
On existence of robust combiners for cryptographic hash functions?

Michal Rjaško

Department of Computer Science, Faculty of Mathematics, Physics and Informatics,
Comenius University, Bratislava
rjasko@dcs.fmph.uniba.sk

Abstract. A (k, l)-robust combiner for collision resistant
hash functions is a construction, which takes l hash func-
tions and combines them so that if at least k of the compo-
nents are collision resistant, then so is the resulting com-
bination. A black-box (k, l)-robust combiner is robust com-
biner, which takes its components as black-boxes. A trivial
black-box combiner is concatenation of any (l−k+1) of the
hash functions. Boneh and Boyen [1] followed by Pietrzak
[3] proved, that for collision resistance we cannot do much
better that concatenation, i.e. there does not exist black box
(k, l)-robust combiner for collision resistance, whose output
is significantly shorter that the output of the trivial com-
biner. In this paper we analyze whether robust combiners
for other hash function properties (e.g. preimage resistance
and second preimage resistance) exist.
Key words: Cryptographic hash function, robust com-
biner, preimage resistance, second preimage resistance

1 Introduction

Cryptographic hash functions play important role in
the current cryptography. In the last few years, many
attacks on popular hash functions believed to be se-
cure (e.g. SHA1, MD5) have been proposed. Within
these attacks arises a question, whether we are able
to construct a secure hash function. A hash function
is a function H : {0, 1}∗ → {0, 1}v, which maps mes-
sages (strings of 0 and 1) of arbitrary length to strings
of fixed length – called images. Practically useful hash
functions must guarantee several security properties:
they should be collision resistant, what means that it
is hard to find two different messages which map to
the same image. Other important properties of hash
functions are preimage resistance (for given image, it is
hard to find its preimage, i.e. a message which maps to
that image) and second-preimage resistance (for given
message, it is hard to find another message, which
maps to the same image). For formal definitions of the
properties mentioned above or other notions of hash
function security we refer to the works [4], [5].

Natural way how to construct secure hash func-
tion is to combine several known (regarded to be se-
cure) hash functions in such a way, that if one of
the combined functions appears to be insecure, the
? This paper was supported by VEGA grant number

1/0266/09 and by Comenius University grant number
UK/365/2009.

combination remains secure. For collision resistance
we can achieve this by concatenation. Let H1,H2 :
{0, 1}∗ → {0, 1}v be some hash functions. We can con-
struct a hash function H, where

H(M) = H1(M)||H2(M).

Note, that if (M,M ′) is a pair of colliding messages
for H, then this pair collides also for H1 and H2.
Therefore if at least one of the H1 and H2 is collision
resistant, then H is collision resistant too. However
this approach has one important disadvantage – the
output length of H is twice as large as the output of
underlying hash functions H1 and H2, what can lead
to problems with practical implementation, mainly on
devices with small amount of memory as smart-cards.

Thus the question is, whether one can construct
a secure combiner with output shorter than the con-
catenation. Boneh and Boyen in [1] proved the first
negative result in this direction, in particular that
there does not exist secure combiner for collision resis-
tant hash functions with output shorter than concate-
nation, with an assumption, that the combiner queries
each hash function exactly once. This result was gen-
eralized by Pietrzak [3], where the author proved that
the secure combiners for collision resistance with sig-
nificantly shorter output than concatenation do not
exist. The later work consider a (k, l)-robust combin-
ers for collision resistant, which are secure if at least k
of the l components are secure.

In this paper we follow the work of Pietrzak [3] and
prove the similar results for other important proper-
ties of hash functions – second preimage resistance and
preimage resistance. We define a (k, l) combiner for
preimage resistance and second preimage resistance
and for these definitions we prove the impossibility
results similar to one from [3].

Organization In the section 2 we start by some
useful notation and continue with the formal defini-
tions of (k, l) combiners for collision resistance, preim-
age resistance and second-preimage resistance. In the
section 3 we prove the negative results, namely in the
Theorem 1 we prove that secure combiner for preim-
age resistance with output significantly shorter than
concatenation does not exists and in the Theorem 2
we prove the similar result for second-preimage resis-
tance.

