
A New Method of DDB Logical Structure Synthesis

Using Distributed Tabu Search

Eduard Babkin1 and Margarita Karpunina2,

National Research University “Higher School of Economics”

Dept. of Information Systems and Technologies,

Bol. Pecherskaya, 25,

6030155 Nizhny Novgorod, Russia
1 eababkin@hse.ru

2 karpunina-margarita@yandex.ru

Abstract. In this paper we propose a parallel tabu search algorithm based on

the consecutive tabu algorithm constructed by us earlier to solve the problem of

the distributed database optimal logical structure synthesis. Also we provide a

reader with some information about the performance of our new parallel

algorithm and the quality of the solutions obtained with help of it.

Keywords: Neural networks, tabu search, genetic algorithms, parallel

programming, distributed databases.

1 Introduction

The problems of decomposition of complex data structures play an extremely

important role in many critical applications varying from cloud computing to

distributed databases (DDB) [7]. In later class of applications that problem is usually

formulated as synthesis of optimal logical structure (OLS). In accordance with [3] it

consists of two stages. The first stage is decomposition of data elements (DE) into

logical record (LR) types. The second stage is irredundant replacement of LR types in

the computing network. For each stage various domain-specific constraints are

introduced (like irredundant allocation, semantic contiguity of data elements,

available external storage) as well as optimum criteria are specified. In our work the

criterion function is specified as a minimum of total time needed for consecutive

processing of a set of DDB users’ queries [8].

From mathematical point of view the specified problem is a NP-complete non-

linear optimization problem of integer programming. So far different task-specific

approaches were proposed such as branch-and-bound method with a set of heuristics

(BBM) [8], probabilistic algorithms, etc. However not many of them exploit benefits

of parallel processing and grid technologies [4], [5], [6], [9].

 2

In previous works the authors developed the exact mathematical formalization of

the OLS problem and offered the sequential tabu search (TS) algorithm which used

different Tabu Machines (TMs) for each stage of the solution [1], [2]. The constructed

algorithm produced solutions with good quality, but it was computationally efficient

for small mock-up problems.

In the present article we propose a new distributed model of TM (DTM) and a

computationally efficient parallel algorithm for solutions of complex data structure

decomposition problems. The article has the following structure. In Section 2 we

outline critical elements of TM. In Section 3 general description of DTM algorithm is

given and Section 4 specifies it in details. Section 5 briefly describes evaluation of the

obtained parallel algorithm. Overview of the results in Section 6 concludes the article.

2 Short Overview of Tabu Machine Model and Dynamics

In our work we use the generic model of TM as it was specified by Minghe Sun and

Hamid R. Nemati [10] with the following important constituents.

1{ ,..., }nS s s= is the current state of the TM, it is collectively determined by the

states of its nodes.
0 0

0 1{ ,..., }nS s s= is the state of the TM with the minimum energy among all states

which are obtained by the current moment within the local period (or within the short

term memory process (STMP)).
00 00

00 1{ ,..., }nS s s= is the state of the TM with the minimum energy among all states

which are obtained by the current moment (within both the STMP and the long term

memory process (LTMP)).

1{ ,..., }nT t t= is a vector to check the tabu condition.

()E S is the TM energy corresponding to the state S .

0()E S is the TM energy corresponding to the state
0S .

00()E S is the TM energy corresponding to the state 0S .

k is the number of iterations (i.e. the number of neural network (NN) transitions

from the one state to another) from the outset of the TM functioning.

h is the number of iterations from the last renewal the value of 0()E S within the

STMP.

c is the number of the LTMPs carried out by the current moment.

The following variables stand as parameters of the TM-algorithm:

l – the tabu size,

β – the parameter determining the termination criterion of the STMP,

C – maximum number of the available LTMPs inside the TM-algorithm.

The state transition mechanism of the TM is governed by TS and performed until the

predefined stopping rule is satisfied. Let’s name this sequence of state transitions as a
work period of the TM. It is advisable to run the TM for several work periods. It is

better to begin a new work period of the TM using information taken from the

previous work periods, from a “history” of the TM work by applying a LTMP. In

 3

such a case a TS algorithm finds a node which has not changed its state for the longest

time among all neurons of the TM. And then this node is forced to switch its state.

