera, commonly used by biochemists in their re-
search [22, 5].

4 Our Contribution

In all our works, we have used FCC as the space model,
and the 20x20 statistical potential contact energy model
presented in [6].

CLP(FD) encoding. In [20] we encoded the problem
using the library clpfd of SICStus Prolog. Since con-
tact energy is not suited to predict helices and sheets in
the FCC lattice, we pre-computed secondary structure ele-
ments (α-helices and β-strands) using other well-known
tools. The results of these pre-computations were then
used as constraints within the main code. In this first
encoding the number of admissible angles for secondary
structure elements was too limited. We relaxed this restrain
in [10] where a more general and precise handling of sec-
ondary structure constraints was implemented. However,
the exponential growth of the search space w.r.t. protein
length made impossible to explore the whole search space

2I.e., D = N2, E = {(p, q) ∈ D2 : |p− q| = 1}, c = d = 1.
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even using state-of-the-art constraint solvers for proteins
of length greater than 30/40. Therefore, we proposed an
ad-hoc labeling search with biologically motivated heuris-
tics and we introduced data structure (potential matrix) that
allowed us to reduce calculations during this phase. This
approach was then extended by relaxing some constraints
and developing other search heuristics [11].

In all these approaches we used a double representation
for the tertiary structure: a cartesian one, based on the set
of points, and a polar one, based on the torsional angles
generated by the protein during the folding. The carte-
sian representation is useful for defining the notion of self-
avoiding walk and the notion of constraint-based energy
function. The polar representation simplifies the encoding
of secondary structure constraints. However, a lot of extra
constraints need to be introduced to manage the conver-
sion between the two representations. This badly scales
on large proteins (the constraint solvers used were close
to their memory limit for protein of length 60). Thus we
decided (in [13]) to abandon the polar representation and
to impose secondary structure constraints only using carte-
sian constraints. This way, we loose the chirality property
of helices but the overall definition becomes simpler.

In the same paper we also developed a search heuris-
tics (Bounded Block Fail—BBF). The list of variables is
dynamically split into blocks of k variables that will be la-
beled together. When the variables in the block Bi are in-
stantiated to an apparently admissible solution, the search
moves to the successive block Bi+1, if any. If the labeling
of the block Bi+1 fails, the search backtracks to the block
Bi. Now, there are two options: if the number of times
that Bi+1 has failed is below a certain threshold, then the
process continues, by generating one more solution to Bi

and re-entering Bi+1. Otherwise, the heuristics generates
a failure for Bi as well and backtracks to Bi−1. The key
idea is that small local changes do not change too much
the form of a protein. When we tried a sufficient number
of close conformations and we fail, we can freely abandon
that research branch (with fail we consider either no admis-
sible foldings or admissible foldings with energy greater
than the local minimum already found).

Ad-hoc constraint solver. In [12] we developped an ad-
hoc constraint solver written in C, named COLA (COn-
straint solving on LAttices). In the previous approaches
each 3D point was viewed as a triple of FD variables
〈X, Y, Z〉. In COLA, instead, the lattice point is an el-
ementary element, associated with a 3D domain (a box).
We developed and implemented ad-hoc constraint propa-
gation techniques and the BBF heuristics. This approach
with a further parallelization was then presented in [16].

Just to give a taste of the evolution of our proposals,
we report the running times of the systems on the predic-
tion of some small proteins in Figure 2. Timings are taken
from the published papers (the machine used for the left-
most column is roughly 3x slower than the machine for the

ID–n [20] [10] [11] [13] [16]
1LE3–16 12.5m 5s 2.5s 1.5s 0.5s
1ZDD–34 47m 41s 17.5s 2m 0.1s
2GP8–40 6.5h 9m 10.5h 1.5m 0.5s
1ENH–54 3.5h 13m 24h 55m 49.5s

Figure 2: Running time of the various approaches on some
small proteins

rightmost). The solutions found with various techniques
are not always the same, but (save for the first column re-
lated to a too strict encoding) they have comparable energy
and form. And, more important, the form is very close to
their real tertiary structure. The protein 2K2P of Figure 1
is predicted by COLA 3.1 with BBF in less than one hour.

Towards generalition and integration. The ab-initio
approach used by COLA is still computationally infeasi-
ble when applied to the prediction of protein structures
with more than hundred amino acids. Only the presence of
other kind of partial information (e.g., known folds for sub-
blocks picked from the protein data bank) can speed-up
significantly the search. This is however in line with what
done by other prediction tools (like e.g. ROSETTA), where
partial information is picked from the protein data-bank
from similar structures/substructures and only small subse-
quences need to be arranged. Thus, we have started a sys-
tematic study of what kind of global constraints are needed
in a solver for lattice models structure predictions. In par-
ticular we have studied the definition and the complex-
ity of testing satisfiability and applying propagation for
the constraints alldifferent, contiguous, self
avoiding walk, alldistant, chain, and rigid
block constraint in [14]; we have studied a global con-
straint that accounts for partial information coming from
density maps in [15]. These global constraints will be in-
corporated in COLA so as to obtain a tool able to profit
as much as possible of partial information coming from
known proteins and from partial predictions.

We have also studied how to use model checking re-
sults for analyzing the folding process [18] and how to
model the protein folding problem as a planning problem
using a variant of the well-known action description lan-
guage B [21]. An alternative approach to the protein fold-
ing problem based on Agent-Based simulation is proposed
in [7].

5 Conclusions and future work

This work represents a typical use of logic programming
paradigm for problem solving. The problem can be en-
coded easily and solutions (for small inputs) can be com-
puted by built-in mechanisms of (constraint) logic pro-
gramming. Heuristics and alternative encodings can be
easily programmed and tested. When the encoding be-
comes stable, speed-up can be obtained by less declara-
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tive methods. The results obtained are promising for the
success of the application of the same approach to other
challenging problems of Bioinformatics.
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SOMMARIO/ABSTRACT

In questo articolo presentiamo brevemente la metodologia
di trasformazione dei programmi per lo sviluppo di soft-
ware corretto ed efficiente. Ci riferiremo, in particolare, al
caso della trasformazione e dello sviluppo dei programmi
logici con vincoli.

In this paper we briefly describe the use of the program
transformation methodology for the development of cor-
rect and efficient programs. We will consider, in particular,
the case of the transformation and the development of con-
straint logic programs.

Keywords: Constraint logic programming, model check-
ing, program synthesis, unfold/fold program transforma-
tion, software verification.

1 Introduction

The program transformation methodology has been intro-
duced in the case of functional programs by Burstall and
Darlington [3] and then it has been adapted to logic pro-
grams by Hogger [11] and Tamaki and Sato [26]. The main
idea of this methodology is to transform, maybe in sev-
eral steps and by applying different transformation rules,
the given initial program into a final program with the aim
of improving its efficiency and preserving its correctness.
If the initial program is a non-executable specification of
an algorithm, while the final program is executable, then
program transformation is equivalent to program synthe-
sis. Thus, program transformation can be viewed as a tech-
nique both: (i) for program improvement and advanced
compilation, and (ii) for program synthesis and program
development.

In recent years program transformation has also been
used as a technique for program verification. It has been
shown, in fact, that via program transformation one can
perform model checking and, in general, one can prove

properties of infinite state systems that cannot be analyzed
by using standard model checking techniques.

In what follows we will illustrate the three uses of pro-
gram transformation we have mentioned above, namely
(i) program improvement, (ii) program synthesis, and
(iii) program verification. In particular, we will consider
the case of algorithms and specifications written as con-
straint logic programs [12] and we will focus our attention
on the following transformation rules [1, 6, 8, 9, 25, 26]:
definition, unfolding, folding, goal replacement, and clause
splitting which will be applied according to some specific
strategies. This approach to program transformation is,
thus, called the rules + strategies approach.

2 Program improvement

Programs are often written in a parametric form so that
they can be reused in different contexts, and when a para-
metric program is reused, one may want to transform it for
taking advantage of the new context of use. This transfor-
mation, called program specialization [10, 13, 16], usually
allows a great efficiency improvement. Let us present an
example of this transformation by deriving a deterministic,
specialized pattern matcher from a given nondeterminis-
tic, parametric pattern matcher and a specific pattern. In
this example the matching relation on strings of numbers
is the relation le¯m(P, S) which holds between a pattern
P = [p1, . . . , pn] and a string S iff in S there exists a sub-
string Q= [q1, . . . , qn] such that for i=1, . . . , n, pi ≤ qi.
(This example can be generalized by considering any re-
lation which can be expressed via a constraint logic pro-
gram.)

The following constraint logic program can be taken as
the specification of our general pattern matching problem:

1. le¯m(P, S)←ap(B, C, S)∧ap(A,Q, B)∧le(P,Q)
2. ap([ ],Ys,Ys)←
3. ap([X|Xs],Ys, [X|Zs])← ap(Xs,Ys,Zs)
4. le([ ], [ ])←
5. le([X|Xs], [Y |Ys])← X≤Y ∧le(Xs, Y s)
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where ap denotes list concatenation. Suppose that we want
to use this general program in the case of the pattern P =
[1,0,2]. We start off our transformation by introducing the
following clause by applying the so-called definition rule:

6. le¯ms(S)← le¯m([1,0,2], S)

Clauses 1–6 constitute the initial program from which
we begin our program transformation process by apply-
ing the transformation rules according to the so-called De-
terminization Strategy [8]. This strategy, which we will
not present here, allows a fully automatic derivation of
the deterministic, efficient pattern matcher. We unfold
clause 6 w.r.t. the atom le¯m([1,0,2], S), that is, we replace
the atom le¯m([1,0,2], S) which is an instance of the head
of clause 1, by the corresponding instance of the body of
clause 1. We get:

7. le¯ms(S)← ap(B,C, S)∧ap(A,Q, B)∧le([1,0,2], Q)

In order to fold clause 7, we introduce the following defi-
nition:

8. new1(S)← ap(B,C, S)∧ap(A,Q, B)∧le([1,0,2], Q)

and then we fold clause 7, that is, we replace (the instance
of) the body of a clause 8 which occurs in the body of
clause 7 by (the corresponding instance of) the head of
clause 8. We get:

9. le¯ms(S)← new1(S)

Then we unfold clause 8 w.r.t. the atoms ap and le and we
get:

10. new1([X|Xs])← 1≤X∧ap(Q,C,Xs)∧le([0,2], Q)
11. new1([X|Xs])← ap(B, C,Xs)∧ap(A,Q, B)∧

le([1,0,2], Q)

Then we apply the clause splitting rule to clause 11, by
separating the cases where 1 ≤ X and 1 > X . We get:

12. new1([X|Xs])←1≤X∧ap(B,C,Xs)∧ap(A,Q,B)∧
le([1,0,2], Q)

13. new1([X|Xs])←1>X∧ap(B,C,Xs)∧ap(A,Q,B)∧
le([1,0,2], Q)

In order to fold clauses 10 and 12 we introduce the follow-
ing two clauses defining the predicate new2:

14. new2(Xs)← ap(Q, C,Xs)∧le([0, 2], Q)
15. new2(Xs)← ap(B,C,Xs)∧ap(A,Q,B)∧le([1,0,2],Q)

Then we fold clauses 10 and 12 by using the two clauses
14 and 15 and we also fold clause 13 by using clause 8.
We get the following clauses which define new1:

16. new1([X|Xs])← 1≤X∧new2(Xs)
17. new1([X|Xs])← 1>X∧new1(Xs)

They are mutually exclusive because of the constraints
1≤X and 1 > X . Now the program transformation con-
tinues in a similar way as above: we introduce the new
predicates new3 through new6, we derive their defining
clauses, and eventually, we get the following specialized,
deterministic program:

9. le¯ms(S)← new1(S)
16. new1([X|Xs])← 1≤X∧new2(Xs)
17. new1([X|Xs])← 1>X∧new1(Xs)
18. new2([X|Xs])← 1≤X∧new3(Xs)
19. new2([X|Xs])← 0≤X∧1>X∧new4(Xs)
20. new2([X|Xs])← 0>X∧new1(Xs)
21. new3([X|Xs])← 2≤X∧new5(Xs)
22. new3([X|Xs])← 1≤X∧2>X∧new3(Xs)
23. new3([X|Xs])← 0≤X∧1>X∧new4(Xs)
24. new3([X|Xs])← 0>X∧new1(Xs)
25. new4([X|Xs])← 2≤X∧new6(Xs)
26. new4([X|Xs])← 1≤X∧2>X∧new2(Xs)
27. new4([X|Xs])← 1>X∧new1(Xs)
28. new5([X|Xs])←
29. new6([X|Xs])←

This final program is deterministic in the sense that at most
one clause can be applied during the evaluation of every
ground goal. As in the case of the Knuth-Morris-Pratt
matcher, the efficiency of this final program is very high
because it behaves like a deterministic finite automaton.

3 Program Synthesis

Program synthesis is a technique for deriving programs
from formal, possibly non-executable, specifications (see,
for instance, [11, 24] for the derivation of logic programs
from first-order logic specifications). In this section we
present an example of use of the program transformation
technique for performing program synthesis and deriving
a constraint logic program from a first-order formula.

The example we will present is the N -queens example,
which has been often considered in the literature for in-
troducing programming techniques such as recursion and
backtracking. The N -queens problem can be described as
follows. We are required to place N(≥ 0) queens on an
N×N chess board, so that no two queens attack each other,
that is, they do not lie on the same row, column, or diago-
nal. By using the fact that no two queens should lie on the
same row, we represent the position of the N queens on the
N×N chess board as a permutation L = [i1, . . . , iN ] of
the list [1, . . . , N ] such that ik is the column of the queen
on row k.

A specification of the solution L for the N -queens prob-
lem is given by the following first-order formula ϕ(N,L):

nat(N) ∧ nat−list(L) ∧ length(L,N) ∧
∀X (member(X, L)→ in(X, 1, N))∧
∀A,B,K,M
((1≤K ∧K≤M ∧occurs(A,K, L) ∧occurs(B,M,L))

→ (A 6=B ∧A−B 6=M−K ∧B−A 6=M−K))

where the various predicates which occur in ϕ(N, L) are
defined by the following constraint logic program P :

nat(0)←
nat(N)← N =M+1 ∧M≥0 ∧ nat(M)
nat−list([ ])←
nat−list([H|T ])← nat(H) ∧ nat−list(T )
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length([ ], 0)←
length([H|T ], N)← N =M+1∧M≥0∧ length(T, M)
member(X, [H|T ])← X =H
member(X, [H|T ])← member(X,T )
in(X, M, N)← X =N ∧M≤N
in(X, M, N)← N =K+1 ∧M≤K ∧ in(X, M, K)
occurs(X, I, [H|T ])← I =1 ∧X =H
occurs(X, I+1, [H|T ])← I≥1 ∧ occurs(X, I, T )
Now, we would like to synthesize a constraint logic pro-
gram R which computes a predicate queens(N,L) such
that the following Property π holds:
(π) M(R) |= queens(N, L) iff M(P ) |= ϕ(N,L)
where by M(R) and M(P ) we denote the perfect model
of the program R and P , respectively. By applying the
technique presented in [9], we start off from the formula
queens(N, L)← ϕ(N,L). From that formula by applying
a variant of the Lloyd-Topor transformation [17], we derive
this stratified program F :

queens(N, L)← nat(N)∧nat−list(L)∧ length(L,N)∧
¬aux1(L,N) ∧ ¬aux2(L)

aux1(L,N)← member(X, L) ∧ ¬in(X, 1, N)
aux2(L)← 1≤K ∧K≤M∧

¬(A 6=B∧A−B 6=M−K∧B−A 6=M−K)∧
occurs(A,K, L) ∧ occurs(B,M, L)

It can be shown that this variant of the Lloyd-Topor trans-
formation preserves the perfect model semantics and, thus,
we have that:

M(P ∪ F ) |= queens(N, L) iff M(P ) |= ϕ(N,L).
The derived program P ∪F is not very satisfactory from
a computational point of view, when using SLDNF reso-
lution with the left-to-right selection rule. Indeed, for a
query of the form queens(n, L), where n is a nonnega-
tive integer and L is a variable, program P ∪F works by
first generating a value l for L and then testing whether
or not length(l, n) ∧ ¬aux1(l, n) ∧ ¬aux2(l) holds. This
generate-and-test behavior is very inefficient and it may
also lead to nontermination. Thus, the process of pro-
gram synthesis proceeds by applying the definition, un-
folding, folding, and goal replacement transformation rules
(see [9] for details), with the objective of deriving a more
efficient, terminating program. We derive the following
definite logic program R:

queens(N, L)← new2(N, L, 0)
new2(N, [ ],K)← N =K
new2(N, [H|T ], K)← N ≥K+1∧ new2(N, T, K+1)∧

new3(H, T, N, 0)
new3(A, [ ], N,M)← in(A, 1, N) ∧ nat(A)
new3(A, [B|T ], N, M)← A 6=B ∧A−B 6=M+1 ∧

B−A 6=M+1 ∧ nat(B) ∧
new3(A, T, N, M+1)

together with the clauses defining the predicates in and
nat .

Since the transformation rules preserve the perfect
model semantics, we have that M(R) |= queens(N, L)

iff M(P ∪ F ) |= queens(N, L) and, thus, Property (π)
holds. Moreover, it can be shown that R terminates for all
queries of the form queens(n,L) and it computes a solu-
tion for the N -queens problem in a clever way: each time
a queen is placed on the board, program R tests whether
or not it attacks every other queen already placed on the
board.

4 Program Verification

The proof of program properties is often needed during
program development for checking the correctness of soft-
ware components w.r.t. their specifications. In this section
we see the use of program transformation for proving pro-
gram properties specified either by first-order formulas or
by temporal logic formulas.

Proofs performed by using program transformation have
strong relationships with proofs by mathematical induc-
tion (see [2] for a survey on inductive proofs). In par-
ticular, the unfolding rule can be used for decomposing
a formula of the form ϕ(f(X)), where f(X) is a com-
plex term, into a combination of n formulas of the forms
ϕ1(X), . . . , ϕn(X), and the folding rule can be used for
applying inductive hypotheses.

It has been shown that the unfold/fold transformations
introduced in [3, 26] can be used for proving several kinds
of program properties, such as equivalences of functions
defined by recursive equation programs [14], equivalences
of predicates defined by logic programs [20], first-order
properties of predicates defined by constraint logic pro-
grams [21], and temporal properties of concurrent sys-
tems [7, 23].

4.1 The unfold/fold proof method

By using a simple example taken from [21], we illustrate
a method based on program transformation, called un-
fold/fold proof method, for proving first-order properties
of constraint logic programs. Consider the following con-
straint logic program Member which defines the member-
ship relation for lists:

member(X, [Y |L])← X =Y
member(X, [Y |L])← member(X,L)

Suppose we want to show that every finite list of numbers
has an upper bound, i.e., the following formula holds:

ϕ : ∀L∃U ∀X (member(X,L)→ X ≤ U)
The unfold/fold proof method works in two steps. In the
first step, ϕ is transformed into a set of clauses by applying
a variant of the Lloyd-Topor transformation [17], thereby
deriving the following program Prop1:

prop ← ¬p
p← list(L) ∧ ¬q(L)
q(L)← list(L) ∧ ¬r(L,U)
r(L,U)←X >U ∧ list(L) ∧member(X, L)

The predicate prop is equivalent to ϕ in the sense that
M(Member) |= ϕ iff M(Member ∪ Prop1) |= prop.
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In the second step, we eliminate the existential variables
occurring in Prop1 (that is, the variables occurring in the
body of a clause and not in its head) by applying the trans-
formation strategy presented in [21]. We derive the follow-
ing program Prop2 which defines the predicate prop:

prop ← ¬p

p← p1

p1 ← p1

Now, Prop2 is a propositional program and has a finite per-
fect model, which is {prop}. Since all transformations we
have made can be shown to preserve the perfect model, we
have that M(Member) |= ϕ iff M(Prop2) |= prop and,
therefore, we have completed the proof of ϕ because prop
belongs to M(Prop2).

Note that the unfold/fold proof method can be viewed as
an extension to constraint logic programs of the quantifier
elimination method, which has well-known applications in
the field of automated theorem proving (see [22] for a brief
survey).

4.2 Infinite-state model checking

Now we present a method for verifying temporal proper-
ties of infinite state systems based on the transformation of
constraint logic programs [7].

As indicated in [4], the behavior of a concurrent system
that evolves over time according to a given protocol can
be modeled by means of a state transition system, that is,
(i) a set S of states, (ii) an initial state s0 ∈ S, and (iii) a
transition relation t ⊆ S × S. We assume that t is a total
relation, that is, for every state s ∈ S there exists a state
s′ ∈ S, called successor state of s, such that t(s, s′) holds.
A computation path starting from a (possibly not initial)
state s1 is an infinite sequence of states s1 s2 . . . such that,
for every i≥1, there is a transition from si to si+1.

The properties of the evolution over time of a concurrent
system are specified by using a temporal logic called Com-
putation Tree Logic (or CTL, for short [4]) which specifies
the properties of the computation paths. The formulas of
CTL are built from a given set of elementary properties of
the states by using: (i) the connectives: ¬ (‘not’) and ∧
(‘and’), (ii) the following quantifiers along a computation
path: g (‘for all states on the path’ or ‘globally’), f (‘there
exists a state on the path’ or ‘in the future’), x (‘next time’),
and u (‘until’), and (iii) the quantifiers over computation
paths: a (‘for all paths’) and e (‘there exists a path’).

Very efficient algorithms and tools exist for verifying
temporal properties of finite state systems, that is, systems
where the set S of states is finite [4]. However, many con-
current systems cannot be modeled by finite state systems.
Unfortunately, the problem of verifying CTL properties of
infinite state systems is undecidable, in general, and thus, it
cannot be approached by traditional model checking tech-
niques. For this reason various methods based on auto-
mated theorem proving have been proposed for enhancing
model checking and allowing us to deal with infinite state

〈t, A2, B1, B2〉

〈w, A2, B1, B2〉

〈u, A2, B1, B2〉

A2 := B2+1

A2<B2 ∨ B2=0

A2 := 0

Figure 1: The Bakery protocol: a graphical representation
of the transition relation tA for the agent A.

systems (see [5] for a method based on constraint logic
programming). Due to the above mentioned undecidabil-
ity limitation, all these methods are incomplete.

As an example of use of program transformation for ver-
ifying CTL properties of infinite state systems, now we
consider the Bakery protocol [15] and we verify that it sat-
isfies the mutual exclusion and starvation freedom proper-
ties.

Let us consider two agents A and B which want to ac-
cess a shared resource in a mutual exclusive way by using
the Bakery protocol. The state of agent A is represented by
a pair 〈A1, A2〉, where A1 is an element of the set {t, w, u}
of control states (where t, w, and u stand for think, wait,
and use, respectively) and A2 is a counter that takes values
from the set of natural numbers. Analogously, the state of
agent B is represented by a pair 〈B1, B2〉. The state of the
system consisting of the two agents A and B, whose states
are 〈A1, A2〉 and 〈B1, B2〉, respectively, is represented by
the 4-tuple 〈A1, A2, B1, B2〉. The transition relation t of
the two agent system from an old state OldS to a new state
NewS , is defined as follows:

t(OldS , NewS )← tA(OldS , NewS )
t(OldS , NewS )← tB (OldS , NewS )

where the transition relation tA for the agent A is given
by the following clauses whose bodies are conjunctions of
constraints (see also Figure 1):

tA(〈t , A2, B1, B2〉, 〈w , A21, B1, B2〉)← A21=B2+1
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← A2<B2
tA(〈w , A2, B1, B2〉, 〈u, A2, B1, B2〉)← B2=0
tA(〈u, A2, B1, B2〉, 〈t , A21, B1, B2〉)← A21=0

The following analogous clauses define the transition rela-
tion tB for the agent B:

tB (〈A1, A2, t , B2〉, 〈A1, A2,w , B21〉)← B21=A2+1
tB (〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← B2<A2
tB (〈A1, A2,w , B2〉, 〈A1, A2, u, B2〉)← A2=0
tB (〈A1, A2, u, B2〉, 〈A1, A2, t , B21〉)← B21=0

Note that the system has an infinite number of states, be-
cause counters may increase in an unbounded way.

The temporal properties of a transition system are spec-
ified by defining a predicate sat(S, P ) which holds if and
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only if the temporal formula P is true at state S. For in-
stance, the clauses defining sat(S, P ) for the cases where
P is: (i) an elementary formula F , (ii) a formula of the
form ¬F , (iii) a formula of the form F1 ∧ F2, (iv) a for-
mula of the form ef (F ), are the following ones:

sat(S, F )← elem(S, F )
sat(S,¬F )← ¬sat(S, F )
sat(X, F1 ∧ F2)← sat(X,F1) ∧ sat(X,F2)
sat(S, ef (F ))← sat(S, F )
sat(S, ef (F ))← t(S, T ) ∧ sat(T, ef (F ))

where elem(S, F ) holds iff F is an elementary property
which is true at state S. In particular, for the Bakery pro-
tocol we have the following clause:

elem(〈u, A2, u, B2〉, unsafe)←
that is, unsafe holds at a state where both agents A and
B are in the control state u (both agents are accessing the
shared resource at the same time).

Note that by ef we denote the composition of e (there
exists a computation path) and f (there exists a state on
the path) and, indeed, sat(S, ef (F )) holds iff there exists
a computation path π starting from S and a state s on π
such that F is true at s.

The mutual exclusion property holds for the Bakery pro-
tocol if there is no computation path starting from the ini-
tial state such that at a state on this path the unsafe prop-
erty holds. Thus, the mutual exclusion property holds if
sat(〈t , 0, t , 0〉,¬ef (unsafe)) belongs to the perfect model
M(Pmex ), where: (i) 〈t , 0, t , 0〉 is the initial state of the
system and (ii) Pmex is the program consisting of the
clauses for the predicates t, tA, tB , sat, and elem defined
above.

In order to show that sat(〈t , 0, t , 0〉,¬ef (unsafe)) ∈
M(Pmex ), we introduce a new predicate mex defined by
the following clause:

(µ) mex ← sat(〈t , 0, t , 0〉,¬ef unsafe)

and we transform the program Pmex ∪ {µ} into a new
program Q which contains a clause of the form mex ←.
This transformation is performed by applying the defini-
tion, unfolding, and folding rules according to the spe-
cialization strategy, that is, a strategy that derives clauses
specialized to the computation of predicate mex . From
the correctness of the transformation rules we have that
mex ∈ M(Q) iff mex ∈ M(Pmex ∪ {µ}) and, hence,
sat(〈t , 0, t , 0〉,¬ef (unsafe)) ∈ M(Pmex ), that is, the
mutual exclusion property holds.

