
Implementing Semantic Web applications:
reference architecture and challenges

Benjamin Heitmann, Sheila Kinsella, Conor Hayes, and Stefan Decker

firstname.lastname@deri.org

Digital Enterprise Research Institute
National University of Ireland, Galway

Galway, Ireland

Abstract. To date, Semantic Web research has tended to focus on data
modelling challenges, at the expense of software architecture and engi-
neering issues. Our empirical analysis shows that implementing Semantic
Web technologies creates challenges which can affect the whole applica-
tion. Standard solutions and best practices for Semantic Web technologies
are just emerging. The lack of these has been an obstacle for implementing
and deploying applications which exploit Semantic Web technologies for
real world use cases.

In this paper we conduct an empirical survey of Semantic Web applica-
tions. We use this empirical data to propose a reference architecture for
Semantic Web applications, and to identify the four main challenges for
implementing the most common functionality related to Semantic Web
technologies from a software engineering perspective: (i) the issues in-
volved in integrating noisy and heterogeneous data, (ii) the mismatch of
data models and APIs between components, (iii) immature and belated
best practices and standards, and (iv) the distribution of application logic
across components. We describe two orthogonal approaches for mitigating
these challenges: (a) simplifying the application architecture by delegat-
ing generic functionality to external service providers, and (b) assembling
and customising of components provided by software frameworks for rapid
development of complete applications.

1 Introduction

Semantic Web technologies simplify knowledge-intensive applications, by enabling
a Web of interoperable and machine-readable data [1] based on formal and explicit
descriptions of the structure and semantics of the data [2].

Existing research on deploying Semantic Web technologies has tended to focus
on data modelling, and software architecture and engineering issues have been
comparatively neglected. Benefits such as simplification of information retrieval
[3], information extraction [4] and data integration [5] have been well researched.

However, in order to encourage wide scale adoption of Semantic Web tech-
nologies, the whole life cycle of Semantic Web data needs to be assessed in terms
of efforts and pay back of the application development. According to [6] this life
cycle includes: the initial phase of ontology development, followed by planning how
to use the data, creation of new data or refining of existing data, then persistent
archiving of data, and finally publication and external access of data. Creation,



refining, archiving and publication may all be performed at runtime by the applica-
tion, and as such involve aspects of software engineering and software architecture
in addition to data modelling aspects.

While the challenges of ontology development have been analysed based on
empirical data of ontology development projects [7], to our best knowledge no
empirical analysis of the challenges involved in the implementation of creating,
refining, archiving and publication of data based on Semantic Web technologies
exists.

We have performed an empirical survey of 98 Semantic Web applications (Sec-
tion 2), which allows us to identify the most common shared components and the
challenges in implementing these components. Together, these components con-
stitute a reference architecture for Semantic Web applications. The survey shows
that implementing Semantic Web technologies creates challenges which can affect
the whole application. Standard solutions and best practices for Semantic Web
technologies are just emerging. The lack of these has been an obstacle for imple-
menting and deploying applications which exploit Semantic Web technologies for
real world use cases.

Based on the survey, we identify the four main challenges (Section 3) for im-
plementing Semantic Web applications: (i) the issues involved in integrating noisy
and heterogeneous data, (ii) the mismatch of data models and APIs between
components, (iii) immature and belated best practices and standards, and (iv)
the distribution of application logic across components. Identifying these chal-
lenges allows better assessment of the costs associated with adopting Semantic
Web technologies within enterprises, and forms the basis for designing better soft-
ware frameworks and software architecture for exploiting the emerging Web of
Data.

Towards this goal, we present two approaches for mitigating the identified
challenges (Section 4) from a software engineering perspective. The first approach
proposes an architectural solution by delegating generic components to external
service providers thus simplifying the application. An orthogonal approach is to
provide better software engineering support with components provided by software
frameworks for rapid assembling and customising of complete applications. Finally,
we list related research (Section 5) and discuss future research (Section 6).

The main contributions of this paper are (1) an empirical analysis of the state of
the art regarding the implementation of the most common components of Semantic
Web applications, (2) a reference architecture for Semantic Web applications based
on the empirical analysis, (3) identifying the main challenges in implementing
these components which are introduced by Semantic Web technologies, and (4) two
approaches to mitigate these challenges from a software engineering perspective.

2 Empirical analysis of Semantic Web applications

As our goal is to identify the main challenges introduced by implementing Seman-
tic Web technologies, we have performed an empirical analysis of the most common
capabilities specific to Semantic Web applications. In Section 2.1, we provide a
classification for Semantic Web applications in order to differentiate them from
other applications on the World Wide Web. Section 2.2 outlines the methodology
of the survey. The results of our survey follow in Section 2.3. First, we present a
description of components which abstract the most common functionality related



to Semantic Web technologies. Secondly, we provide statistics about the variations
amongst the implementations of the components.

