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Abstract
Has there been real progress in multi-hop
question-answering? Models often exploit
dataset artifacts to produce correct answers,
without connecting information across multi-
ple supporting facts. This limits our ability
to measure true progress and defeats the pur-
pose of building multi-hop QA datasets. We
make three contributions towards addressing
this. First, we formalize such undesirable be-
havior as disconnected reasoning across sub-
sets of supporting facts. This allows develop-
ing a model-agnostic probe for measuring how
much any model can cheat via disconnected
reasoning. Second, using a notion of con-
trastive support sufficiency, we introduce an
automatic transformation of existing datasets
that reduces the amount of disconnected rea-
soning. Third, our experiments1 suggest that
there hasn’t been much progress in multifact
QA in the reading comprehension setting. For
a recent large-scale model (XLNet), we show
that only 18 points out of its answer F1 score
of 72 on HotpotQA are obtained through mul-
tifact reasoning, roughly the same as that of
a simpler RNN baseline. Our transformation
substantially reduces disconnected reasoning
(19 points in answer F1). It is complementary
to adversarial approaches, yielding further re-
ductions in conjunction.

1 Introduction

Multi-hop question answering requires connecting
and synthesizing information from multiple facts
in the input text, a process we refer to as multi-
fact reasoning. Prior work has, however, shown
that bad reasoning models, ones that by design do
not connect information from multiple facts, can
achieve high scores because they can exploit spe-
cific types of biases and artifacts (e.g., answer type

∗Early portion of this work was done during the first
author’s internship at Allen Institute for AI.

1https://github.com/stonybrooknlp/dire

Which country got independence when the cold war started?
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Figure 1: Example of disconnected reasoning, a form
of bad multifact reasoning: Model arrives at the answer
by simply combining its outputs from two subsets of
the input, neither of which contains all supporting facts.
From one subset, it identifies the blue supporting fact
( ), the only one mentioning cold war. Independently,
from the other subset, it finds the red fact ( ) as the
only one mentioning a country getting independence
with associated time, and returns the correct answer (In-
dia). Further, it returns a simple union of the supporting
facts it found over the input subsets.

shortucts) in existing datasets (Min et al., 2019;
Chen and Durrett, 2019). While this demonstrates
the existence of models that can cheat, what we do
not know is the extent to which current models do
cheat, and whether there has been real progress in
building models for multifact reasoning.

We address this issue in the context of multi-hop
reading comprehension. We introduce a general-
purpose characterization of a form of bad multihop
reasoning, namely disconnected reasoning. For
datasets annotated with supporting facts, this al-
lows devising a model-agnostic probe to estimate
the extent of disconnected reasoning done by any
model, and an automatic transformation of existing
datasets that reduces such disconnected reasoning.

https://github.com/stonybrooknlp/dire
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Measuring Disconnected Reasoning. Good
multifact reasoning,2 at a minimum, requires mod-
els to connect information from one or more facts
when they select and use information from other
facts to arrive at an answer. However, models can
cheat, as illustrated in Figure 1, by independently
assessing information in subsets of the input facts
none of which contains all supporting facts, and
taking a simple combination of outputs from these
subsets (e.g., by taking a union) to produce the
overall output. This entirely avoids meaningfully
combining information across all supporting facts,
a fundamental requirement of multifact reasoning.
We refer to this type of reasoning as disconnected
reasoning (DiRe in short) and provide a formal
criterion, the DIRE condition, to catch cheating
models. Informally, it checks whether for a given
test of multifact reasoning (e.g., answer prediction
or supporting fact identification), a model is able to
trivially combine its outputs on subsets of the input
context (none of which has all supporting facts)
without any interaction between them.

Using the DIRE condition, we develop a system-
atic probe, involving an automatically generated
probing dataset, that measures how much a model
can score using disconnected reasoning.

Reducing Disconnected Reasoning. A key as-
pect of a disconnected reasoning model is that it
does not change its behavior towards the selection
and use of supporting facts that are in the input,
whether or not the input contains all of the support-
ing facts the question requires. This suggests that
the notion of sufficiency—whether all supporting
facts are present in the input, which clearly matters
to a good multifact model—does not matter to a bad
model. We formalize this into a constrastive sup-
port sufficiency test (CSST) as an additional test of
multifact reasoning that is harder to cheat. We intro-
duce an automatic transformation that adds to each
question in an original multi-hop dataset a group
of insufficient context instances corresponding to
different subsets of supporting facts. A model must
recognize these as having insufficient context in
order to receive any credit for the question.

Our empirical evaluation on the HotpotQA
dataset (Yang et al., 2018) reveals three interesting
findings: (i) A substantial amount of progress on
multi-hop reading comprehension can be attributed
to improvements in disconnected reasoning. E.g.,

2We refer to desirable types of multifact reasoning as good
and undesirable types as bad.

XLNet (Yang et al., 2019), a recent large-scale lan-
gugage model, only achieves 17.5 F1 pts (of its to-
tal 71.9 answer F1) via multifact reasoning, roughly
the same as a much simpler RNN model. (ii) Train-
ing on the transformed dataset with CSST results in
a substantial reduction in disconnected reasoning
(e.g., a 19 point drop in answer F1), demonstrating
that it less cheatable, is a harder test of multifact
reasoning, and gives a better picture of the current
state of multifact reasoning. (iii) The transformed
dataset is more effective at reducing disconnected
reasoning than a previous adversarial augmenta-
tion method (Jiang and Bansal, 2019), and is also
complementary, improving further in combination.