For the Bakery protocol we may also want to prove the
starvation freedom property which ensures that an agent,
say A, which requests the shared resource, will eventually
get it. This property is expressed by the CTL formula:
ag(wA → af (uA)), which is equivalent to: ¬ef ((wA ∧
¬af (uA)). The clauses defining the elementary properties
wA and uA are:

elem(〈w , A2, B1, B2〉,wA)←
elem(〈u, A2, B1, B2〉, uA)←

The clauses defining the predicate sat(S, P ) for the case
where P is a CTL formula of the form af (F ) are:
sat(X, af (F ))← sat(X, F )
sat(X, af (F ))← ts(X,Ys) ∧ sat all(Ys, af (F ))
sat all([ ], F )←
sat all([X|Xs], F )← sat(X, F ) ∧ sat all(Xs, F )
where ts(X,Ys) holds iff Ys is a list of all successor states
of X . For instance, one of the clauses defining predicate
ts in our Bakery example is:
ts(〈t , A2, t , B2〉, [〈w , A21, t , B2〉, 〈t , A2,w , B21〉])←

A21=B2+1 ∧B21=A2+1
which states that the state 〈t , A2, t , B2〉 has two possible
successor states: 〈w , A21, t , B2〉 (with A21=B2+1) and
〈t , A2,w , B21〉 (with B21=A2+1).

Let Psf denote the program obtained by adding to Pmex

the clauses defining: (i) the elementary properties wA and
uA, (ii) the atom sat(X, af (F )), (iii) the predicate sat all ,
and (iv) the predicate ts . In order to verify the starvation
freedom property we introduce the clause:

(σ) sf ← sat(〈t , 0, t , 0〉,¬ef (wA ∧ ¬af (uA)))
and, by applying the definition, unfolding, and folding
rules according to the specialization strategy, we transform
the program Psf ∪ {σ} into a new program R which con-
tains a clause of the form sf ←.

The derivations needed for verifying the mutual exclu-
sion and the starvation freedom properties were performed
in a fully automatic way by using our experimental con-
straint logic program transformation system MAP [18].

5 Conclusions and Future Directions

We have presented the program transformation method-
ology and we have demonstrated that it is very effective
for: (i) the derivation of correct software modules from
their formal specifications, and (ii) the proof of properties
of programs. Since program transformation preserves cor-
rectness and improves efficiency, it is very useful for con-
structing software products which are provably correct and
whose time and space performance is very high.

In order to make program transformation effective in
practice we need to increase the level of automation of the
transformation strategies for program improvement, pro-
gram synthesis, and program verification. Furthermore,
these strategies should be incorporated into powerful tools
for program development.

An important direction for future research is also the ex-
ploration of new areas of application of the transforma-
tion methodology. In this paper we have described the use
of program transformation for verifying temporal proper-
ties of infinite state concurrent systems. Similar techniques
could also be devised for verifying other kinds of proper-
ties and other classes of systems, such as security proper-
ties of distributed systems, safety properties of hybrid sys-
tems, and protocol conformance of multiagent systems. A
more challenging issue is the fully automatic synthesis of
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software systems which are guaranteed to satisfy the prop-
erties specified by the designer.
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SOMMARIO/ABSTRACT

Nonostante la popolarità del World Wide Web come
piattaforma di sviluppo, una adeguata descrizione dei
suoi principi architetturali e criteri di progettazione è
stata ottenuta solo recentemente, grazie alla introduzione
dello stile architetturale REST (Representational State
Transfer), che definisce la risorsa come la fondamentale
astrazione della informazione. Difatti, i linguaggi e
gli strumenti correntemente usati per programmare il
Web soffrono in genere della mancanza di una corretta
comprensione dei suoi vincoli architetturali e progettuali,
e di una difformità tra le astrazioni di programmazione che
rende difficile sfruttare appieno le potenzialità del Web.
I linguaggi dichiarativi sono particolarmente adatti alla
costruzione di sistemi di programmazione rispettosi della
architettura e dei principi del Web. Tra le tecnologie
di programmazione logica, tuProlog è espressamente
progettato per essere uno dei componenti abilitanti di
infrastrutture basate su Internet: le sue proprietà in-
gegneristiche lo rendono peraltro adatto per il Web,
dove la programmazione logica permette la modifica
del comportamento delle risorse a tempo di esecuzione.
Di conseguenza, questo articolo presenta un modello di
programmazione logica per risorse Web basato su Prolog
e delinea un framework per sviluppare applicazioni Web
fondato su quel modello.

Despite the popularity of the World Wide Web as a de-
velopment platform, a proper description of its architec-
tural principles and design criteria has been achieved only
recently, by the introduction of the Representational State
Transfer (REST) architectural style which defines the re-
source as the key abstraction of information. In fact, lan-
guages and tools currently used for Web programming gen-
erally suffer from a lack of proper understanding of its ar-
chitecture and design constraints, and from an abstraction
mismatch that makes it hard to exploit the Web potential.
Declarative languages are well-suited for a programming

system aimed at being respectful of the Web architecture
and principles. Among logic technologies, tuProlog has
been explicitly designed to be one of the enabling com-
ponents of Internet-based infrastructures: its engineer-
ing properties make it suitable for use on the Web, where
logic programming allows modification of resource be-
haviour at runtime. Accordingly, in this paper we present a
Prolog-based logic model for programming Web resources,
and outline a framework for developing Web applications
grounded on that model.

Keywords: World Wide Web, REST, Contextual Logic
Programming, tuProlog, Prolog.

1 Motivation and Background

Despite the World Wide Web steadily gaining popularity
as the platform of choice for the development and fruition
of many kinds of Internet-based systems, a proper descrip-
tion of the Web architectural principles and design criteria
has been achieved only recently, by the introduction of the
Representational State Transfer (REST) architectural style
for distributed hypermedia systems [4]. REST defines the
resource as the key abstraction of information, and pre-
scribes communication and interaction among resources to
occur through a uniform interface by transferring a repre-
sentation of a resource current state.

Yet, from the early years of procedural CGI scripts to
the modern days of object-oriented frameworks, Web ap-
plication programming has always focussed on different
abstractions, such as page [5], controller [11], and more
recently service [7], thus suffering from a mismatch that
has made it difficult to exploit the full potential of the Web
architectural properties. In fact, a page is just the result of
a computation involving one or more resources, and deals
only with representation issues on the client side. A con-
troller happens to be a programming framework abstrac-
tion, sharing almost nothing with the underlying Web plat-
form. Finally, services disregard Web standards such as
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URI and HTTP, so they do not get the benefits of the REST
architecture in terms of cacheability, connectedness, ad-
dressability, uniformity, and interoperability [10].

Declarative programming has never been accepted into
the Web mainstream, even though logic languages have
shown they could effectively handle both communication
and co-ordination in a network-based context [1], and logic
technologies have been successfully used to engineer in-
telligent components at the core of Internet-based infras-
tructures [2]. However, the REST focus on resource rep-
resentations as the main driver of interaction, and the cor-
responding Web computation model, suggest that declara-
tive languages could play a significant role in the construc-
tion of resource-oriented applications. The advantage of
using elements from logic programming languages such
as Prolog lies in the representational foundations of the
Web computation model: a declarative representation of
resources may be manipulated and, given the procedural
interpretation of Prolog clauses, directly executed by an
interpreter when a resource is involved in a computation.

Accordingly, we define a resource programming model
(called Web Logic Programming [9]), which exploits ele-
ments of the logic paradigm and suitable logic technolo-
gies (i.e. the tuProlog engine [2]) so as to build a Web
application framework aimed at easing rapid prototyping,
and allowing the prototype to evolve while supporting Web
architectural properties such as scalability or modifiability.

2 Web Logic Programming

Web Logic Programming (WebLP) [9] is a Prolog-based
logic model to program resources and their interaction in
application systems following the constraints of the World
Wide Web architecture. To describe WebLP, we need both
to characterise its main data type abstraction and to define
its underlying computation model.

2.1 Resources

REST defines a resource as any conceptual target of an hy-
pertext reference. Any information that can be named can
be a resource, including virtual (e.g. a document) and non-
virtual (e.g. a person) objects. Starting from this abstract
definition, the main properties of resources can be easily
determined: a name (in the form of an URI); data, repre-
senting the resource state; and behaviour, to be used, for
instance, to change state or manage the interaction with
other resources. The defining elements of resources can
be easily mapped onto elements of well-known logic pro-
gramming languages such as Prolog. For each resource R
we specify its name N(R) as the single quoted atom con-
taining the resource URI identifier; data and behaviour can
be further recognised as facts and rules, respectively, in a
logic theory T (R) containing the knowledge base associ-
ated to the resource.

In particular, if adopted resource names are descriptive

and have a definite structure varying in predictable ways
[10], they feature an interesting property on their own:
any path can be interpreted as including a set of resource
names. More precisely, we say that resource names such
as the following:

http://example.com/sales/2004/Q4

encompass the names of other resources, and ultimately
the name of the resource associated with the domain at the
root of the URI:

http://example.com/sales/2004
http://example.com/sales
http://example.com

This naming structure suggests that each resource does not
exist in isolation, but lives in an information context com-
posed by the resources associated to the names encom-
passed by the name of that resource.

To account for the possible complexity of Web computa-
tions that may involve more information than it is enclosed
in a single isolated resource, the context C(R) is intro-
duced as the locus of computation associated with each re-
source. The context of a resource is defined by the compo-
sition of the theories associated with the resources linked
to names which are encompassed by that resource name,
including the theory associated with the resource itself.
Given a resource R with a name N(R) so that:

N(R) ⊆ N(R1) ⊆ . . . ⊆ N(Rn)

the associated context C(R) is generated by composition:

C(R) = T (R) · T (R1) · . . . · T (Rn)

where any theory T (Ri), containing the knowledge base
associated to the resource Ri, can be empty – for instance
when there is no entity associated to the name N(Ri).

2.2 Computation Model

According to REST, the Web computation model revolves
around transactions in the HTTP protocol. Each transac-
tion starts with a request, containing the two key elements
of Web computations: the method information, that indi-
cates how the sender expects the receiver to process the
request, and the scope information, that indicates on which
part of the data set the receiver should apply the method
[10]. On the Web, the method information is contained in
the HTTP request method (e.g. GET, POST), and the scope
information is the URI of the resource to which the request
is directed. The result of a Web computation is a response,
telling whether the request has been successful or not, and
optionally containing the representation of the new state of
the target resource.

Adopting a logic programming view of the Web compu-
tation model, for each HTTP transaction the request can be
translated to represent a deduction by retaining the scope
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information to indicate the target theory, and by mapping
the method information onto a proper logic goal. Then, the
computation takes place on the server side of the HTTP
transaction, in the context associated to the resource target
of the request. Finally, the information resulting from goal
solution is translated again into a suitable representation
and sent back in the HTTP response.

A computation invoked by a goal G on a resource R trig-
gers the deduction of G on the context C(R). The com-
position of theories forming C(R) is then traversed in a
very similar way as units in Contextual Logic Program-
ming (CtxLP) [6]. The goal G is asked in turn to each the-
ory: the goal fails if no solution is found in any theory, or
succeeds as soon as it is solved using the knowledge base
in a theory T (Ri). Furthermore, when the goal G is substi-
tuted by the subgoals of the matching rule in the theory, by
default the computation proceeds from C(Ri) rather than
being restarted from the original context.

As an example, consider the user jdoe in a book-
shelf sharing application, where her shelf is repre-
sented by the resource S, identified by the URI
http://example.com/jdoe/shelf. Suppose that,
according to a proper naming scheme, the resource B for
biology books lives at /jdoe/shelf/biology. When
a GET request is issued for that resource, a predicate
pick biology books/1 is ultimately invoked on B,
depending on a pick books/3 predicate that is neither
defined in B nor in S. The theory chain in C(B) is then
traversed backwards up to the http://example.com
resource, as depicted in Figure 1, where a suitable defini-
tion for pick books/3 is finally found. Definitions for
other predicates invoked by it are then searched starting
from the context of the root resource, rather than C(B)
where the computation originally started.

The fixed structure of URIs as resource identifiers makes
the composition of theories forming a context static, dif-
ferently from CtxLP, where it was possible to push or pop
units from the context stack at runtime. The structure of
identifiers and resources in the Web architecture also dic-
tates a unique direction in which the theories associated
to resources composing a context can be traversed: from
the outermost (associated with the resource on which the

Figure 1: The /jdoe/shelf/biology resource re-
sponds to a HTTP GET request by eventually invoking the
pick biology book/1 predicate, which in turn calls
pick books/3. The context is traversed until a proper
definition for it is found in the / resource.

Figure 2: The logic theory of a resource representing sales
for the fourth quarter of 2004 can be identified by two dif-
ferent names and therefore live in two different contexts.

computation has been invoked) to the innermost, passing
through the theories belonging to each of the composing
resources, until the host resource is finally involved.

2.3 Dynamic Resource Behaviour

The behaviour of a resource can be regarded as dynamic
under two independent aspects. First, two or more URIs
can be associated to the same resource at any time: that
is, the names N1(R), . . . , Nm(R) may identify the same
resource R, thus the same knowledge base contained in
the theory T (R) associated to the resource. Each different
name Ni(R) also identifies a different context Ci(R) that
the same resource R may live within, (see Figure 2); there-
fore, predicates that are used in T (R), but are not defined
there, may behave in different ways based on the definition
given by the context where the resource is called.

The second dynamic aspect of a resource comes from
the ability to express behavioural rules as first-class ab-
stractions in a logic programming language: on the one
hand, well-known logic mechanisms for state manipula-
tion (the assertz/1 and retract/1 predicates) can
be exploited to change the knowledge base associated to
a resource; on the other, the HTTP protocol itself allows
changing a resource by means of a PUT request, whose
content should be considered as a modified version of the
target resource that has to replace (or be merged with) the
original version residing on the server.

As an example, imagine a reading wish list in the previ-
ous bookshelf application. Usually, when a book is added,
the resource representing the wish list could check local
libraries for book availability, and possibly borrow it on
user’s behalf; if no book can be found, the resource could
check its availability in online bookstores, reporting its
price to the user for future purchase. During the period of
time when an online bookstore offers discounts, the wish
list resource should react to the insertion of new books so
as to check that store first instead of libraries.

The Web application could then be instructed to change
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the behaviour of wish list resources by issuing HTTP PUT
requests that modify the computational representation of
those resources. The PUT requests would carry the new
rules in the content, so that wish list resources would ac-
cordingly modify their knowledge base. The application
could programmatically restore the old behaviour at the
end of the discount period, by sending another PUT request
containing the previous rule set for each wish list resource.

3 tuProlog: Logic Technology for the Web

tuProlog is a minimal Java-based system explicitly de-
signed to integrate configurable and scalable Prolog com-
ponents into standard Internet applications, and to be used
as the core enabling technology for the provision of basic
coordination capabilities into complex Internet-based in-
frastructures [2]. Alongside configurability and scalability,
tuProlog has been designed to offer additional engineer-
ing properties suitable for distributed systems and archi-
tectures: ease of deployment, lightness, and interoperabil-
ity in accordance with standard protocols (RMI, CORBA,
TCP/IP). Those properties are a good match for the archi-
tectural properties described by REST, so that tuProlog can
be reasonably employed as the core inference engine tak-
ing care of resource computations and interactions.

With the aim of sketching a WebLP framework, a min-
imal Prolog engine such as tuProlog would need to be
augmented with a construct very similar to logic contexts,
for which various implementation techniques exist, rang-
ing from the least intrusive meta-interpretation to the most
effective virtual machine enhancing. With a similar in-
tent, the architecture of tuProlog has been recently re-
engineered to feature the malleability property [8], espe-
cially important in allowing a light-weight Prolog technol-
ogy to be extended with similar ease as the Prolog basic ex-
ecution model can be extended on the pure linguistic side.

The pervasive integration with Java featured by tuProlog
[3] is so much important as we consider how much an es-
tablished platform for Web development Java has become
in the latest years. In order to build a WebLP framework,
some Java technology which has proven itself effective
for some parts of the Web computation model can be ex-
ploited, provided that the abstractions underlying the tech-
nology are sound within the Web architectural style. As
a first example of such technology, the existing Apache
Tomcat web server/container can be considered a multi-
threaded efficient environment where tuProlog can be in-
tegrated, exploiting component life-cycle management and
an HTTP uniform interface implementation. JavaServer
Pages are a further example, as an extensible technology
to produce resource representations to be consumed on the
client side of Web applications. Where instead abstractions
suffer from mismatch with respect to the REST architec-
tural style, as the case is for Java servlets used as appli-
cation controllers, they can be dismissed or re-used with a
different purpose, for instance as mere HTTP dispatchers.

4 Future Work

The development of tuProlog as a server-side Web technol-
ogy and of the WebLP framework will be the main focus
of our activity in the near future. Afterwards, we also plan
to explore possible extensions of the programming model,
mostly based on experience in building a variety of appli-
cations on the framework.
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SOMMARIO/ ABSTRACT

In questo articolo riassumiamo brevemente alcuni dei
problemi pìu interessanti che nascono quando si per-
mette di trattare gli insiemi come oggetti di “prima
classe” in un linguaggio logico, dall’unificazione di in-
siemi ben-fondati e non alla soluzioni di vincoli su insiemi.

In this paper, we briefly summarize some of the most chal-
lenging issues that arise when allowing sets to be dealt
with as first-class objects in a logic language, ranging from
set unification of well-founded and non-well-founded sets
to set constraint solving.

Keywords: Set unification, hypersets, set constraints.

1 Introduction

Sets are familiar mathematical objects, and they are often
used as a high-level abstraction to represent complex data
structures, whenever the order and repetitions of elements
are immaterial.

In the last two decades, a number of proposals have
emerged where sets are dealt with as primitive objects of
a (first-order) logic language. In this context, sets are of-
ten represented as first-order terms, calledset terms, built
from symbols of a suitable alphabet, using selected func-
tion symbols as set constructors. Furthermore, the lan-
guage usually provides the typical set-theoretic operations
to manipulate set objects.

These short notes summarize some of the most chal-
lenging issues arising when manipulating finite sets in a
logic language. In Section 2 we briefly reviewset unifi-
cation, i.e., the key problem of solving equations between
set terms. In Section 3 the unification problem is extended
to the case of non-well-founded sets. In Section 4 we in-
troduce set constraints as a way to allow set-theoretic op-
erations other than set equality to be taken into account.
Finally, in Section 5 we briefly review proposals aiming at

making set constraint solving more effective.

2 Set Unification

Intuitively, the set unification problem is the problem of
computing (or simply testing the existence of) an assign-
ment of values to the variables occurring in two set terms
which makes them denote the same set.

Various forms of set unification have been used in
various application areas, such as (see [13]): deductive
databases, AI and its various sub-fields (e.g., Automated
Deduction and Natural Language Processing), program
analysis and security, declarative programming languages
with sets.

Set unification can be thought of as an instance ofE-
unification, i.e., unification modulo an equational theory
E, where the identities inE capture the properties of set
terms—i.e., the fact that the ordering and repetitions of el-
ements in a set are immaterial.

The equational theoryE is strongly related to the rep-
resentation adopted for set terms. Two main approaches
have been presented in the literature: theunion-based rep-
resentation, and thelist-like representation. The union-
based representation makes use of the union operator (∪)
to construct sets. This representation has been often used
when dealing with the problem of set unification on its
own, where set unification is dealt with as anACI uni-
fication problem—i.e., unification in presence of operators
satisfying theAssociativity, Commutativity, and Idempo-
tenceproperties (e.g., [6]).

The list-like representation builds sets using anelement
insertion constructor (typically denoted by{· | ·}). With
this approach, the finite set{t0, . . . , tn} is represented by
a sequence of element insertions

{t0 | {· · · {tn | ∅} · · ·}},
wheret0, . . . , tn are either individuals or sets. While this
representation restricts the number of set variables which
can occur in each set term to one, on the other hand it al-
lows sets to be viewed and manipulated in a fashion sim-
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ilar to lists. As a matter of fact, this representation has
been adopted in a number of logic and functional-logic
programming languages with sets (e.g.,CLP (SET ) [10]).

Various authors have investigated the problem of set uni-
fication using the list-like representation [3, 12, 23, 8].
In particular, the algorithm presented in [9] considers an
equational theoryE containing the two identities(Ab) and
(C`) stating the fundamental properties of the set construc-
tor {· | ·}:

(Ab) {X | {X |Z}} ≈ {X |Z}
(C`) {X | {Y |Z}} ≈ {Y | {X |Z}}.

The core of the unification algorithm is very similar in
structure to the traditional unification algorithms for stan-
dard Herbrand terms (e.g., [20]). The main difference
is represented by the reduction of equations between set
terms,{Y1 |V1} = {Y2 |V2}. The algorithm allows also to
account for equations of the formX = {t0, . . . , tn |X},
with X 6∈ vars(t0, . . . , tn), which turns out to be satisfi-
able for anyX containingt0, . . . , tn thanks to(Ab) and
(C`)). As an example, given the set unification problem

{X |S} = {1, 2}

(where {1, 2} is a syntactic shorthand for{1 | {2 | ∅}})
the algorithm non-deterministically computes the follow-
ing (complete) set of solutions:X = 1 ∧ S = {2}, X =
1 ∧ S = {1, 2}, X = 2 ∧ S = {1}, X = 2 ∧ S = {1, 2}.

A general survey of the problem of unification in pres-
ence of sets, across different set representations and differ-
ent admissible classes of set terms, can be found in [13].

The computational complexity properties of the set
unification have been investigated by Kapur and Naren-
dran [18], who established that these decision problems are
NP-complete. Complexity of the set unification operation,
however, depends on which forms of set terms (e.g., flat
or nested sets, with zero, one, or more set variables) are al-
lowed. The form of set terms in turn is influenced by the set
constructors used to build them. Thus, different complex-
ity results can be obtained for different classes of set terms.
For instance, while the set equivalence test of ground set
terms denoting flat sets, such as{a, b, c} and{b, c, a}, is
rather easy, when the decision problem deals with nested
set terms involving variables it becomes NP-complete.

Various authors have considered simplified versions of
the (Ab)(C`) problem obtained by imposing restrictions
on the form of the set terms. In particular, various works
have been proposed to study the simpler cases of match-
ing1 and unification ofBound Simpleset terms, i.e., bound
set terms of the form{s1, . . . , sn}, where eachsi is either
a constant or a variable [4, 16].

1Set matchingcan be seen as a special case of set unification, where
variables are allowed to occur in only one of the two set terms which are
compared.

3 Hypersets

Sets considered so far are the so calledhereditarily finite
sets, i.e. sets with a finite number of elements, all of which
are themselves hereditarily finite. This definition leaves
still a further possibility for infinity. Let us consider the
setsx and y that satisfy the equationsx = {∅, y}, y =
{x}. They are hereditarily finite, but they hide an infinite
descending chainx 3 y 3 x 3 y 3 · · ·. These sets in
which, roughly speaking, membership can form cycles are
callednon-well-founded sets(or hypersets). Hypersets are
very important in some areas, such as concurrency theory,
but hyperset theory has been applied in a number of areas
of logic, linguistics, and computer science, as well.

Introducing hypersets as a data structure in a logic pro-
gramming language requires a unification algorithm that is
able to deal with objects denoting hypersets. All set uni-
fication algorithms cited in the previous section, however,
consider well-founded sets only.

An hyperset unification algorithm is shown in [1]. The
key idea underlying this algorithm is that of enlarging the
domain of discourse from terms (i.e., finite trees) over the
signatureΣ to directed labeled graphsover Σ, possibly
with cycles. This data structure, when involving the inter-
preted function symbol{· | ·} used as the set constructor,
can be regarded as a convenient way to denote hypersets.
For instance, a solution to the equationX = {X} is a
cyclic graph which can be interpreted as an hyperset con-
taining itself as its only element. In addition, a notion of
bisimulationwhich applies to this kind of graphs is defined
and the interpretation domain is taken as the set of directed
labeled graphs overΣ modulo the equivalence relation in-
duced by bisimulation.

The algorithm in [1] can be seen as an adaptation of
the set unification algorithm of [9]. Many of the changes
required to move from set to hyperset unification are the
same needed when moving from standard unification to
unification over (uninterpreted)rational trees, for which
a number of efficient algorithms have been proposed in the
literature (e.g., [21]). In particular the hyperset unification
algorithm in [1] works on Herbrand systems of equations,
avoiding full variable substitution and adding simple non-
membership constraints to avoid the possibly endless re-
peated insertions of the same elements into hypersets.

4 Set Constraints

The algorithms cited above focus only onequalitybetween
set terms. Besides equality, however, other basic set opera-
tions, such as membership, inclusion, union, etc., are usu-
ally required for dealing with sets in a more general way.

A number of proposals have been put forward in the last
fifteen years in which general set-based formulae are con-
sidered and procedures to check their consistency are de-
veloped. Most of these proposals have emerged in the con-
text of Constraint (Logic) Programming (see, e.g., [15]).
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In this context, set-theoretical operations are conveniently
dealt with as(set) constraints, that is arbitrary conjunc-
tions of positive and negative atomic predicates built us-
ing a fixed finite set of predicate symbols denoting set-
theoretical operations, whose variables can range over the
domain of sets. Systems of (set) constraints are solved as a
whole by suitable(set) constraint solvers, which are able to
reduce the given constraints either tofalse or to a simpli-
fied form from which it is easier to obtain a solution (i.e.,
a substitution for the variables in the given constraints that
make them satisfiable in the selected interpretation). For
example,

X ∈ S ∧ T = S ∪R ∧X 6∈ T

is a set constraint, whereR, S, andT are set variables, that
the set constraint solver can reduce tofalse.

Set based formalisms allow a natural formulation of a
number of problems, in quite different areas: combina-
torial search problems, warehouse location problems, di-
agnostic related problems (e.g., VLSI circuit verification),
program analysis, network design problems (e.g., weight
setting). Dealing with such formulations as constraints al-
low, on the one hand, to solve these problems even if not
all sets are (fully) known a priori, and, on the other hand, to
compute solutions efficiently, provided constraint reason-
ing enables the solver to prune the search space.

As an example, the following is a very compact formu-
lation as a set constraint of the well-known map coloring
problem for a map of three regions,R1, R2, R3 (where
R1 bordersR2 andR2 bordersR3), using two colors,c1
andc2:
{R1, R2, R3} = {c1, c2} ∧M = {{R1, R2}, {R2, R3}}

∧ {c1} 6∈M ∧ {c2} 6∈M.

A complete set constraint solver, i.e., one which is al-
ways able to decide if a given constraint is satisfiable
or not is presented in [10]. The constraint language is
based on constructed sets using the list-like representa-
tion and it provides the usual set-theoretic operations as
primitive constraints. Sets are allowed to be nested and
to contain unknown elements (i.e., uninstantiated logical
variables). The constraint solver rewrites any given con-
straintC into an equi-satisfiable disjunction of constraints
in solved form—proved to be correct and terminating. In
particular the solver uses the set unification algorithm de-
veloped in [9] to deal with (set) equalities. A constraint
in solved form is guaranteed to be satisfiable in the corre-
sponding structure. Therefore the ability to obtain a solved
form guarantees that the original constraint is satisfiable.