2.1 Classifying Semantic Web applications and the Web of Data

The most basic requirement for a Semantic Web application is the use of RDF for
the metadata used by the application. This can be derived from the fundamental
role of RDF in the “layer cake” of Semantic Web standards [8]. Additionally a
set of formal vocabularies should be used to capture the application domain, and
SPARQL should be used as data query language, according to [9, definition 2.2].
All surveyed applications meet these requirements, except for applications using
programmatic access to RDF data for efficiency reasons.

The Linked Data principles define how to publish RDF data, so that RDF
data sets can be inter-linked [10] to form a Web of Data. The Linking Open
Data community project(http://linkeddata.org) provides most of the currently
available linked data.

2.2 Methodology of the survey

The survey of current Semantic Web applications has been performed in two parts,
consisting of an architectural analysis and a questionnaire about the application
functionality.

Architectural analysis The applications from two key demonstration chal-
lenges in the Semantic Web domain have been analysed to identify the most com-
mon functionality of Semantic Web applications: the “Semantic Web challenge”(http:
//challenge.semanticweb.org/), organised as part of the International Seman-
tic Web Conference from 2003 to 2008, and the “Scripting for the Semantic Web
challenge”(http://www.semanticscripting.org), organised as part of the Eu-
ropean Semantic Web Conference from 2006 to 2008. Duplicate submissions have
been eliminated, resulting in a total number of 98 surveyed applications.

The result of the architectural analysis is a list of components which provide an
abstraction of the most common functionality which is required to implement Se-
mantic Web standards. The components have been extracted from the architecture
diagrams and the textual descriptions of the application architecture and imple-
mentation, depending on availability in the submitted paper. The components
provide a common way to decompose the surveyed applications, so that compo-
nents with similar functionality from different applications can be compared. This
allows us to e.g. identify the need for data updating standards in section 3.3, as
most applications have a user interface, but only a minority of applications allow
creation of new data by the user.

Application functionality questionnaire Additionally a questionnaire was
used to collect details about the implementation of the applications. The question-
naire contains 27 properties associated with 7 areas of functionality. The results
from the questionnaire provide statistics about the range of variations in which
the functionality of the common components has been implemented.

The questionnaire covers these areas of functionality: (1) implementation of
Semantic Web standards, (2) support for data sources, (3) support for formal vo-
cabularies that are heterogeneous and have diverse ownership, (4) implementation
of data integration and alignment, (5) support for structured, semi-structured, un-
structured or multimedia data, (6) support for authoring and editing of data, and
(7) support for external data sources and the open-world assumption.



Only the applications from the “Semantic Web challenge” 2003 to 2006, and the
“Scripting for the Semantic Web challenge” 2005 to 2007 were analysed with the
questionnaire. The authors of the papers describing the applications where asked
to validate and correct the details about their applications. Of the 50 applications
analysed with the questionnaire, 74% validated their data.

2.3 Survey results

Taken together, the two parts of the survey can be combined to provide an
overview of the state of the art in implementing the required functionality for
Semantic Web technologies. The architectural analysis provides a list of the most
common components, and the questionnaire provides statistical data about the
different variations of implementing each component.

Table 1 shows the seven most common components, and lists the number of
applications implementing a specific component by year.

year n
u
m

b
er

o
f

a
p
p
li
ca

ti
o
n
s

d
a
ta

in
te

rf
a
ce

p
er

si
st

en
ce

st
o
ra

g
e

u
se

r
in

te
rf

a
ce

in
te

g
ra

ti
o
n

se
rv

ic
e

se
a
rc

h
se

rv
ic

e

a
u
th

o
ri

n
g

in
te

rf
a
ce

cr
aw

le
r

2003 10 100% 80% 90% 90% 80% 20% 50%
2004 16 100% 94% 100% 50% 88% 38% 25%
2005 6 100% 100% 100% 83% 83% 33% 33%
2006 19 100% 95% 89% 63% 68% 37% 16%
2007 24 100% 92% 96% 88% 88% 33% 54%
2008 23 100% 87% 83% 70% 78% 26% 30%
total 98 100% 91% 92% 72% 81% 32% 35%

Table 1. Percentage of surveyed applications implementing the 7 most common compo-
nents, per year and in total

2.4 Reference architecture for Semantic Web applications

The surveyed applications share a significant amount of functionality regarding
common capabilities of Semantic Web applications. We abstract from the differ-
ences between individual applications and distinguish seven main components,
which together constitute a reference architecture for Semantic Web applications
by describing high-level concepts and terminology, without fixing interfaces [11,
page 242].

The (i) data interface provides an abstraction over remote and local data
sources, the (ii) persistent storage stores data and run time state, and the (iii)
user interface provides access for the user. (i) to (iii) have each been implemented
by more than 90% of surveyed applications. The (iv) integration service
provides a unified view on heterogeneous data, and the (v) search service allows
searching in data. (iv) and (v) have each been implemented by 70% to 80%
of surveyed applications. The (vi) crawler discovers and retrieves remote data,
and the (vii) authoring interface allows creating new data and editing existing
data. (vi) and (vii) have each been implemented by 30% to 40% of surveyed
applications.