72 Michal Rjaško

2 Preliminaries

In this section we formally define a combiner of l hash
functions for three notions of hash function security
– collision resistance, preimage resistance and second
preimage resistance. The definition of the combiner
for collision resistance is from [1], the other definitions
(i.e. for preimage and second-preimage resistance) are
slight modification of the former one.

We start with some basic notation. We write M
$←S

for the experiment of choosing random element from
the distribution S. If S is a finite set, then M is chosen
uniformly from S. Concatenation of finite strings M1

and M2 we denote by M1||M2 or simply M1M2.
An oracle turing machine T with oracle access to

turing machines T1, . . . , Tl is a turing machine, which
accepts inputs via input tape, performs some compu-
tation and replies via output tape. During the com-
putation it can write on some additional “oracle” in-
put tapes t1, . . . , tl and recieves responses via oracle
output tapes t′1, . . . , t

′
l – connections to the turing ma-

chines T1, . . . , Tl. Whenever T writes some input on
tape ti, the turing machine Ti is run on that input and
T recieves the output on tape t′i. We call such a opera-
tion a query to oracle Ti. All queries are performed in
unit time (i.e. computation of Ti is not counted into
the running time of T). By TT1,...,Tl we denote that
the oracle turing machine T has oracle access to the
turing machines T1, . . . , Tl.

Let λ be some parameter. In this section, and later,
by Hi we denote a function mapping from {0, 1}∗ to
{0, 1}v, where i = 1 . . . l and v = p(λ) for some polyno-
mial p. In general, a combiner of l hash functions Hi,
i = 1, . . . , l for some notion of hash function security
is a pair (C, P), where

– C : {0, 1}m → {0, 1}n does the “combination”
(m = pm(λ) and n = pn(λ) for some polynomi-
als pm, pn), i.e. it is an oracle turing machine with
oracle access to H1, . . . , Hl. It behaves as a stan-
dard hash function (i.e. it takes some message on
input and outputs a hash of the message – string
of fixed length), but during the computation it can
query any of its oracles.

– P provides a proof of the security for C. It is an al-
gorithm, which transforms the “ability” of break-
ing the C (with respect to the particular security
property) to the ability of breaking the candidates.

We note that both C and P should be efficient –
they run in a time that is polynomial in the security
parameter λ (and thus it is polynomial also in m, n
or v). The oracle turing machine C is the same for
combiners of all security notions. On the other hand,
P needs to be modified when going from one security
notion to another.

The security of combiner (with respect to some se-
curity notion) is determined by the number how many
of the candidate hash functions need to be secure in
order to guarantee that the resulting combiner is se-
cure. By (k, l)-combiner (C, P) we denote the com-
biner (C, P), which is secure, if at least k of the l
candidate hash functions are secure.

We expect from all candidate hash functions Hi to
have the same output length v. We assume this just
for simplicity, our results can be easily extended for
variable output length of these candidate hash func-
tions.

In this paper we deal only with black box combin-
ers, what means that the combination algorithm (C)
has only black box (i.e. oracle) access to the candi-
date hash functions. It does not know the structure of
underlying primitives H1, . . . ,Hl.

We start by formal definition of the combiner for
collision resistance from [3].

2.1 Combiner for collision resistance

A collision resistant (k, l)-combiner for l hash func-
tions H1, . . . , Hl is a pair (C, P) of oracle turing ma-
chines C and P , where

– C : {0, 1}m → {0, 1}n has oracle access to hash
functions H1, . . . , Hi and performs the “combina-
tion” of hash functions. On input it takes a mes-
sage of fixed length m and outputs an image of
fixed length n. The output of C on an input M
and with oracle access to H1, . . . ,Hl is denoted as
CH1,...,Hl(M).