This constraint structure has been exploited to obtain a
specific instance of the general Constraint Logic Program-
ming scheme, called CLP(SET ) [10]. A Java implementa-
tion of (most of) CLP(SET ) facilities for set management
has been recently developed and made available as part of a
Java library, called JSetL [22], intended to support declar-
ative programming in an object-oriented language.

The study of set constraints is strongly related to work in

the so-calledComputable Set Theoryarea (C.S.T.), a fruit-
ful research stream born in the 1970’s at the New York
University thanks to the initial ideas and subsequent stim-
ulus of J. T. Schwartz (see [7] for a general survey). Work
in C.S.T. has identified increasingly larger classes of com-
putable formulae of suitable sub-theories of the general
Zermelo-Fraenkel set-theory for which satisfiability is de-
cidable. Further extensions of these classes are still under
investigation at present. Recent related work is described
in [19]. However, efforts in this area are mainly concerned
with decidability results, rather than computing solutions
like it is usually required in constraint programming.

Other classes of aggregates (akin to sets) have also been
considered in the literature. In particular, various frame-
works have introduced the use ofmultisetswhere repeated
elements are allowed to appear in the collection. An anal-
ysis of the problems concerned with the introduction of
multisets—as well as sets and lists—is reported in [11, 12].

5 Efficient Set Constraint Solving

The proposals for (general) set constraints cited above do
not take into account efficiency adequately to allow them to
be effectively applied in many concrete applications. For
example the CLP(SET ) solvers often use a generate & test
approach, that non-deterministically assigns values to vari-
ables as soon as those values are available. For instance,
given the constraintX ∈ {1, 2, 3, 4, 5} ∧ X 6= 10, the
CLP(SET ) solver enumerates all possible values ofX be-
fore asserting that the constraint holds.

A number of proposals have been developed in the last
fifteen years that consider more restricted forms of set con-
straints but equipped with constraint solving techniques
that allow them to be processed in a quite more effective
way. Works along these lines include [5, 14, 17].

In these proposals constraint variables have afinite do-
main attached to them. In the case of set constraints, the
domain is a collection of sets, usually specified as aset
interval [l, u], where l and u are known sets (typically,
of integers). [l, u] represents a lattice of sets induced by
the subset partial ordering relation⊆ having l and u as
the greatest lower bound and the least upper bound, re-
spectively. The constraint solver exploits the information
that the domain of variables provides to efficiently com-
pute simplified forms of the original constraint or to detect
failures. In its simplest form, the solver uses a local prop-
agation algorithm that attempts to enforce consistency on
the values in the variable domains by removing values that
cannot form part of a solution to the system of constraints.
For example, given the set constraint

S ∈ {1}..{1, 2, 3, 4} ∧X ⊆ S ∧ Y ⊆ S
∧#X = 2 ∧ Z = Y \X

whereS, X, Y , andZ are set variables and#X denotes
the cardinality of the setX, the constraint solver in [5]
is able to infer that the constraint is satisfiable provided
#Z ≤ 2 holds.
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Most of these consistency algorithms are incomplete, so
they have to be combined with a backtracking search pro-
cedure to produce a complete constraint solver. For exam-
ple, in the example above, such a procedure allows to enu-
merate all possible solutions forZ: Z = {1}, Z = {1, 2},
Z = {1, 3}, Z = {1, 4}.

While these constraint languages turn out to allow more
efficient handling of set constraints with respect to the pro-
posals cited in the previous section (e.g., CLP(SET )), the
latter allows more general form of sets to be dealt with: ele-
ments can be of any type, possibly other sets, and possibly
unknown (e.g.,{X, {a, 1}}). For example the set-based
formulation of the map coloring problem shown above can
be written—and solved—using CLP(SET ) but not using
the constraint language in [14] and [5].

A current line of research (see [2]) is trying to combine
the general set representation and management of propos-
als like CLP(SET ), with the efficient constraint solving
of “Finite Domain” solvers, in order to have the expres-
sive power of the former while retaining the execution ef-
ficiency of the latter.
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SOMMARIO/ ABSTRACT

In questo articolo presentiamo le linee di ricerca più re-
centi del gruppo di Intelligenza Artificiale dell’Universita
di L’Aquila. Tali attività riguardano la Logica Com-
putazionale e principalmente gli Agenti Intelligenti logici.
Infatti, il gruppo ha sviluppato negli ultimi anni il linguag-
gio logico orientato agli agenti DALI. Tuttavia, vi sono
attività anche in altre aree, come ad esempio il ragion-
amento non monotono e l’elaborazione del linguaggio
naturale. L’attenzionèe posta in particolare sulle nuove
prospettive di lavoro.

In this paper, we briefly describe recent research direc-
tions of the Artificial Intelligence group of the University
of L’Aquila, Italy. Research activities concern Computa-
tional Logic and mainly Intelligent Logical Agents. In fact,
in the last years the group has developed the logical agent-
oriented language DALI. However, work is under way also
in other areas, like, e.g., Non-Monotonic Reasoning and
Natural Language Processing. We particularly emphasize
recent and future work directions.

Keywords: Intelligent Agents, Negotiation, Answer Set
Programming, Natural Language Processing for the Web.

1 Introduction

Intelligent Agents, computational logic, agents coopera-
tion and negotiation, non-monotonic reasoning, natural
language processing and, very recently, biologically in-
spired models have been the key words of our research
activity in the last years1.

Intelligent agents in computational logic form the “core”
of our research. A main achievement of our group has
been the definition and development of the DALI language
[10, 11, 17, 12], an Active Logic Programming language

1The list of publications of the research group can be found at the
URL http://www.di.univaq.it/stefcost/pubblsstefi.htm

designed in the line of [15] for executable specification of
logical agents. DALI is a prolog-like logic programming
language with a prolog-like declarative and procedural se-
mantics. The reactive, proactive and social behavior of
DALI agents is triggered by several kinds of events: ex-
ternal, internal, present and past events. The DALI Inter-
preter has been fully implemented in Sicstus Prolog. DALI
agents have been put at work in several real-world applica-
tions. An application where the role of DALI agents is
particularly relevant has been developed in the context of
the CUSPIS European project2, where DALI agents have
been adopted for supporting users during their visit to mu-
seums or archeological areas. The system has been prac-
tically demonstrated in Villa Adriana (Tivoli, Rome) [8].
However, we have also experimented DALI agents in the
context of hybrid architectures and in negotiation scenar-
ios, as summarized in Sections 2 and 3.

Another research line of the group is concerned with An-
swer Set Programming (ASP for short), which is a form
of logic programming based on the answer set seman-
tics [14], where solutions to a given problem are repre-
sented in terms of selected models (answer sets) of the
corresponding logic program. We have recently proposed
RASP, an extension of ASP that permits declarative spec-
ification and reasoning on consumption and production of
resources, shortly presented in Section 4.

A recent research direction concerns the problem of im-
proving natural language processing by means of paral-
lelizing syntactic and semantic analysis. As a case-study,
we have developed a prototype semantic search engine,
calledMnemosine. This work is outlined in Section 5.

Finally, in the last period we have spent some effort (in
cooperation with the biologists of our University) in the
study of the human brain as, in view of the growing com-
plexity of computational tasks and their design, many re-
searchers are considering whether interactive systems may
be better designed by exploiting computational strategies

2CUSPIS, “A Cultural Heritage Space Identification Sys-
tem”(GJU/05/2412/CTR/CUSPIS).
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based on the understanding of the human brain. In fact,
up to now artificial cognitive systems have been designed
without any reference to biology. However, with the pre-
dicted increases in computational power and storage ca-
pacity over the next decades, it may be important to inves-
tigate whether the study of natural cognitive systems can
lead to design artificial systems, and in particular agent ar-
chitectures, with better cognitive capabilities. If so, agent
architectures will evolve and agents will become a more
effective and useful support for the human activities.

2 Modeling Intelligence in Multi-Layer Co-
operative Systems

Nowadays, myriads of heavily networked devices interact
with the physical world in multiple ways and at multiple
scales. Many of these devices are highly mobile and must
adapt to the surrounding environment in a totally unsuper-
vised way.

Biological systems are able to handle many of these
challenges with an effectiveness still far beyond current
human artifacts: therefore, our long-term goal is to investi-
gate biologically inspired methods on how to engineer in-
telligent agent systems, so as to exhibit similar high stabil-
ity and efficiency.

For reconciliating scalability and intelligence, one way
is that of creating systems where various degrees of in-
telligence are distributed over various levels of the archi-
tecture. Aim of our research work in this direction has
been that of creating a society composed of high-level in-
telligent agents, aided in their tasks by bunches of elemen-
tary agents. The high-level agents are responsible of over-
all system strategies and plans, to be possibly devised in
cooperation. Bunches of elementary agents are supposed
to assist each high-level agent in activities where massive
parallelism is in order, such as environment exploration,
pattern-recognition, classification, action selection and ac-
tion execution. In fact, as in social insects colonies intel-
ligence emerges from the cooperation activities among in-
dividuals, in software environments “intelligence” can be
the result of a distribution of roles among different kinds
of agents.

We have developed an architecture based on DALI in-
telligent agents and IBM Aglet mobile agents [1], where
the Aglets are Java objects that can move from one host on
the Internet to another, and are equipped with communi-
cation capabilities: i.e., the Aglets are a very simple kind
of agent. The integration of DALI and the Aglets into a
colony has been made possible by exploiting those social
aspects that are present in both agents platforms. Instead
of using standard interfaces, we have implemented a more
efficient and flexible communication level not tailored to
specific formalisms, that will in perspective allow the inte-
gration of other agent platforms into the framework.

As a first experiment of this new kind of architecture,
we have tried to model a colony of social insect, though

we have widely reinterpreted its structure. We have tried
to suitably exploit the features of each platform and to dis-
tribute roles among the various entities in order to obtain a
kind of “social intelligence” in the artificial colony. Roles
that require more “intelligence” are assigned to DALI
agents due to their reasoning and learning abilities, while
roles requiring communicative and reactive abilities are as-
signed to Aglets due to their mobility and social nature. In
particular, proactivity of DALI agents allowed us to intro-
duce in the artificial colony an entity capable of supervis-
ing all the activities which are crucial for the community
life like, for example, the planning of some kind of supply
or the generation of new individuals useful for the commu-
nity. Reactivity and mobility of Aglets suggested that their
ideal job was that of being the “actuators” of the basic steps
of plans devised at the higher level.

We have experimented the architecture in two basic sce-
narios. In the first one, DALI agents are totally responsible
of planning and communicate directly their directions to
the actuators. In the second one, DALI agents delegate
some planning activity to an intermediate entity that com-
municates with the actuators. For performing the experi-
ments, we have simulated the activity of bees relative to
honey production (where the “honey” the Aglets try to pro-
duce may in practical applications correspond to any kind
of resource).

The difference between the two scenarios is mainly the
degree of interaction, intelligence and sharing among the
components. In the first scenario, all managerial and in-
telligent roles are reserved to the DALI “queen” that or-
ganizes the collectivity for producing a certain quantity of
honey. According to the queen’s indications and using the
resources of the society, the colony starts moving, so that
every member completes its task with the maximum effi-
ciency. In the second scenario, we have introduced a new
role inside the society, i.e., the “courtier”. Here, the man-
agerial role previously reserved only to the queen is dis-
tributed among the queen and the courtiers. Both scenar-
ios show that the common effort of different entities such
as the DALI intelligent agents and the mobile IBM Aglets
succeeds in producing coordination so as to reach a com-
mon goal.

The number of experiments that we have performed so
far does not allow us to establish a general statement. How-
ever, the second scenario seem to behave better in the sense
that the same quantity of honey is produced in less time. In
perspective however, we mean to assess by means of exper-
iments which is the “optimal” distribution of intelligence
among levels in relevant classes of applications.

Work is under way in the development of an application
of this hybrid architecture in the field of security. As a first
step, we have used the Aglets for exploring registries of a
computer processor and detecting if an undesired program
has been installed. We plan to tackle in the near future
other security-related issues.
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3 Agents and Negotiation

In the context of Proposal-Based negotiation we have pro-
posed, implemented and experimented an extension of
a negotiation approach originally introduced by Marco
Cadoli [4].

In the original approach the negotiation areas, represent-
ing the admissible values of the negotiation issues, are con-
sidered to be convex ones. In particular, the negotiation
process is considered as proposal-based with the restric-
tion that at least one of the parts involved in the process is
bound to offer only proposal corresponding to vertices of
the negotiation area.

This restriction entails that at least one of the negotia-
tion areas has to be polyhedral, while the restriction on the
areas to be convex entails that any point of the line con-
necting two admissible proposals has to be an admissible
proposal as well. Possible agreements are represented by
the intersection of the two areas. The goal of the approach
is to conclude the process, i.e., to find an agreement, by
involving the minimum number of interaction between the
parties.

The proposed extension [13] is based on relaxing the
condition of at least one agent offering vertices of the the
negotiation area, which on the one hand may lead to prob-
lems if, e.g., the intersection area does not include vertices
and on the other hand excludes non-polyhedral areas such
as circles. In the extension, proposals can be internal points
of the negotiation areas. The points to propose are selected
based on the last offer, increased or decreased by a delta
margin. A large number of experiments have shown that
the proposed extension works properly and that the algo-
rithms performance, in terms of interactions, is reasonable.

Our recent research work on negotiation is related to
Argumentation-Based negotiation and its use to cope with
contract violations: an agent that has violated an already-
signed contract will try to justify this fact by exposing
some arguments while the opponent agent will try to un-
dermine their truthfulness and acceptability, by finding at-
tacks against them. As a response, the justifying agent
needs in turn to devise a counter-attack. The main theo-
retical tools that we adopt are logic programming, argu-
mentation and modal logics. Among the objectives of this
research are the specification of an appropriate language
to support/depict the arguments/justifications used by the
agents (we are presently considering dynamic epistemic
logic) and the definition of algorithms or mechanisms for
performing dialectical disputes among agents.

4 Non-Monotonic Reasoning

Rich literature exists on applications of ASP in many areas,
including problem solving, configuration, information in-
tegration, security analysis, agent systems, semantic web,
and planning (see, e.g., [2] and the references therein). The
ASP formulations in these and other fields may take profit

from the possibility of performing (at least to some extent)
forms ofquantitativereasoning like those that are possible
in, e.g., Linear Logics and Description Logics.

Then, together with Andrea Formisano (University of
Perugia) we have recently proposed RASP, an extension of
Answer Set Programming that allows for declarative spec-
ification and reasoning on consumption and production of
resources. Resources are modeled by introducingamount-
atoms, involving quantities that represent the available
amount of resources. Processes that use resources are eas-
ily described through program rules: in fact, the firing of
a RASP-rule can both consume and produce resources.
Different solutions correspond to different possible allo-
cations of available resources.

The approach also allows the declarative specification
of preferences among alternative uses of available re-
sources. In particular, in realizing the same process (mod-
eled through the firing of a rule), one may prefer to produce
a certain product rather than another one and/or to consume
certain available resources rather than others. This exten-
sion can be particularly useful in planning/configuration
applications.

Semantics for RASP programs is provided by combin-
ing usual answer set semantics with an interpretation of
resource amounts, where different allocation choices cor-
respond to different answer sets.

5 Mnemosine

Menmosine [9] is a prototype semantic search engine
based on an extension to the well-known DCGs (Defi-
nite Clause Grammars) so as to perform syntactic and se-
mantic analysis to some extent in parallel, and generate
semantically-based description of the sentence at hand.
The parallelization of syntactic and semantic analysis can
help solving some functional deficiencies of classical NLP
solutions [3, 16], that often cannot properly cope with am-
biguous propositions. In fact, in classical automated lan-
guage processing methodologies, syntactic and semantic
analysis do not have, in many cases, sufficient informa-
tion neither to determine with certainty the syntactic as-
pects and details nor to give the correct semantic evalua-
tion. Even probabilistic methods have difficulties.

Thus, for coping with many practical cases NLP systems
must at least include ontological reasoning, and thus must
become to some extent “intelligent”. Mnemosine relies
on an extension to classical DCG’s where a background
knowledge base is accessed during the analysis, which is
no more divided into separate stages, but can be considered
to be “syntactic-semantic”. The input of the analysis is (as
usual) a sequence of tokens obtained from lexical analy-
sis. The results of syntactic-semantic analysis consist in (i)
establishing the syntactic correctness of the sentence; (ii)
creating a formal representation of extracted knowledge;
(iii) adding to the knowledge base this representation, as
well as the consequences that can be drawn form it. I.e.,
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the objective is to elicit the structure and the meaning of
the natural language expression at hand, and to properly
exploit it for enlarging or improving the available knowl-
edge.

Mnemosine has been fully implemented and has been
applied to a practical case-study, i.e., to the WikiPedia Web
pages. We have chosen to use a real data sets from third
parties as the choice of data is of primary importance in
experiments: in the field of artificial intelligence in fact,
many solutions operate properly and efficiently on the data
on which they have been developed and tested and then
their efficiency collapses dramatically as soon as switched
to a real operating environment.

The architecture of Mnemosine has been designed so as
to be ready for a timely transformation from a research pro-
totype to an actual industrial product.

6 Conclusions

Throughout the world we are seeing an increased interest
in Artificial Intelligence and Computational Logic, despite
the relative crisis of Computer Science “per se”. Success-
ful results in agents, search and language technology, ro-
botics and web applications are starting the transition to
industry. For all this, we have to thank those researchers,
like Alberto Martelli, whose important work in computa-
tional logic has significantly contributed to the successful
development of this field.
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SOMMARIO/ ABSTRACT

Questo articolo descrive le nostre recenti attività di ricerca
per apprendere (con tecniche di Programmazione Logica
Induttiva) specifiche modellate in programmazione logica
e per verificare (attraverso una procedura di dimostrazione
abduttiva) le propriet̀a di sistemi cos̀ı specificati. I sistemi
realizzati qui descritti sono stati applicati rispettivamente
per l’apprendimento e la verifica di proprietà di protocolli
di interazione in sistemi multi-agente, servizi Web, proto-
colli di screening e processi di business.

In this paper, we overview our recent research activity
concerning the induction of Logic Programming specifica-
tions, and the proof of their properties via Abductive Logic
Programming. Both the inductive and abductive tool here
briefly described have been applied to respectively learn
and verify (properties of) interaction protocols in multi-
agent systems, Web service choreographies, careflows and
business processes.

Keywords: Computational logic, Induction, Abduction,
Interaction protocols, Careflows, Business processes.

1 Introduction

Thanks to its declarative semantics and its underlying
proof theory, Logic Programming, and Computational
Logic (CL, for short) in a broader sense, have been proved
high-level formal languages for specification and verifica-
tion. The adoption of logic for computer programming
was promoted and improved in the late seventies also
in Italy by a clever community. Logic Programming is
grounded on a purely declarative representation language,
and a theorem-prover or model-generator (like in Answer
Set Programming) as the problem-solver. The main task
of the problem-solver is the verification that an (existen-
tial) query holds in the given specification. Variants of the
problem-solver can be also exploited to enrich the repre-

sentation language and empower the reasoning with new
features, such as hypothetical and non-monotonic reason-
ing, or to prove properties arising from the specification
itself. Induction techniques can be also applied, to learn
(general and formal) specification from logs and exten-
sional databases or to further abstract specifications.

In this paper, we describe the recent activity carried out
at ENDIF, University of Ferrara (also jointly with DEIS,
University of Bologna) concerning the induction of CL-
based specifications, and the proof of their properties. To
this purpose, in the former activity we exploit Inductive
Logic Programming techniques (ILP for short), and the
DPML algorithm [12] in particular. This algorithm learns
a specification expressed in a CL-based language from
labeled traces (a database of events recording happened
interactions or activities). The target language, named
SCIFF, was originally defined for the specification of in-
teraction protocols in the context of the UE IST-2001-
32530 Project, and has been later adopted to specify web
service choreographies [1], careflows [11] and business
processes [5]. A system is specified in theSCIFF lan-
guage by a knowledge base (a logic program) and a set
of SCIFF forward rules, calledintegrity constraints. Each
integrity constraint relates occurring events (in the body)
with an expected behaviour (typically in the head) in terms
of expectations about events. Expectations can be posi-
tive (for mandatory events) or negative (forbidden events).
Given aSCIFF specification, the compliance of the system
to the specifications can be checked on-the-fly through the
SCIFF proof-procedure [3], that abduces the expected be-
haviour and verifies its matching with the actual one.

The adoption of a CL-based language in specifying a
system paved also the way to follow a proof-theoretic ap-
proach for proving or disproving properties of the given
SCIFF specification. To this purpose, we exploit abduc-
tion, and in particular an extension of theSCIFF proof-
procedure called g-SCIFF [2]. g-SCIFF is an abductive
proof-procedure which, starting from a goal, verifies, in
a generative manner by abduction, whether there exists
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a scenario (i.e., a set of generated events) supporting the
goal, consistent with the given integrity constraints, and
not self-contradictory (e.g., an event does not unify with
any forbidden one). In this case, this scenario represents
a witness for the goal, and also corresponds to extensions
identified by the declarative semantics.

The paper is organized as follows. In Section 2 we
briefly introduce theSCIFF language. In Section 3, we
show how learning from interpretations can be exploited
to learn aSCIFF theory, and also discuss some experimen-
tal results. In Section 4, we present g-SCIFF and discuss
its application to the learned specification of the previous
section. Related work is mentioned throughout the paper.
Finally, we conclude in section 5.

This work has been carried out in strict collaboration
with the DEIS group. This paper is complementary to [7]
contained in this same issue, issue, where they focus on in-
teraction specification and verification in several domains.

2 TheSCIFF Language

TheSCIFF proof-procedure is an abductive proof proce-
dure, able to reason about dynamically happening events,
and to generate corresponding expectations. To represent
that an eventev happened (i.e., an atomic activity has
been executed) at a certain timeT , SCIFF uses the sym-
bol H(ev, T ), whereev is a term andT is a number indi-
cating the time. Hence, an execution trace is modeled as
a set of happened events, also calledscenarioor history
(HAP). For example, we could formalize thatbob has
performed activitya at time5 as follows: H(a(bob), 5).
Furthermore,SCIFF introduces the concept of expecta-
tion, which plays a key role when defining global interac-
tion protocols, choreographies, and more in general event-
driven processes. It is quite natural, in fact, to think of
a process in terms of rules of the form: “if A happened,
then B is expected to happen”. Positive (resp. negative)
expectations are denoted byE(ev, T ) (resp.EN(ev, T )),
meaning thatev is expected (resp. expected not) to happen
at timeT . To satisfy a positive (resp. negative) expecta-
tion an execution trace must contain (resp. not contain) a
matching happened event.
SCIFF Integrity Constraints (ICs for short) are forward

rules of the formBody → Head:

Body → Disj1 ∨ . . . ∨Disjn (1)

whereBody is a conjunction of happened events and liter-
als of predicates defined in aSCIFF knowledge base, and
Disjj is a conjunction of expectations (positive and nega-
tive) and literals from the knowledge base.

Variables in common toBody andHead are universally
quantified (∀) with scope the whole IC. Variables occur-
ring in positive (negative) expectations inHead(C) are ex-
istentially (universally) quantified with scope the disjunct
where they appear.

An example of an IC is

H(a(bob), T ) ∧ T < 10
→ E(b(alice), T1) ∧ T < T1

∨ EN(c(mary), T1) ∧ T < T1 ∧ T1 < T + 10
(2)

The meaning of the IC (2) is the following: ifbob has ex-
ecuted actiona at a timeT < 10, then we either expect
alice to execute actionb at some time (∃T1) later thanT or
we expect thatmary does not execute actionc at any time
(∀T1) within 9 time units afterT .

The interpretation of an IC is the following: if there ex-
ists a substitution of variables such that the body is true in
an interpretation representing a trace, then one of the dis-
juncts in the head must be true.

Roughly speaking,SCIFF combines occurred events
with the specified rules, to suitably generate the cor-
responding expectations; then, expectations are verified
against the execution trace: a positive expectation must
have a corresponding matching event, whereas a nega-
tive expectation forbids the presence of a matching event
into the trace. If such conditions are not met (i.e., a pos-
itive/negative expectation is not/is matched by a corre-
sponding event), then the expectations are violated, and the
execution trace is evaluated as non-compliant.

The main and original application of theSCIFF proof-
procedure is to verify whether an execution of the process
concretely adheres to the specification, i.e., to perform
compliance checking. SCIFF is seamlessly able to check
compliance both at run-time, by dynamically collecting
and reasoning upon occurring events, or a-posteriori, by
analyzing the log of an observed execution trace.

3 Inducing SCIFF specifications

Since ICs can be seen as an extension of logical clauses, we
can apply the techniques developed in the learning from in-
terpretations setting of Inductive Logic Programming [13]
to the problem of inducing ICs. In particular, in [12] we
modified the Inductive Constraint Logic (ICL) algorithm
[9] that takes as input a set of interpretations labeled as
positive or negative and returns a clausal theory that is true
in as many positive interpretations as possible and false in
as many negative interpretations as possible. We called
the resulting system DPML [12], for Declarative Process
Model Learner.

DPML modifies ICL by replacing the procedure for test-
ing the truth of a clause in an interpretation with aSCIFF-
like procedure, by defining a generality order among ICs
and, on the basis of this order, by defining a refinement op-
erator. In this way, we can perform search in the space of
ICs and evaluate each candidate against the training set.

In DPML the θ-subsumption generality order among
clauses is modified in order to take into account the fact
that the head is a disjunction of conjunctions. With the
new generality relation, we can obtain a generalizationD
of an ICC by adding a literal to the body, adding a disjunct
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to the head, removing a literal from a disjunct in the head
or adding a literal to a disjunct in the head. This general-
ization operator is used by DPML to search the space of
ICs from specific to general.

The literals to be added are defined by thelanguage bias,
an intensional definition of the search space. In DPML the
language bias is a set of assertions in the form of pairs
(BS,HS), whereBS is a set that contains the literals that
can be added to the body andHS is a set that contains the
disjuncts that can be added to the head.

InducingSCIFF theories is also interesting because it
has been shown [6] that other declarative process lan-
guages such as DecSerFlow [16] or ConDec [15] can be
mapped toSCIFF. Therefore, if we can ensure that the
form of the learned ICs corresponds to one of the con-
straints of these languages, we could learn such constraints
by first learning ICs and then translating them into Dec-
SerFlow or ConDec. By providing DPML with a language
bias that suitably restricts the search space of ICs, DPML
returns a theory with ICs in the desired form, that can be
automatically translated into one of the above declarative
process languages (see also [11]).

We implemented the whole process of induction plus
translation in the DecMiner [11] plug-in of ProM.
DecMiner assists the user in all the phases of the learn-
ing process, from the definition of the language bias, to the
labeling of traces, to the translation of the mined ICs into
ConDec constraints.

In particular, the language bias is automatically gener-
ated starting from a set of general templates, one for each
ConDec constraint, that are then instantiated to generate
specific assertions. Since the number of all possible in-
stantiations can be huge, DecMiner asks the user to select
a subset of activitiesA and a subset of ConDec constraints
T , and it generates only the instantiations of these con-
straints with the selected activities.

