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Abstract. It is still challenging to represent statistical analysis of 
experimental data in a semantic framework. As a first step towards this 
goal, ontological representation of statistical ANOVA analysis is 
proposed. In a vaccine protection use case, 151 instance data of Brucella 
vaccine protection investigation were collected from the literature and 
analyzed using ANOVA. Out of 16 parameters, 10 were found 
statistically significant in contributing to the protection. The careful study 
of these instances led to building and validating an OBI-based semantic 
framework to formally represent ANOVA. An ontology-based 
representation and statistical analysis of biomedical data allows data 
consistency checking and data sharing in the Semantic Web. 
Contact: yongqunh@med.umich.edu  

1. Introduction 

The Ontology for Biomedical Investigations (OBI) is being developed to address the 
need for a common, integrated ontology for the description of biological and clinical 
investigations. OBI has been used in experimental investigations in different 
communities, for example, Bioinvindex (http://www.ebi.ac.uk/bioinvindex), isa-tools 
(http://isatab.sourceforge.net/), and IEDB (http://www.immuneepitope.org/). In our 
recent study, we used OBI and other ontologies to represent an investigation of vaccine 
protection against influenza viral infection (Brinkman et al, 2010). The vaccine 
protection investigation measures how efficient a vaccine or vaccine candidate induces 
protection against virulent pathogen infection in vivo.  

While ontology representation of experimental assays in terms of material inputs and 
data outputs provide a foundation for further data sharing and semantic web studies of 



specific domains, it is still challenging to apply semantic frameworks to statistical 
analysis of instance data. OntoDM is a newly proposed ontology of data mining (Panov 
et al., 2009) that provides a framework and describes entities from the domain of data 
mining and knowledge discovery. OntoDM is aligned with OBI.  The updated OBI has 
included many statistical terms (e.g., ANOVA, F-test, t-test) and relevant supports that 
facilitate statistical analysis.   

The community-based Vaccine Ontology (VO; 
http://www.violinet.org/vaccineontology/) is a biomedical ontology that covers the 
vaccine domain (He et al, 2009). Development of VO has emphasized classification of 
vaccines and vaccine components, vaccination investigation, and host responses to 
vaccines. The VO development follows the OBO Foundry principles (Smith et al., 
2007). VO uses the Basic Formal Ontology (BFO) (Grenon et.al, 2004) as the top-level 
ontology. OBI is used as another upper level ontology for vaccine investigation. VO 
uses relations defined by primarily the Relation Ontology (RO) (Smith et al., 2005) and 
also by OBI and the Information Artifact Ontology (IAO) ontologies. The close 
association with these ontologies facilitates data integration and automated reasoning.  

In this report, we first introduce our ontology representation of the ANOVA statistical 
analysis, and then apply it to investigate the Brucella vaccine protection results curated 
from the literature. Brucella is an intracellular bacterium that causes brucellosis, the 
most common zoonotic disease worldwide. In this study, we hypothesized that some 
experimental variables significantly contribute to Brucella vaccine protection efficacy 
while others do not. Our study indicates that relying on a semantic framework such as 
OBI and OntoDM is a useful approach to support biomedical statistical data analyses.  

2. Methods  

The following methods were applied in this study:  

 Ontology representation of ANOVA Statistical analysis: The analysis of 
variance (ANOVA) was modeled primarily in OBI. A design pattern was 
generated. The use case in this study is ANOVA in terms of a linear model.  

 Ontology-based representation of vaccine protection investigation: All 
variables in this use case are represented using different ontologies as needed. 
The main ontologies used include VO, OBI, and IAO.  

 Literature curation of individual Brucella vaccine protection data: Peer-
reviewed Brucella vaccine protection research papers were obtained from 
PubMed search. These papers were manually curated to identify variables and 
extract values taken by these variables potentially important for vaccine 
protection efficacy investigation. The data were stored in an OWL file.  

 Ontology-based ANOVA analysis of Brucella vaccine protection results: 
ANOVA was applied to study the Brucella vaccine protection investigation 
instance data. The results were also represented in an ontology. 



3. Results  

We will first introduce how ANOVA is modeled in OBI. The ontology representation 
of vaccine protection investigation using VO and OBI is then described. Using 
literature curated data we will last introduce how the vaccine protection results are 
analyzed by ANOVA and modeled using ontology.  