– P is an oracle machine, which provides a “proof”
of security for C. It takes as input a pair of mes-
sages (M, M ′) and outputs two vectors

W = (w1, . . . , wl) and W′ = (w′1, . . . , w
′
l).

The role of the algorithm P is to transform the
collision in C to collisions in at least l − k + 1 of the
underlying hash functions H1, . . . , Hl. If such a P ex-
ists, which transforms collisions in C to collisions in Hi

for all compatible H1, . . . ,Hl, then we consider C as
a collision resistant (k, l) combiner. Now, we formally
define what was discussed above.

We say that P k succeeds on H1, . . . , Hl, M and
M ′ if:

∃J ⊆ {1, . . . , l}, |J | ≥ l − k + 1 :

(∀j ∈ J) : (wj , w
′
j) is a collision for Hj

(i.e. Hj(wj) = Hj(w′j))

Let
AdvColl[k]

P [(H1, . . . , Hl), M, M ′]

denote the probability that P k-succeeds.

Combiners for cryptographic hash functions 73

We say that (C, P) is ε-secure (k, l)-Coll-combiner,
if for all H1, . . . , Hl and all collisions (M, M ′) in C we
have:

AdvColl[k]
P [(H1, . . . , Hl),M,M ′] ≥ 1− ε

We consider (C, P) to be secure (k, l)-Coll-combiner,
if ε is negligible in the security parameter λ.

For example, a secure (1, 2)-combiner for collision
resistance can look like follows:

– CH1,H2(M) = H1(M)||H2(M)
– PH1,H2(M,M ′) = (M,M), (M, M ′)

The turing machine C just passes its input to the can-
didates and returns the concatenation of their output.
Note that collision in C implies collision in both H1

and H2. In more detail, if (M, M ′) is a collision for
such a C, then (M, M ′) is also a collision in both H1

and H2. Thus P has easy work – it copies its input to
the output. It is easy to see, that for all H1, H2 and
all collisions (M, M ′) in C is

AdvColl[1]
P [(H1,H2),M, M ′] = 1.

Therefore (C, P) is 0-secure (1, 2)-Coll-combiner.

2.2 Combiner for preimage resistance

The combiner for preimage resistance is similar to one
for collision resistance. Only difference is in the al-
gorithm P , which provides “a proof of the security“.
Algorithm P is given on its input challenge images
y1, . . . , yl of H1, . . . ,Hl, for which it has to find preim-
ages. It plays a game, in which it chooses an image of C
for which it gets a preimage.

A preimage resistant combiner for l hash functions
H1, . . . , Hl is a pair (C, P) of oracle turing machines C
and P , where

– C : {0, 1}m → {0, 1}n is the same as in the colli-
sion resistant combiner.

– P is an oracle turing machine, which provides
a “proof” of security for C. It plays the following
game. Let f : {0, 1}n → {0, 1}m ∪ {⊥} be a func-
tion, such that for all Y ∈ {0, 1}n is f(Y) = M ,
for which CH1,...,Hl(M) = Y . If such a M does not
exists, then f(Y) = ⊥.

Pre-Combf game:
1. Messages w1, . . . , wl ∈ {0, 1}m are chosen at

random, then images y1 = H1(w1), . . . , yl =
Hl(wl) are computed and given to P on its
input.

2. P with oracle access to H1, . . . ,Hl outputs
some image Y ∈ {0, 1}n.

3. A message M = f(Y), is given to P (note
that CH1,...,Hl(M) = Y), if f(Y) = ⊥, then
the game ends and P fails.

4. P continues (still can query H1, . . . , Hl) and
outputs a vector W = (w′1, . . . , w

′
l).

We note, that the function f , which parametrizes
the Pre-Comb game can be understood as a deter-
ministic “device”, which finds preimages in C (it need
not to be efficient). An algorithm P from a secure
preimage resistant combiner should win the Pre-Comb
game for all possible functions f (or at least for non-
negligible part of such functions, however in this paper
we consider combiners to be secure if they win for all
possible fs).

