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Abstract. In this paper we propose a parallel tabu search algorithm based on 

the consecutive tabu algorithm constructed by us earlier to solve the problem of 

the distributed database optimal logical structure synthesis. Also we provide a 

reader with some information about the performance of our new parallel 

algorithm and the quality of the solutions obtained with help of it.  
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1   Introduction 

The problems of decomposition of complex data structures play an extremely 

important role in many critical applications varying from cloud computing to 

distributed databases (DDB) [7]. In later class of applications that problem is usually 

formulated as synthesis of optimal logical structure (OLS). In accordance with [3] it 

consists of two stages. The first stage is decomposition of data elements (DE) into 

logical record (LR) types. The second stage is irredundant replacement of LR types in 

the computing network. For each stage various domain-specific constraints are 

introduced (like irredundant allocation, semantic contiguity of data elements, 

available external storage) as well as optimum criteria are specified. In our work the 

criterion function is specified as a minimum of total time needed for consecutive 

processing of a set of DDB users’ queries [8].  

From mathematical point of view the specified problem is a NP-complete non-

linear optimization problem of integer programming. So far different task-specific 

approaches were proposed such as branch-and-bound method with a set of heuristics 

(BBM) [8], probabilistic algorithms, etc. However not many of them exploit benefits 

of parallel processing and grid technologies [4], [5], [6], [9].  
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In previous works the authors developed the exact mathematical formalization of 

the OLS problem and offered the sequential tabu search (TS) algorithm which used 

different Tabu Machines (TMs) for each stage of the solution [1], [2]. The constructed 

algorithm produced solutions with good quality, but it was computationally efficient 

for small mock-up problems.  

In the present article we propose a new distributed model of TM (DTM) and a 

computationally efficient parallel algorithm for solutions of complex data structure 

decomposition problems. The article has the following structure. In Section 2 we 

outline critical elements of TM. In Section 3 general description of DTM algorithm is 

given and Section 4 specifies it in details. Section 5 briefly describes evaluation of the 

obtained parallel algorithm. Overview of the results in Section 6 concludes the article. 

2   Short Overview of Tabu Machine Model and Dynamics 

In our work we use the generic model of TM as it was specified by Minghe Sun and 

Hamid R. Nemati [10] with the following important constituents.  

1{ ,..., }nS s s=  is the current state of the TM, it is collectively determined by the 

states of its nodes. 
0 0

0 1{ ,..., }nS s s=  is the state of the TM with the minimum energy among all states 

which are obtained by the current moment within the local period (or within the short 

term memory process (STMP)). 
00 00

00 1{ ,..., }nS s s=  is the state of the TM with the minimum energy among all states 

which are obtained by the current moment (within both the STMP and the long term 

memory process (LTMP)). 

1{ ,..., }nT t t=  is a vector to check the tabu condition. 

( )E S  is the TM energy corresponding to the state S . 

0( )E S  is the TM energy corresponding to the state 
0S . 

00( )E S  is the TM energy corresponding to the state 0S . 

k  is the number of iterations (i.e. the number of neural network (NN) transitions 

from the one state to another) from the outset of the TM functioning. 

h  is the number of iterations from the last renewal the value of 0( )E S  within the 

STMP. 

c  is the number of the LTMPs carried out by the current moment. 

The following variables stand as parameters of the TM-algorithm: 

l  – the tabu size, 

β – the parameter determining the termination criterion of the STMP, 

C – maximum number of the available LTMPs inside the TM-algorithm. 

The state transition mechanism of the TM is governed by TS and performed until the 

predefined stopping rule is satisfied. Let’s name this sequence of state transitions as a 
work period of the TM. It is advisable to run the TM for several work periods. It is 

better to begin a new work period of the TM using information taken from the 

previous work periods, from a “history” of the TM work by applying a LTMP. In 
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such a case a TS algorithm finds a node which has not changed its state for the longest 

time among all neurons of the TM. And then this node is forced to switch its state. 

3   A Consecutive TM-Algorithm for OLS Problem 

As [3] states, the general problem of DDB OLS synthesis consists of two stages.  

1. Composition of logical record (LR) types from data elements (DE) using the 

constraints on: the number of elements in the LR type; single elements inclusion 

in the LR type; the required level of information safety of the system. In addition, 

LR types synthesis should take into account semantic contiguity of DE. 