In the following we describe the functionality of each component in detail and
provide statistical data for the range of variations amongst the implementations of
the surveyed applications. The full results of the architectural analysis are avail-
able on-line(http://semwebapp-components.dabbledb.com/), as are the details
of the questionnaire results(http://www.activerdf.org/survey/).

User interface (92%)

Data Interface (100%) Crawler (35%)

Authoring Interface (32%)

Persistent Storage (35%)
Integration Service (72%)

Search Service (81%)

Remote Data 
Sources

Fig. 1. The reference architecture for Semantic Web applications, with the percentage
of surveyed applications implementing the component

Data Interface: Also known as data adapter or data access provider. Pro-
vides the interface needed by the application logic to access local or remote
data sources, with the distinction based on either physical remoteness or admin-
istrative and organisational remoteness. Separation from the persistence layer is
motivated by the function of the data interface as an abstraction layer regarding
the implementation, number and distribution of persistence layers. 100% of the
applications have a data interface.

Component variations: Accessing local data is implemented via programmatic
access through RDF libraries by at least 50% of the applications. Only 24% use
a query language for accessing local or remote data sources, but only half of
these applications use the SPARQL standard. Multiple data sources with different
ownership are used by 90% of applications, 70% support external data provided
by the user and 60% can export their data or make it reusable as a source for
other applications, by e.g. providing a SPARQL end-point. 76% of the applications
support updating their data during application runtime.

Persistent Storage: Also known as persistence layer or triple store. Provides
persistent storage for data and run time state of the application, it is ac-
cessed via the data interface. In practice many triple stores and RDF libraries
provide both a data interface and persistent storage, but there are cases where
the components are de-coupled, e.g. if the application has no local data storage,
and only uses SPARQL to access remote data. 91% have a persistent storage.

Component variations: Possible supported standards include but are not lim-
ited to data representation languages (XML, RDF), meta-modelling languages
(OWL, RDFS) and query languages (SQL, SPARQL). RDF is explicitly mentioned
by 86% of applications, OWL is supported by 48%, RDFS by 22%. Inferencing or
reasoning on the stored data is explicitly mentioned by 58% of the applications.
Storage of any combination of structured, semi-structured, unstructured data or
(binary) files can be implemented, with different levels of features or optimisation
for the different data types. 58% implement support for unstructured text and
48% support mixing of structured and unstructured data in some way.



User Interface: Also known as portal interface or view. Provides a human
accessible interface for using the application and viewing the data. Does
not provide any capabilities for modifying or creating new data. 92% have a user
interface, as some applications do not provide a human usable interface.

Component variations: The navigation can be based on data or metadata, such
as a dynamic menu or faceted navigation. The presentation may be in a generic
format, e.g. in a table, or it may use a domain specific visualisation, e.g. on a
map (10%). 16% present images to the user and 6% explicitly mention support
for audio content in the user interface. 28% support multiple languages in the user
interface, thus catering to a multilingual audience.

Integration Service: Also known as integration, aggregation, mediation, ex-
traction layer or service. Provides means for addressing structural, syntactic
or semantic heterogeneity of data, caused by accessing data from multiple
data sources using diverse kinds of format, schema or structure. The desired re-
sult is a homogeneous view on all data for the application. The integration
service often needs to implement domain or application specific logic for the data
integration. 72% of the applications have an integration service.

Component variations: Integration of heterogeneous data is supported by 90%
of the applications, and 90% support data from sources with different ownership.
Data from distributed data sources is supported by 72%. These three properties
are orthogonal, as it would be e.g. possible to support just SIOC data [12] which
is not heterogeneous, but which is aggregated from personal websites, so that the
data sources are distributed and under different ownership.

Mapping or alignment between different schema may be automatic (12%),
but most applications (80%) require some form of human intervention for the
integration. Reasoning and inferencing can be used for the integration (58%).
Integration may be performed once if data stays static, or continuously if new
data gets added.

Search service: Also known as query engine or query interface. Provides
the ability to perform searches on the data based on the content, structure or
domain specific features of the data. Interfaces for humans, machine agents
or both can be provided. 81% provide a search service.

Component variations: Besides search on features of the data structure or se-
mantics, generic full text search (58%) or a search on unstructured and structured
data at the same time (48%) can be provided. The interface for machine agents
may be provided by e.g. a SPARQL, web service or REST endpoint.

Crawler: Also known as harvester, scutter or spider. Required if data needs to
be found and accessed in a domain specific way before it can be integrated. Imple-
ments automatic discovery and retrieval of data. 35% implement a crawler.
Some applications have an integration service, but do not need a crawler, e.g.
because they only use local RDF data, but need to perform object consolidation
[13].