3 A Consecutive TM-Algorithm for OLS Problem

As [3] states, the general problem of DDB OLS synthesis consists of two stages.

1. Composition of logical record (LR) types from data elements (DE) using the

constraints on: the number of elements in the LR type; single elements inclusion

in the LR type; the required level of information safety of the system. In addition,

LR types synthesis should take into account semantic contiguity of DE.

2. Irredundant allocation of LR types among the nodes in the computing network

using the constraints on: irredundant allocation of LR types; the length of the

formed LR type on each host; the total number of the synthesized LR types

placed on each host; the volume of accessible external memory of the hosts for

storage of local databases; the total processing time of operational queries on the

hosts.
The synthesis objective is to minimize the total time needed for consecutive

processing of a set of DDB users’ queries. Such problem has an exact but a very large

mathematical formalization. So, we provide it in the Appendix I and Appendix II of

this paper due to its limited size and should refer to [1], [2], [3], [8] for further details.

In our previous work [2] we have offered a new method for formalization of the

described problem in the terms of TM and have constructed TMs’ energy functions as

follows. TM for the first stage consists of one layer of neurons, connected by

complete bidirectional links. The number of neurons in the layer is equal to 2
I , where

I is the number of DEs. Each neuron is supplied with two indexes corresponding to

numbers of DEs and LRs. For example, 1xiOUT = means, that the DE x will be

included to the i -th LR. All outputs xiOUT of a network have a binary nature, i.e.

accept values from set {0,1}. The following TM energy function for LR composition

was proposed:

() () ()

() ()

1 1 1

1 1 1 1

2
1 1

1 1 1

1
1 1 2 1

2

_ _
2 2

I I I I
g

xy ij ij xy xy ij

i j x y

I I I
g

xy yx xi yj xy xi

i x y i
y x

E A B a D

B C
incomp gr incomp gr OUT OUT a OUT

F

= = = =

= = =
≠

= − ⋅ − ⋅δ ⋅ − δ + ⋅δ ⋅ − δ ⋅ ⋅ − − ⋅δ ⋅

 ⋅ + ⋅ ⋅ + ⋅ + ⋅ ⋅

∑ ∑ ∑ ∑

∑ ∑ ∑

(1)

Here () () () (, 1 1 1
1 1 2 1 _g

xi yj xy ij ij xy xy ij xy
w A B a D incomp gr= − ⋅δ ⋅ −δ + ⋅δ ⋅ −δ ⋅ ⋅ − − ⋅δ ⋅ +

)_
yx

incomp gr+ are weights of neurons, ()
2

1 1

12 2

I
g

xi xy

y i
y x

B C
T a

F=
≠

 = ⋅ +
 ⋅

∑ are the

neurons’ thresholds.

 4

For the second stage of irredundant LR allocation we offered TM with the same

structure as TM for LR composition, but the number of neurons in the layer is equal

to 0T R⋅ , where T is the number of LRs, synthesized during LR composition, 0R is

the number of the hosts available for LR allocation.

As a result of constraints translation into the terms of TM the following TM energy

function for the LR allocation was obtained:

()

() ()
()

0 0 0

1 2 1 2 1 1 2 2

1 2 1 2 1 1 1 1

0
1 1 1

1 1 1 1

1 1

2 0
2

1 1 1 1 1 1

22 02

1 1 1

1
1

2 2

2 2 2

R R RT T T

t t r r t r t r

r r t t r t t r

srh PI I
r r pt

it i i i it t rEMD
i i pr r p

B
E A OUT OUT

E t t SNDC
x x OUT

h T

= = = = = =

= = =

 ⋅ψ = − ⋅ − ⋅δ ⋅ − δ ⋅ ⋅ + ⋅ ⋅θ

⋅ + ⋅ψ
⋅ ⋅ρ + + ⋅ ρ ⋅π ⋅ + ⋅ ⋅ ⋅ ⋅η

∑ ∑ ∑ ∑ ∑ ∑

∑ ∑ ∑

(2)