2. Irredundant allocation of LR types among the nodes in the computing network 

using the constraints on: irredundant allocation of LR types; the length of the 

formed LR type on each host; the total number of the synthesized LR types 

placed on each host; the volume of accessible external memory of the hosts for 

storage of local databases; the total processing time of operational queries on the 

hosts. 
The synthesis objective is to minimize the total time needed for consecutive 

processing of a set of DDB users’ queries. Such problem has an exact but a very large 

mathematical formalization. So, we provide it in the Appendix I and Appendix II of 

this paper due to its limited size and should refer to [1], [2], [3], [8] for further details. 

In our previous work [2] we have offered a new method for formalization of the 

described problem in the terms of TM and have constructed TMs’ energy functions as 

follows. TM for the first stage consists of one layer of neurons, connected by 

complete bidirectional links. The number of neurons in the layer is equal to 2
I , where 

I  is the number of DEs. Each neuron is supplied with two indexes corresponding to 

numbers of DEs and LRs. For example, 1xiOUT =  means, that the DE x  will be 

included to the i -th LR. All outputs xiOUT  of a network have a binary nature, i.e. 

accept values from set {0,1}. The following TM energy function for LR composition 

was proposed: 
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For the second stage of irredundant LR allocation we offered TM with the same 

structure as TM for LR composition, but the number of neurons in the layer is equal 

to 0T R⋅ , where T  is the number of LRs, synthesized during LR composition, 0R  is 

the number of the hosts available for LR allocation. 

As a result of constraints translation into the terms of TM the following TM energy 

function for the LR allocation was obtained:  

( )

( ) ( )
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1 2 1 2 1 1 1 1
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where 
Q

piw  is the matrix of dimension ( )0P I× , that matrix shows which DEs are used 

during processing of different queries. 

In [2] we also compared the developed TM-algorithm with other methods like [10] 

to estimate an opportunities and advantages of TS over our earlier approaches based 
on Hopfield Networks or their combination with genetic algorithms (NN-GA-

algorithm) [3]. For complex mock-up problems we obtained the TM solutions with 

the quality higher than the quality of solutions received with help of NN-GA-

algorithm on average 8,7%, the quality of solutions received with help of BBM on 

average 23,6% (refer to Fig. 1), and CPU time for LR composition was on average 

36% less that the same spent by the Hopfield Network approach. So, our TM is able 
to produce good solutions. But nevertheless this algorithm is time consuming on high-

dimensional tasks, and therefore it is needed to construct a parallel TM-algorithm in 

order to validate our approach on the high-dimensional tasks and increase the 

performance. Moreover, the parallel algorithm helps us to reveal the influence of the 

tabu parameters on the tasks’ solution process and to determine the dependency 

between the tabu parameters and characteristics of our problem in order to obtain the 
better solutions faster. 
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Fig. 1. The value of objective function on mock-up problems solutions. 

4   A General Description of DTM Functioning  

The proposed parallel algorithm of TM exploits parallelization capabilities of the 

following procedures: finding a neuron to change its state; changing the value of 

( )iE S∆  of neurons for using it on the next iteration; the calculation of energy 

function value; the calculation of values of auxiliary functions used in aspiration 

criteria of TM; the transition from one local cycle to the other. 
For the case of the homogeneous computational parallel cluster with multiple 

identical nodes the following general scheme of new parallel functionality is 

proposed. The set of neurons of the whole TM is distributed among all nodes’ 

processors according to the formula 
1 2

1

1,  if 

,  otherwise
p

n p n
N

n

+ <
= 


, where 1 2, mod
N

n n N P
P

 
= =  

, 

N  – the number of neurons in the whole TM, 0,( 1)p P= −  – the index of processor, P  

– the number of processors. The number of Tabu sub-machines (TsMs) is equal to the 

number of available processors. So, one TsM is located on each processor and TsM 

with index p  consists of pN  neurons. During the initialization stage neural 

characteristics are set to each neuron. The scheme of DTM is depicted on Fig. 2. The 

same figure shows how the weight matrix of each TsM { }; 1, ; 1,
p

p ij pW w i N j N= = = =  

1

0 0

; 1, ; 1,
p p

ij k k

k k

w i N N j N
−

= =

  
= = + = 
  

∑ ∑  is constructed from the weight matrix { }; , 1,ijW w i j N= =  

of the whole TM. When the optimal state of DTM is achieved, the results from all 

TsMs are united. The proposition that the energy of the whole TM is additive on the 

energies of TsMs including in the DTM, i.e. 
1

0 1 1

0

P

P p

p

E E E E E
−

−
=

= + + + =∑… , is formulated 

and proofed by the authors but due to lack of the space is omitted in that article.  
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Fig. 2. DTM scheme (up) and method of pW  construction from the whole matrix W  (bottom). 