DPML and DecMiner have been tested on artificial and
real datasets. The artificial datasets were randomly gener-
ated from three process models, namely the NetBill pro-
tocol [8], an electronic auction protocol [4] and a hotel
and spa process [11]. The real dataset regards the health-
care process of cervical cancer screening in the Emilia-
Romagna Italian region. DPML and DecMiner results
were compared with those of theα-algorithm [17] and of
the Multi-Phase Miner (MPM) [18] that learn procedural
process models.

We now briefly discuss the methodology followed by il-
lustrating the application of DecMiner to the hotel and spa
case: the model, inspired by the example presented in [14],
describes a simple process of renting rooms and services
in a hotel and spa. After registering at the front desk, the
client can request one or more rooms, laundry and massage
services. Each service, identified by a code, is followed
by the registration of the service costs into the client bill.
Moreover, if the client chooses a “Shiatzu” massage, the
spa presents her/him a special offer. The cost related to the

number of nights can be billed before check-out, during
check-out or even after check-out.

The SCIFF representation of the hotel model is com-
posed of eight ICs. One of them:

H(massage service(Type, ma id(IDls)), Tls)
→ E(bill massage service(ma id(IDbls)), Tbls)

∧IDls = IDbls ∧ Tbls > Tls.

specifies that a massage service must be followed by the
registration of the cost into the client bill.

Five training sets have been generated by randomly
building a trace and then classifying it with the ICs of the
correct model. The trace is then assigned to the set of pos-
itive or negative traces depending on the result of the test.
The process is repeated until 2000 positive traces and 2000
negative traces have been generated.

DecMiner, theα-algorithm and MPM were applied to
each training set and the learned model was tested on a
randomly generated testing set. DecMiner achieved an
average accuracy of 99.96%, higher than those of theα-
algorithm and MPM.

The sets of ICs returned by DPML/DecMiner can be
also used to check (intensional) properties. This can be
done by exploiting the g-SCIFF proof-procedure described
in the following.

4 Proving properties by g-SCIFF

TheSCIFF proof-procedure addresses the important soft-
ware engineering task of checking compliance during run-
time (or a-posteriori using anevent log), i.e., whether the
agents behave in a compliant manner with respect to a
given interaction protocol or specification. However, this
does not exhaust the possible uses of abductive reasoning:
the event literals composing the history can be assumed as
well, in order to foresee all the possible evolutions of the
system under test. Knowing the specification (in terms of
an abductive program), one could (in principle) generate
all the histories that the system can support and then study
them for common patterns or to formally prove properties
of the system.

Of course, explicitly generating all the histories is not
feasible, since the number of histories compliant to a pro-
tocol are typically infinite for protocols of practical use.
However, we can generate compliant histories in inten-
sional way, and then reason upon them: the hypothetical
events can contain variables, possibly subject to CLP con-
straints. In order to generate compliant histories,SCIFF
has been improved and extended to a generative version,
called g-SCIFF. g-SCIFF considersH literals as ab-
ducibles, and contains a new transition, calledfulfillment,
that fulfils the expectations by abducing matching events:

E(X,T ) → H(X,T ).

g-SCIFF is provably sound: all generated histories fulfil
the given specifications.
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In the literature, properties are often classified as safety
or liveness properties. Asafetyproperty is a universal
property: intuitively, it ensures that nothing bad will ever
happen (whenever the protocol/specification is respected).
A livenessproperty is, instead, existential: it ensures that
something good will eventually happen. A liveness prop-
erty can be passed to g-SCIFF as a goal containing positive
expectations: if the g-SCIFF proof-procedure succeeds in
proving the goal, the generated history witnesses that there
exists a way to obtain the goal while being conformant to
the protocol. A safety propertyφ can be negated (as in
model checking), and then passed to g-SCIFF as a goal
G ≡ ¬φ. If the g-SCIFF proof-procedure succeeds in
finding a historyHAP (i.e., |=HAP ¬φ), we have a coun-
terexample: the historyHAP satisfies the protocol and
does not enjoy the safety propertyφ.

The g-SCIFF proof-procedure is implemented in SICS-
tus 4, making extensive use of Constraint Handling Rules
[10] to implement its transitions.SCIFF and g-SCIFF
come in a same package, that can be freely downloaded
from the web1: the g-SCIFF behaviour is activated by sim-
ply setting an option.

The g-SCIFF proof-procedure has been applied to
the formal verification of various systems and proto-
cols. g-SCIFF was able to derive the flawedness of the
Needham-Schroeder security protocol [2], and the good
atomicity property of the NetBill protocol [2]. It is also
a basic component of the AlLoWS framework [1], for the
proof of interoperability between Web services.

The g-SCIFF proof-procedure operates top-down in a
deductive and abductive manner, by manipulating the spec-
ification driven by the goal, as usual in Logic Program-
ming, and also generating expectations asSCIFF does and,
by fulfillmentan (intensional) set of events needed to sup-
port the goal. This way, g-SCIFF can be used to prove
properties of anySCIFF protocol. For example, one may
wonder if the protocol allows a massage service not to be
followed by a shiatzu package offer. By expressing this
combination as a g-SCIFF query, the user can ask g-SCIFF
to generate an intensional history that satisfies the query
while fulfilling the protocol. In fact, g-SCIFF generates
such a history, with the constraint that the massage type
must not be shiatzu:

H(register client data, B),

H(massage service(type(T ), ma id(A)), H), T 6= shiatzu

H(bill nights, Y ),

H(bill massage service(ma id(A)), E),

H(charge, D),

H(complete check out, F ),

5 Conclusions

We have presented the CL-based languageSCIFF for the
specifications of complex systems with interacting entities,
such as multi-agent systems, business processes or web
services. Moreover, we have discussed how techniques
from Inductive Logic Programming were applied for in-
ducingSCIFF theories which can be then translated into

1http://lia.deis.unibo.it/sciff/

graphical languages. Finally, the abductive g-SCIFF proof
procedure can be used for proving properties of specifica-
tions, either learned or provided by the user.
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SOMMARIO/ABSTRACT

La Logica Computazionale gioca un ruolo molto rilevante
nella ingegnerizzazione di sistemi complessi: può essere
usata per specificare sistemi al livello di astrazione più op-
portuno, la specifica può essere eseguita fornendo gratuita-
mente un prototipo funzionante e, grazie alla sua semantica
ben fondata, può essere usata per verificare formalmente
proprietà di programmi e sistemi, cosa fondamentale nello
sviluppo di applicazioni critiche dal punto di vista della si-
curezza.

Nell’ultimo decennio, il Gruppo di Programmazione
Logica del Dipartimento di Informatica e Scienze
dell’Informazione (DISI) dell’Università degli Studi di
Genova ha applicato la Logica Computazionale per model-
lare, prototipare e verificare sistemi complessi. Le tre linee
di ricerca hanno ampie aree di sovrapposizione: i sistemi
complessi che prendiamo in considerazione sono spesso
sistemi multiagente per i quali proponiamo linguaggi di
modellazione, ambienti di prototipazione e tecniche di ver-
ifica. Inoltre usiamo la logica temporale sia per modellare
agenti BDI cooperativi, sia per verificare processi a stati
infiniti.

In questo articolo descriviamo le attività condotte
recentemente in ciascuna direzione di ricerca.

Computational Logic plays a very relevant role in engi-
neering complex systems: it can be used to specify systems
at the right level of abstraction, the specifications can be
executed, thus providing a working prototype for free, and
thanks to its well-founded semantics it can be used to for-
mally verify properties of programs, which is fundamental
when safety critical applications are developed.

In the last decade, the Logic Programming Group at the
Department of Computer and Information Science (DISI)
of Genova University has been applying Computational
Logic for modelling, prototyping, and verifying complex
systems. These three research lines are largely overlap-
ping: the complex systems we take under consideration

are often multiagent systems, for which we propose mod-
elling languages as well as prototyping environments and
verification techniques. Also, we use temporal logic both
for modelling cooperative BDI agents and for verifying
infinite-state processes.

In this paper, we describe the activities that we carried
out in the recent years in each research line.

Keywords: Computational Logic, Intelligent Agents,
Rapid Prototyping, Verification of Protocols.

Logic Languages for Modelling Rational Agents

Many logics for modelling beliefs, desires and inten-
tions of agents, such as Rao and Georgeff’s BDI logic
[36, 34, 35] and Wooldridge’s LORA [40], are based
on temporal logics like CTL/CTL∗ (Computational Tree
Logic, [24, 17]) where the structure of time is branching
in the future and linear in the past. In 2005 we started to
explore the advantages of substituting ATL∗ (Alternating-
Time Temporal Logic [1]) to CTL∗ in Rao and Georgeff’s
logic. This activity, resulted into the formalization of
BDIATL [33], was born from our effort to find a BDI logic
suitable for modelling the behaviour of agents structured
according to the CooBDI architecture [2].

A CooBDI agent, whose behavioral specification was
given using Prolog, is characterised by a built-in mech-
anism for retrieving plans from cooperative agents, for
example when no local plans suitable for achieving a
certain desire are available. In particular, the coopera-
tion strategy of an agent includes the set of agents with
which is expected to cooperate (its partner agents, or its
“friends”). BDIATL allows us to express new commit-
ment strategies that are more realistic than those proposed
by Rao and Georgeff (and that could not be defined in their
logic), since they take collaboration among agents into ac-
count. In particular, we can express three variants of Rao
and Georgeff’s “open minded” commitment: “independent
open minded”, “optimistic open minded”, and “pessimistic
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open minded”. In these commitment strategies we exploit
the new feature that ATL∗ adds to CTL∗, namely coopera-
tion modalities, to express the way of thinking of CooBDI
agents.

Other logic-based languages conceived for specifying
BDI-style and, more in general, rational agents, are Con-
goLog [27], AGENT-0 [38], Concurrent METATEM [25],
Ehhf [20], the IMPACT language [23], and “Dynamics in
Logic” [10]. In 2004, we published a survey of these six
languages [32], chosen because of the availability, for each
of them, of a working interpreter or an automatic mech-
anism for animating specifications. In our survey we de-
scribed the logic foundations of each language and we gave
an example of use. A comparison along twelve dimensions
(purpose of use, language support to time, sensing, concur-
rency, nondeterminism, etc.) was also provided.

Computational Logic for MAS Prototyping

It is well known that computational logic and logic pro-
gramming in particular are very suitable to implement so-
phisticated, self-aware agents able to reason about them-
selves and the other agents in a multiagent system (MAS).
DCaseLP (Distributed Complex Applications Specification
Environment based on Logic Programming [31]) is an en-
vironment for rapid prototyping of MASs developed by the
Logic Programming Group at DISI. DCaseLP was initially
born as a logic-based framework, as the acronym itself
suggests, and then evolved into a multi-language proto-
typing environment that integrates both imperative (object-
oriented) and declarative (rule-based and logic-based) lan-
guages, as well as graphical ones. The languages and tools
that DCaseLP integrates are UML and an XML-based lan-
guage for the analysis and design stages, Java, JESS [26]
and tuProlog [22] for the implementation stage, and JADE
[12] for the execution stage. Software libraries for integrat-
ing JESS and tuProlog agents into the JADE platform and
for translating UML class diagrams into JESS and tuProlog
code are also provided1. The methodological integration of
DCaseLP with the “Dynamics in Logic” agent program-
ming language is described in [6].

All the applications that we developed with DCaseLP in
collaboration with Italian industries, exploit tuProlog for
implementing the MAS.

The most recent application, described in [30], is a MAS
that monitors processes running in a railway signalling
plant, detects functioning anomalies, provides diagnoses
for explaining them, and early notifies problems to the
Command and Control System Assistance. This work is
part of an ongoing project that involves DISI and Ansaldo
Segnalamento Ferroviario, the Italian leader in design and
construction of signalling and automation systems for rail-
way lines.

1The source code of DCaseLP libraries together with manuals and tu-
torials is available from http://www.disi.unige.it/person/
MascardiV/Software/DCaseLP.html.

The work described in [37] deals with an electronic im-
plementation of different auction mechanisms. There are
many different auction mechanisms that can be classified
according to their features [29]. We ran experiments with
all the implemented mechanisms under the hypotheses,
that, according to the “Revenue Equivalence Theorem”
(RET [39]), lead to the existence of an optimal bidder’s
strategy. The experiments demonstrated that RET is satis-
fied (up to some error due to discretisation), giving empir-
ical evidence of the correctness of the implementation.

Many applications had also been developed using the
ancestor of DCaseLP, CaseLP: a prototype of a multime-
dia, multichannel, personalised news provider, [19], was
developed in collaboration with Ksolutions s.p.a. as part of
the ClickWorld project, a research project partially funded
by the Italian Ministero dell’Istruzione, dell’Università e
della Ricerca (MIUR). Older industrial applications in-
volve freight train traffic [18] and vehicle monitoring [4].

The industrial applications of CaseLP and DCaseLP
show an increased industrial interest and trust in both
agent-based and declarative technologies, and demonstrate
the liveliness of computational logic outside the bound-
aries of academia.

Verifying Interaction Protocols with Logic

We have recently developed a tool aimed at supporting
verification of finite-state interaction protocols in a MAS
setting, West2East [16], that exploits “WEb Service Tech-
nologies to Engineer Agent-based SofTware” starting from
the specification of an Agent Interaction Protocol (AIP).
West2East exploits AUML [11] for representing AIPs,
many different languages, including standard languages
for Web Services, for sharing them, and Computational
Logic to reason about them. In particular, West2East con-
sists of a set of libraries for

1. Translating visual AUML AIPs to various formats:
starting from an AUML interaction diagram graphi-
cally drawn using any UML editor, West2East gen-
erates the corresponding representation in many for-
mats, including a Prolog term.

2. Generating code compliant to the AIP: starting from
the Prolog term, a tuProlog program for each agent
involved in the AIP is automatically generated by
West2East. After a manual completion for adding the
information missing in the AIP’s specification, such
as agents’ state and guards of conditions, the tuProlog
code can be run inside JADE thanks to the DCaseLP
libraries.

3. Reasoning about the AIP: a mechanism for allow-
ing tuProlog agents to reason about an AIP by ex-
ploiting meta-programming techniques is provided by
West2East. Existential and universal properties, such
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as “There is one path of the protocol where I will re-
ceive message1”, and “Whatever the path, I will send
message2”, can be verified.

In [21] we have further investigated in the relation be-
tween (constraint) logic programming and infinite-state
verification. More specifically, in [21] we show that a CLP
bottom-up evaluation procedure can be applied to auto-
matically verify safety and liveness properties for skele-
tons of communication protocols (with a fixed number of
processes) like mutual-exclusion algorithms. In the case-
studies described in [21] the source of infiniteness is the
presence of potentially unbounded integer variables in the
specification of individual processes. Constraints are used
here to symbolically represent infinite collections of sys-
tem configurations with a fixed number of processes.

Another interesting research line concerns with the ap-
plication of linear logic programming to verification of
infinite-state systems. Linear logic [28] is a suitable logi-
cal framework for the specification of concurrent systems.
The LO fragment [3] of full linear logic provides multi-
headed linear implications with only multiplicative dis-
junction and additive conjunction in the body. By exploit-
ing and generalizing the connection between verification
and logic programming described in [21], in [14] we have
defined a bottom-up evaluation strategy for (first order)
LO programs based on an effective fixpoint operator à-la
TP (the immediate consequence operator for (constraint)
logic programs). The LO TP operator works on first or-
der multi-headed LO clauses [14]. Furthermore, it can
be viewed as a symbolic predecessor operator for transi-
tion systems described via multiset rewriting systems de-
fined over first-order atomic formulas. In [15] we have
extended the bottom-up evaluation procedure to first order
linear logic specification with universally quantified goals.
In [13] we have applied the resulting procedure to ver-
ify properties of cryptographic protocols for any possible
number of principals and parallel sessions.

Conclusions

Research on computational logic in Genova is very lively,
and will be even more in the future thanks to the interest
on its practical applications raised outside the boundaries
of academia. Part of this research has been carried out in
joint projects with the Logic Programming and Automated
Reasoning Group in Torino. The results of these projects
are described in [7, 5], and the active collaboration in wit-
nessed by many other joint activities [8, 9].

The connections between the Logic Programming
Groups in Torino and Genova date back to more than 30
years ago. The heads of the groups, Alberto and Maurizio
Martelli, besides the same family name, share many com-
mon experiences: they worked together at the National Re-
search Council in Pisa, were involved in the committees of
conferences and workshops on Computational Logics, and,
when moved to Torino and Genova respectively, founded

research groups with the same objectives. The profitable
collaboration will be pursued in the future with the hope to
contribute in making research on Computational Logic an
Italian excellence.
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SOMMARIO/ABSTRACT

In questo articolo si descrivono le linee di ricerca svilup-
pate a Cosenza nell’ambito della programmazione logica
in un arco temporale di oltre 20 anni e che hanno portato
a recenti interessanti e promettenti sviluppi industriali.
Tali linee di ricerca sono cambiate nel tempo ma hanno
mantenuto l’interesse iniziale per accoppiare la pro-
grammazione logica con le tecnologie della basi di dati,
interesse che si continuamente rinnovato per affrontare
nuove sfide nell’uso della teoria per risolvere problemi
pratici.

In this paper, we describe the research lines in logic pro-
gramming, carried out in Cosenza over a period of more
than 20 years, which have recently produced promising in-
dustrial exploitation follow-ups. The research lines have
changed over the time but they have kept the initial inter-
est on combining logic programming with databases tech-
niques, that has been continuously renewed to cope with
new challenges, in our attempt to use theory to solve prac-
tical problems.

Keywords: Logic programming, DATALOG, bottom-up
execution, stable models, disjunctive logic programming,
answer set programming, ontology

1 Introduction

The research on logic programming in Cosenza started
in the middle eighties at CRAI, an industrial consor-
tium for information technology research and applica-
tions at Rende, Italy. With the enthusiasm of young re-
searchers, we decided to enlarge our original competencies
in database technology to exploit the great, at that time
promising potentialities of logic programming. We then
set up a research group on DATALOG (a version of logic
programming particularly suited for database applications)
and we started to study the problem of the efficient compu-

tation of answers to logic queries over relational databases.
Later on, while moving from CRAI to University of Cal-

abria, we also moved to more theoretical issues in DATA-
LOG. In particular, we worked at endowing DATALOG
with the capability of handling non monotonic reasoning
and defeasible knowledge, and we concentrated on provid-
ing a non-classical interpretation for negation and disjunc-
tion (with the two perspectives not necessarily disjoint).

When the age of maturity came, our interest for theory
was more and more urged to be combined with the neces-
sity of providing evidence of its utility by means of ”run-
ning” prototypes. So, our group promoted the construction
of the DLV system, one of the most efficient implementa-
tion of logic programming available to date, which is being
used in many applications.

Finally, getting old and desiring to leave a more tangi-
ble effect of our research to the economy of our Region,
along with other researchers from University of Calabria,
we founded a research spin-off, named Exeura, whose mis-
sion is to transform research results in the field of Knowl-
edge Management into industrial products.

In this paper we make a quick tour of our research in
DATALOG during the last 20 years, starting from the in-
fancy of our work on efficient query compilation, to the
youth of the contribution on non monotonic reasoning and
the maturity of developing the DLV system, eventually ar-
riving to the old age of exploiting results within an indus-
trial framework. But our story does not end here: we are
positive and ready to add another chapter!

2 INFANCY: efficient compilation of DATA-
LOG

DATALOG is essentially logic programming without func-
tion symbols using tuples of a relational database as facts:
a database D is seen as a set of facts , whose predicate
symbols (extensional predicates) coincide with the rela-
tion names, and all other predicate symbols (intensional
predicates), defined by rules, correspond to views of the
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database.
We have investigated the efficient computation of an-

swers to logic queries over relational databases since the
the middle of eighties of the past century when we were all
working for CRAI. The research has concentrated firstly on
the definition of algorithms for the efficient computation of
the semantics of programs and answers. The problem can
be stated as follows: given a query Q = 〈q(X),P〉 and
a database D, seen as a set of facts, compute the atoms
matching q(X) which are logic consequence of P ∪ D.
Two main approaches have been proposed in the litera-
ture, known as top-down computation (used by Prolog-
like system) and bottom-up computation (used by deduc-
tive database and answer-set systems).

The advantages of top-down systems is that only rules
and atoms relevant to the query goal are considered, but
there are several problems as termination and duplicated
computation. On the other side, the bottom-up strategy
always terminates, but it computes atoms which are not
relevant for the query goal (i.e. first computes all atoms
which are logic consequence of P ∪ D and, afterwards,
selects the atoms matching the goal q(X)). Concerning the
definition of optimization techniques avoiding duplicated
computation, the most important contributions were top-
down methods with memoing strategy and the semi-naive
(bottom-up) algorithm.

Moreover, several optimization techniques combining
top-down and bottom-up strategies were proposed as well.
These techniques try to compute only atoms which may be
“relevant” for the query goal in a bottom-up strategy. The
key idea of all these techniques consists in the rewriting
of deductive rules with respect to the query goal so that
answering the query without actually computing irrelevant
facts. General rewriting techniques (e.g. magic-set and
supplementary magic set) can be applied to all queries, but
their efficiency is limited. On the other side, there are spe-
cialized techniques which are very efficient, but they can
be applied to limited classes of queries.

We investigated a particular interesting class of queries,
known as chain queries, i.e., queries where bindings are
propagated from arguments in the head to arguments in the
tail of the rules, in a chain-like fashion. For these queries,
which are rather frequent in practice (e.g., graph applica-
tions), insisting on general optimization methods (e.g., the
magic-set method) does not allow to take advantage of the
chain structure, thus resulting in rather inefficient query
executions. Specialized methods for subclasses of chain
queries have been proposed in the literature, but, unfortu-
nately, these methods do not fully exploit bindings.

We proposed a counting method that is particularly spe-
cialized for bound chain queries; however this method,
although proposed in the context of general queries
[Saccà(13,17,20), Greco(8)], preserves the original sim-
plicity and efficiency only for a subset of chain queries
whose recursive rules are linear. We later proposed a new
method exploiting the relationship between chain queries,

context-free languages and pushdown automata, which
permits to rewrite queries into a format that is more suit-
able for the bottom-up evaluation [Greco(18, 43)]. The
so-called pushdown method translates a chain query into a
factorized left-linear program implementing the pushdown
automaton recognizing the language associated with the
query. A nice property of this method is that it reduces
to the counting method in all cases where the latter method
behaves efficiently and introduces a unified framework for
the treatment of special cases, such as the factorization
of right-, left-, mixed-linear programs, as well as the lin-
earization of non-linear programs.

These techniques defined for standard DATALOG
queries can be also applied, or easily extended, to dis-
junctive logic queries (queries whose associated program
is a disjunctive DATALOG program) [Greco(36, 87, 110),
Leone(144)].

We also elaborated optimization techniques for queries
with aggregates (expressing, for instance, optimization
problems) [Greco(15,38,45,60,75)]. These techniques
rewrite queries so that the simple modification of the semi-
naive algorithm emulates classical optimization strategies
such as greedy and dynamic programming.

Further on, we investigated optimizations techniques
for queries with complex terms such as sets and, in par-
ticular, we analyzed the computation of optimal sets of
matchers and unifiers for atoms with “bounded” set terms
[Greco(21,24)].

3 YOUTH: non monotonic reasoning in
DATALOG

The realization of common-sense reasoning systems has
been, since the beginning, one of the natural application
realm of logic programming. However, common-sense
reasoning requires non-monotonicity, that is, the capability
for the reasoning system to cancel or retract previously at-
tained conclusions, in the light of new evidence the system
becomes aware of (that is, generally, the knowledge must
be defeasible). Unfortunately, plain DATALOG is indeed
monotonic and, therefore, unapt to the purpose. There-
fore, mechanisms had to be devised in order to endow
DATALOG-based languages with the capability of repre-
senting and managing non-monotonicity.

Loosely speaking, in order to endow DATALOG with
the capability of handling defeasible knowledge, one might
resort to non standard semantics for the language as a
whole or concentrate on providing a non-classical interpre-
tation for negation or disjunction (with the two perspec-
tives not necessarily disjoint). In the logic programming
community the second line of research received a much
larger deal of attention than the first one, and we followed
this lines in the research developed when all of us moved
from CRAI to University of Calabria.

Important results derived by the work developed in our
group on ordered logic programs, that are, programs con-
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sisting of a poset of modules, each of which is itself a logic
program, under the assumption that programs lying higher
in the hierarchy are semantically more trustable than lower
ones [Leone(6), Rullo(29)] and the related issue of in-
heritance [Leone(91), Rullo(18)] and, moreover, on the
circumscription-based interpretation of negation-free DAT-
ALOG [Palopoli(32)]. The semantics of (disjunctive) logic
programs with preferences on atoms was later investigated
in [Greco(136)].

But we also investigated the semantics of negation in
DATALOG-like languages. The simpler form of non-
classical interpreting negation in DATALOG is encoded in
the notion of stratified (aka, perfect) models due, among
others, to Przyimusinski. This semantics is defined when
in a program there is no recursion through negation, that
is, the program is stratified. In this case, one can divide the
program in an ordered list of layers, such that each pred-
icate occurring negated in the rule of any layer does not
occur in the head of rules of that and higher layers. Then,
the intended model is obtained by evaluating the program
layer-wise, beginning with the lowest one. The drawback
of stratified programs rests on their limited generality and
expressive power. A more general notion is that of locally
stratified programs, where recursion through negation is al-
lowed as long as it gets resolved at the ground level. Con-
trary to stratification, however, local stratification is in gen-
eral undecidable, even if sufficient conditions for it can be
given [Palopoli(3)].

Van Gelder and others proposed a solution to the prob-
lem of providing a clean semantics to programs with re-
cursive negation, by defining the concept of well-founded
model. Loosely speaking, a model of a DATALOG pro-
gram is well-founded is the model does not contain any
subset of unjustifiable atoms. Well-founded semantics is
in general polynomial-time computable, but its implemen-
tation is not at all trivial [Rullo(9)]. Also, the well-founded
model of a DATALOG program is unique (but may not ex-
ist).

In order to attain a significant boost in expressivity,
though, one has to consider a further, simple yet power-
ful, semantics for logic program with negation, namely,
that of stable models of Gelfond and Lifschitz. To infor-
mally illustrate, a model of a program is stable if the pro-
gram regenerates it when the knowledge encoded in the
model is assumed from granted. In general, a DATALOG
program may have none, one or multiple stable models.
Therefore, differently from the aforementioned semantics,
entailment under stable model semantics can be intuitively
defined in two forms, that are, cautious reasoning, which
tells an information to be implied by a program if it is in-
deed implied in all the stable models of the program, and
brave reasoning, which makes the information implied by
the program if implied by at least one of its stable mod-
els. These definitions endow DATALOG programs with
a much larger expressiveness (allowing to capture classes
like coNP) than that of well-founded models but, at the

same time, renders the entailment and related problem in-
tractable [Saccá(49)], thereof including that of computing
one single stable model of a DATALOG program. Fortu-
nately, there are indeed cases when the stable model se-
mantics can be computed efficiently [Palopoli(22)].