Component variations: Support of different discovery and access mechanisms,
like HTTP, HTTPS, RSS. Natural language processing or expression matching
to parse search results or other web pages can be employed. The crawler can be
active once if data is assumed to be static or continuous (76%) if new data needs
to be discovered.



Authoring interface: Allows the user to enter new data, edit existing
data, and import or export data. This component depends on the user inter-
face component, and enhances it with capabilities for modifying and writing data.
Separation between the user interface and the authoring interface reflects the low
number of applications (32%) implementing write access to data.

Component variations: The annotation task can be supported by a dynamic
interface based on schema, content or structure of data. Direct editing of data
using standards such as e.g. RDF, RDF Schema, OWL or XML can be supported.
Input of weakly structured text, using e.g. wiki formatting can be implemented.
Suggestions for the user can be based on vocabulary or the structure of the data.

3 The main challenges for implementing Semantic Web
technologies

The list of common components and the data about the variations in implement-
ing these components allow us to identify the main challenges for Semantic Web
application development: (i) the issues involved in integrating noisy and hetero-
geneous data, (ii) the mismatch of data models and APIs between components,
(iii) immature and belated best practices and standards, and (iv) the distribution
of application logic across components. In the following we detail these challenges
and subsequently explain their impact on an example application.

3.1 Integrating noisy and heterogeneous data

An objective of RDF is to facilitate data integration [5] and aggregation [4]. How-
ever, even if all data sources were to use RDF as their data model, there would
still exist potential integration issues due to different access mechanisms, noisy
and erroneous data, and inconsistent usage of vocabularies and instance URIs
between sources. Therefore, depending on how noisy and disconnected the data
is, some amount of pre-processing may be required before using the data in an
application.

Our survey shows that implementing integration of noisy and heterogeneous
data can contribute the biggest part of the application functionality required for
utilising Semantic Web technologies. The majority (72%) of surveyed applications
implement an integration service. However manual intervention as part of the inte-
gration is necessary for 80% of applications. This means that prior to integration,
either data is manually edited or data from the different sources is inspected in
order to create custom rules or code. Only 20% explicitly mention fully automatic
integration using e.g. heuristics or natural language processing. 76% allow updat-
ing of the data after the initial integration, and reasoning and inferencing is used
for 58% of integration services.

Semantic Web data may be accessible by multiple different methods: large
dumps to be downloaded, individual (possibly dynamically-generated) documents
which need to be crawled, or via SPARQL endpoints to which queries must be
issued. In order to ease the acquisition of published data, site suppliers can provide
a semantic sitemap [14] on their website, so that crawling agents know where to
find related RDF data. There are also a set of best practice guidelines [10] for
publishing and interlinking pieces of data on the Semantic Web. The creation of
ontologies is beyond the scope of this paper but has been discussed in previous
literature [7].



Previous research performed using the Swoogle system [15] shows that there
is a spectrum for RDF data, ranging from well structured data using stable and
slowly changing vocabularies and ontologies to noisy and dynamic data with un-
defined terms and formal errors. The study tracked size changes in three versions
of 183k RDF documents, and found changes had occurred in 60% of these doc-
uments. It also found that 2.2% of terms had no definitions and some had both
class and property meta-usage. The Swoogle study also showed that the size dis-
tribution of Semantic Web documents is highly skewed, with many small docu-
ments and much fewer very large documents. Similarly, a study [16] using the
WATSON infrastructure concludes that the Semantic Web is composed of many
small, lightweight ontologies and fewer large, heavyweight ontologies. Assuming
that within an ontology there is generally consistent use of vocabularies and in-
stance URIs, the large number of smaller lightweight ontologies will present more
problems for data integration.

The Semantic Web bug tracker(http://bugs.semanticweb.org/) is an ini-
tiative to improve the quality of the Web of data by tracking issues which could
introduce inaccuracies in systems consuming the data. Previous work [17, 13] by
the authors has also shown up various inconsistencies in RDF data on the Web.
Some examples of frequent errors occurring in Semantic Web data observed from
these sources are:
– Use of non-standard terms: There is frequent usage of classes and prop-

erties which are not defined in the official specifications. A study of ontology
usage [17] shows over 1m definitions of instances of the class foaf:chatEvent,
which does not exist in the official FOAF specifications(http://xmlns.com/
foaf/0.1/).

– Incorrect usage of vocabularies:
Publishers frequently use terms from vocabularies in ways which they were not
intended and which may introduce unexpected results after reasoning. For ex-
ample, dbpedia, which publishes structured data extracted from Wikipedia,
uses the property foaf:img to link resources of all types to associated images.
This is problematic because according to the FOAF specifications, the prop-
erty foaf:img has a domain of foaf:Person. This means that confusingly,
a reasoning system could infer that all Dbpedia resources with images are of
type foaf:Person.