Let’s consider a common implementation of DTM taking into account a parallel 

implementation of foregoing procedures. 

Initialization. At this stage we assume that TsMs included into DTM are 

constructed and initialized. Construction and initialization are conducted following 

the mentioned above scheme of distribution of DTM neurons among the set of 
available processors. After the structure of each TsM is defined, TsMs are provided 

with the following characteristics: the matrix of neurons weights, vector of neurons 

thresholds, and vector of neurons biases. Thus, on the current stage we have the set of 

TsMs, and the elements of this set are  
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{ } ( ), , , ,    0, 1p p p p psubTM W I T In p P= = −  , (3) 

where psubTM  – p -th TsM, pW  – the matrix of its neurons weights, pI  – the vector 

of neurons biases, pT  – the vector of neurons thresholds, and pIn  – the vector of 

initial states of TsM’s neurons. Matrixes pW  and vectors pI  and pT  are defined 

according to the following formulas:  
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(4) 
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(6) 

Vector In  of initial states of the whole TM neurons is random generated, and then 

cut on P  parts, each of which (i.e. pIn ) is corresponded to the concrete TsM. 

The local cycle of the TM. Let’s consider the local cycle of DTM. 

Choose the neuron-candidate for the next move. At the first step of the TM local 

cycle we search for neuron on each TsM, which should change its state on current 

iteration. The criterion to choose such a neuron is defined as the following: 

{ }{ }
( )

0
( ) min ( ) | 1,  :    ( ) ( ) ( )

0, 1

p j p i p j p p j p
E S E S i N k t l E S E S E S

p P

∆ = ∆ = − ≤ ∨ + ∆ <

= −

. 
(7) 
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Thus, the search of neurons satisfied to the condition (7) is performed in parallel on 

the hosts of CN. 

The comparison of found neurons. After the neuron satisfied to the condition (7) is 

found on each host, the search with help of STMP reduce operations defined by 

authors for MPI_Allreduce function is performed within the whole DTM to find the 

neuron *j , such that ( ){ }*( ) min ( ) | 0, 1p jj
E S E S p P∆ = ∆ = − . 

Change the energy value of neurons. After the required neuron *j  has been found, 

and each TsM has information about it, each neuron of psubTM , ( )0, 1p P= −  

changes its ( )iE S∆  value. The calculation of DTM energy function change is done in 

parallel on each psubTM . Further the cycle is repeated following described scheme 

until the condition of exit from the local cycle of the TM is satisfied. 

The global cycle of the TM. We select neuron, that didn’t change its state longest, 

on each TsMs. The number j  of this neuron on each psubTM  is defined according to 

the following criteria: 

( ) { } ( )min | 1, ,    0, 1j i pp
t t i N p P= = = − . (8) 

The search of ( )j p
t  is done on the available processors in parallel according to the 

formula (8). 

The comparison of found neurons. After the neuron satisfied to the condition (8) is 

found on each host, the search with help of LTMP reduce operations defined by 

authors for MPI_Allreduce function is performed within the whole DTM to find the 

neuron *j , such that ( ) ( ){ }* min | 0, 1jj p
t t p P= = − . 

Change the energy value of neurons. After the required neuron *j  has been found, 

and each TsM has information about it, each neuron of psubTM , ( )0, 1p P= −  

changes its ( )iE S∆  value. The calculation of DTM energy function change is done in 

parallel on each psubTM . Further the cycle is repeated following described scheme 

until the number of LTMP calls will exceed : , 0C C Z C+∈ ≥  times. After that the 

search is stopped and the best found state is taken as the final DTM state. 

5   The Algorithm of DTM Functioning  

Let’s try to represent the general description as an algorithm outlined step by step. We 

will use the following notations: N  – the number of neurons in the DTM, i.e. 

0 00S S S N= = = ; pN  – the number of neurons including into the TsM psubTM , 

where ( )0, 1p P= − ; P  – the number of processors on which DTM operates. 
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Step 1. Construct TsMs psubTM  and randomly initialize initial states of its 

neurons. Define the tabu-size l of DTM. Let 0h = , 0k =  − counters of iterations in 

the frame of the whole DTM. Let 0c =  and 0C ≥  − the maximum number of LTMP 

calls in the frames of the whole DTM. Let 0β >  is defined according to 

inequality N lβ ⋅ >  in the frames of the whole DTM too. 