But besides the cautious and the brave forms of reason-
ing, the possibility for a program to have multiple stable
models can be interpreted in a different and rather appeal-
ing manner, that is, that each stable model of the pro-
gram non-deterministically encode one possible status of
the world. This view of stable model semantics prompted
through years some of us to study the formal properties and
the potential application of exploiting non-determinism as
encoded in DATALOG programs under the stable model
semantics, which resulted in several interesting research
papers [Greco(28,29), Greco(44), Saccá(43,48)].

A second depart from more standard forms of semantics
is determined by allowing more than two truth values for
literals. To illustrate, in two-valued semantics, each literal
of a program must be either declared true or false. There
are cases and applications, though, where it appears sen-
sible to introduce a third truth value, say ”unknown”, into
play, to be assigned to a literal if neither itself nor its nega-
tion is entailed by a set of rules. All that is conducive to the
notion of partial model, which is precisely one that tells
some atoms true, some atoms false and some undefined
in the status of the world it encodes for. Also in this new
setting it is worth analyzing the formal properties of the re-
sulting formalisms [Saccá(58)]. Moreover, in this setting,
stable models semantics also allows to express search and
optimization problems [Saccá(54,63,83)].

To suitably deal with negation is not enough for some
application though. Theoretically speaking, this happens
when one deals with problems which are complete for
the second level of the polynomial hierarchy. From the
more practical viewpoint, this more simply happens when
the application context naturally calls for the exploitation
of disjunctive statements, that are, statements which de-
clare the (possibly conditional) truth of at least one of a
group of atoms. The resulting language, usually referred
to as Disjunctive DATALOG allows disjunct to occur in
rule heads and (possibly) negation in rules bodies. Several
of the issues discussed above for (disjuntion-free) DAT-
ALOG carry over to Disjunctive DATALOG, and the de-
velopment of the associated research lines has witnessed a
relevant contribution of our group. To illustrate, the papers
[Rullo(22), Greco(98)] include fundamental results about
the semantics, complexity and expressive power of Dis-
junctive DATALOG programs, [Palopoli(27,50)] discuss
tractability issues about Disjunctive DATALOG, while
[Leone(103,113)] tackles with the issue of selecting some
of the models of a Disjunctive program as the preferred
ones and, finally, [Rullo(33)] deals with the enhancement
of the expressive and representational capabilities of Dis-
junctive DATALOG using constraints.
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4 MATURITY: the DLV system

DLV [Leone(139)] is an advanced system for Knowledge
Representation and Reasoning which is based on Disjunc-
tive DATALOG under the stable model semantics (also
called Answer Set Programming). Roughly, a Disjunc-
tive DATALOG program is a set of disjunctive rules, i.e.,
clauses of the form

a1v · · · van:- b1, · · · , bk, not bk+1, · · · , not bm

where atoms a1, . . . , an, b1, . . . , bm may contain variables.
The intuitive reading of such a rule is “If all b1, . . . , bk are
true and none of bk+1, . . . , bm is true, then at least one
atom in a1, . . . , an must be true.” Disjunctive DATALOG
has a very high expressive power – it allows to express all
problems in the complexity class ΣP

2 (i.e., NPNP ). Thus,
under usual complexity conjuctures, Disjunctive DATA-
LOG is strictly more expressive than both SAT and CSP,
the power of which is “limited” to NP, and it can naturally
represent a large class of relevant problems ranging from
artificial intelligence to advanced database applications.
DLV is generally considered the state-of-the-art imple-

mentation of Disjunctive DATALOG. Its efficiency has
been confirmed by the results of First Answer Set Pro-
gramming System Competition (http://asparagus.
cs.uni-potsdam.de/contest/), where DLV won
the “disjunctive” category. Moreover, DLV turned out to
be very efficient also on (non-disjunctive) DATALOG pro-
grams, as it finished first also in the general category MGS
(Modeling, Grounding, Solving – also called royal compe-
tition, open to all ASP systems).

The implementation of the DLV system is based on very
solid theoretical foundations, and exploits major results
that have been achieved by the Deductive Databases group
of University of Calabria in the last 20 years. The sys-
tem has been recently engineered for industrial exploita-
tion, and is successfully employed in many challenging
real-world applications, for instance in the area of Knowl-
edge Management [Leone(141)], and advanced Informa-
tion Integration [Leone(127,144)] (see next section).

Among the many features of the system, it is worth re-
marking the following:
Advanced knowledge modeling capabilities. DLV pro-
vides support for declarative problem solving in several
respects:

• High expressiveness in a formally precise sense (ΣP
2 ),

so any such problem can be uniformly solved by a
fixed program over varying input.

• Rich language for knowledge modeling, extending
Disjunctive DATALOG with weak constraints (for
preferences handling) [Leone(68)], powerful aggre-
gate functions [Leone(132,110,124,148)], and other
useful KR constructs.

• Full declarativeness: ordering of rules and subgoal is
immaterial, the computation is sound and complete,
and its termination is always guaranteed.

• Declarative problem solving following a
“Guess&Check” paradigm [Leone(139)] where
a solution to a problem is guessed by one part of a
program and then verified through another part of the
program.

• A number of front-ends for dealing with specific
AI applications [Leone(57,109,105,125)], informa-
tion extraction [Leone(141)], Ontology Representa-
tion and Reasoning [Leone(146,130)].

Solid Implementation. Much effort has been spent on
sophisticated algorithms and techniques for improving the
performance, including

• Database optimization techniques: indexing,
join ordering methods [Leone(85)], Magic Sets
[Leone(144,124)].

• Artificial intelligence computation techniques:
heuristics [Leone(87,149,133)], backjumping
techniques [Leone(138,119)], pruning operators
[Leone(137)].

DLV is able to solve complex problems and efficiently deal
also with large input data [Leone(147)].
Database Interfaces. The DLV system provides a general
ODBC interface to relational database management sys-
tems [Leone(120)].

For up-to-date information on the system and a full man-
ual we refer to http://www.dlvsystem.com, where
also download binaries of the current release and various
examples are available.

5 OLD AGE: industrial applications of DLV

We are finally at the end of the story. In 2002, along with
other researchers from University of Calabria, we founded
a research spin-off, named Exeura. Since the beginning,
the mission of Exeura was to transform into commercial
products research results in the field of Knowledge Man-
agement (KM). Topics of interest include: (1) Knowledge
Representation and Reasoning (e.g., ontologies, automatic
reasoning, etc.); (2) Data, Text, and Process Mining (e.g.,
data discovery in databases, document classification, web
mining, workflow mining, etc.); (3) Information Extraction
and Wrapping; (4) Heterogeneous Information Sources In-
tegration.
Thanks to a vast scientific and technological know how
in KM and, in general, in advanced Information Systems,
Exeura has implemented a number of industrial prototypes,
currently under productization. Some of those exploit the
DLV reasoning capabilities, notably, OntoDLV, Olex and
Hylex.
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OntoDLV is a system for ontology specification and rea-
soning [Leone(146)]. Ontologies are abstract models of
complex domains that have been recognized to be a funda-
mental tool for conceptualizing business enterprise infor-
mation. The World Wide Web Consortium (W3C) has al-
ready provided recommendations and standards related to
ontologies, like RDF(S) and OWL. In particular, OWL has
been conceived for the Semantic Web, with the goal to en-
rich Web pages with machine-understandable descriptions
of the presented contents. OWL is based on expressive
Description Logics (DL); distinguishing features of its se-
mantics w.r.t. Logic Programming languages are the adop-
tion of the Open World Assumption (OWA) and the non-
uniqueness of names (different names can denote the same
individual). However, while the semantic assumptions of
OWL make sense for the Web, they are unsuited for en-
terprise ontologies. Since an enterprise ontology describes
the knowledge of specific aspects of the closed world of
the enterprise, it turns out that the Closed World Assump-
tion (CWA) is more appropriate than the OWA (appropri-
ate for the Web, which is an open domain). Moreover, the
presence of naming conventions, often adopted in enter-
prises, can guarantee name uniqueness, making also the
Unique Name Assumption (UNA) plausible. Importantly,
enterprise ontologies often are the evolution of relational
databases, where both CWA and UNA are mandatory.
OntoDLV supports a powerful ontology representation lan-
guage, called OntoDLP, extending (disjunctive) Answer
Set Programming (ASP) with all the main ontology fea-
tures including classes, inheritance, relations and axioms.
OntoDLP is strongly typed, and includes also complex
type constructors, like lists and sets. The semantic pecu-
liarities of ASP, like the Closed World Assumption (CWA)
and the Unique Name Assumption (UNA), allow to over-
come both the above mentioned limits of OWL, thus mak-
ing OntoDLV suitable for enterprise ontology specifica-
tion. It is worth noticing that OntoDLV supports a pow-
erful interoperability mechanism with OWL, allowing the
user to retrieve information from OWL ontologies, and
build rule-based reasoning on top of OWL ontologies. The
system is already used in a number of real-world applica-
tions including agent-based systems, information extrac-
tion, and text classification.
Olex is a rule-based text classification system [Rullo(43)].
It supports a hypothesis language of the form

c← T1 ∈ d∨· · ·∨Tn ∈ d∧¬(Tn+1 ∈ d∨· · ·∨Tn+m ∈ d)

where each Ti is a conjunction of terms (n-grams). The
meaning of a classifier as above is ”classify document d
under category c if any of T1, · · · , Tn occurs in d and none
of Tn+1, · · · , Tn+m occurs in d”. The execution of a clas-
sifier relies on the DLV system.
One important feature of the Olex system is the integration
of the manual approach with the automatic rule induction.
Thanks to the interpretability of the produced classifiers,
the domain expert can participate in the refinement of a

classifier, by manually specifying a set of rules to be used
in conjunction with those automatically learned. This co-
operation, in fact, may be very effective, since both ap-
proaches have some limits, that can be overcome if used in
synergy. To this end, the expressive power of the DLV lan-
guage turns out of great advantage, as it allows the (man-
ual) specification of complex classification rules (not re-
stricted to the hypothesis language), e.g., rules with ag-
gregate functions (such as count, sum, etc.) that are very
useful in text categorization.
Olex has been applied to a number of real world applica-
tions in various industries including: health-care, tourism,
and insurance.
HiLeX supports a semantic-aware approach to information
extraction from unstructured data (i.e., documents in sev-
eral formats, e.g., html, txt, doc, pdf, etc), that is currently
used in many applications of Text Analytics. The semantic
approach of HiLeX basically relies on [Sacc(115)]:

• the ontology representation formalism OntoDLP used
for describing the knowledge domain;

• a logic-based pattern matching language relying on a
two-dimensional document representation; in fact, a
document is viewed as a Cartesian plane composed
by a set of nested rectangular regions called portions.
The DLV system is used as the pattern recognition
engine.
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SOMMARIO/ABSTRACT

Questo articolo introduce brevemente le nostre recenti at-
tività di ricerca in relazione all’uso della programmazione
logica per la specifica e verifica delle interazioni in vari
contesti. L’articolo evidenzia alcuni risultati riportati in
vari ambiti: sistemi multi-agente, servizi web e argomen-
tazione, con particolare enfasi sugli aspetti collegati ai
processi di business e alle coreografie di servizi Web.

In this article we overview our recent research activity con-
cerning the use of logic programming for interaction spec-
ification and verification in several domains. We outline
relevant results in the areas of multi-agent systems, argu-
mentation and web services, and we devote a special em-
phasis to issues related to business processes and Web ser-
vice choreographies.

Keywords: Logic programming, hypothetical reasoning,
interaction, modelling, verification, multi-agent systems,
protocols, business processes, web services, choreogra-
phies, semantic web, argumentation.

1 Background

Over two decades ago, a significant part of the Italian
and European CS research community and IT industry ex-
pressed great interest in the new Logic Programming (LP)
paradigm. Such an interest was sensibly encouraged by
the pioneering work of Giorgio Levi, Franco Turini, Ugo
Montanari, Alberto Martelli, and others. The Artificial In-
telligence group of DEIS, School of Engineering, Univer-
sity of Bologna, was born at the time of the LP wave of the
Eighties. Our group was attracted by the unique features
of LP, including its ability to marry formal and practical
aspects, and to enable the correspondence of a declarative
language with an underlying execution model.

The main research directions of our group back then
were centered around distribution, modularity, parallelism,

and language extensions such as Constraint and Abduc-
tive Logic Programming. In order to enable program-
ming in the large in the LP paradigm, two approaches have
been studied for structuring logic programs: an algebraic
method based on meta-operators, and another approach
based on language extensions. The first model brought
to the definition of an extended LP language called Struc-
turedProlog [16], while the second approach was based
on the introduction of negation in LP, to support non-
monotonic reasoning.

StructuredProlog allows to to integrate blocks, mod-
ules, hypothetical reasoning, logical theory and object tax-
onomies. It has been implemented as an extension of the
Warren Abstract Machine, via software emulation and then
in hardware, and optimized using partial evaluation tech-
niques. Past research also focussed on parallel logic lan-
guages with AND parallelism and no variable sharing on
a MIMD architecture. Inter-process communication and
synchronization was possible via multi-headed clauses and
a shared blackboard, and an optimized unification mecha-
nism specifically tailored to serve the purpose. Finally, the
LP paradigm has been integrated with the OO paradigm,
to define the Distributed Logic Objects language (DLO).
In DLO, methods are expressed via multi-headed clauses,
in a purely declarative style, while specific constructs are
defined to express interaction among objects and inheri-
tance.

2 The SOCS Project

Since 2001, the group has devoted most of its resources
to the study of computational logic-based multi-agent sys-
tems [19], specifically agent interaction: the aim was to de-
velop an LP-based language and an operational model for
the specification and verification of agent interaction pro-
tocols. Such work has been carried out in the context of
the EU-funded SOCS project 1 . The SOCS society model

1Project IST-2001-32530, 5FP. SOCS stands for “Societies Of Com-
puteeS: a computational logic model for the description, analysis and ver-
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[21, 3], developed by a joint effort between the University
of Bologna and the University of Ferrara, gives concrete
guidelines for the formal specification of the interaction
among agents that form a society, and for the definition of
a computational logic-based architecture for agent inter-
action. In the proposed architecture, the society defines
the allowed interaction protocols, which in turn are de-
fined by means of Social Integrity Constraints (ICs). The
society knowledge is defined as an abductive logic pro-
gram [9]: ICs are used in order to express constraints on
the communication patterns, while expected communica-
tive acts (“expectations”) are expressed as abducible pred-
icates. Both the specification language and the underlying
proof-procedure are called SCIFF.

Expectations, whose intuition recalls the usual deontic
operators of permission, obligation, and prohibition [8],
are used to provide a semantics to both agent communi-
cation languages and to interaction protocols [6]. The re-
sulting model is based on a declarative (logic) represen-
tation, therefore easy to understand.Moreover, its opera-
tional model can be exploited to achieve an implementa-
tion of societies of computees based on their formal speci-
fications [2]. Thanks to the link between formal specifica-
tion and implementation, the model provides also a good
ground for the automatic verification and formal proof of
properties [10].

The society model and the SCIFF operational model
were satisfactorily tested on a number of applications.
These include resource exchange [11], e-commerce pro-
tocols [7], and combinatorial auctions [1]. A repository
of protocols specified using SCIFF is publicly available
through the project’s home page [22].

The SOCS-SI tool [4]) supports SCIFF models and have
been used for extensive experimentation. It takes as input
the declarative formalisation, and it allows the automated
verification of the social aspects of a SOCS application.
SOCS-SI is general in its scope, and has been interfaced
to other implemented agent platforms, such as JADE, and
to other non-agent related communication platforms, like
e.g. TuCSoN. SOCS-SI uses the SCIFF proof procedure,
that has been implemented using SICStus Prolog, and in
particular its CHR library. The interested reader can learn
more about SCIFF in [5], and in the tutorial paper [17].
SOCS-SI and SCIFF are publicly available on the web 2 .

3 Current Research Directions

Most of our current research has originated from the out-
comes of SOCS. Starting form the many analogies between
the agent paradigm and the Web service model, interac-
tion protocols and choreographies has been the subject of

ification of global and open societies of heterogeneous computees.” The
project run for 42 months, from January 2001 until June 2005, and it in-
volved 6 academic institutions, including the University of Bologna and
the University of Ferrara. See [12, 23].

2http://lia.deis.unibo.it/research/socs_si and
http://lia.deis.unibo.it/research/sciff

conspicuous research carried out in the context of two re-
cent national projects lead by Alberto Martelli 3 . Part of
the research activity done within these projects has built
on SCIFF to i) produce new formalisms for the specifi-
cation and verification of interaction protocols and chore-
ographies; and to ii) develop new techniques for automatic
property verification and reasoning about Web Services.

The translation of graphical modeling languages into the
formal languages developed in these projects has been also
subject of research. Our group has studied the translation
of choreographies (represented in WS-CDL or in BPMN)
into its corresponding SCIFF specification, focussing on
verification of compliance. Several tools, based on the
SCIFF procedure, have been developed to cope with com-
plete logs and with run-time events. Further supported
types of verification regard the proof of “high level” prop-
erties, such as verifying in an e-commerce scenario, that
a buyer is guaranteed to receive the good he/she paid for,
and the seller is guaranteed to be paid.

Alongside our research on Web Services, we have ex-
tended and applied SCIFF in the context of agent-oriented
requirements engineering. This has brought to the devel-
opment of B-Tropos (B standing for Business): a unified
framework for information systems engineering, with the
aim to reconcile requirements elicitation with declarative
specification, prototyping, and analysis [15]. B-Tropos,
built on the well-known Tropos methodology [14], lets
the user to express temporal and data constraints between
tasks, hence introducing also the concepts of start and com-
pletion times, triggering events, and deadlines. The veri-
fication capabilities supported by the SCIFF proof allow
prototyping (animation) and analysis (properties and con-
formance verification) directly in B-Tropos. Early require-
ments engineers will be able to test their models directly;
engineers testing model properties will not have to resort
to ad-hoc, error-prone translations of high-level models
into other languages, thanks to the automatic translation of
B-Tropos models into SCIFF programs; finally, managers
monitoring the correct behavior of a system will exploit
the SCIFF specification to check the compliance using the
SOCS-SI runtime and off-line checking facilities [4].

Another current research direction which builds on
SCIFF concerns argumentation in the Semantic Web [24].
Our work resulted in the development of an operational ar-
gumentation framework, called ArgSCIFF, to support dia-
logic argument exchange between Semantic Web Services.
In ArgSCIFF, an intelligent agent can interact with a Web
Service and reason from the interaction result. The reason-
ing semantics is an argumentation semantics that views the
interaction as a dialogue. The dialogue lets two parties ex-
change arguments and attack, challenge, and justify them

3In 2004-2005, our group has been involved as a partner in the Na-
tional MIUR (ex 40%) project on ”Development and verification of logic-
based multi-agent systems,” and in 2006-2007 on the National PRIN (ex
40%) project on “Specification and verification of agent interaction pro-
tocols.” For more information, see the project Web site [20]. A report on
the most recent project is due to appear on this magazine [13].
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on the basis of their knowledge. This format has the po-
tential to overcome a well-known barrier to human users
adoption of IT solutions because it permits interaction that
includes justified answers that can be reasoned about and
rebutted.

4 CLIMB

Actually, a great deal of our resources are devoted to the
development of LP-based techniques for modeling and
verifying business processes and choreographies. The
reference framework for this work is called CLIMB 4 .
As specification language, CLIMB adopts an extension
of DecSerFlow/Condec, a family of graphical languages
for the declarative specification of service/business flows
[26]. Graphical models are then automatically mapped
onto SCIFF, integrating the best of the two approaches:

• CLIMB models are declarative and open. They do
not specify one particular flow of execution, but rather
focus on the set of constraints that must be satisfied by
interacting entities. Constraints specify either what is
mandatory or forbidden during execution.

• Different verification tasks can be applied on CLIMB
models by exploiting the proof-theoretic operational
counterpart of SCIFF as well as different logic pro-
gramming techniques.

In particular, CLIMB exploits SCIFF for carrying out both
run-time and a-priori verification tasks.

At run-time, SCIFF can be used as an alerting infras-
tructure capable to perform compliance checking, i.e., ver-
ifying whether a concrete process execution (or service
interaction) complies with the prescribed model (and de-
tecting violations as soon as possible). Such a verifica-
tion can be seamlessly applied a-posteriori as well, check-
ing already completed execution traces. In this respect,
CLIMB rules are used as an intuitive classification crite-
rion which split analyzed traces into a compliant and non
compliant sub-sets; a plug-in which exploits such a reason-
ing technique has been implemented and integrated inside
the ProM[25] process mining framework.

At static time, the “generative” variant of the SCIFF
proof procedure can be exploited to check the consistency
of developed models, by detecting the presence of conflicts
(which undermine the possibility of executing the model)
and by discovering if they contain dead activities (i.e., ac-
tivities that can be never executed). Such verifications con-
stitute the basis also for determining if different CLIMB
models can be composed without introducing conflicts.
This is particularly important in a service-oriented setting,
where a choreography can be intended as a contract aiming

4CLIMB stands for “Computational Logic for the verIfication and
Modeling of Business processes and choreographies.” For more informa-
tion and up-to-date resources the interested reader can refer to the CLIMB
Web site [18].

to make different partners correctly collaborate, and then a
set of compatible concrete services implementation must
be found to concretely implement the system.

It is worth noting that DecSerFlow/Condec models have
an alternative underlying semantics in terms of Linear
Temporal Logic formulas, which enable the possibility to
apply model checking techniques in order to verify the de-
signed models. In this respect, a research activity focused
on more foundational aspects is being carried out, to com-
pare expressivity, complexity and reasoning capabilities of
the two frameworks.
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SOMMARIO/ABSTRACT

Questo articolo introduce una nuova dimostrazione della
decidibilità del controllo di consistenza per i programmi
FDNC sotto la semantica dei modelli stabili, basandosi su
splitting sequences regolari. Con questa tecnica, riusciamo
a rilassare leggermente la definizione di programmi
FDNC e muoviamo un primo passo verso l’analisi delle
relazioni tra programmi FDNC e la teoria dei programmi
finitamente ricorsivi.

We provide a new decidability proof for the consistency of
FDNC programs under the stable model semantics, based
on regular splitting sequences. With this technique, we can
slightly relax the definition of FDNC programs and make
a first step towards a precise understanding of the rela-
tionships between FDNC programs and finitely recursive
programs.

Keywords: Answer set programming, finitely recursive,
finitary, and FDNC programs, module sequences.

1 Introduction

Some of the recent works of Alberto concern modal exten-
sions of logic programming [5, 1]. A major motivation for
those programs is reasoning about actions and change. In
this setting, nonmonotonic constructs such as negation as
failure are extremely useful to encode compactly the frame
axiom and action consequences. However, for a long time
such features could be supported only by forbidding func-
tion symbols, in order to ensure decidability.

Later results dropped this restriction. Finitary programs
[4] preserve decidability even in the presence of infinite
domains. This is achieved at the cost of restrictions on the
cycles in dependency graphs containing an odd number of
negative edges. Such limitations imply restrictions on the
constraints (in the form of denials like← A1, . . . , An, for
example) that can be encoded in a finitary program.

FDNC programs [8] adopt a different strategy. They
restrict the syntax to (a skolemized form of) 2-variable
guarded logic and avoid the restrictions on cycles and con-
straints.

In this paper we reformulate the decidability of the con-
sistency check for FDNC programs in terms of regular
splitting sequences. In this way we slightly generalize a
decidability result published in [8].

2 Preliminaries

We assume the reader to be familiar with Logic Program-
ming and the stable model semantics [2]

Disjunctive logic programs are sets of (disjunctive) rules

A1 ∨A2 ∨ ... ∨Am ← L1, ..., Ln (m > 0, n ≥ 0),

where each Aj (j = 1, ...,m) is a logical atom and each Li

(i = 1, ..., n) is a literal, that is, either a logical atom A or
a negated atom notA.

If r is a rule with the above structure, then let head(r) =
{A1, A2, ..., Am} and body(r) = {L1, ..., Ln}. More-
over, let body+(r) (respectively body−(r)) be the set of all
atoms A s.t. A (respectively notA) belongs to body(r).

The ground instantiation of a program P is denoted
by Ground(P ), and the set of atoms occurring in
Ground(P ) is denoted by atom(P ). Similarly, atom(r)
denotes the set of atoms occurring in a rule r.

A Herbrand model M of P is a stable model of P iff
M ∈ lm(PM ), where lm(X) denotes the set of least mod-
els of a positive (possibly disjunctive) program X , and
PM is the Gelfond-Lifschitz transformation of P , obtained
from Ground(P ) by (i) removing all rules r such that
body−(r) ∩M 6= ∅, and (ii) removing all negative liter-
als from the body of the remaining rules.

Disjunctive programs may have one, none, or multiple
stable models. We say that a program is consistent if it has
at least one stable model; otherwise the program is incon-
sistent. A skeptical consequence of a program P is any
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formula satisfied by all the stable models of P . A credu-
lous consequence of P is any formula satisfied by at least
one stable model of P .

The dependency graph of a program P is a labelled di-
rected graph, denoted by DG(P ), whose vertices are the
ground atoms of P ’s language. Moreover, there exists an
edge from A to B iff for some rule r ∈ Ground(P ), A ∈
head(r) and either B occurs in body(r), or B ∈ head(r).

An atom A depends on B if there is a directed path from
A to B in the dependency graph.

A disjunctive program P is finitely recursive [4, 3] iff
each ground atom A depends on finitely many ground
atoms in DG(P ).

A FDNC program is a set of disjunctive rules conform-
ing to any of the following schemata:

(R1) A1(x) ∨ ... ∨An(x)← (not)B0(x), ..., (not)Bl(x)
(R2) R1(x, y) ∨ ... ∨Rn(x, y)←

(not)P0(x, y), . . . , (not)Pl(x, y)
(R3) R1(x, f1(x)) ∨ ... ∨Rn(x, fn(x))←

(not)P0(x, g0(x)), . . . , (not)Pl(x, gl(x))
(R4) A1(y) ∨ ... ∨An(y)←

(not)B0(Z0), ..., (not)Bl(Zl), R(x, y)
(R5) A1(f(x)) ∨ ... ∨An(f(x))←

(not)B0(W0), ..., (not)Bl(Wl), R(x, f(x))
(R6) R1(x, f1(x)) ∨ ... ∨Rn(x, fn(x))←

(not)B0(x), ..., (not)Bl(x)

(R7) C1(~c1) ∨ ... ∨ Cn(~cn)← (not)D1(~d1), ..., (not)Dl(~dl)

where n, l ≥ 0, Zi ∈ {x, y}, Wi ∈ {x, f(x)}, and each ~ci,
~di is a tuple of one or two constants. Each rule r must be
safe, i.e., each variable must occur in body+(r). Moreover
at least one rule of type (R7) must be a fact.