Here ()
1 1 2 2 1 2 1 2, 2 1
t r t r t t r r

w A= − ⋅δ ⋅ − δ are weights of neurons,

() ()
() 0

1 1 1

1 1 1 1

1 1 1 1

22 0 2 02

1 1 12 2 2 2

srh PI I
r r pt

t r it i i i itEMD
i i pt r r r p

E t t SNB DC
T x x

h T= = =

⋅ + ⋅ψ ⋅ψ
= ⋅ ⋅ρ + + ⋅ ρ ⋅ π ⋅ + ⋅ ⋅θ ⋅ ⋅η

∑ ∑ ∑

are the neurons’ thresholds. Here the I is the number of DEs, 1

1 1 1 1

t

pr t r pt
z OUT SN= ⋅

and
1pt

SN is introduced as a normalized sum, i.e.
1

1

1

1

1

1, if 1

0, if 0

I
Q

pi it

i

pt I
Q

pi it

i

w x

SN

w x

=

=

≥

=
 =

∑

∑

,

where
Q

piw is the matrix of dimension ()0P I× , that matrix shows which DEs are used

during processing of different queries.

In [2] we also compared the developed TM-algorithm with other methods like [10]

to estimate an opportunities and advantages of TS over our earlier approaches based
on Hopfield Networks or their combination with genetic algorithms (NN-GA-

algorithm) [3]. For complex mock-up problems we obtained the TM solutions with

the quality higher than the quality of solutions received with help of NN-GA-

algorithm on average 8,7%, the quality of solutions received with help of BBM on

average 23,6% (refer to Fig. 1), and CPU time for LR composition was on average

36% less that the same spent by the Hopfield Network approach. So, our TM is able
to produce good solutions. But nevertheless this algorithm is time consuming on high-

dimensional tasks, and therefore it is needed to construct a parallel TM-algorithm in

order to validate our approach on the high-dimensional tasks and increase the

performance. Moreover, the parallel algorithm helps us to reveal the influence of the

tabu parameters on the tasks’ solution process and to determine the dependency

between the tabu parameters and characteristics of our problem in order to obtain the
better solutions faster.

 5

Fig. 1. The value of objective function on mock-up problems solutions.

4 A General Description of DTM Functioning

The proposed parallel algorithm of TM exploits parallelization capabilities of the

following procedures: finding a neuron to change its state; changing the value of

()iE S∆ of neurons for using it on the next iteration; the calculation of energy

function value; the calculation of values of auxiliary functions used in aspiration

criteria of TM; the transition from one local cycle to the other.
For the case of the homogeneous computational parallel cluster with multiple

identical nodes the following general scheme of new parallel functionality is

proposed. The set of neurons of the whole TM is distributed among all nodes’

processors according to the formula
1 2

1

1, if

, otherwise
p

n p n
N

n

+ <
=

, where 1 2, mod
N

n n N P
P

= =

,

N – the number of neurons in the whole TM, 0,(1)p P= − – the index of processor, P

– the number of processors. The number of Tabu sub-machines (TsMs) is equal to the

number of available processors. So, one TsM is located on each processor and TsM

with index p consists of pN neurons. During the initialization stage neural

characteristics are set to each neuron. The scheme of DTM is depicted on Fig. 2. The

same figure shows how the weight matrix of each TsM { }; 1, ; 1,
p

p ij pW w i N j N= = = =

1

0 0

; 1, ; 1,
p p

ij k k

k k

w i N N j N
−

= =

= = + =

∑ ∑ is constructed from the weight matrix { }; , 1,ijW w i j N= =

of the whole TM. When the optimal state of DTM is achieved, the results from all

TsMs are united. The proposition that the energy of the whole TM is additive on the

energies of TsMs including in the DTM, i.e.
1

0 1 1

0

P

P p

p

E E E E E
−

−
=

= + + + =∑… , is formulated

and proofed by the authors but due to lack of the space is omitted in that article.

 6

Fig. 2. DTM scheme (up) and method of pW construction from the whole matrix W (bottom).

Let’s consider a common implementation of DTM taking into account a parallel

implementation of foregoing procedures.