– Multiple URIs for the same objects: The ability to uniquely identify
arbitrary resources via URIs is an important factor in data integration. How-
ever there is little agreement between sources on which URIs to use for a
particular resources. This is a problem as it may result in potentially useful
information about a resource being missed. Reasoning on inverse functional
properties (IFPs) can alleviate this to some extent. An evaluation of an ob-
ject consolidation algorithm [13] showed that 2.4 million instances could be
consolidated into 400k instances. However noise in IFP statements can cause
even more problems. [13] notes that in filling out online profiles, users who do
not wish to reveal their instant messaging usernames will fill in an alternative
value such as “none”. As a result, 85k of the users supplying these non-unique
usernames were incorrectly merged.

The majority of applications rely on data integration, but in order to imple-
ment it, expensive human intervention is necessary and knowledge about reason-
ing and inferencing needs to be acquired by the software engineers. Up to three



components can be required for integrating data (the integration service, crawler
and often the search service), which contribute to the requirements introduced by
Semantic Web technologies to the application.

3.2 Mismatch of data models and APIs between components

Within the components of the surveyed Semantic Web applications there were two
frequently occurring mismatches from a software engineering perspective: either
they internally used different data models or the APIs between components were
mismatched, both of which pose important challenges to implementing Semantic
Web technologies.

The graph based data model of RDF provides the foundation for knowledge
representation on the Semantic Web [1], however programmatically accessing RDF
data from a component requires mapping of an RDF graph or subset (in the case
of a SPARQL query result) to the data model used by the component [18].

Most of the surveyed applications (92%) were implemented using object ori-
ented languages, and many of the surveyed applications stored data in relational
databases. Web applications which are based on relational databases only have to
manage the mismatch between object oriented and relational data. Semantic Web
applications however have to additionally handle the graph data model of RDF.

Web applications utilise object relational mappers (ORM) such as Hibernate(
www.hibernate.org) for Java or ActiveRecord(http://ar.rubyonrails.org/)
for Ruby to transparently map between the data models, and similar approaches
for mapping RDF data have been developed such as ActiveRDF [18] for Ruby or
SuRF for Python(http://pypi.python.org/pypi/SuRF). Without such a map-
per, the developer has to provide an abstraction layer on top of the RDF data
model himself.

3.3 Missing or belated conventions and standards

In order to benefit from Semantic Web technologies, new paradigms such as the
graph based data model of RDF and its open-world semantics need to be under-
stood. On the other hand, many concepts and ideas to which Web application
developers are accustomed are hard to translate to the stack of Semantic Web
technologies. Approaches for providing conventions and standards to ease the shift
towards Semantic Web technologies have often been designed with a considerable
delay after the standardisation of RDF in 1999. Providing more and authoritative
recommendations is an important factor for increasing adoption of Semantic Web
technologies by enterprises.

All of the surveyed applications consume RDF data of some form, 70% allow
accessing or importing of user provided external data, and 60% can export data or
are reusable as a source for another application. However as discussed in section
3.1, there are many different export and access mechanisms for RDF data, from
putting an RDF dump on a web server, embedding links to RDF data in HTML
or providing a SPARQL endpoint.

Authoritative recommendations for making RDF accessible over the Web were
not available until 2006, when Tim-Berners Lee published a design note(http:
//www.w3.org/DesignIssues/LinkedData.html) which established the Linked
Data principles. RDFa specifies how to embed RDF graphs in XHTML documents,
and has been in development since 2004. GRDDL (from 2007) specifies how to
enable automatic conversion of HTML documents to RDF data.



The basic database interaction pattern of a Web application is “create, read,
update and delete”(CRUD) [19], but Semantic Web applications can operate on
both local and remote data sources so that updating and deleting depends on the
provenance of the data [19]. The survey shows that there is a remarkable difference
between the number of surveyed applications which provide a user interface (90%)
and the number of applications which allow entering or editing data (30%).

Several approaches for enabling CRUD are currently under development, such
as the Update extension for SPARQL, which provides the ability to add, update,
and delete RDF data remotely. RDF forms and RDF pushback provide an archi-
tecture for structured data input, remote updating of data and conversion of RDF
data to legacy data formats. However, at the time of writing the W3C was not
involved in these efforts.

3.4 Distribution of application logic across components

The components of a Semantic Web application implement different areas of func-
tionality which are required by Semantic Web technologies, however the compo-
nents need to be controlled by the application logic in order to use the components
for the application domain. For many of the components identified by the survey,
the application logic is not expressed as code but as part of queries, rules and
formal vocabularies.

58% of the surveyed application use inferencing and reasoning, which often
encode some form of domain and application logic, 80% explicitly mention using
a formal vocabulary, and 24% make use of an RDF query language. This results
in the application logic being distributed across the different components.