We say that P k succeeds on H1, . . . ,Hl, y1, . . . , yl

and f if:

∃J ⊆ {1, . . . , l}, |J | ≥ l − k + 1 :

(∀j ∈ J) : w′j is preimage of yj on Hj

(i.e. Hj(w′j) = yj)

Let

AdvPre[k]
P [(H1, . . . , Hl), (y1, . . . , yl), f]

denote the probability that P k-succeeds.
Finally, (C, P) is ε-secure (k, l)-Pre-combiner, if for

all H1, . . . ,Hl, all images y1, . . . , yl and all possible f
we have:

AdvPre[k]
P [(H1, . . . , Hl), (y1, . . . , yl), f] ≥ 1− ε

We say (C, P) is secure (k, l)-Coll-combiner, if ε is neg-
ligible in the security parameter λ.

For example consider the following (1, 2)-combiner
for preimage resistance:

– CH1,H2 (M1||M2) = H1(M1) || H2(M2) – C gets
a message on its input, divides it into two parts
of roughly equal length and passes these two parts
to H1 and H2.

– P – given images y1, y2 on input, P computes the
image Y = y1||y2 and returns it in the second step
of the Pre-Comb game. In turn P receives a mes-
sage M , where CH1,H2(M) = Y . Finally P divides
the message M into two parts w1 and w2 (exactly
as C divides its input) and returns (w1, w2).

Since CH1,H2(w1||w2) = H1(w1)||H2(w2), we can see
that H1(w1) = y1 and H2(w2) = y2. Thus (C, P) is
0-secure (1, 2)-Pre-combiner.

74 Michal Rjaško

2.3 Combiner for second-preimage resistance

Here we define a combiner for second-preimage re-
sistance. Again, only difference from combiners for
preimage or collision resistance is in the algorithm P .

A second-preimage resistant combiner for l hash
functions H1, . . . , Hl is a pair (C,P) of oracle turing
machines C and P , where

– C : {0, 1}m → {0, 1}n is the same as in the case of
preimage resistant or collision resistant combiner.

– P is an oracle turing machine, which provides
a “proof” of security for C. It plays the following
game. Let f : {0, 1}m → {0, 1}m ∪ {⊥} be a func-
tion, such that for all M ∈ {0, 1}m is f(M) = M ′,
for M ′ 6= M and CH1,...,Hl(M) = CH1,...,Hl(M ′).
If such a M ′ does not exist, then f(M) = ⊥.

Sec-Combf game:
1. Message w ∈ {0, 1}m is chosen at random and

given to P on its input.
2. P with oracle access to H1, . . . ,Hl outputs

some message M ∈ {0, 1}m.
3. P is given a message M ′ = f(M) (M ′ 6= M

and CH1,...,Hl(M) = CH1,...,Hl(M ′)).
4. P continues (still can query H1, . . . , Hl) and

outputs a vector (w′1, . . . , w
′
l).

We say that P k succeeds on H1, . . . , Hl, w and f
if:

∃J ⊆ {1, . . . , l}, |J | ≥ l − k + 1 :

(∀j ∈ J) : w′j is second-preimage of w on Hj

(i.e. Hj(w′j) = Hj(w) and w′j 6= wj)

Now, let

AdvSec[k]
P [(H1, . . . , Hl), w, f]

denote the probability that P k-succeeds.
Finally, (C,P) is ε-secure (k, l)-Sec-combiner, if for

all H1, . . . , Hl, all messages w and all possible f we
have:

AdvSec[k]
P [(H1, . . . , Hl), w, f] ≥ 1− ε

And we say (C, P) is secure (k, l)-Coll-combiner, if ε is
negligible in the security parameter λ.