Initialization. At this stage we assume that TsMs included into DTM are

constructed and initialized. Construction and initialization are conducted following

the mentioned above scheme of distribution of DTM neurons among the set of
available processors. After the structure of each TsM is defined, TsMs are provided

with the following characteristics: the matrix of neurons weights, vector of neurons

thresholds, and vector of neurons biases. Thus, on the current stage we have the set of

TsMs, and the elements of this set are

 7

{ } (), , , , 0, 1p p p p psubTM W I T In p P= = − , (3)

where psubTM – p -th TsM, pW – the matrix of its neurons weights, pI – the vector

of neurons biases, pT – the vector of neurons thresholds, and pIn – the vector of

initial states of TsM’s neurons. Matrixes pW and vectors pI and pT are defined

according to the following formulas:

{ }

{ }
{ }

{ }

{ }
{ }

0 0

0
0

1 0 0 1

11

2 1
11

1

0 0

; 1, ; 1,
; 1, ; 1,

; 1, ; 1,
; 1, ; 1,

; , 1,

; 1, ; 1, ; 1, ; 1,

ij

ij

ij

ij

ij

P P
PP
ij P ij k k

k k

w i N j N
w i N j N

W
w i N N N j N

w i N j NW
W w i j N

W
w i N j N w i N N j N

− −
−−

−
= =

= = = =

= + + = = = = = = = =

 = = = + =

∑ ∑

�� �

(4)

{ }

{ }
{ }

{ }

{ }
{ }

0 0

0
0

1 0 0 1

11

2 1
11

1

0 0

; 1,
; 1,

; 1,
; 1,

; 1,

; 1,; 1,

j

j

j

j

j

P P
PP

j k kj P

k k

i j N
i j N

I
i j N N N

i j NI
I i j N

I
i j N Ni j N

− −
−−

−
= =

 = =
 = + + = = = = = =

 = +=

∑ ∑

�
� �

(5)

{ }

{ }
{ }

{ }

{ }
{ }

0 0

0
0

1 0 0 1

11

2 1
11

1

0 0

; 1,
; 1,

; 1,
; 1,

; 1,

; 1,; 1,

j

j

j

j

j

P P
PP

j k kj P

k k

t j N
t j N

T
t j N N N

t j NT
T t j N

T
t j N Nt j N

− −
−−

−
= =

 = =
 = + + = = = = = =

 = +=

∑ ∑

�
� �

(6)

Vector In of initial states of the whole TM neurons is random generated, and then

cut on P parts, each of which (i.e. pIn) is corresponded to the concrete TsM.

The local cycle of the TM. Let’s consider the local cycle of DTM.

Choose the neuron-candidate for the next move. At the first step of the TM local

cycle we search for neuron on each TsM, which should change its state on current

iteration. The criterion to choose such a neuron is defined as the following:

{ }{ }
()

0
() min () | 1, : () () ()

0, 1

p j p i p j p p j p
E S E S i N k t l E S E S E S

p P

∆ = ∆ = − ≤ ∨ + ∆ <

= −

.
(7)

 8

Thus, the search of neurons satisfied to the condition (7) is performed in parallel on

the hosts of CN.

The comparison of found neurons. After the neuron satisfied to the condition (7) is

found on each host, the search with help of STMP reduce operations defined by

authors for MPI_Allreduce function is performed within the whole DTM to find the

neuron *j , such that (){ }*() min () | 0, 1p jj
E S E S p P∆ = ∆ = − .

Change the energy value of neurons. After the required neuron *j has been found,

and each TsM has information about it, each neuron of psubTM , ()0, 1p P= −

changes its ()iE S∆ value. The calculation of DTM energy function change is done in

parallel on each psubTM . Further the cycle is repeated following described scheme

until the condition of exit from the local cycle of the TM is satisfied.

The global cycle of the TM. We select neuron, that didn’t change its state longest,

on each TsMs. The number j of this neuron on each psubTM is defined according to

the following criteria:

() { } ()min | 1, , 0, 1j i pp
t t i N p P= = = − . (8)

The search of ()j p
t is done on the available processors in parallel according to the

formula (8).

The comparison of found neurons. After the neuron satisfied to the condition (8) is

found on each host, the search with help of LTMP reduce operations defined by

authors for MPI_Allreduce function is performed within the whole DTM to find the

neuron *j , such that () (){ }* min | 0, 1jj p
t t p P= = − .