The distribution of application logic is a well known problem for Web ap-
plications built on top of relational databases [20], and current web frameworks
such as Ruby on Rails or the Google Web Toolkit(http://code.google.com/
webtoolkit/) allow the application developer to control the application inter-
face and the persistent storage of data programmatically through Java or Ruby,
without resorting to e.g. JavaScript for the interface and SQL for the data stor-
age. However approaches for centralising the application logic of Semantic Web
applications still have to be developed.

3.5 The impact of the challenges on an example application

The challenges of implementing Semantic Web standards become apparent even
for small applications. Figure 2 shows the architecture of an application from
the authors previous work, the SIOC explorer [21]. It aggregates content from
weblogs and forums exposing their posts and comments as RDF data using the
SIOC vocabulary [12]. The application logic and most parts of the application
are implemented using the Ruby scripting language and the Ruby on Rails(http:
//rubyonrails.org/) web application framework. The user interface allows
faceted browsing of the SIOC data and is implemented through the BrowseRDF
Ruby component [19]. The data interface is provided by ActiveRDF[18], which
is an object-oriented Ruby API for accessing RDF data. It is used to access the
integration service: The data interface is also used to access the persistent
storage of RDF data using the Redland library(http://librdf.org/). Other
application data is persistent to a MySQL relational database. The crawler is
implemented through several Unix command line utilities which are controlled by
Ruby. The SIOC explorer does not implement a search service or an authoring
interface.



Crawler:

User interface: BrowseRDF (Ruby)

(primary) Application Logic

Data Interface: ActiveRDF, 
data-model: object oriented

Integration Service: OWLIM+Sesame (Java) 
via SPARQL Ruby

Persistent Storage:

command 
line 

utilities

Ruby

Ruby

Redland, 
data-model: graph

MySQL, 
data-model: relational

Ruby

distributed Application Logic

Fig. 2. Result of the architectural and functional analysis of the SIOC explorer

All four identified implementation challenges affect the SIOC explorer : (1)
Even though all data sources use RDF and the SIOC vocabulary, the data is
noisy enough to require two steps of data integration. The OWLIM extension
of Sesame provides generic object consolidation, and integration specific to SIOC
data is implemented as Ruby code. (2) The components are mismatched, re-
garding both the data models(object oriented, relational and graph based) and
the programming language APIs (Ruby and Java). This requires mapping
RDF to Ruby objects (ActiveRDF) and mapping relational data to Ruby objects
(ActiveRecord). Sesame has no Ruby API, so SPARQL is used to access Sesame,
resulting in slow performance for large numbers of concurrent read operations. (3)
Unclear standards and best practices affect the crawler implementation, as
different SIOC exporters require different methods to discover and aggregate the
SIOC data, as RDFa and GRDDL were not in wide use when the SIOC explorer
was developed in 2007. (4) The application logic is distributed across the pri-
mary application logic component, the data interface, the rules of the integration
service and the code which controls the crawler.

4 Mitigating the software engineering challenges

We propose two approaches for mitigating these challenges. The first approach
proposes an architectural solution by delegating generic components to external
service providers thus simplifying the application. The second approach is to pro-
vide better software engineering support with components provided by software
frameworks for rapid assembling and customising of complete applications. Both
approaches use modularisation to delegate the implementation of some Semantic
Web capabilities to components which are provided either by an external service
or by a software framework.

4.1 Delegating generic components to external providers

The majority (72%) of surveyed applications implement an integration service,
and in section 3.1 we have discussed the issues involved in integrating noisy data
even if all sources support RDF. One possible approach to mitigate the identified



Remote Data 
Sources

User interface

Data Interface

Authoring Interface

Persistent Storage

Integration Consumer

Integration Service

Crawler

Search Service

Integration Provider

SPARQL

Fig. 3. Simplified Semantic Web application architecture after delegating data discovery,
aggregation and integration to an integration provider

challenges is the delegation of generic data discovery, data aggregation and data
integration to external providers.

In this way, external integration providers can provide the functionality of
the integration service, search service and crawler. They provide high value services
such as data aggregation and integration, which can be exploited by integration
consumers. If the cost of discovering, aggregating and integration data on a
Web scale is to high for some domains, the integration consumers can benefit
from economies of scale when using external integration provider. Figure 3 shows
the resulting simplified application architecture. Current search engines already
provide APIs which can be utilised to search the whole web or just one specific
site, however they lack the capabilities of Semantic Web technologies.

Delegating data integration to external providers can eliminate the need for
(1) integration of semantic data if the application only needs generic services,
like object consolidation based on inverse functional properties. As new (2) stan-
dards and best practices for discovering, publishing and updating of data become
available, these only need to be implemented by the integration provider with-
out affecting the integration consumer. The (3) mismatch of components is
not affected by this, if SPARQL is efficient enough for the application. If domain
specific integration of data is required, then different integration providers could
provide specialised integration services for individual domains, just like generic
and domain specific search engines exist today. However, (4) distributing appli-
cation logic remains a challenge, as specialised and domain specific queries can
contain important parts of the application logic.