Step 2. Find the local minimum energy state 
0S . Calculate 

0( )E S  and 
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∑ ∑
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(9) 

 

The values of ( )0pE S  and ( )p iE S∆  for ( )0, 1p P= −  are calculated in parallel on P  

processors. Let 00 0S S=  is the best global state, and 00 0( ) ( )E S E S=  is the global 

minimum of energy. Let 0S S=  and 0( ) ( )E S E S= . Let , 1,it i N= −∞ ∀ = . 

Step 3. In the frames of each psubTM  choose the neuron j  with ( )p jE S∆  satisfied 

to { }{ } ( )0
( ) min ( ) | 1,  :    ( ) ( ) ( ) , 0, 1

p j p i p j p p j p
E S E S i N k t l E S E S E S p P∆ = ∆ = − ≤ ∨ + ∆ < = − . 

Step 4. Using STMP reduce operations defined by authors, form the set 

{ *

*,  ( ),
j

j E S∆  }*j
s , where *

j  – the index of neuron (in the frames of the whole DTM) 

changing its state at the current moment, *( )
j

E S∆  – the change of DTM energy 

function value after the neuron *
j  has changed its state, *j

s  – the new state of neuron 

*
j . 

Step 5. If psubTM  contains the neuron *
j , then *j

t k= , * *1
j j

s s= − . 

Step 6. Let *j
t k= , 1k k= + , 1h h= + , *j

S S= , *( ) ( ) ( )
j

E S E S E S= + ∆  in the frames of 

the whole DTM. 

Step 7. Update ( )E S∆  using (9). The values of ( )p iE S∆  are calculated in parallel on 

P  processors. 

Step 8. Determine if the new state S  is the new local and / or global minimum 

energy state: if 
0( ) ( )E S E S< , then 

0S S= , 
0( ) ( )E S E S=  and 0h = ; if 

00( ) ( )E S E S< , 

then 00S S=  and 00( ) ( )E S E S=  in the frames of the whole DTM. 

Step 9. If h Nβ< ⋅ , go to Step 3., else − to Step 10. 

Step 10. If c C≥ , then the algorithm stops. 
00S  is the best state. Else, in the frames 

of each 
p

subTM  choose in parallel the neuron j  with ( )j p
t  satisfied to ( ) min{ |j ip

t t=  

( )1, },  0, 1pi N p P= = − . Using LTMP reduce operations defined by authors, form the set 

{ }* *

*, ( ),
j j

j E S s∆ , where *
j  – the index of neuron (in the frames of the whole DTM) 
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changing its state at the current moment, *( )
j

E S∆  – the change of DTM energy 

function value after the neuron *
j  has changed its state, *j

s  – the new state of neuron 

*
j . Let *0 j

S S=  and *0
( ) ( ) ( )

j
E S E S E S= + ∆ , 1c c= +  and 0h = . Go to Step 6. 

It’s worth mentioning that on the Step 10. the new state of local energy minimum 

0( )E S  is set without any auxiliary checks, i.e. is can be worse than the previous 0S . 

Exploiting this technique we exclude stabilization in local energy minimums and 

expand areas of potential solutions. 

6   Performance Evaluation  

In order to evaluate the performance of constructed DTM the set of experiments on 

mock-up problems with DTM consisting of 100N = , 400N =  and 1600N =  neurons 

were done on multi-core cluster. 372 trial solutions were obtained for each mock-up 

problem depending on the values of < l, C, β > parameters of DTM. 

We proposed to use an average acceleration as the metric to evaluate the efficiency 
of DTM. The dependencies of average acceleration on the number of processors for 

mock-up problems with 100N = , 400N =  and 1600N =  are depicted on Fig. 3. DTM 

gives a linear acceleration. 

 

Fig. 3. Average acceleration on mock-up problems. 
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7   Conclusion 

In this paper we proposed parallel TS algorithm for DDB OLS synthesis problem. 

The constructed DTM was validated and compared with the sequential TM. As 

expected, both approaches give the same results with the solutions quality higher than 

the quality of solutions received by NN-GA-algorithm [1], [3] on average 8,7% and 

by BBM [8] on average 23,6% on mock-up problem with higher dimension.  

It is worth mentioning that during the DTM cycles intensive data communication 

between processors is carried out in the proposed algorithm. Therefore, we can speak 

about the significant increasing of DTM performance in compare with its consecutive 

analogue for the high-dimensional problems. This statement is not contrary to our 
objectives, because the problem of DDB OLS synthesis is important today in view of 

high dimensionality. 
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