3.1. Ontology design pattern of ANOVA data analysis 

The analysis of variance (ANOVA) provides a statistical test of whether or not the 
means of several groups are all equal. In statistics, ANOVA includes a collection of 
statistical models (e.g., linear models), and their associated procedures, in which the 
observed variance is partitioned into components due to different explanatory variables. 
The ontology-based ANOVA data analysis design pattern is illustrated in Fig. 1. 
ANOVA is a subclass of data transformation process in OBI. F-test is part of ANOVA 
process. ANOVA has specified input of data item. The individual data items come 
from two sources. The data items are possibly the output of individual processes (e.g., 
CFU reduction assay). Alternatively, a data item can be an output of a discretization 
process that discretizes non-measurable data (e.g., mouse age) into categorized 
measurement data (e.g., 1 for young mouse, 2 for middle-aged mouse, and 3 for old 
mouse). One approach to obtain the data items necessary for ANOVA analysis is 
through data item extraction from journal article (IAO_0000443). In this case, the input 
is journal article, and the output is data. The ANOVA output is a p-value data set, 
which includes a set of p-value results for an independent variable data set that is 
predefined.  

ANOVA is concretization of ANOVA protocol. The ANOVA protocol includes a 
predictive model that specifies a testable hypothesis model (Fig. 1). 

 

 

 
 

Fig. 1. Representation of ANOVA analysis process. 



3.2. Ontology representation of Brucella vaccine protection investigation  

A vaccine protection investigation includes three processes (or steps): vaccination, 
pathogen challenge, and vaccine protection efficacy assessment. For those pathogens 
that kill a model animal (e.g., mouse), survival assessment is used for assessing vaccine 
protection efficacy (Brinkman et al, 2010). Since virulent Brucella does not kill mice, 
the survival of pathogen challenged mice is not a useful method to assess Brucella 
vaccine efficacy. Instead, a colony forming unit (CFU) reduction assay is used to 
determine the difference of live bacterial recovery from vaccinated mice and non-
vaccinated mice (Schurig et al., 1991).  

To prove vaccine protection efficacy, a vaccine protection investigation using a specific 
animal model is often required. In this process, many variables may affect the 
outcomes. We summarized 17 variables that are described in typical vaccine protection 
studies. The ontology terms of these 17 variables are summarized in Table 1. 

As an example of this Brucella vaccine protection investigation, Brucella abortus cattle 
vaccine RB51 was used in a typical vaccine protection study as reported in reference 
(Schurig et al., 1991). In this typical mouse experiment, live RB51 (1 x 108 CFU) was 
used to vaccinate Balb/C mice, and the mice were challenged with B. abortus strain 
2308 (1 x 105 CFU) 8 weeks later. CFU reduction in mouse spleen was then counted to 
determine the vaccine protection. An ontology representation of this example is shown 
in Fig. 2.      

The experimental hypothesis is “Some experimental variables statistically significantly 
contribute to Brucella vaccine protection efficacy”. This hypothesis can be laid out as 
an instance of the hypothesis entity text.   

3.3. ANOVA analysis of Brucella vaccine protection results from literature curation 

Brucella vaccine research is an active research area with more than 1,000 peer-
reviewed papers stored in PubMed. To determine which variables play significant roles 
in changing the Brucella vaccine protection efficacy, more than 40 papers were 
manually curated to get instance data that correspond to these variables. In total, 151 
instance data were collected from the literature. In this study, we only focused on mice 
as the animal model. Different mouse strains were analyzed in our use case 
investigation. Each instance of vaccine protection investigation has individual values 
for all 17 variables (Table 1).   

To analyze which variables contribute to the vaccine protection, the significance of 
vaccine protection (three values: no protection, protection, enhanced protection) is set 
as a dependent variable, and the other 16 variables are independent variables. An 
ANOVA analysis was performed and indicated that six variables do not statistically 
significantly contribute to the protection (p-value > 0.05). These six variables include 
IL-12 vaccine adjuvant, mouse sex, vaccination route, mouse age at vaccination, 
vaccination-challenge interval, and challenge dose. The other 10 parameters 
statistically significantly contribute to the vaccine protection (p-value < 0.05).  

The predictive model is “Protection_Significance ~ .” indicating we are testing how 
each other variable affects the protection significance. This linear model representation 
can be understood and processed by statistical software programs such as R 
programming.     



Table 1. Ontology terms for 17 variables in this use case. 