The SIOC explorer can benefit from this approach by delegating the crawler
which aggregates SIOC data from the different weblogs and forums, to an exter-
nal integration provider such as Sindice [22], which continuously discovers and
aggregates SIOC data and performs generic integration services such as object
consolidation. This removes two components from the architecture, and allows the
application to be purely implemented in Ruby thus eliminating API mismatches.
All SIOC data would need to be accessed from Sindice via SPARQL, after which
it can be stored in a local persistent store.

4.2 Assembling complete applications from components

While not explicitly described, most surveyed applications are at least partially
created on a case-by-case basis: not just the application specific logic is imple-
mented by a software engineer, but also at least one other component of the



application. Very often the user interface, integration service or the crawler are
custom made for the specific application. The survey shows that most applications
are implemented with more then one programming language, which indicates that
most applications are assembled from components with API mismatches.

Software frameworks provide the infrastructure for applications in the form
of templates, components and libraries. The provision of software frameworks for
implementing Semantic Web technologies has the potential to address all of the
identified issues to a certain degree: (1) generic data integration can be provided
through libraries provided by the framework. (2) the mismatch of components
can be addressed if the framework provides all the components which are neces-
sary to assemble a Semantic Web application, and if all parts of the framework
provide APIs for the same programming languages. (3) New standards and best
practices, e.g. for data discovery or publication, can be implemented as part of
the framework, thus alleviating the need for the application programmer to im-
plement them. (4) Distribution of application logic can be addressed through the
framework by providing a central point for implementing the application logic,
which can control and customise all of the components.

Similar benefits are already provided by modern Web application frameworks
such as Ruby on Rails for Ruby, PHPCake for PHP and Django for Python. The
Semantic Web Application Framework (SWAF) [19] provides a first step towards
providing components for assembling and customising a complete Semantic Web
application.

5 Related work

Our methodology is adapted from [23], which uses six cases studies of software
systems as the basis for introducing the basic concepts of software architecture.
This is used as the foundation for identifying the most important general chal-
lenges for the design of complex software systems which are constructed from
many components. We adapt this approach for the field of Semantic Web tech-
nologies. The challenges which we identify are based on a survey of 98 Semantic
Web applications.

Other empirical surveys about Semantic Web applications are publicly avail-
able, however they are not concerned with the software architecture and specific
implementation details of concrete applications. Thus they provide no empirical
basis for identifying the main challenges of implementing Semantic Web tech-
nologies. [24] presents the results of a survey of 627 Semantic Web researchers
and practitioners done in January 2007. The questions from the survey cover
the categories of demographics, tools, languages and ontologies. It tries to char-
acterise the uptake of Semantic Web technologies and the types of uses cases
for which they are deployed. Another similar survey of 161 researchers and 96
application-oriented participants was published online in 2009(http://preview.
tinyurl.com/semweb-company-austria-survey).

[25] performs a survey and architectural analysis of 35 applications from the
“Semantic Web challenges” in 2003, 2004 and 2005. The result is a prescriptive
software architecture for Semantic Web applications described with UML. How-
ever, the results of the survey do not identify any software engineering challenges
for implementing Semantic Web technologies.

While no other empirical analysis of the challenges of implementing Seman-
tic Web applications exist, the ONTOCOM project [7] provides a detailed cost



estimation model for ontology development projects. We do not provide a cost es-
timate model for software engineering of Semantic Web applications. However, our
identification of the main challenges in implementing such applications provides
the basis for future research on establishing such cost estimation models.

6 Conclusion

Semantic Web technologies enable new benefits such as semantically structured
machine-readable data and the integration of data from multiple, heterogeneous
sources. However, adopting new technologies adds effort resulting from implement-
ing the new standards and their associated functionality. We have conducted an
empirical survey of Semantic Web applications, which we have used to propose a
reference architecture for Semantic Web applications, and for identifying the main
challenges which are introduced by implementing Semantic Web technologies: the
issues involved in integrating noisy and heterogeneous data, the mismatch of data
models and APIs between components, immature and belated best practices and
standards, and the distribution of application logic across components. These
challenges have been an obstacle for the development of applications exploiting
Semantic Web technologies. Two possible approaches for mitigating these chal-
lenges are: the simplification of the application architecture by delegating data
integration to an external service provider, and assembling and customising of
components provided by software frameworks.

The ecosystem of the emerging Web of Data will be based on integration
providers and integration consumers. Integration providers provide access to data
which has been discovered, aggregated and integrated in a generic way or which
caters to a specific domain. Integration consumers will utilise these services to
provide their users with benefits which are enabled by the Web of Data and by
the integration providers. Data will be published and discovered according to
community and industry best practices, which are increasingly implemented by
ready-made components. The identified challenges and potential solutions enable
future research to better assess the costs of adopting Semantic Web technologies
within enterprises, and form the basis for designing better software frameworks
and software architecture for exploiting the emerging Web of Data.