Our results depend on a splitting theorem that allows to
construct stable models in stages. In turn, this theorem is
based on the notion of splitting set of a program P [2],[6],
that is, any set U of atoms such that, for all rules r ∈
Ground(P ), if head(r)∩U 6= ∅ then atom(r) ⊆ U . The
set of rules r ∈ Ground(P ) such that head(r)∩U 6= ∅ is
called the bottom of P relative to the splitting set U and is
denoted by botU (P ).

The partially evaluated complement of the bottom pro-
gram determines the rest of each stable model. The partial
evaluation of a ground logic program P with splitting set
U w.r.t. a set of ground atoms X is the program eU (P,X)
defined as follows:

eU (P,X) = { r′ | there exists r ∈ P s.t.
(body+(r) ∩ U) ⊆ X, (body−(r) ∩ U) ∩X = ∅,
head(r′) = head(r), body+(r′) = body+(r) \ U,
body−(r′) = body−(r) \ U } .

We are finally ready to formulate the splitting theorem.

Theorem 1 (Splitting theorem [6]) Let U be a splitting
set for a logic program P . An interpretation M is a stable
model of P iff M = J ∪ I , where

1. I is a stable model of botU (P ), and

2. J is a stable model of eU (Ground(P ) \ botU (P ), I).

The splitting theorem has been extended to transfinite
sequences in [7]. A (transfinite) sequence is a family
whose index set is an initial segment of ordinals, {α :
α < µ}. The ordinal µ is the length of the sequence.

A sequence 〈Uα〉α<µ of sets is monotone if Uα ⊆ Uβ

whenever α < β, and continuous if, for each limit ordinal
α < µ, Uα =

⋃
ν<α Uν . A sequence with µ = ω is smooth

if each of its elements is finite.

Definition 2 [Lifschitz-Turner, [7]] A splitting sequence
for a program P is a monotone, continuous sequence
〈Uα〉α<µ of splitting sets for P s.t.

⋃
α<µ Uα = atom(P ).

Lifschitz and Turner generalized the splitting theorem to
splitting sequences.

Theorem 3 (Splitting sequence theorem [7]) Let P be a
disjunctive program. M is a stable model of P iff there
exists a splitting sequence 〈Uα〉α<µ such that

1. M0 is a stable model of botU0(P ),

2. for all successor ordinals α < µ, Mα is a stable
model of eUα−1(botUα(P )\ botUα−1(P ),

⋃
β<α Mβ),

3. for all limit ordinals λ < µ, Mλ = ∅,
4. M =

⋃
α<µ Uα.

3 Revised decidability results

We first observe that strictly speaking, FDNC programs are
not always finitely recursive, due to the presence of local
variables, i.e. variables that occur in the body of a rule and
not in its head. Such variables arise in instances of rule
schema (R4); in particular x occurs only in the body. How-
ever it is not hard to verify that the following proposition
holds:

Proposition 4 If an atom R(t, u) belongs to a stable
model of an FDNC program, then either u = f(t) for some
function symbol f , or (t, u) is one of the vectors of con-
stants ~ci occurring in the head of some instance of (R7).

It follows that each rule of the form (R4) can be replaced
by a finite number of its instances:

• one for each substitution [y/f(x)], where f is a func-
tion symbol occurring in the program;

• one for each substitution [x/a1, y/a2] for each vector
of constants ~ci = (a1, a2) occurring in the head of
some instance of schema (R7).

By Proposition 4, such transformation preserves the set
of stable models of the given FDNC program. Moreover,
the transformation removes all local variables so the trans-
formed program is a finitely recursive FDNC program.
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With a similar argument we can further normalize
FDNC programs, restricting the set of atoms that may oc-
cur in a rule head. Each instance of schema (R2) can be re-
placed by a finite number of its instances by analogy with
the previous case. By Proposition 4, such transformation
preserves the set of stable models of the given FDNC pro-
gram. Moreover, the transformation specializes the heads
of the instances of (R2) so that the following lemma holds:

Lemma 5 Every FDNC program is equivalent to a FDNC
program with no rules of the form (R2) or (R4).

Corollary 6 Every FDNC program P is equivalent to a
finitely recursive FDNC program P ′ such that the binary
atoms occurring in Ground(P ′) are of the form R(t, f(t))
(for some function symbol f ) or R(~ci), where ~ci occurs in
the head of some instance of (R7).

Note that the above program transformation can be ef-
fectively computed. Therefore, from now on, we shall fo-
cus without loss of generality on normal FDNC programs,
that we define as programs whose rules conform to some
of the schemata (R1), (R3), (R5), (R6), and (R7).

In the following, let P be a given normal FDNC pro-
gram, and let us construct a suitable splitting sequence for
P . First take any effective enumeration t1, t2, . . . , ti, . . .
of the ground compound terms of P ’s language, such that
each term ti precedes all the terms larger than ti (in terms
of the number of function symbol occurrences). For all
such ground terms ti, we shall denote by Ûi the set of all
ground atoms A(ti) and R(ti, f(ti)), for all function sym-
bols f . Now a canonical splitting sequence for P can be
defined as follows:

• let U0 be the set of all atoms of the form A(c), R(c, d),
or R(c, f(c)), where c and d are constants;

• let Ui+1 = Ui ∪ Ûi+1.

Since P has no rules conforming to (R2) or (R4), it is easy
to check that 〈Ui〉i<ω is indeed a splitting sequence for
Ground(P ).

Moreover, note that by definition, canonical sequences
are smooth, as U0 and the sets Ûi are all finite.

Another important property of canonical sequences is
that the program slices Pi+1 = botUi+1(P )\botUi

(P ) they
induce are all isomorphic to each other. By isomorphic, we
mean that for all 0 < i < j < ω, Pj can be obtained from
Pi by uniformly replacing ti with tj (in symbols, Pj =
Pi[ti/tj ]).

Now consider finite sequences of models 〈Mi〉i<k with
the following properties:

• M0 is a stable model of botU0(P );

• Mi+1 is a stable model of eUi
(botUi+1(P ) \

botUi(P ),Mi).

We say such a sequence is blocked if Mk = Mj [tj/tk] for
some j such that 1 < j < k, that is, Mk can be obtained
from Mj by replacing term tj with tk.

Lemma 7 Every blocked model sequence 〈Mi〉i<k (in-
duced by a canonical splitting sequence 〈Ui〉i<ω for a nor-
mal FDNC program P ) can be extended to an infinite se-
quence 〈Mi〉i<ω satisfying the following properties:

1. M0 is a stable model of botU0(P );

2. Mi+1 is a stable model of eUi
(botUi+1(P ) \

botUi(P ),Mi).

Roughly speaking, the idea simply consists in repeat-
ing the subsequence Mj , . . . ,Mk−1 forever, replacing the
terms tj , . . . , tk−1 as appropriate.

Proof. Let 〈Mi〉i<k be a blocked sequence as described in
the lemma’s statement. Point 1 follows immediately from
the hypothesis, so we focus on point 2. Since 〈Mi〉i<k is
blocked, there exists j < k such that Mk = Mj [tj/tk].
For all i > k, let mi = j + (i − k) mod(k − j) and
Mi = Mmi

[tmi
/ti]. Moreover, for all i ≥ 0 let Pi+1 =

botUi+1(P ) \ botUi(P ). As we already pointed out before
this lemma, Pi = Pmi [tmi/ti]. Now, since both the pro-
gram slices and the models with indexes i and mi are sub-
ject to the same symbol renaming, we have that

eUi
(Pi,Mi−1) = eUmi

(Pmi
,Mmi−1)[tmi

/ti] .

Since semantics does not depend on symbol names and by
assumption Mmi is a stable model of eUmi

(Pmi ,Mmi−1)
(as mi lies between j and k), we clearly have that Mi is a
stable model of eUi(Pi,Mi−1); this proves point 2.

Now proving decidability is relatively easy. We start by
characterizing satisfiability in terms of blocked sequences.

Theorem 8 M is a stable model of a normal FDNC pro-
gram P iff M is the limit of the extension (in the sense of
Lemma 7) of a blocked sequence 〈Mi〉i<k (induced by a
canonical splitting sequence 〈Ui〉i<ω for P ).

Proof. (If ) Suppose M is the limit of a sequence 〈Mi〉i<ω

such that 〈Mi〉i<k is a blocked sequence and such that:

1. M0 is a stable model of botU0(P );

2. Mi+1 is a stable model of eUi
(botUi+1(P ) \

botUi(P ),Mi).

Note that each program slice Pi+1 = botUi+1(P ) \
botUi(P ) contains only atoms from Ui+1 \ Ui−1 (because
P is a normal FDNC program). Therefore the partial eval-
uation of Pi+1 does not depend on the atoms in Ui−1, that
is, for all i < ω,

eUi(Pi+1,
⋃
j≤i

Mj) = eUi(Pi+1,Mi) .
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Then properties 1 and 2 above entail the properties re-
quired by the splitting sequence theorem (for µ = ω). It
follows that the limit M =

⋃
i<ω Mi is a stable model of

P .
(Only if ) Suppose that M is a stable model of P . Let

M0 = M ∩ U0 and for all i < ω, let Mi+1 = M ∩
(Ui+1 \ Ui). By the splitting theorem, M0 is a stable
model of botU0(P ). Moreover, by applying the split-
ting theorem twice for all i, we have that each Mi+1 is
a stable model of eUi(botUi+1(P ) \ botUi(P ),

⋃
j≤i Mj)

that, as we pointed out in the If part of the proof, equals
eUi

(botUi+1(P ) \ botUi
(P ),Mi). Then we are only left to

show that the sequence 〈Mi〉i<ω contains a blocked prefix
〈Mi〉i<k, that is, for some j and k such that 0 < j < k <
ω, Mk = Mj [tj/tk].

To see this, observe that by definition for all i > 0, Mi

is a subset of Ûi, and Ûi is isomorphic to Û1, that is, Ûi =
Û1[t1/ti] and |Ûi| = |Û1|. It follows that for all i > 0
there exists Si ⊆ Û1 such that Mi = Si[t1/ti]. Since
Û1 is finite, there must be two indexes j and k and a set
S ⊆ Û1 such that 0 < j < k ≤ 2|Û1|, Mj = S[t1/tj ], and
Mk = S[t1/tk]. Consequently, Mk = S[t1/tj ][tj/tk] =
Mj [tj/tk], which completes the proof.

Corollary 9 A normal FDNC program P has a stable
model iff P has a blocked model sequence 〈Mi〉i<k (in-
duced by a canonical splitting sequence 〈Ui〉i<ω for P )
with k ≤ 2|Û1|.

Corollary 10 Deciding whether a FDNC program P is
consistent is decidable.

Proof. Consistency can be nondeterministically checked
as follows: First normalize P . Next for i = 1, . . . , 2|Û1|,
build the program eUi(Pi+1,Mi) and pick up one of its
stable models Mi+1; if no such model exists, then return
false. Check whether Mi+1 is isomorphic to some previous
Mj ; if so, return true. Otherwise repeat the loop, or return
false if the end of the loop is reached. Clearly, this algo-
rithm returns true in at least one run iff P has a blocked
model sequence 〈Mi〉i<k with k ≤ 2|Û1|. By the above
corollary, it follows that the algorithm solves the consis-
tency problem for P .

Our results do not need all the restrictions placed on
FDNC programs. Proposition 4 holds even when the pro-
gram is not safe, provided that the rules conforming to (R2)
have nonempty bodies. The other proofs do not depend on
safeness. In this sense, our results are slightly more general
than those in [8].

4 Conclusions and future work

We have given an alternative proof of a decidability re-
sult of [8] for FDNC programs by proving that a consistent
normal FDNC program has always a stable model which is
the limit of a regular sequence 〈Mi〉i<ω of stable models

of the finite programs eUi
(Pi+1,Mi). Such a regular se-

quence can be finitely represented by a blocked sequence
〈Mi〉i<k.

The term blocked is deliberately inspired by the notion
of blocking in tableaux for modal and description logics.
The intuitions in all these areas are analogous, and the
goals are the same, namely decidable reasoning in the pres-
ence of infinite domains through a finite representation of
infinite regular models.

We are planning to complete this investigation by char-
acterizing credulous and skeptical reasoning and their
computational complexity in terms of blocked model se-
quences. In particular, in order to provide effective reason-
ing methods, we are going to exploit the fact that normal
FDNC programs are finitely recursive; for such programs
the sequence of bottom programs induced by a smooth
splitting ω-sequences is consistent iff the entire program is
consistent. The consistency of the bottoms can be proved
by (a suitable adaptation of) Lemma 7.

It will be interesting to inspect applications of these
ideas to modal extensions of logic programming, in the
spirit of [5], possibly exploiting the translation in [1].
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SOMMARIO/ABSTRACT

In questo articolo descriviamo brevemente l’attivitá di
ricerca che abbiamo portato avanti negli ultimi anni sui
programmi logici dinamici. Dopo aver rivisto i nostri
contributi al consolidamento dei fondamenti semantici dei
programmi logici dinamici, descriviamo un semplice for-
malismo —basato su programmi logici dinamici— per ra-
gionare su azioni ed una sua recente estensione che per-
mette di specificare ed eseguire programmi reattivi del tipo
evento-condizione-azione.
In this paper we briefly describe the research activity that
we have been carrying over during the last years on dy-
namic logic programs. After reviewing our contributions
to strengthening the semantics foundations of dynamic
logic programs, we describe a simple formalism to rea-
son about actions —based on dynamic logic programs—
and its recent event-condition-action extension that sup-
ports the specification and the execution of reactive pro-
grams.

Keywords: Logic programs, dynamic knowledge, action
description languages, event-condition-action languages.

1 Introduction

Research in Artificial Intelligence (AI) is concerned with
producing machines to automate tasks requiring intelligent
beaviour. An important problem to face when implement-
ing AI applications is how to represent knowledge, and
how to extract information from such knowledge. This
area of research is known as knowledge representation
(KR) and reasoning. The dominant approach in KR is to
define symbolic paradigms based on some form of logic,
usually consisting of crude facts and more sophisticated
logic formulas. Together, facts and formulas form the
knowledge base (KB) of the AI application. Many tasks
for AI applications also demand to perform some kind of
actions. Hence actions, and possibly the effects of actions,

should be representable in the KR framework, and the
mechanism specifying when an action must be performed
must be defined. Moreover, usually interactive applica-
tion continually receive external inputs in the form of mes-
sages, perceptions, commands and so on. Such inputs can
be considered as events to which the AI application is sup-
posed to react in an intelligent way. Reactivity is a key fea-
ture in dynamic domains, where changes frequently occur.
Among the existing proposals for programming reactive
behaviour, Event-Condition-Action (ECA) languages dis-
tinguish themselves for their flexibility and intuitive syntax
and semantics.

Dynamic domains also demand AI applications for tak-
ing into account frequent changes and consequently up-
dating their KBs. The required updates surely involve the
extensional part of the knowledge base (facts), but occa-
sionally it may be necessary to update also the intentional
part (logic formulas) to represent the fact that the very rules
of the domain changed. Moreover, for adapting to the new
situation, besides knowledge updates, it might be neces-
sary to update the beaviour of the AI applications, i.e. the
reactive mechanisms themselves. These updates may be
the result of external inputs, but it might be necessary for
the application to perform actions leading to self-updates.
Moreover, besides what could be called basic actions like,
for instance, insertion and deletion of facts and formulas,
developera may want to specify more sophisticated actions
obtained by combining the basic ones.

Among the existing formalisms for KR, Logic Program-
ming (LP) has a simple logic-based syntax, formal declar-
ative semantics and implemented inference systems. In the
past years, part of the research on LP focused on represent-
ing dynamic knowledge, i.e. knowledge that is constantly
self-updated, leading to the dynamic logic programming
(DyLP) framework [5, 9, 10, 12, 13]. Taking advantage
of the established results in the field, we developed a (dy-
namic) LP framework for programming AI applications
satisfying the above listed features.

In this paper, we first review (Section 2) our contribu-
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tions to strengthening the semantics foundations of dy-
namic logic programs that yielded a refined stable-model
based semantics and a well-founded semantics for this
class of logic programs. We then describe (Section 3)
a simple formalism (EAPs) to reason about the effects
of actions —based on dynamic logic programs and on
the LP update language Evolp [4]— and its recent event-
condition-action extension ERA that supports the speci-
fication and the execution of reactive programs. As we
will see, ERA supports the specification and the execution
of reactive programs, by detecting (simple and complex)
events, by performing (simple and complex) actions and by
allowing self-updates. Since ERA can also encode EAPs,
it hence satisfies the features listed earlier in this Introduc-
tion. Finally some conclusions and directions for future
work are discussed (Section 4).

We assume the reader is familiar with logic program-
ming and the stable models and well-founded semantics
and refer to [6] for details on syntax and semantics of LPs.

2 Dynamic Logic Programs

Dynamic Logic Programs represent evolving knowledge.
Syntactically, a DyLP P is a sequence P1, . . . , Pn (rather
than a single program) of generalized logic programs
(GLPs), viz., programs where rule heads may be nega-
tive literals. P1 represents the initial knowledge and the
other Pis are supervenient updates representing the evolu-
tion of the described situation. Given two updates P i, Pj ,
of a DyLP P , Pj is said to be more recent than Pi if Pj

follows Pi in the sequence P . In the past years, several
semantics have been defined for providing a meaning to
DyLPs [5, 9, 10, 12, 13]. These semantics are extensions
of the stable model semantics of normal logic programs, in
the sense that, whenever the considered DyLP is a single
normal program P , the models of P in the considered se-
mantics for DyLPs coincide with the stable models of P .
Another common denominator of these semantics, is the
causal rejection principle [10, 12]. This principle states
that a model M of a DyLP P must fulfill a rule τ in an
update of P , unless there exists a rule in a more recent up-
date that is in conflict with τ and whose body is true in
M . Two rule τ and η are said to be in conflict if they have
complementary heads, viz., the head of τ is a literal A and
the head of η is not A or viceversa. The principle allows
a more recent rule to specify an exception to an older one,
thus allowing to update previous beliefs.

The semantics for DyLPs based on the causal rejection
principle coincide on large classes of programs but dis-
agree on some examples and, at the time we started our
investigation, there was no general agreement on which
should be the stable model-like semantics for DyLPs based
on the causal rejection principle. Moreover, all the seman-
tics defined before we started our investigation show coun-
terintuitive beaviour in some well known example. The
simpler examples involve tautological updates that happen

to change the semantics of a DyLP, while immunity to tau-
tologies is a property generally required to a semantics.

For instance, the single program DyLP

P1 : not rain. rain← cloudy.
cloudy ← not sun. sun← not cloudy.

has one model {not rain, sun}. If we update P1 with

P2 : rain← rain.

another model {rain, not sun} is allowed. Somehow, the
tautology has generated another model by rejecting the rule
not rain. In general, all the known counterintuitive beav-
iour occur in DyLPs with cyclic dependencies among liter-
als, somehow leading to the addition of undesired models.
although a formal definition of counterintuitive beaviour
and undesired model was missing. Our contribution was:

• to formalise the concept underlying such counterintu-
itive beaviour and to clarify which should be the right
semantics for DyLPs by establishing which properties
should be satisfied by such semantics, and

• to define a semantics satisfying these properties, thus
avoiding the known counterintuitive beaviour.

To achieve these results we defined the refined extension
principle [1]. The refined extension principle is a criterium
stating when the addition of rules to a program should not
add more models to its semantics and it enables to formal-
ize the undesired addition of models. Then, we defined the
refined stable model semantics (or simply refined seman-
tics) for DyLPs that refines the other stable-like semantics
for DyLPs. Formally this was achieved by associating to
each DyLP P = P1, . . . , Pn, an operator over sets of lit-
erals ΓR

P and defining the refined models of P as the fix-
points of ΓR

P . The ΓR
P operator is formally defined as fol-

lows:

ΓR
P(M) = least

(
ρ(P) \RejR(P , M) ∪Def(P , M)

)
where ρ(P) is the multiset of all the rules appearing in
any program of the sequence P and Rej R(P , M) is the
multiset of all the rules τ in some update Pi ofP for which
there exist a rule η in some update Pj with i ≤ j such that τ
and η are in conflict and the body of η is true in M . Finally
Def(P , M) is the set of default assumptions, i.e. the set
of all the negative literals not A such that there exists no
rule in P whose head is A and whose body is true in M .

The refined semantics was proved to satisfy the refined
extension principle and the causal rejection one. Moreover,
we extended the concept of well supported models [6] to
DyLPs and proved that the refine models of a DyLP are
exactly its well supported models.

A further result was the definition of a well founded se-
mantics for DyLPs [8]. The well founded semantics is a
skeptical approximation of the stable model one. From a
practical point of view, the well founded semantics has less
expressivity (for instance it does not allow to express logic
constraints) and less inference power (it allows to derive

Il Milione: A Journey in the Computational Logic in Italy

62



less conclusions). On the other hand, the well founded se-
mantics is computationally less expensive than the stable
model semantics. Indeed, determining a (refined) stable
model of a (dynamic or generalized) logic program is a
NP-complete problem, while the computation of the well
founded model of a normal logic program has polynomial
complexity.

Moreover, unlike the stable model one, the well founded
semantics is always defined and, according to it, a program
can be queried about specific information without the need
to compute its whole semantics. Due to these features, the
well founded semantics is a better candidate than the sta-
ble model one for applications that are time-committed and
require to process huge amount of data, like most of real
world database related applications.

We defined a well founded semantics for DyLPs that ex-
tends the well founded semantics for normal LPs and ap-
proximates the refined one, in the sense that (as for normal
LPs) the well founded model of a DyLP is a subset of any
of its refined models. Moreover, the well founded seman-
tics for DyLPs preserves the good features shown for the
class of normal and generalized LPs, i.e. the well founded
model always exists, its computation is polynomial, and a
DyLP can be queried about specific information without
the need to compute its whole semantics.

The well founded model was defined as the least fix-
point of an operator ΓΓR, combining the ΓR operator used
for defining the refined model semantics with another op-
erator Γ used for defining another semantics for DyLPs i.e.
the dynamic stable model semantics [12].

3 Reasoning about and executing actions

After strngthening the formal foundation of dynamic logic
programs, we turned our attention to the the problem of
programming self-updatable AI applications capable of
reasoning about and executing actions. A bridge between
dynamic KR via DyLPs and this kind of applications was
already established by the family of LP updates languages
[4, 10, 12]. These languages are built on the top of a
DyLP semantics and, besides representing dynamic and
constantly updated knowledge, they allow one to specify
how a KB should be updated. Among these formalism the
Evolp language [4] has a particularly simple, but highly ex-
pressive syntax and semantics, and hence it was chosen as
the starting point of our investigation. Evolp is a language
for building sequences of DyLPs starting from an original
program. Syntactically, Evolp extends the language of LP
with new atoms assert(r) where r is a rule. An Evolp
programs evolves passing from the current state to the suc-
cessive one, by updating the program with all the rules r
such that the atom assert(r) is true in the current state.

A widely used way to describe and reason about the
effects of actions are action description programs writ-
ten in specific formalisms called action description lan-
guages [11]. We defined an action description language

of our own, christened Evolving Action Programs (EAPs)
[2]. EAPs are defined as a macro language on top of Evolp
in the sense that every statement in EAPs is syntactic nota-
tion for a set of Evolp statements and the semantics of an
EAP is given by the semantics of the corresponding Evolp
program.

Syntactically, an EAP statement can be:
• an inertial declaration inertial(f),
• a static, logic programming-like rule L← L1, . . . Ln,

• a dynamic rule effect(H ← B)← Cond.

The meaning of an inertial declaration inertial(f), where
f is an atom (usually called a fluent in the context of ac-
tion description languages) is that the truth value of f is
preserved in time unless it changes as an effect of the exe-
cution of an action. A static rule describes the (static) rules
of the environment by expressing correlations among flu-
ents. A dynamic rule expresses the effect of the execution
of actions. Syntactically, the effect H ← B is a static rule,
while Cond is a conjunction of action literals representing
actions being or not executed and fluent literals represent-
ing preconditions for the considered effects to take place.

The expressivity of EAPs was compared with that of the
action languages A, B, C (see [11] for a detailed descrip-
tion of these languages) and for each of these languages,
a modular embedding of their action programs into EAPs
was defined. Moreover, being based on DyLPs, EAPs are
shown to be particularly suitable for encoding successive
elaborations or updates of an action description problem.

Besides reasoning about the effects of actions, we also
needed a formalism for executing them. This was achieved
by defining an ECA formalism called ERA (after Evolving
Reactive Algebraic programs) [3]. Along with inference
logic programming rules, ERA presents two new forms of
rules for specifying the execution of actions, i.e. active and
inhibition rules of the form, respectively:

On Event If Condition Do Action. (1)

When B Do not Action. (2)

where Event is an event literal encoding the occurrence
of an event and Condition is a conjunction of literals ex-
pressing the condition under which an Action (syntacti-
cally an atom) is executed. Finally, B is a conjunction of
literals expressing conditions under which Action should
not be executed. Both events and actions can be basic or
complex ones. Complex events and actions are obtained by
combining simple ones via an event and an action algebra.

Events occur at a given instant and are volatile informa-
tion. Basic events may be external, representing incoming
inputs and commands or internal, raised by the system it-
self. The event algebra allows to combine events occurring
simultaneously or at different time points. For instance, the
complex event A(e1, e2, e3), where A/3 is a ternary oper-
ator and the eis are events, occurs at instant i iff e3 occurs
at instant i, e1 occurred at some previous instant and e2 did
not occurr in between.
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Actions represent operations to be executed. Basic ac-
tion can be external, representing some external operation
to be executed, or internal. As for events, basic actions can
be combined by an algebra of operators for specifying flow
of operations. For instance, given two action a1 and a2, ac-
tion a1 � a2 specifies that action a2 must be executed after
a1, while action ‖(a1, a2) specifies that a1 and a2 can be
concurrently executed.

Among internal actions, particularly important ones are
the assertion and the deletion of facts and rules. While
deletion removes facts and rules from the KB, the asser-
tion of rules causes the application to update itself by a
new fact, an inference, an active or an inhibition rule. New
facts and inference rules are incorporated by the underly-
ing DyLP semantics (that can be the refined as well as the
well founded one). Also new active and inhibition rules
are incorporated by the underlying DyLP semantics. As-
sertions of rules of the forms (1) and (2) are translated,
respectively, into the LP updates

Action← Condition, Event.
not Action← B.

The underlying DyLP framework allows to establish
whether the atom Action is derived or not and, in the for-
mer case, the corresponding action is executed. In this
way the application can update not only its KB but also
its beaviour by asserting new active rules and specifying
exceptions to existing active rules by asserting inhibition
ones. Moreover, it was proved that every Evolp program,
and hence every EAP, can be directly encoded into ERA.
Thus ERA is a paradigm capable of both executing and
reasoning about actions. In [7] ERA is discussed in detail
and compared to existing formalisms for programming re-
active behaviour. We simply point out here the two main
novelties of ERA, i.e. its self evolution capabilities and
featured possibility of both programming the execution of
actions and reasoning about their effects.