Consider the following example of secure (1, 2)
combiner for second-preimage resistance:

– CH1,H2(M) = H1(M)||H2(M)
– P – on input w in the second step of the Sec-Comb

game P returns a message M = w. In turn P
receives a message M ′ 6= M , where CH1,H2(M ′) =
CH1,H2(M). Finally P returns a vector (M ′,M ′).

It is easy to see,

CH1,H2(M ′) = H1(M ′)||H2(M ′)
= H1(M)||H2(M)
= CH1,H2(M),

thus H1(M ′) = H1(M), H2(M ′) = H2(M).

3 Impossibility proofs

Boneh and Boyen [1] followed by Pietrzak [3] showed,
that there does not exist a collision resistant (k, l)
combiner with short output. In this section we prove
the similar results for preimage resistance and second-
preimage resistance.

The impossibility result for preimage resis-
tant combiners is given in the Theorem 1, and in the
Theorem 2 is given the impossibility result for second-
preimage resistance.

We start by notation used in the rest of this paper.
Let (C,P) be some combiner and let:

– Wi(M) be the set of oracle queries to Hi made
while evaluating CH1,...,Hl on the message M

– Vi(M) = {Hi(M); M ∈ Wi(M)} be the set of
corresponding answers.

– wi,j(M) be the j-th query to Hi made while eval-
uating CH1,...,Hl(M) and vi,j(M) be the corre-
sponding answer.

To simplify the presentation we will assume that
P can output only messages that it has queried during
the game. Note that we can assume this without loss
of generality.

Theorem 1. Let (C, P) be a (k, l)-combiner for pre-
image resistance, where C can make at most qC oracle
queries. Suppose, that

n < (v − lg(qC))(l − k + 1)− l

Then there exist y1, . . . , yl, H1, . . . ,Hl and f , such that

AdvPre[k]
P [(H1, . . . , Hl), (y1, . . . , yl), f] is negl. in λ

Proof. Let H1, . . . ,Hl : {0, 1}∗ → {0, 1}v be all uni-
formly random hash functions. Let qP be the total
number of queries that P makes in the Pre-Comb game
and let y1, . . . , yl be the challenge images that P gets
in the first step of the game. From the fact, that P runs
in a polynomial time we have that qP = p(λ) for some
polynomial p. Therefore the probability that P queries
any Hi with some message w, such that Hi(w) = yi,
is negligible in λ. To see this only a simple idea is
needed. All of the His are random thus the probabil-
ity that P gets output yi for some i = 1, . . . , l in one

Combiners for cryptographic hash functions 75

query is l/2v. The probability that P queries yi for
some i in qP queries is therefore

qP
l

2v
= p(λ)

l

2p′(λ)
,

what is negligible in λ.
Thus P ’s only chance to win is in the message M

it gets as a preimage for the image Y chosen in the
second step of the Pre-Comb game. We show, that if
n < (v− lg(qC))(l− k +1)− l, then there exist images
y1, . . . , yl, and a function f such that for all images Y
which P can output in the second step, evaluating of
C(f(Y)) does not present a preimage for at least k of
the y1, . . . , yl. This means, that for such H1, . . . , Hl,
y1, . . . , yl and f is

AdvPre[k]
P [(H1, . . . , Hl), (y1, . . . , yl), f]

negligible in λ, what we want to prove.
Let H1, . . . , Hl be as defined above (independent

random hash functions) and let Y ∈ {0, 1}n be some
image of CH1,...,Hl . Consider the following random ex-
periment. First, images y1, . . . , yl ∈ {0, 1}v are chosen
at random and then a message M ∈ {0, 1}m is ran-
domly chosen. Now consider the following events:

E1 ⇐⇒ CH1,...,Hl(M) = Y

E2 ⇐⇒ ∃J ⊆ {1, . . . , l}, |J | > l − k :
∀j ∈ J : yj ∈ Vj(M)

Note that if Pr[E1] > Pr[E2]. then Pr[E1∧¬E2] > 0,
what means, that there exist images y1, . . . , yl∈{0, 1}v

such that for each Y ∈ {0, 1}n there exists a message
M ∈ {0, 1}m for which CH1,...,Hl(M) = Y and the
evaluation of CH1,...,Hl(M) does not present preim-
ages for y1, . . . , yl. In other words, it means that there
exist images y1, . . . , yl and a function f1 for which the
theorem holds.