Acknowledgements: The work presented in this paper has been funded in
part by Science Foundation Ireland under Grant No. SFI/08/CE/I1380 (Lion-2).

References

1. Berners-Lee, T., Hendler, J.A., Lassila, O.: The Semantic Web. Scientific American
284(5) (2001) 34–43

2. Decker, S., Melnik, S., Van Harmelen, F., Fensel, D., Klein, M., Broekstra, J., Erd-
mann, M., Horrocks, I.: The semantic web: The roles of XML and RDF. IEEE
Internet computing 4(5) (2000) 63–73

3. Abecker, A., van Elst, L.: Ontologies for knowledge management. In: Handbook on
Ontologies in Information Systems. Springer (2004) 453–474

4. Davies, J., Fensel, D., van Harmelen, F., eds.: Towards the Semantic Web: Ontology-
driven Knowledge Management. John Wiley and Sons (2002)

5. Fensel, D., Van Harmelen, F., Horrocks, I., McGuinness, D., Patel-Schneider, P.:
OIL: An ontology infrastructure for the semantic web. IEEE intelligent systems
16(2) (2001) 38–45

6. Möller, K.: A Lifecycle Model for Data on the Semantic Web, in progress. PhD
thesis, National University of Ireland, Galway (2009)



7. Simperl, E., Popov, I., Burger, T.: ONTOCOM Revisited: Towards Accurate Cost
Predictions for Ontology Development Projects. Proceedings of the International
Semantic Web Conference (2009)

8. Gerber, A., van der Merwe, A., Barnard, A.: A Functional Semantic Web Architec-
ture. Proceedings of the European Semantic Web Conference (2008)

9. Hausenblas, M.: Building Scalable and Smart Multimedia Applications on the Se-
mantic Web. PhD thesis, Graz University of Technology (2008)

10. Bizer, C., Cyganiak, R., Heath, T.: How to Publish Linked Data on the Web.
Technical report, FU Berlin (2007)

11. Endres, A., Rombach, D.: A Handbook of Software and Systems Engineering. Pear-
son Education (2003)

12. Breslin, J., Decker, S., Harth, A., Bojars, U.: Sioc: An approach to connect web-based
communities. The International Journal of Web-Based Communities (2006)

13. Hogan, A., Harth, A., Decker, S.: Performing object consolidation on the semantic
web data graph. In: Identity, Identifiers, Identification Workshop. (2007)

14. Cyganiak, R., Stenzhorn, H., Delbru, R., Decker, S., Tummarello, G.: Semantic
sitemaps: Efficient and flexible access to datasets on the semantic web. In: European
Semantic Web Conference. (2008)

15. Ding, L., Finin, T.: Characterizing the Semantic Web on the Web. Lecture Notes
in Computer Science 4273 (2006) 242

16. d’Aquin, M., Baldassarre, C., Gridinoc, L., Angeletou, S., Sabou, M., Motta, E.:
Characterizing Knowledge on the Semantic Web with Watson. In: Workshop on
Evaluation of Ontologies and Ontology-based tools of the International. (2007)

17. Kinsella, S., Bojars, U., Harth, A., Breslin, J.G., Decker, S.: An interactive map
of semantic web ontology usage. In: Information Visualisation, 2008. IV ’08. 12th
International Conference. (2008) 179–184

18. Oren, E., Heitmann, B., Decker, S.: ActiveRDF: embedding Semantic Web data into
object-oriented languages. Journal of Web Semantics (2008)

19. Oren, E., Haller, A., Hauswirth, M., Heitmann, B., Decker, S., Mesnage, C.: A
flexible integration framework for semantic web 2.0 applications. Software, IEEE
(2007)

20. Leff, A., Rayfield, J.: Web-application development using the model/view/controller
design pattern. Proceedings of the International Enterprise Distributed Object Com-
puting Conference (2001) 118–127

21. Bōjars, U., Heitmann, B., Oren, E.: A Prototype to Explore Content and Context on
Social Community Sites. In: Proceedings of the International Conference on Social
Semantic Web (CSSW). (2007)

22. Oren, E., Delbru, R., Catasta, M., Cyganiak, R., Stenzhorn, H., Tummarello, G.:
Sindice.com: A document-oriented lookup index for open linked data. International
Journal of Metadata, Semantics and Ontologies (2008)

23. Garlan, D., Shaw, M.: An introduction to Software Architecture. Advances in
Software Engineering and Knowledge Engineering 1 (1993) 1–40

24. Cardoso, J.: The Semantic Web Vision: Where Are We? IEEE Intelligent Systems
22 (2007) 84–88

25. Cunha, L.M., de Lucena, C.J.P.: Cluster The Semantic Web Challenges Applica-
tions: Architecture and Metadata Overview. Technical report, Pontificia Universi-
dade Catolica do Rio de Janeiro (2006)