4 Conclusions and future work

In this paper we have tried to briefly describe the research
activity that we have been carrying over during the last
years on dynamic logic programs. After reviewing our
contributions to strengthening the semantics foundations
of dynamic logic programs, we have presented the EAPs
formalism to reason about actions, and its recent event-
condition-action extension ERA that supports the specifi-
cation and the execution of reactive programs. While space
limitations only allowed us to provide an extended abstract
of this research activity, more details can be found in the
papers [1, 2, 3, 8] and a complete presentation of all the
results is reported in [7].

There are several open windows for future work. One
of them is the definition of action query languages [11],
that is, languages for extracting information about the pos-
sible evolution of the situations described by EAPs and to

address planning issues, e.g., how to determine, given a
current state and a goal, a sequence of actions leading to a
state satisfying that goal. Another direction for future work
are transactions. Although the action algebra of ERA al-
lows one to program complex actions, it is still less than
adequate for defining transactions. In order to define and
execute transactions, the action algebra of ERA should be
extended for coping with the execution of ACID transac-
tions as well as of compensation activities.
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SOMMARIO/ ABSTRACT

Illustriamo qui brevemente la nostra esperienza nel campo
della verifica e delle trasformazioni dei programmi logici.
Pur occupandoci ora di tematiche completamente diverse,
verifica di propriet̀a di sicurezza da un lato e analisi di
sistemi biologici dall’altro, continuiamo ad utilizzare
proficuamente la nostra precedente esperienza.

In this paper, we briefly describe our esperience in the field
of verification and transformation of logic programming.
Though now we are working in a completely different field,
verification of security properties on one hand and biosys-
tems analysis on the other, our previous experience contin-
ues to be a valuable guide.

Keywords: logic programming, termination verification,
program transformation

1 Introduction

It is very pleasant to remember the time we spent in work-
ing on Logic Programming. The friendship and warmth
of the people we met, the enthusiasm and interest in re-
search, the curiosity and joy of young researchers, have
been strong reasons for working in this field and to be
happy with it.

Our main interest, since the beginning, was analysis and
verification of logic programs and program transformation.
After more than fifteen years of happy and satisfactory re-
search, we felt the need to enlarge our research field and
we tried to export our expertise in Computational Logic to
different research topics.

In the following section we briefly resume our main re-
sults in the field of logic programming and then we give a
brief account of our present research interests.

2 Our contribution to Logic Programming

Programming methodology imposes to focus first on the
correctness of a program and only later on its efficiency.
This is necessary also in logic programming and it requires
both program verification and program optimization tools.
Our research in LP has been motivated by these needs,
dealing mainly withtransformation systemsand withanal-
ysis techniques.
Analysis techniques.
Logic programs are declarative in essence, and this is a
great advantage for programs prototyping and develop-
ment. Nevertheless, there are properties which are not
directly expressed by the program itself and have to be
proved. We proposed a technique for verifying correct-
ness and completeness of a logic program with respect to
a Pre/Post declarative specification of data properties [1].
This can be used to guarantee both the correspondence of
the program to its intended meaning and the applicabil-
ity of program transformations. We considered also the
operational property on having successes, or finite fail-
ures, which is relevant for query correctness and efficiency
[5, 6]. Besides, the property of not having finite failures
can be used to simplify applicability conditions of program
transformation operations.
Techniques for verifying termination.
Termination is an essential property of programs. We con-
sidered the problem of verifyinguniversal terminationof
logic programs. This is a rather strong requirement for a
query, namely to have only finite LD-derivations1. All the
methods to solve this problem, if effective, can only pro-
vide sufficient criteria for termination. In our works we
developed various methods for the analysis of universal
termination by considering different classes of programs
which can be verified.

We introduced a class of functions to weight the terms
occurring in a program (semilinear norms) [16, 18]. The
norms in this class provide a syntactical characterization

1SLD-derivations build with the leftmost selection rule.
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of rigid terms, i.e. terms whose weight does not change
under substitution. The notion of rigid term generalizes
the notion of ground term. We defined a proof method for
universal termination, based on Pre/Post conditions which
deal with the rigidity of terms and can be derived by the
mode and type properties of atoms. In [17] we general-
ized our previous work by considering also terms with a
specified structure by means oftyped norms. Besides, we
studied how mode and type information can be used for
characterizing termination properties. We defined the class
of well-moded programs[31], namely programs which
are inductively ”well-formed” with respect to a specified
input-output functionality. This allowed us to define and
characterizewell-terminating programs, namely programs
for which all well-moded queries have only finite LD-
derivations. We proposed also a termination property for
general logic programs (programs with negation) [19]. A
general program istyped-terminatingif it terminates for
any well-typed query. These definitions lead to sufficient
conditions for termination which are compositional and
simple to verify.

In [14] we completed our work on the verification of ter-
mination properties, by proposing a modular proof tech-
nique applicable to hierarchical general programs. Be-
sides, by using mode or type information, it is possible to
verify termination incrementally.
Trasformations on logic and Prolog programs.
Program transformations are applied both in program syn-
thesis and in program optimization. For logic programs
the “logic” component makes transformations very natural
and easy to be studied formally. But, when we move to
Prolog programs, non-declarative properties, like termina-
tion, cannot be ignored.

At first we focused onprogram specialization, which
consists in restricting the applicability of the original pro-
gram while optimizing it: the specialized program deals
with fewer cases but in a more efficient way. Some parts
of the computation become redundant, other parts can be
pre-computed (partial evaluation). Specialization seems to
fit very well logic programs in order to pass from a rela-
tional definition to some specific functionalities. We pro-
posed a methodology for specializing a logic program [7]
and studied a set of basic transformation operations which
allow one (i) to associate a new application domain to the
query by means of constraints, and (ii) to propagate them
through the program for optimizing it. The set of basic
operations includes:

- new definition, it defines a new predicate in terms of
other predicates already available in the program;

- unfold, it substitutes an atom in a clause body with all
its definitions;

- fold, it substitutes a set of atoms in a clause body with
an equivalent atom;

- prune, it removes a redundant clause from the program;
- thin, it removes a redundant literal from a clause body;
- fatten, it adds further literals in a clause body whenever

this allows for simplifications;
- replace, it substitutes a set of literals in a clause body

for another set of literals; it is a generalization of thethin
andfattenoperations.

Each operation must produce a program which is equiv-
alent to the original one, but more efficient. Program
equivalence depends on the semantics we consider. Hence,
we studied these transformation operations with respect to
different program semantics. Our effort has been to deter-
mine sufficient conditions, simple to verify, for the vari-
ous operations and semantics. We considered the classic
semantics given by the minimal Herbrand model [7] and
the semantics given by computed answers substitutions [2].
Moreover, in [8, 9] we considered general programs (with
negation) and some semantics for them, such as Fitting’s
semantics, Kunen’s semantics, and the Well-founded se-
mantics.

Besides basic transformation operations, we definedsi-
multaneous replacementand we studies it with respect to
the three-valued completion of a logic program [11].

Any transformation system is a source-to-source rewrit-
ing methodology devised to improve the efficiency of a
program. Any such transformation should preserve the
main properties of the initial program. The transforma-
tion operations defined for logic programs do not consider
operational properties, among them, termination. These
properties become relevant for Prolog programs. To deal
with that we followed two approaches.

On one hand, we consideredacyclic programs, namely
programs which terminate for each ground query and any
selection rule, andacceptable programs, namely programs
which terminate for each ground query and leftmost selec-
tion rule. For both of them we identified the subclasses of
programs closed under unfold and fold operations [20, 11].

In order to be applicable most of the transformations re-
quire to reorder the atoms in clause bodies, then in [12] we
extended the previous work by considering also aswitch
operation which allows one to reorder consecutive atoms.

On the other hand, in [3, 4] we followed a more opera-
tional approach and we defined anon-increasingproperty
for a transformation. It is a very strong property which
guarantees that the transformation is both preserving uni-
versal termination and optimizing, since it cannot increase
the depth of the derivation tree associated to a query.

In [13] we considered and analyzed the main systems for
transforming logic and Prolog programs. In particular we
discuss if they preserve non-declarative properties of the
original program and specifically termination properties.
Semantics for logic programs.
Our work on the semantics of logic programming is ruled
by the convincement that a semantics should help in un-
derstanding the meaning of programs by providing use-
ful notions of observable program equivalences. Thes-
semantic approach(see [26]) provides a methodology to
define semantics which enjoy this property. Each seman-
tics in the approach captures some observable properties
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of logic programs and allows us to detect when two pro-
grams are undistinguishable by observing their behaviors,
thus providing a suitable base for program analysis and
transformation. Following this approach, we defined the
Ω- semantics, a compositional semantics for positive logic
programs. It provides a refined notion of observational
equivalence which takes into account both computed an-
swers and program composition by union of clauses [27].

Most logic programming languages offer some kind
of dynamic schedulingto increase the expressive power
and to control execution. But the presence of dynamic
scheduling makes more complex the programs behaviour
and more difficult the description of the semantics.Input
consumingderivations have been introduced and studied
in [21, 22, 23] to describe dynamic scheduling while ab-
stracting from the technical details. In [15] we reviewed
and compared the different proposals given for dynamic
scheduling and in particular for the denotational semantics
of programs with input consuming derivations. We also
show how they can be applied to termination analysis.

3 Present Research

Verification of security properties.
In the recent years, security has gained more and more im-
portance. In this field, our research focus oninformation
flow properties, i.e., security properties that allow one to
express constraints on how information should flow among
different groups of entities. An interesting feature of these
kind of properties, is that they protect the system even
against internal attacks performed by, e.g., viruses or Tro-
jan horses.

We study different classes of security properties and
conditions to ensure global properties by means of local
unwinding conditions[25]. Locality allows us to define a
proof system which provides a very efficient technique for
the development and verification of secure processes [24].

For many practical applications the requirement of
a complete absence of any information flow could be
stronger than necessary when some knowledge about the
environment (context) in which the process is going to run
is available. To relax this requirement we introduce a gen-
eral notion ofsecure contextsfor a process [28]. In [29]
we moved from a process algebra setting to a standard
programming environment. We present a general unwind-
ing framework for the definition of information flow secu-
rity properties of concurrent programs, described in a stan-
dard imperative language, admitting parallel executions on
a shared memory.
Biosystems analysis.
Computational biology is a recent field combining com-
puter science and molecular biology to study living beings.
We focus our attention on two areas, pattern discovery and
system biology.
Pattern discovery. Many biological problems require to
blindly search into DNA or protein sequences for rele-

vant signals. Often we may assume that strings which ap-
pears ”strangely often” or ”strangely rarely” in such se-
quences have an associated functional purpose. We stud-
ied the techniques for finding such signals and for giving
them a compact representation as patterns. In particular
we definemaximal patterns[30], which correspond to the
largest subsets of strings which can be grouped together.
The set of maximal patterns is unique and very readable,
intuitively it represents all possible ”most abstract views”
of the strings we are interested in. We propose two differ-
ent algorithms for computing the set of maximal patterns.
Systems biologyis a rather new field studying complex in-
teractions in biological systems. The aim is to model such
systems, to formally analyze their properties and to sim-
ulate their behaviour. This would make possible to doin
silico experiments instead ofin vivo experiments, which
may be difficult, or even impossible, to perform on biolog-
ical systems. Computational logic and formal techniques
to specify and analyze concurrent processes can be applied
to this field.
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SOMMARIO/ABSTRACT

Viene descritto l’utilizzo della logica computazionale
a supporto della formalizzazione ed implementazione
di agenti in sistemi multi-agente. In questo ambito è
necessario l’uso di varie forme di logica computazionale,
tra le quali abduzione, argomentazione e sistemi basati
su preferenze. Viene presentato a grandi linee il modello
per agenti denominato KGP, nonché una sua estensione
in corso di definizione per la modellazione di agenti
in ambienti distribuiti quali il Grid e più in generale
architetture service-oriented

We describe recent work on the deployment of computa-
tional logic to support the formalisation and implemen-
tation of agents in multi-agent systems. Several forms
of computational logic systems are needed in this setting,
including abductive, argumentative and preference-based
systems. We briefly sketch the agent model called KGP,
and an ongoing extension of it which is needed to model
agents in distributed settings such as the Grid and, more
generally, Service-oriented architectures.

Keywords: Logica computazionale, sistemi multi-agente,
abduzione, argomentazione

1 Introduction

Computational Logic (CL) has been successfully adopted,
in recent years, in modelling agents within agent based sys-
tems. The adoption of CL techniques has the advantage
that formal specifications come along with their compu-
tational counterparts in the form of provably correct and
executable proof procedures. The formal and computa-
tional models needed in the agent based settings require
an integrated treatment of different features, which can be
handled within various extensions of the basic logic pro-
gramming framework, including abduction, argumentation
and constraint logic programming. In this short paper we

briefly summarize one such approach which has lead to the
defnition of the KGP model for agency, and which is being
further developed to cope with the specification of agents
in service-oriented applications.

2 The KGP model

KGP is an acronym for Knowledge, Goals and Plan. The
model is intended to provide a modular and hierarchical
specification of agents equipped with a variety of advanced
reasoning features to allow intelligent decision making and
behaviour. KGP agents are particularly suited to open dy-
namic environments where they have to adapt to changes
in their environment and they have to function in circum-
stances where they have incomplete information. Here we
give an overview of the KGP agent model and its compo-
nents [4, 3]. The model relies upon
− an internal (or mental) state, holding the agent
Knowledge base (beliefs), Goals (desires) and Plans (in-
tentions),
− a set of reasoning capabilities,
− a set of physical capabilities,
− a set of transition rules, defining how the state of the
agent changes, and defined in terms of the above capabili-
ties,
− a set of selection operators, to enable and provide ap-
propriate inputs to the transitions,
− a cycle theory, providing the control for deciding which
transitions should be applied when, and defined using the
selection operators. The model is defined in a modular
fashion, in that different activities are encapsulated within
different capabilities and transitions, and the control is a
separate module. The model also has a hierarchical struc-
ture, depicted in figure 1.

Internal state. This is a tuple 〈KB0,F , C,Σ〉, where:

• KB0 holds the (dynamic) beliefs of the agent about
the external world in which it is situated, as well as a
record of the actions it has already executed.
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Figure 1: A graphical overview of the KGP model

• F is a forest of trees whose nodes are goals, which
may be executable or not. Each tree in the forest
gives a hierachical presentation of goals, in that the
tree represents the construction of a plan for the root
of the tree. The set of leaves of any tree in F forms
a currently chosen plan for achieving the root of the
tree. Executable goals are actions which may be
physical, communicative, or sensing. Non-executable
goals may be mental or sensing. Only non-executable
mental goals may have children, forming (partial)
plans for them. Actions have no children in any trees
in F . The roots of trees in F are referred to as
top-level goals, the executable goals are referred to
as actions, and non-executable goals which are not
top-level goals are referred to as sub-goals. Top-
level goals are classified as reactive or non-reactive.
Roughly speaking, reactive goals are generated in re-
sponse to observations, e.g. communications received
from other agents and changes in the environment, for
example to repair plans that have already been gener-
ated. Non-reactive goals, on the other hand, are the
chosen desires of the agent. Note that some top-level
(reactive) goals may be actions.

• C is the Temporal Constraint Store, namely a set of
constraint atoms in some given underlying constraint
language. These basically constrain the time variables
of the goals in F . For example, they may specify a
time window over which the time of an action can be
instantiated, at execution time.

• Σ is a set of equalities instantiating time variables
with time constants. For example, when the time vari-
ables of actions are instantiated at action execution
time, records of the instantiations are kept in Σ.

Reasoning capabilities. These are:

• Planning, which generates plans for mental goals
given as input. These plans consist of temporally con-

strained sub-goals and actions designed for achieving
the input goals.

• Reactivity, which is used to provide new reactive top-
level goals, as a reaction to perceived changes in the
environment and the current plans held by the agent.

• Goal Decision, which is used to revise the non-
reactive top-level goals, adapting the agent’s state to
changes in its own preferences and in the environ-
ment.

• Identification of Preconditions and Identification of
Effects for actions, which are used to determine ap-
propriate sensing actions for checking whether ac-
tions may be safely executed (if their preconditions
are known to hold) and whether recently executed ac-
tions have been successful (by checking that some of
their known effects hold).

• Temporal Reasoning, which allows the agent to rea-
son about the evolving environment, and to make pre-
dictions about properties, including non-executable
goals, holding in the environment, based on the (par-
tial) information the agent acquires over its life-time.

• Constraint Solving, which allows the agent to reason
about the satisfiability of the temporal constraints in
C and Σ.

In the concrete realisation of the KGP model, we have
chosen to realise the above capabilities in various exten-
sions of the logic programming paradigm. In particular,
we use (conventional) logic programming for Identifica-
tion of Preconditions and Effects, abductive logic program-
ming with constraints for Planning, Reactivity and Tempo-
ral Reasoning, and logic programming with priorities for
Goal Decision.

Physical capabilities. In addition to the reasoning capa-
bilities, the agent is equipped with “physical” capabilities,
linking the agent to its environment, consisting of

• A Sensing capability, allowing the agent to observe
that properties hold or do not hold, and that other
agents have executed actions.

• An Actuating capability, for executing (physical and
communicative) actions.

Transitions. The state 〈KB0,F , C,Σ〉 of an agent
evolves by applying transition rules, which employ the ca-
pabilities as follows:

• Goal Introduction (GI), possibly changing the top-
level goals in F , and using Goal Decision.

• Plan Introduction (PI), possibly changing F and C
and using Planning.
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• Reactivity (RE), possibly changing the reactive top-
level goals in F and possibly C, and using the Reac-
tivity capability.

• Sensing Introduction (SI), possibly introducing new
sensing actions in F for checking the preconditions
of actions already in F .

• Passive Observation Introduction (POI), changing
KB0 by recording unsolicited information coming
from the environment, and using Sensing.

• Active Observation Introduction (AOI), possibly
changing Σ and KB0, by recording the outcome of
(actively sought) sensing actions, and using Sensing.

• Action Execution (AE), executing all types of actions
and as a consequence changing KB0 and Σ, and us-
ing Actuating.

• State Revision (SR), possibly revising F , and using
Temporal Reasoning and Constraint Solving.

Cycle and Selection operators. The behaviour of an
agent is given by the application of transitions in se-
quences, repeatedly changing the state of the agent. These
sequences are not determined by fixed cycles of behaviour,
as in conventional agent architectures, but rather by reason-
ing with cycle theories. Cycle theories define preference
policies over the order of application of transitions, which
may depend on the environment and the internal state of
an agent. They rely upon the use of selection operators for
detecting which transitions are enabled and what their in-
puts should be, as follows:
−action selection for inputs to AE;
this selection operator uses the Temporal Reasoning and
Constraint Solving capabilities;− goal selection for inputs
to PI;
this selection operator uses the Temporal Reasoning and
Constraint Solving capabilities; − effect selection for in-
puts to AOI; this selection operator uses the Identification
of Effect reasoning capability;
− precondition selection for inputs to SI; this selection op-
erator uses the Identification of Preconditions, Temporal
Reasoning and Constraint Solving capabilities.
The provision of a declarative control for agents in the
form of cycle theories is a highly novel feature of the
model, which could, in principle, be imported into other
agent systems. In the concrete realisation of the KGP
model, we have chosen to realise cycle theories in the same
framework of logic programming with priorities and con-
straints that we also use for Goal Decision.

2.1 Computational model

One central distinguishing feature of the KGP model, in
comparison with other models for agency, including those
based on logic programming, is its modular integration

within a single framework of abductive logic program-
ming, temporal reasoning, constraint logic programming,
and preference reasoning based on argumentation in order
to support a diverse collection of capabilities. Each one of
these is specified declaratively and equipped with its own
provably correct computational counterpart. These com-
putational models are heavily based upon proof procedures
for (various extensions of) logic programming. In particu-
lar, the operational model for KGP agents relies upon CIFF
[2], a proof procedure for abductive logic programming
with constraints, and Gorgias [1], for logic programming
with priorities. These procedures have been obtained by
adapting and suitably extending two existing proof proce-
dures for logic programming, namely Fung and Kowalskis
IFF procedure for abductive logic programming for CIFF,
and Kakas and Tonis argumentation-based procedure for
negation as failure in logic programming for Gorgias. The
overall operational models are sound and (in some cases)
complete with respect to the abstract KGP model, and form
a solid bridge between the KGP model and its implemen-
tation within the PROSOCS platform, a prototype imple-
mentation using Sicstus Prolog and JXTA [5].

3 Argumentative agents in ARGUGRID

The use of agent technology offers a solution to dynamic
service composition in distributed settings such as the Grid
and more generally Service-Oriented Architectures. Dif-
ferent services can be associated with autonomous agents
that can identify and negotiate, on behalf of service re-
questors and providers, implementation plans that take into
account the requirements of both sides. The ARGUGRID
project1 aims at defining and deploying argumentation-
based agents to support the selection and composition of
services over the Grid and Service-Oriented Architectures
[6]. We have proposed in [7] an agent architecture inte-
grating a number of argumentative modules (for various
forms of decision-making), a module for interaction with
other agents, “physical” modules for carrying out this in-
teraction via communication, and several data structures.
This type of argumentative agents can be seen as a vari-
ant of KGP agents. This variant relies upon the use of an
argumentation decision-making tool supporting all reason-
ing capabilities, and it makes use of argumentative proto-
cols for persuasion in negotiation. Argumentative agents
are equipped with a specialised internal state, consisting of
requirements, abstract or partially instantiated workflows,
concrete workflows, planned communicative actions and
actions executed in the past by the agent or by others, and
arguments. The KGP modular architecture allows us to
adopt a specialised set of reasoning capabilities supporting
the various forms of decision-making needed in ARGU-
GRID and inter-agent interaction, as well as a capability
for revising the knowledge/beliefs of agents, which is actu-

1www.argugrid.eu
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ally missing in the original KGP model. Specialised phys-
ical capabilities are also needed in this setting to provide
suitable forms of inter-agent communications, and finally
appropriate transitions encapsulate the new capabilities. In
this setting, agents need to be able to perform communica-
tive actions (for requesting services, accepting or refusing
the provision of services, etc.) and actions for consulting
registries, inquiring about services and their providers. In
their internal state, agents store (a selection of) all commu-
nicative acts they have participated in, as either speakers or
receivers, as well as the set of their current commitments,
namely the contracts they have committed to. Basically,
argumentative KGP agent are characterised by

• a (transient) state, consisting of
− a knowledge base, called KB0 as for the KGP
model, but holding communicative acts by or to the
agent, acts for consulting registries by the agent, as
well as contracts
− a set of goals, namely requirements by the user
“owning” the agent
− a set of decisions, of different kinds (to get ser-
vices of known types from some yet-to-be-decided
providers or from some known providers, or a deci-
sion to utter something, or a decision to consult some
registry)
− a set of arguments, providing justifications and rea-
sons for goals and decisions in the state

• a number of extended reasoning capabilities, namely
abstract decision-making, social decision-making,
communicative reactivity, registry consultation; each
capability is supported by an appropriate argumenta-
tion system (base)

• a revision capability, for modifying the argumentation
systems supporting the various reasoning capabilities

• physical capabilities, namely listening, talking, and
consulting

• a set of transitions, namely ADM (using the abstract
decision-making capability), SDM (using the social
decision-making capability), CR (using the commu-
nicative reactivity capability), RC (using the registry
consultation capability), R (using the revision capa-
bility), LI, TA, CON (using the listening, talking and
consulting capabilities, respectively)

• a control, in the form of a conditional policy, that, for
each transition, gives one or more possible next tran-
sitions depending on whether a number of conditions
hold or not.

Here, the consulting capability is intended for accessing
information in registries. The reasoning capabilities corre-
spond to the IDM (individual decision-making), SDM (so-
cial decision making), and SI (social interaction) modules
in [7]. The listening and talking capabilities are special
cases of sensing and actuating in the KGP model.

4 Conclusions

We have briefly described work carried out in recent years
and still ongoing, which aims at adopting computational
logic for the description of agents in agent based systems.
The use of computational logic allows us, on one hand to
partially fill the gap between agent models and their com-
putational realization. Indeed, the specification of KGP
agent is a sort of executable specification due to the fact
that the computational logic tools adopted in this setting
are equipped with suitable concrete proof procedures. On
teh other hand, the modularity of the KGP model allows
one to extend it naturally to support new forms of reason-
ing, such as the ones needed in order to model the type
of agents needed in service-oriented applications. Again,
computational logic tools, based on various forms of argu-
mentation, can be adopted in these settings to support the
new type of capabilities needed, such as decision making
and negotiation. This is still ongoing work we are carrying
out within the ARGUGRID project.
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SOMMARIO/ ABSTRACT

Riassumiamo brevemente la nostra attività di ricerca nel
campo delle logiche non-classiche iniziata negli anni ’90.
In particolare, descriviamo la nostra ricerca riguardante
l’applicazione delle logiche non-classiche alla rappresen-
tazione della conoscenza e lo sviluppo di metodi di prova
per logiche non-monotone e condizionali.

We briefly outline our research activity in the field of non-
classical logics started in the 90s. In particular, we de-
scribe our research in the application of non-classical log-
ics to knowledge representation and in the development of
proof methods for non-monotonic and conditional logics.

Keywords: Non-classical logics, knowledge representa-
tion, proof methods

1 Introduction

Our interest in the field of non-classical logic started with
our work in Logic Programming at the beginning of the
90s. At that time we were working with Alberto on ex-
tensions of LP for dealing with hypothetical, conditional,
defeasible and abductive reasoning. Those activities in-
clude the development of goal directed proof methods for
Horn like fragments of modal logics K, S4, S5 and their
use in the definition of structuring constructs for logic pro-
grams; the study of negation as failure in a hypothetical
logic programming (NProlog); the semantic characteriza-
tion of truth maintenance systems (TMS), and its relation
with stable model semantics; proof procedures for abduc-
tive logic programming; and the definition of a conditional
logic programming language (CondLP). Since that time,
we have started working on non-classical logics both fo-
cusing on the use of such logics in knowledge representa-
tion and on developing proof methods for the automatiza-
tion of conditional and non-monotonic logics.

Non-classical logics are widely used within the AI com-

munity, in the context of knowledge representation. In the
following section, we describe the activity of our group in
this area, concerning the use of modal, temporal, condi-
tional and non-monotonic logics for Reasoning about Ac-
tions and Change and for Belief Revision as well as in the
specification and verification of multi-agent systems.

In section 3 we describe our activity regarding proof
methods for non-classical logics and, in particular, for
KLM non-monotonic logics and for Conditional Logics.