We know that for particular Y and randomly cho-
sen M is

Pr[CH1,...,Hl(M) = Y] ≥ 2−n.

Thus
Pr[E1] ≥ 2−n.

To find Pr[E2], let qi be the number of queries to Hi

made by C (note that
∑l

i=1 qi = qC). The Pr[E2] can
be upper bounded by the probability that the best or-
acle algorithm AH1,...,Hl , which is allowed to query Hi

at most qi times finds a preimage for at least l− k + 1
of yi (A can evaluate CH1,...,Hl and then A’s success
probability is equal to Pr[E2]). Since Hi are all inde-
pendent random functions, the best A can do is to

1 for each Y we set f(Y) to the corresponding message M

query each Hi with qi distinct inputs. Now we follow
the same steps as Pietrzak [3] did in the proof of the
similar theorem for collision resistant combiner.

Pr[E2] ≤ Pr[AH1,...,Hl finds l − k + 1 preimages]

≤
∑

J⊆{1,...,l}
|J|=l−k+1

Pr[∀i ∈ J : A finds preimage for yi]

≤
∑

J⊆{1,...,l}
|J|=l−k+1

∏

i∈J

qi

2v

<
∑

J⊆{1,...,l}
|J|=l−k+1

ql−k+1
C

2v(l−k+1)

≤
(

l − k + 1
l

)
ql−k+1
C

2v(l−k+1)
<

2lql−k+1
C

2v(l−k+1)

When we put everything together:

lg(Pr[E1]) ≥ lg(2−n) = −n

and

lg(Pr[E2]) < lg
(

2lql−k+1
C

2v(l−k+1)

)

= (−(v − lg(qC))(l − k + 1) + l).

Thus if n < (v− lg(qC))(l−k+1)− l we have Pr[E1] >
Pr[E2], what we wanted to prove.

¤

The condition n < (v−lg(qC))(l−k+1)−l gives the
lower bound how short can be the output of a secure
(k, l)-Pre-combiner. It looks rather unnatural, how-
ever if C is allowed to query each Hi exactly once
and we consider only (1, l)-combiners (what means,
that a combiner is secure if at least one of the candi-
dates is secure) then the condition can be rewritten to
n < (v − 1)l.

We note, that this lower bound need not to be
optimal – maybe there exists a higher lower bound. We
leave such an analysis for future work. Similar analysis
for collision resistant combiners can be found in the
work [2].

Theorem 2. Let (C, P) be a (k, l)-combiner for
2nd-preimage resistance, where C makes at most
qC oracle queries. Suppose, that

n < (v − lg(qC))(l − k + 1)− l + 1

Then there exist w, H1, . . . , Hl and f , for which

AdvSec[k]
P [(H1, . . . , Hl), w, f] is negligible in λ

76 Michal Rjaško

Proof. The proof is very similar to one in the Theo-
rem 1, therefore we provide just a sketch of the proof.
Let H1, . . . ,Hl be all independent random hash func-
tions. We claim, that the probability where P queries
a second-preimage of w for at least one of the Hi is
negligible. This is due the fact, that P runs in a poly-
nomial time and therefore it can make at most polyno-
mial number of queries, what is not enough for winning
against random functions (for more formal discussion
see the similar part in the proof of the Theorem 1).

Therefore we only need to prove that if n < (v −
lg(qC))(l−k +1)− l +1, then there exist a message w
and a function f , where for all messages M that P can
output in the second step of the Sec-Comb game eval-
uation of C(f(M)) does not present a second preimage
of w for at least k of the H1, . . . ,Hl.