Change the energy value of neurons. After the required neuron *j has been found,

and each TsM has information about it, each neuron of psubTM , ()0, 1p P= −

changes its ()iE S∆ value. The calculation of DTM energy function change is done in

parallel on each psubTM . Further the cycle is repeated following described scheme

until the number of LTMP calls will exceed : , 0C C Z C+∈ ≥ times. After that the

search is stopped and the best found state is taken as the final DTM state.

5 The Algorithm of DTM Functioning

Let’s try to represent the general description as an algorithm outlined step by step. We

will use the following notations: N – the number of neurons in the DTM, i.e.

0 00S S S N= = = ; pN – the number of neurons including into the TsM psubTM ,

where ()0, 1p P= − ; P – the number of processors on which DTM operates.

 9

Step 1. Construct TsMs psubTM and randomly initialize initial states of its

neurons. Define the tabu-size l of DTM. Let 0h = , 0k = − counters of iterations in

the frame of the whole DTM. Let 0c = and 0C ≥ − the maximum number of LTMP

calls in the frames of the whole DTM. Let 0β > is defined according to

inequality N lβ ⋅ > in the frames of the whole DTM too.

Step 2. Find the local minimum energy state
0S . Calculate

0()E S and

0 0

1

1 0 0 1
2

2 1

1

0 0

(), 1,
()

(), 1,
()

() , 1,

() (), 1,

i

i

P P

N P i k k

k k

E S i N
E S

E S i N N N
E S

E S i N

E S E S i N N
− −

−

= =

 ∆ =
∆

∆ = + +
∆ ∆ = = =

∆ ∆ = +

∑ ∑

�
�

.

(9)

The values of ()0pE S and ()p iE S∆ for ()0, 1p P= − are calculated in parallel on P

processors. Let 00 0S S= is the best global state, and 00 0() ()E S E S= is the global

minimum of energy. Let 0S S= and 0() ()E S E S= . Let , 1,it i N= −∞ ∀ = .

Step 3. In the frames of each psubTM choose the neuron j with ()p jE S∆ satisfied

to { }{ } ()0
() min () | 1, : () () () , 0, 1

p j p i p j p p j p
E S E S i N k t l E S E S E S p P∆ = ∆ = − ≤ ∨ + ∆ < = − .

Step 4. Using STMP reduce operations defined by authors, form the set

{ *

*, (),
j

j E S∆ }*j
s , where *

j – the index of neuron (in the frames of the whole DTM)

changing its state at the current moment, *()
j

E S∆ – the change of DTM energy

function value after the neuron *
j has changed its state, *j

s – the new state of neuron

*
j .

Step 5. If psubTM contains the neuron *
j , then *j

t k= , * *1
j j

s s= − .

Step 6. Let *j
t k= , 1k k= + , 1h h= + , *j

S S= , *() () ()
j

E S E S E S= + ∆ in the frames of

the whole DTM.

Step 7. Update ()E S∆ using (9). The values of ()p iE S∆ are calculated in parallel on

P processors.

Step 8. Determine if the new state S is the new local and / or global minimum

energy state: if
0() ()E S E S< , then

0S S= ,
0() ()E S E S= and 0h = ; if

00() ()E S E S< ,

then 00S S= and 00() ()E S E S= in the frames of the whole DTM.

Step 9. If h Nβ< ⋅ , go to Step 3., else − to Step 10.

Step 10. If c C≥ , then the algorithm stops.
00S is the best state. Else, in the frames

of each
p

subTM choose in parallel the neuron j with ()j p
t satisfied to () min{ |j ip

t t=

()1, }, 0, 1pi N p P= = − . Using LTMP reduce operations defined by authors, form the set

{ }* *

*, (),
j j

j E S s∆ , where *
j – the index of neuron (in the frames of the whole DTM)

 10

changing its state at the current moment, *()
j

E S∆ – the change of DTM energy

function value after the neuron *
j has changed its state, *j

s – the new state of neuron

*
j . Let *0 j

S S= and *0
() () ()

j
E S E S E S= + ∆ , 1c c= + and 0h = . Go to Step 6.

It’s worth mentioning that on the Step 10. the new state of local energy minimum

0()E S is set without any auxiliary checks, i.e. is can be worse than the previous 0S .