2 Knowledge Representation

As mentioned above, our activity in Knowledge Represen-
tation has been mainly concerned with the formalization of
change, which is crucial both in the context of Reasoning
about Actions as well as in the context of Belief Revision.
Concerning Reasoning about Actions, we have proposed
a few modal and temporal formalisms for modelling ac-
tions execution. In modal and temporal action theories,
action execution is modelled by introducing action modal-
ities, and the Ramification problem is addressed by making
use of modal or temporal operators (see section 2.1). Such
action theories have been used in the specification and ver-
ification of agent interaction protocols as well as in the
specification, verification and composition of web services
(section 2.2). Concerning Belief Revision, our research has
mainly focused on the relationships between Belief Revi-
sion and Conditional Logics (section 2.3). In the following
we describe the above activities, as well as our recent activ-
ity concerning reasoning about typicality and inheritance
with exceptions in Description Logics (section 2.4).

2.1 Reasoning About Actions

The idea of representing actions as modalities comes from
Dynamic Logics [15]. As observed in [17], classical dy-
namic logic adopts essentially the same ontology as Mc-
Carthy’s situation calculus, by taking “the state of the
world as primary, and encoding actions as transformations
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on states”. Indeed, actions can be represented in a natu-
ral way by modalities, and states as sequences of modal-
ities. In this setting, the action law, saying that actiona
has effectf when executed in a state in whichP holds,
can be expressed by the formula:P → [a]f . Moreover,
the precondition law, saying that actiona is executable in
a state in which conditionC holds, can be expressed by
the formula:C →< a > f . Based on this idea, in [10]
we have defined a modal action theory in which the frame
problem is tackled by using a non-monotonic formalism
which maximizes persistency assumptions and the ramifi-
cation problem is tackled by introducing a modal causality
operator which is used to represent causal dependencies
among fluents. This action theory can also deal with in-
complete initial state and with nondeterministic actions.

In [10], we have developed a temporal action theory
based on a dynamic extension of Linear Temporal Logic
(LTL). This logic, called DLTL (Dynamic Linear Time
Temporal Logic) [16], extends LTL by strengthening the
“until” operator by indexing it with regular programs. The
advantage of using a linear time temporal logic is that it
is a well established formalism for specifying the behav-
ior of distributed systems, for which a rich theory has been
developed and the verification task can be automated by
making use of automata based techniques. In particular,
for DLTL, in [11] a tableau-based algorithm for obtaining
a Büchi automaton from a formula in DLTL has been pre-
sented, whose construction can be done on-the-fly, while
checking for the emptiness of the automaton.

An alternative approach to reasoning about actions,
based on Conditional Logics, has been proposed in [14].

2.2 Specification and Verification of Agent Inter-
action Protocols

The temporal action theory described above has been used
in the specification and verification of communication pro-
tocols [12]. We have followed a social approach [22] to
agent communication, where communication is described
in terms of changes to the social relations between par-
ticipants, and protocols in terms of creation, manipulation
and satisfaction of commitments among agents. The de-
scription of the interaction protocol and of communicative
actions is given in a temporal action theory, and agent pro-
grams, when known, can be specified as complex actions
(regular programs in DLTL).

We have addresses several kinds of verification prob-
lems, including run-time verification of protocols as well
as static verification of agent compliance with the proto-
cols. Some of these problems can be formalized either as
validity or as satisfiability problems in the temporal logic
and can be solved by model checking techniques. Other
problems, as compliance, are more challenging and require
a special treatment [13]. The proposed approach has also
been used in the specification of Web Services and, in par-
ticular, for reasoning about service composition.

2.3 Belief Revision

A lot of work has been devoted to the problem of finding a
formal relation between Conditional Logics and Belief Re-
vision [4, 18]. Conditional Logics provide a semantics to
conditional sentences of the form “ifA, thenB”, denoted
by A ⇒ B. Belief Revision is the area of Knowledge
Representation that deals with the problem of how to in-
tegrate a new information in a given belief set. The most
known theory of Belief Revision is the so-called AGM the-
ory (from Alchourrón, Gardenfors, and Makinson who first
proposed it) that specifies a set of rationality postulates for
integrating a new information about a static domain into a
belief set of the same domain.

The idea that there might be a relation between evalu-
ation of conditional sentences and Belief Revision dates
back to Ramsey, who proposed an acceptability criterion
for conditionals in terms of belief change. According to
this criterion, in order to decide whether to accept a con-
ditionalA ⇒ B in a belief setK, one should addA to K
by changing it as little as possible, and see ifB follows.
If it does, one should accept the conditional, otherwise
one should reject it. In spite of the intuitiveness of Ram-
sey’s criterion, its formalisation in the framework of Belief
Revision is not straightforward. Many proposals, such as
[4] run into the well-known Triviality Result, according to
which there is no interesting Belief Revision system com-
patible with the proposed formalization. In [7, 8] we have
proposed a Conditional Logic that corresponds to Belief
Revision, thus establishing a relation between the two do-
mains, without running into the Triviality Result.

2.4 Reasoning About Typicality in Description
Logics

The family of description logics (DLs) is one of the most
important formalisms of knowledge representation. DLs
correspond to tractable fragments of first order logic, and
are reminiscent of the early semantic networks and of
frame-based systems. They offer two key advantages: a
well-defined semantics based on first-order logic and a
good trade-off between expressivity and complexity. DLs
have been successfully implemented by a range of systems
and they are at the base of languages for the semantic web
such as OWL.

A DL knowledge base comprises two components: (i)
the TBox, containing the definition of concepts (and pos-
sibly roles), and a specification of inclusions relations
among them, and (ii) the ABox containing instances of
concepts and roles, in other words, properties and rela-
tions of individuals. Since the very objective of the TBox
is to build a taxonomy of concepts, the need of represent-
ing prototypical properties and of reasoning about defea-
sible inheritance of such properties naturally arises. The
traditional approach is to handle defeasible inheritance by
integrating some kind of non-monotonic reasoning mech-
anism. This has led to study non-monotonic extensions of
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DLs. However, finding a suitable non-monotonic exten-
sion for inheritance reasoning with exceptions is far from
obvious.

In [5], we have considered a novel approach to defeasi-
ble reasoning based on the use of a typicality operatorT.
The intended meaning is that, for any conceptC, T(C)
singles out the instances ofC that are considered as “typ-
ical” or “normal”. Thus, an assertion as “normally stu-
dents do not pay taxes” is represented byT(Student) ⊑
¬TaxPayer . The DL obtained is calledALC + T.

In the logicALC + T, one can have consistent knowl-
edge bases containing the inclusionsT(Student) ⊑
¬TaxPayer ; T(Student ⊓ Worker ) ⊑ TaxPayer ;
T(Student ⊓ Worker ⊓ ∃HasChild .⊤) ⊑ ¬TaxPayer ,
corresponding to the assertions: normally a student does
not pay taxes, normally a working student pays taxes, but
normally a working student having children does not pay
taxes (because he is discharged by the government), etc..
Furthermore, if the ABox contains the information that for
instanceT(Student ⊓Worker)(john), one can infer that
TaxPayer (john).

3 Proof Methods for Non-classical Logics

Our interest in the area of proof methods started with our
work in Logic Programming

At the beginning of the Nineties, our interest for proof
methods for non-classical logics were mainly devoted to
extend goal directed proof methods to non-classical log-
ics, and, in particular to modal logics. In the same pe-
riod, Dale Miller [19] was putting the basis of intuition-
istic logic programming, based on the idea of having uni-
form proofs. Our work in this field was mainly concerned
with modal extensions of logic programmimg [1, 3] as well
as with abductive, hypothetical and conditional extension
of logic programming [2]. In the following, we describe
our more recent activity concerning proof methods for non-
monotonic and conditional logics.

3.1 Proof Methods for KLM Logics

In [9] we have introduced analytic tableau calculi for all
non-monotonic logics introduced by Kraus, Lehmann, and
Magidor (KLM). Such logics, namelyR, P, CL , andC,
have a preferential semantics in which a preference relation
is defined among worlds or states. It has been observed that
KLM logics correspond to the flat (i.e. unnested) fragment
of well-known Conditional Logics.

Our tableau method provides a sort of run-time transla-
tion of P into modal logic G. The idea is simply to interpret
the preference relation as an accessibility relation: a con-
ditionalA |∼ B holds in a model ifB is true in all minimal
A-worlds, where a worldw is an A-world if it satisfies
A, and it is a minimalA-world if there is noA-world w′

preferred tow. The relation with modal logic G is moti-
vated by the fact that we assume, following KLM, the so-
calledsmoothness condition, which ensures that minimal

A-worlds exist whenever there areA-worlds, by prevent-
ing infinitely descending chains of worlds. This condition
therefore corresponds to the finite-chain condition on the
accessibility relation (as in modal logic G).

We have extended our approach to the cases ofCL and
C by using a second modality which takes care of states
(intuitively, sets of worlds). RegardingCL , we have shown
that we can mapCL -models intoP-models with an addi-
tional modality. In both cases, we can define a decision
procedure to solve the validity problem in CoNP. Also, we
have given a labelled calculus for the strongest logicR,
where the preference relation is assumed to be modular.
The calculus defines a systematic procedure which allows
the satisfiability problem forR to be decided in nondeter-
ministic polynomial time.

From the completeness of our calculi we get for free the
finite model property for all the logics considered. With the
exception of the calculus forC, in order to ensure termina-
tion, our tableau procedures for KLM logics do not need
any loop-checking, nor blocking, nor caching machinery.
Termination is ensured only by adopting a restriction on
the order of application of the rules.

3.2 Proof Methods for Conditional Logics

In [20] we have introduced proof methods for some stan-
dard Conditional Logics. We have considered theselection
functionsemantics. Intuitively, the selection functionf se-
lects, for a worldw and a formulaA, the set of worlds
f(w, A) which are “most similar tow” given the informa-
tion A. In this respect, the selection function can be seen
as a sort of modality indexed by formulas of the language.
A conditional formulaA ⇒ B holds in a worldw if B
holds in all the worlds selected byf for w andA.

We have introduced cut-free sequent calculi for the ba-
sic Conditional Logic CK and for some of its extensions,
namely CK+{ID, MP, CS, CEM} including all the com-
binations of these extensions except those includingboth
CEM and MP. Our calculi make use of labels representing
possible worlds. Two types of formulas are involved in the
rules of the calculi: world formulas of the formx : A, rep-
resenting thatA holds at worldx, and transition formulas

of the formx
A−→ y, representing thaty ∈ f(x, A). The

completeness of the calculi is an immediate consequence
of the admissibility of cut.

We have also shown that one can derive a decision pro-
cedure from the cut-free calculi. Whereas the decidabil-
ity of these systems was already proved by Nute (by a
finite-model property argument), our calculi give the first
constructiveproof of decidability. As usual, the terminat-
ing proof search mechanism is obtained by controlling the
backward application of some critical rules. By estimating
the size of the finite derivations of a given sequent, we have
also obtained a polynomial space complexity bound for the
logics considered.

Our calculi can be the starting point to define goal-
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oriented proof procedures, according to the paradigm of
Miller’s Uniform Proofs recalled above. As a preliminary
result, in [21] we have presented a goal-directed calculus
for a fragment of CK and its extensions with MP and ID.

Proof methods for other Conditional Logics have been
introduced in [6]. In detail, some labelled tableaux calculi
have been defined for the Conditional LogicCE and its
main extensions, includingCV, whose flat fragment corre-
spond, respectively, to KLM systemsP andR.

4 Conclusions and Future Works

We believe that the temporal action theory we have devel-
oped for the specification and verification of agent inter-
action protocols can be profitably used in the specification
and verification of web services. In this context, new is-
sues arise, as for instance the problem of modelling service
composition and that of service compliance (which still re-
quires a general solution).

Concerning reasoning about typicality in description
logics, we are currently studying a minimal model seman-
tics forALC + T to maximize typical instances of a con-
cept. By means of this semantics we are able to infer de-
feasible properties of (explicit or implicit) individuals.
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SOMMARIO/ABSTRACT

Questo articolo presenta alcune delle attività condotte
nel corso degli ultimi anni dal gruppo di ricerca guidato
da Alberto Martelli. In particolare verrà presentato un
percorso che comprende la specifica, lo sviluppo e la
verifica di protocolli di interazione. Il filo conduttore è
costituito dall’uso di logiche multimodali e di formalismi
dichiarativi e tecniche di ragionamento basati sulla logica
computazionale.

In this paper, we report some of the activities carried on
in the last years by the research group leaded by Alberto
Martelli. In particular, it presents a research line that en-
compasses the specification, the development and the ver-
ification of interaction protocols. The leading thread is
given by the use of multimodal logics and of declarative
formalisms and reasoning techniques, based on computa-
tional logic.

Keywords: Interaction protocols, multimodal logics, web
services, semantic web.

1 Introduction

Modal logics are widely used in Artificial Intelligence for
representing knowledge and beliefs together with other at-
titudes like, for instance, goals, intentions and obligations.
Moreover, modal logics are well suited for representing dy-
namic aspects in agent systems and, in particular, to for-
malize reasoning about actions and time [16, 22]. In this
context, one of the main research lines of the last years
concerns the specification of interaction and the forms of
reasoning that can be applied to it, and gives particular at-
tention to the verification of properties of the interaction
and of the interacting agents [22]. The work that we sum-
marize in these pages begins with the construction of a
logical framework, based on a class of normal multimodal
logic (called grammar logics). This framework has a com-

putational counterpart, which is particularly suitable for
representing the behavior of interacting and communica-
tive agents and which lead to the implementation of the
declarative programming language Dynamics in LOGic.
The framework has been successfully applied to as diverse
application domains as web-based adaptive tutoring, web
service selection and composition, reasoning about chore-
ographies, semantic web. In particular, it has been adopted
in various national and international research projects, e.g.
MASSiVE, SVP, and REWERSE.

Future directions

Declarative languages are becoming very important in the
context of Semantic Web, especially in the most recent
years, when the focus moved from the ontology layer to
the logic layer and the need of expressing rules and apply
various forms of reasoning have emerged. This interest is
witnessed also by the creation of a W3C working group to
define a Rule Interchange Format. The effort done for rep-
resenting and reasoning about interactions, in the frame-
work presented in this paper, finds a natural grounding in
the development of negotiation or personalization policies,
expressed by rules. Challenging applications can be iden-
tified also in the context of web services. Here, we are
interested in applications aimed at fostering the re-use of
software, task that requires abilities, e.g. flexibility, which
are supplied by declarative languages and by the reasoning
techniques that they allow to apply. In particular, a very
promising direction of research is the study of methods and
approaches to verify the interoperability of services and the
conformance of a service to a choreography role.

2 The origins: A class of Normal Multi-
modal Logics

In [12, 3] a class of normal multimodal logics, called gram-
mar logics, is studied. The class is characterized by a set
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of logical axioms of the form:

[p1] . . . [pn]ϕ ⊃ [s1] . . . [sm]ϕ (n > 0;m ≥ 0) (1)

called inclusion axioms, where the pi’s and sj’s are modal-
ities. This class includes some well-known modal systems
such as K, K4, S4 and their multimodal versions. Differ-
ently from other logics, such as those in [16], these systems
can be non-homogeneous (i.e., every modal operator is not
restricted to belong to the same system) and can contain
some interaction axioms (i.e., modal operators are not re-
stricted to be mutually independent).

This class of logics has been introduced by Fariñas del
Cerro and Penttonen in [14] to simulate the behavior of for-
mal grammars. Given a formal grammar, a modality is as-
sociated to each terminal and nonterminal symbol, while,
for each production rule of the form p1 · · · pn → s1 · · · sm,
an inclusion axiom [p1] . . . [pn]ϕ ⊃ [s1] . . . [sm]ϕ is de-
fined. In [14] it is shown that testing whether a word is
generated by the formal grammar is equivalent to proving
a theorem in the logic, thus showing the undecidability of
the whole class of logics.

In [12, 3] an analytic tableau calculus for the class of
grammar logics is presented. The calculus is paramet-
ric w.r.t. the logics of this class. In particular, they deal
with non-homogeneous multimodal systems with arbitrary
interaction axioms of form (1). The calculus is a pre-
fixed tableaux extension of those in [18, 15]. Prefixes are
given an atomic name and the accessibility relationships
among them are explicitly represented in a graph. The
key idea is using the characterizing axioms of the logic as
“rewrite rules” which create new paths among worlds in
the counter-model construction. The works prove the un-
decidability of modal systems based on context-sensitive
and context-free grammars, while right regular grammars
are decidable (by using an extension of the filtration meth-
ods by the Fischer-Ladner closure for modal logics). In the
particular case when m is 1, the axiom schema reduces to

〈s0〉ϕ ⊂ 〈t1〉〈t2〉 . . . 〈tn〉ϕ (2)

and the rewriting rules for describing accessibility relations
become similar to a Prolog goal-directed proof procedure.
This observation has allowed the definition of the language
Dynamics in LOGic. This class of logics has also been
used in the study of description logics [20, 17] and ex-
tended to more general forms of interaction in [4].

3 Dynamics in LOGic: An agent Program-
ming Language

Dynamics in LOGic [13] has been developed as a language
for programming agents and is based on a logical theory
for reasoning about actions and change in a modal logic
programming setting. An agent’s behavior is described in
a non-deterministic way by giving the set of actions that it
can perform. Specifically, it can be specified by a domain

description, which includes: a) action and precondition
laws, describing the atomic world actions the agent may
perform; b) a set of sensing axioms describing the agent’s
atomic sensing actions; c) a set of procedure axioms de-
scribing the agent’s complex behavior. Each atomic ac-
tion can have preconditions to its application (that decide
if the action is executable) and effects due to its applica-
tion. Moreover, effects can be subject to further conditions
in order to become true. For instance, the executability
precondition to the action “paying by credit card” is that I
hold a valid credit card. A conditional effect of this action
could be “to be notified by SMS about payments”. This ef-
fect will become true only if I subscribed the service (pre-
condition to the effect).

Given this view of actions, we can think to the prob-
lem of reasoning as the act of building or of traversing a
sequence of transitions between states. Technically speak-
ing, a state is a set of fluents, i.e., properties whose truth
value can change over time. Such properties encode the
information that flows during the execution of a policy: for
instance, if a requester communicates to pay by miles, this
information will be included in the state of the provider as
a fluent. In general, we cannot assume that the value of
each fluent in a state is known, so we want to have both the
possibility of representing that some fluents are unknown
and the ability of reasoning about the execution of actions
on incomplete states. To explicitly represent the unknown
value of some fluents, we introduced an epistemic opera-
tor B, to represent the beliefs an entity has about the world:
Bf means that the fluent f is known to be true, B¬f means
that the fluent f is known to be false. A fluent f is unde-
fined when both ¬Bf and ¬B¬f hold. Thus each fluent
in a state can have one of the three values: true, false or
unknown.

Complex behaviors can be specified by means of pro-
cedures, Prolog-like clauses built upon other actions. For-
mally, a complex action is a collection of inclusion axiom
schemas of the modal logic, of form (2). s0 is a procedure
name and the pi’s are procedure names, atomic actions, or
test actions (?f ). Procedure definitions may be recursive
and procedure clauses can be executed in a goal-directed
way, similarly to standard logic programs.

The language allows the specification of communicative
behaviors [10]. Indeed, we define the communication kit
[19] for an agent as consisting of a predefined set of primi-
tive speech acts the agent can perform/recognize, modeled
in terms of action and preconditions laws, a set of spe-
cial sensing actions for getting new information by external
communications, defined by sensing axioms, and a set of
interaction protocols specified by procedure axioms. Usu-
ally a communicative action modifies not only the beliefs
of the executor about the world but also its beliefs about
the interlocutor’s mental state.

Given a domain description, we can reason about it and
formalize the temporal projection and the planning prob-
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lems by means of existential queries of form:

〈p1〉〈p2〉 . . . 〈pm〉Fs (3)

where each pk, k = 1, . . . ,m may be an (atomic or com-
plex) action executed by the agent. Checking if a query of
form (3) succeeds corresponds to answering the question
“Is there an execution trace of the sequence p1, . . . , pm
that leads to a state where the conjunction of belief fluents
Fs holds for our agent?”. In case all the pk’s are atomic
actions, it amounts to predict if the condition of interest
will be true after their execution. In case complex actions
are involved, the execution trace that is returned in the end
is a plan to bring about Fs. The procedure definition con-
strains the search space. The plan can be conditional be-
cause whenever a sensing action is involved, none of the
possible answers of the interlocutor can be excluded.

A goal-directed proof procedure, based on negation as
failure, allows to (dis)prove queries of form (3). An in-
terpreter for the language has been implemented in Sics-
tus Prolog [8]. This implementation allows the language
to be used as an ordinary programming language for exe-
cuting procedures which specify the behavior of an agent,
but also for reasoning about them, by extracting linear or
conditional plans. The plan extraction process of the in-
terpreter is a straightforward implementation of the proof
procedure contained in the theoretical specification of the
language.

3.1 Web-based Adaptive Tutoring

Dynamics in LOGic has been used to implement an adap-
tive tutoring system [11] with a multi-agent architecture,
that can produce personalized study plans and that can val-
idate study plans built by a user. A key feature that allows
the tutoring system agents to adapt to users is their ability
to tackle mental attitudes, such as beliefs and intentions.
The agent can adopt the user’s learning goal and find a
way for achieving it, which fits the specific student’s in-
terests and takes into account his/her current knowledge.
A natural evolution of this work opened the way to the ac-
tivity carried on in the REWERSE network of excellence
[2, 9, 7].

4 Reasoning about WS Composition and
Choreographies

In the last years distributed applications over the World-
Wide Web have obtained wide popularity and uniform
mechanisms have been developed for handling comput-
ing problems which involve a large number of heteroge-
neous components, that are physically distributed and that
interoperate. These developments have begun to coalesce
around the web service paradigm, where a service can be
seen as a component available over the web [1]. Each ser-
vice has an interface that is accessible through standard

protocols and that describes the interaction capabilities of
the service.

The work presented in [10] faces the problem of au-
tomatic selection and composition of web services, dis-
cussing the advantages that derive from the inclusion, in
a web service declarative description, of the high-level in-
teraction protocol, that is used by the service for interact-
ing with its partners, allowing a rational inspection of it.
Communication can, in fact, be considered as the behavior
resulting from the application of a special kind of actions:
communication actions. The reasoning problem that this
proposal faces can intuitively be described as looking for
an answer to the question “Is it possible to make a deal
with this service respecting the user’s goals?”. Given a
logic-based representation of the service policies and a rep-
resentation of the customer’s needs as abstract goals, ex-
pressed by a logic formula, logic programming reasoning
techniques are used for understanding if the constraints of
the customer fit in with the policy of the service.

In this issue it is possible to distinguish three necessary
components: (i) web services capabilities must be rep-
resented according to some declarative formalism with a
well-defined semantics, as also observed by van der Aalst
et al. [21]; (ii) automated tools for reasoning about such a
description and performing tasks of interest must be devel-
oped; (iii) in order to gain flexibility in fulfilling the user’s
request, reasoning tools should represent such requests as
abstract goals.

Our proposal is set in the Semantic Web field of research
and inherits from research in the field of multi-agent sys-
tems. In particular, the declarative descriptions of services
are based on the modal logic programming framework in-
troduced in Section 3. Web services are viewed as soft-
ware agents, communicating by predefined sharable inter-
action protocols, where the protocol-based interactions are
formalized as Dynamics in LOGic procedures; reasoning
about actions and change techniques (planning) are used
for performing the selection and composition of web ser-
vices in a way that is personalized w.r.t. the user’s request.
Applying reasoning techniques on a declarative specifica-
tion of the service interactions allows to gain flexibility in
fulfilling the user preference in the context of a web service
matchmaking process. As a quick example, consider a web
service that allows buying products, alternatively paying
cash or by credit card: a user might have preferences on
the form of payment to enact. In order to decide whether
or not buying at this shop, it is necessary to single out the
specific course of interaction that allows buying cash. This
form of personalization requires to reason about a descrip-
tion of the service interaction policy.

A declarative specification of the interaction is useful
also in the process of selecting the services which will play
the various roles of the given choreography, in the particu-
lar case in which a condition of interest is to be preserved
(the goal for which the service is sought). In [6, 5] we
show that current semantic matchmaking techniques do not
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guarantee goal preservation. The approach is based on an
action-based representation of the operations of a service:
each operation is described in terms of its preconditions
and effects. Also in this work, the Dynamics in LOGic
framework was used to represent service interaction poli-
cies as well as roles. This representation allow to reason
for checking if it is possible to reach a goal by adopting
a certain role, and if the goal is preserved after the sub-
stitution of the service capabilities to the abstract require-
ments specified in the role. We show that, by exploiting
reasoning mechanisms and the choreography definition, it
is possible to overcome the limits of the current semantic
matchmaking techniques and we have proposed a variant
of the plugin match which guarantees goal preservation.
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thesis, Università degli Studi di Torino, Italy, 1998.

[4] M. Baldoni. Normal Multimodal Logics with Interac-
tion Axioms. In Labelled Deduction, Applied Logic
Series 17, pp. 33–53. Kluwer Ac. Publisher, 2000.

[5] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and
C. Schifanella. Reasoning on choreographies and ca-
pability requirements. Int. J. of Business Process In-
tegration and Management, 2(4), 2007.

[6] M. Baldoni, C. Baroglio, A. Martelli, V. Patti, and
C. Schifanella. Service selection by choreography-
driven matching. In Proc. of WEWST’07, vol. 313 of
CEUR, Workshop Proc., pp. 1–17, 2008.

[7] M. Baldoni, C. Baroglio, I. Brunkhorst, E .Marengo,
and V. Patti. Reasoning-based curriculum sequenc-
ing and validation: Integration in a service-oriented
architecture. In EC-TEL, LNCS 4753, pp. 426–431.
Springer, 2007.

[8] M .Baldoni, C. Baroglio, A. Chiarotto, and V. Patti.
Programming goal-driven web sites using an agent
logic language. In PADL, LNCS 1990, pp. 60–75.
Springer, 2001.

[9] M. Baldoni, C. Baroglio, and N. Henze. Personaliza-
tion for the semantic web. In Reasoning Web, LNCS
3564, pp. 173–212. Springer, 2005.

[10] M. Baldoni, C. Baroglio, A. Martelli, and V. Patti.
Reasoning about interaction protocols for customiz-
ing web service selection and composition. J. Log.
Algebr. Program., 70(1):53–73, 2007.

[11] M. Baldoni, C. Baroglio, and V. Patti. Web-based
adaptive tutoring: An approach based on logic agents
and reasoning about actions. Artif. Intell. Rev.,
22(1):3–39, 2004.

[12] M. Baldoni, L. Giordano, and A. Martelli. A tableau
for multimodal logics and some (un)decidability re-
sults. In TABLEAUX, LNCS 1397, pp. 44–59.
Springer, 1998.

[13] M. Baldoni, A. Martelli, V. Patti, and L. Giordano.
Programming rational agents in a modal action logic.
Ann. Math. Artif. Intell., 41(2-4):207–257, 2004.
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