Thus let H1, . . . , Hl be as defined above and let
M ∈ {0, 1}m be some message. Consider the random
experiment, where w ∈ {0, 1}m and M ′ ∈ {0, 1}m are
chosen uniformly at random. We define the following
events E1 and E2:

E1 ⇐⇒ M ′ 6= M ∧ CH1,...,Hl(M) = CH1,...,Hl(M ′)
E2 ⇐⇒ ∃J ⊆ {1, . . . , l}, |J | > l − k : (∀j ∈ J)(∃i) :

vj,i(M ′) = Hj(w) ∧ wj,i(M ′) 6= w

In other words, E1 is the event when M ′ is the
second-preimage of M in the sense of CH1,...,Hl and
E2 means that the evaluation of CH1,...,Hl(M ′) does
presents at least l − k + 1 second-preimages for w.
Again, if we prove that Pr[E1] > Pr[E2], then Pr[E1 ∧
¬E2] > 0, what means that for each M the above
w1, . . . , wl and M ′ exist and therefore there exists
a function f (we set f(M) := M ′) for which the the-
orem holds (together with w1, . . . , wl).

Now, since m > n

Pr[E1] = 2−n − 2−m ≥ 2−n−1

Now, let qi be the maximum number of queries
to Hi made by C. We can upper bound Pr[E2] by the
probability that the best oracle algorithm A which can
query each Hi at most qi times finds second-preimage
of w for at least l−k+1 of the His. However H1, . . . ,Hl

are all independent random functions, thus the best A
can do is to query each Hi on qi distinct inputs dif-
ferent from w. If we follow the steps as in the corre-
sponding part of the proof of the Theorem 1 we get

Pr[E2] <
2lql−k+1

C

2v(l−k+1)

When we put everything together:

lg(Pr[E1]) ≥ lg(2−n−1) = −n− 1

and

lg(Pr[E2]) < lg
(

2lql−k+1
C

2v(l−k+1)

)

= −(v − lg(qC))(l − k + 1) + l.

Thus if n < (v − lg(qC))(l − k + 1) − l + 1 we have
Pr[E1] > Pr[E2], what we wanted to prove.

¤

4 Conclusion

We proved that combiners for preimage resistance and
second-preimage resistance with output (significantly)
shorter than concatenation do not exist. Our results
are similar to ones for collision resistance from [1]
and [3]. In particular, we showed that one can not cre-
ate a secure (k, l)-combiner (for some mentioned secu-
rity notion) of l arbitrary hash functions, with output
shorter than concatenation of l − k + 1 candidates.

These results are, however, too strict in a point,
that we want from a combiner to work for all l-tuples
of (compatible) hash functions and that the al-
gorithm P providing the proof of combiner’s security
must succeed with non-negligible probability on all
possible inputs. Such a condition is not very practi-
cally relevant – one can think of creating a combiner,
which combines only hash functions from some subset
of all hash functions (e.g. set of functions computable
in polynomial time). Another way how to weaken the
restrictions on combiners is to allow the algorithm P
to fail on negligible part of inputs. We leave the analy-
sis of such “weaker” combiners for a future work.

References

1. D. Boneh and X. Boyen: On the impossibility of ef-
ficiently combining collision resistant hash functions.
LNCS, 4117, 2006.

2. R. Canetti, R. Rivest, M. Sudan, L. Trevisan, S. Vad-
han and H. Wee: Amplifying collision resistance:
a complexity-theoretic treatment. LNCS, 4622, 2007.

3. K. Pietrzak: Non-trivial black-box combiners for
collision-resistant hash-functions don’t exist. LNCS,
4515, 2007.

4. P. Rogaway and T. Shrimpton: Cryptographic hash-
function basics: definitions, implications, and separa-
tions for preimage resistance, second-preimage resis-
tance, and collision resistance. In Fast Software Encryp-
tion, LNCS, Springer, 3017, 2004, 371–388.

5. M. Rjaško: Properties of cryptographic hash functions.
Mikulášska Kryptobeśıdka, 2008.