 

# Classes / ANOVA variables Sources & term IDs 

1 vaccine protection efficacy  VO: VO_0000456 

2 vaccine strain  VO: VO_0001180 

3 vaccine viability  VO: VO_0001139 

4 vaccine protective antigen VO: VO_0000457 

5 mutated gene in vaccine strain   VO: VO_0001195 

6 vaccination mouse strain  VO: VO_0001189 

7 vaccination dose specification VO: VO_0001160 

8 pathogen strain for challenge  VO: VO_0001194 

9 pathogen challenge (subclass)  OBI: OBI_0000712 

10 CFU per volume UO: UO_0000212 

11 CFU reduction VO: VO_0001164 

12 IL-12 vaccine adjuvant  VO: VO_0001147 

13 biological sex  PATO: PATO_0000047 

14 vaccination (subclass) VO: VO_0000002 

15 animal age at vaccination  VO: VO_0000897 

16 vaccination-challenge interval VO: VO_0001191 

17 challenge dose specification  VO: VO_0001161 

 

Note: The first variable is the dependent variable, and the others are independent 
variables. The last six variables did not contribute to the vaccine protection (p-value < 
0.05).  

 

This use case was used to derive an instance level representation based on the formal 
semantic representation of ANOVA analysis (Fig. 1 and 2, Table 1). Specifically, to 
represent this use case ANOVA data analysis using ontology, we defined a ‘vaccine 
protection ANOVA’ (VO_0000572) under ‘ANOVA’. This ANOVA has vaccine 
protection efficacy as dependent variable and 16 other independent variables (Table 1). 
All values for individual variables were obtained from literature curation. A hypothesis 
was also generated as an instance of the ‘hypothesis textual entity’. The 151 instance 
data of this use case study was represented in OWL format. Each set of instance data is 
defined under an instance of ‘vaccine protection investigation’. The ANOVA output is 
a p-value data set that corresponds to a list of p-values for different independent 
variables. 



 
Fig. 2: Representation of a protection assay with Brucella vaccine RB51 (Schurig et al, 
1991). Boxes represent OWL individuals. Terms from different ontologies (e.g, OBI, 
VO, IAO) are used. Italicized text in the middle of arrows represents relations. The 
bold terms represent three major processes in the vaccine protection investigation.  

4. Discussion 

The advantage of ontology-based statistical analysis is that the results can be 
potentially shared and used worldwide through semantic explicit representation. Also, 
ontology based approach facilitates data consistency checking. For a specific variable 
(e.g., vaccine strain) from a biomedical investigation, specific instances are generated 
and match to the variable (e.g., RB51 as an instance of vaccine strain). In our use case, 
many subclasses also act as instances for parent class variables. For example, RB51 is a 
subclass of vaccine strain. If a vaccine strain instance does not belong to a vaccine 
strain, it indicates the data is not right. Existing OWL reasoners, e.g., Pellet 
(http://clarkparsia.com/pellet) and FACT++ (http://owl.man.ac.uk/factplusplus/), can 
be effectively leveraged to detect inconsistencies in statistical analysis representation. 

There are still many challenges in modeling statistical analyses using ontology. For 
example, there is, so far,  no consistent representation of the null hypothesis in 
statistical analysis. However, the example we described in this report provides a first 
demonstration that it is feasible and provides more powerful features than traditional 
statistical analysis without ontology and semantic support. However, ANOVA has been 
chosen in the first place, as it is such an important tool in life science. ANOVA is a 
special case of linear model analysis, so experience gained from applying formal 



semantics to ANOVA could be beneficial for some more advanced representation of 
such linear models.  

Besides the null hypothesis generation using ontology, we also plan to generate 
different types of ANOVA (e.g., one-way ANOVA and factorial ANOVA) and 
different models (e.g., linear model and randomization-based model) in OBI. Many 
free and commercial software packages supporting ANOVA are available in the 
Software Ontology (www.ebi.ac.uk/efo/swo). It is desired to include the ANOVA 
software programs as part of the proposed ontology. OBI inherently provides 
provenance and therefore linkage to an external provenance ontology is not required.   

Ontology representation of vaccine protection study provides an advanced approach to 
represent and mine vaccine-induced protection experimental processes. More than 400 
vaccines and the data of protection studies with these vaccines have been manually 
curated and stored in the VIOLIN vaccine database system (Xiang et al., 2008). To 
make full use of the VIOLIN vaccine data for advanced query and integration with data 
from other data sources, we plan to apply the ontology-based approach learned from 
this Brucella study to other vaccine protection data in VIOLIN.  

Our method of ontology-based representation and statistical analysis is applicable for 
other ontology-based statistical studies. The logical definitions of the ontology entities 
involved allow computers to unambiguously understand and integrate different 
biological data with the help of an OWL reasoner. We anticipate that more statistical 
analyses will be represented in ontology, and ontology-based statistical methods will be 
applied for shared data analysis, data exchange, and automatic reasoning. Various new 
software programs will most likely be developed in the future to take advantage of this 
novel semantic framework.    
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