Exploiting this technique we exclude stabilization in local energy minimums and

expand areas of potential solutions.

6 Performance Evaluation

In order to evaluate the performance of constructed DTM the set of experiments on

mock-up problems with DTM consisting of 100N = , 400N = and 1600N = neurons

were done on multi-core cluster. 372 trial solutions were obtained for each mock-up

problem depending on the values of < l, C, β > parameters of DTM.

We proposed to use an average acceleration as the metric to evaluate the efficiency
of DTM. The dependencies of average acceleration on the number of processors for

mock-up problems with 100N = , 400N = and 1600N = are depicted on Fig. 3. DTM

gives a linear acceleration.

Fig. 3. Average acceleration on mock-up problems.

 11

7 Conclusion

In this paper we proposed parallel TS algorithm for DDB OLS synthesis problem.

The constructed DTM was validated and compared with the sequential TM. As

expected, both approaches give the same results with the solutions quality higher than

the quality of solutions received by NN-GA-algorithm [1], [3] on average 8,7% and

by BBM [8] on average 23,6% on mock-up problem with higher dimension.

It is worth mentioning that during the DTM cycles intensive data communication

between processors is carried out in the proposed algorithm. Therefore, we can speak

about the significant increasing of DTM performance in compare with its consecutive

analogue for the high-dimensional problems. This statement is not contrary to our
objectives, because the problem of DDB OLS synthesis is important today in view of

high dimensionality.

References

1. Babkin E., Karpunina M. Comparative study of the Tabu machine and Hopfield networks

for discrete optimization problems. Information Technologies’2008. Proc. Of the 14th

International Conference on Information and Software Technologies, IT 2008. Kaunas,

Lithuania, April 24-25. ISSN 2029-0020. pp. 25-41. (2008)

2. Babkin E., Karpunina M. The analysis of tabu machine parameters applied to discrete

optimization problems // Proceedings of 2009 ACS/IEEE International Conference on

Computer Systems and Aplications, AICCSA’2009. – May 10-13, 2009. – Rabat, Morocco.

– P.153-160. Sponsored by IEEE Computer Society, Arab Computer Society, and EMI,

Morocco. (2009) IEEE Catalog Number: CFP09283-CDR. ISBN: 978-1-4244-3806-8.

Library of Congress: 200990028. http://www.congreso.us.es/aiccsa2009.

3. Babkin E., Petrova M. Application of genetic algorithms to increase an overall performance

of artificial neural networks in the domain of synthesis DDBs optimal structures. Proc. Of

The 5th International Conference on Perspectives in Business Informatics Research (BIR

2006) October 6-7, 2006 Kaunas University of Technology, Lithuania. ISSN: 1392-124X

Information Techonology and Control, Vol.35, No. 3A. pp.285-294. (2006)

4. Chakrapani J., Skorin-Kapov J. Massively parallel tabu search for the quadratic assignment

problem, Annals of Operations Research 41. pp. 327-341. (1993)

5. Fiechter C.-N. A parallel tabu search algorithm for large traveling salesman problems.

Discrete Applied Mathematics Vol. 51. ELSEVIER. pp. 243-267. (1994)

6. Garcia B.-L. et al. A parallel implementation of the tabu search heuristic for vehicle routing

problems with time window constraints, Computers Ops Res, Vol.21 No. 9. pp. 1025-1033,

(1994)

7. Kant K., Mohapatra P. Internet Data Centers. Computer, Published by the IEEE Computer

Society. 0018-9162/04. (2004)

8. Kulba V.V., Kovalevskiy S.S., Kosyachenko S.А., Sirotyuck V.О. Theoretical backgrounds

of designing optimum structures of the distributed databases. M.: SINTEG. (1999)

9. Porto Stella C. S., Kitajima Joao Paulo F. W., Ribeiro Celso C. Performance evaluation of a

parallel tabu search task scheduling algorithm. Parallel Computing Vol. 26. ELSEVIER. pp.

73-90. (2000)

10. Sun M., Nemati H. R. Tabu Machine: A New Neural Network Solution Approach for

Combinatorial Optimization Problems, Journal of Heuristics, 9:5-27, (2003)