In summary, the DiRe probe serves as a simple
yet effective tool for model designers to assess
how much of their model’s score can actually be at-
tributed to multifact reasoning. Similarly, dataset
designers can assess how cheatable is their dataset
D (in terms of allowing disconnected reasoning) by
training a strong model on the DiRe probe for D,
and use our transform to reduce D’s cheatability.

2 Related Work

Multi-hop Reasoning: Many multifact reasoning
approaches have been proposed for HotpotQA and
similar datasets (Mihaylov et al., 2018; Khot et al.,
2020). These use iterative fact selection (Nishida
et al., 2019; Tu et al., 2020; Asai et al., 2020; Das
et al., 2019), graph neural networks (Xiao et al.,
2019; Fang et al., 2020; Tu et al., 2020), or simply
cross-document self-attention (Yang et al., 2019;
Beltagy et al., 2020) to capture inter-paragraph in-
teraction. While these approaches have pushed the
state of the art, the extent of actual progress on
multifact reasoning remains unclear.

Identifying Dataset Artifacts: Several works
have identified dataset artifacts for tasks such as
NLI (Gururangan et al., 2018), Reading Compre-
hension (Feng et al., 2018; Sugawara et al., 2020),
and even multi-hop reasoning (Min et al., 2019;
Chen and Durrett, 2019). These artifacts allow
models to solve the dataset without actually solv-
ing the underlying task. On HotpotQA, prior work
has shown existence of models that identify the
support (Groeneveld et al., 2020) and answer (Min
et al., 2019; Chen and Durrett, 2019) by operating
on each paragraph or sentence independently. We,
on the other hand, estimate the amount of discon-
nected reasoning in any model and quantify the
cheatability of answer and support identification.
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Mitigation of Dataset Artifacts: To deal with
these artifacts, several adversarial methods have
been proposed for reading comprehension (Jia and
Liang, 2017; Rajpurkar et al., 2018) and multi-hop
QA (Jiang and Bansal, 2019). These methods min-
imally perturb the input text to limit the effective-
ness of the dataset artifacts. Our insufficient con-
text instances that partition the context are comple-
mentary to these approaches (as we show in our
experiments). Rajpurkar et al. (2018) used a mix
of answerable and unanswerable questions to make
the models avoid superficial reasoning. In a way,
while these hand-authored unanswerable questions
also provide insufficient context, we specifically fo-
cus on (automatically) creating unanswerable multi-
hop questions by providing insufficient context.

Minimal Pairs: Recent works (Kaushik et al.,
2019; Lin et al., 2019; Gardner et al., 2020) have
proposed evaluating NLP systems by generating
minimal pairs (or contrastive examples) that are
similar but have different labels. Insufficient con-
text instances in our sufficiency test can be thought
of as automatically generated contrastive examples
specifically for avoiding disconnected reasoning.

3 Measuring Disconnected Reasoning

This section formalizes the DIRE condition, which
captures what it means for a model to employ dis-
connected reasoning, and describes how to use this
condition to probe the amount of disconnected rea-
soning performed by a given model, and the extent
of such reasoning possible on a dataset.

A good multifact reasoning is one where infor-
mation from all the supporting facts is meaning-
fully synthesized to arrive at an answer. The pre-
cise definition for what constitutes meaningful syn-
thesis is somewhat subjective; it depends on the
semantics of the facts and the specific question at
hand, making it challenging to devise a measurable
test for the amount of multifact (or non-multifact)
reasoning done by a model or needed by a dataset.

Previous works have used the Answer Prediction
task (i.e., identifying the correct answer) and the
Supporting Fact Identification task (identifying all
facts supporting the answer) as approximate tests
of multifact reasoning. We argue that, at a mini-
mum, good multifact reasoning requires connected
reasoning—one where information from at least
one supporting fact is connected to the selection
and use of information from other supporting facts.
Consider the example question in Figure 1. A good

multifact reasoning will look for a supporting fact
that mentions when the cold war started ( ) and
use information from this fact (year 1947) to select
the other supporting fact mentioning the country
that got independence ( ) (or vice versa).

A bad multifact reasoning model, however, can
cheat on answer prediction by only looking for a
fact that mentions a country getting independence
at some time (mentioned in ), without connect-
ing this to when the cold war started (mentioned
in ). Similarly, the model can also cheat on
supporting fact identification by treating it as two
independent sub-tasks—one returning a fact men-
tioning the time when a country got independence,
and another for a fact mentioning the time when
cold war started. The result of at least one of the
two sub-tasks should influence the result of the
other sub-task, but here it does not. This results
in disconnected reasoning, where both supporting
facts are identified without reference to the other.3

Even though the precise definition of a meaning-
ful synthesis of information is unclear, it is clear
that models performing this type of disconnected
reasoning cannot be considered as doing valid mul-
tifact reasoning. Neither answer prediction nor
support identification directly checks for such dis-
connected reasoning.

3.1 Disconnected Reasoning

We can formalize the notion of disconnected rea-
soning from the perspective of any multihop rea-
soning test. For the rest of this work, we assume
a multifact reading comprehension setting, where
we have a dataset D with instances of the form
q = (Q,C;A). Given a question Q along with a
context C consisting of a set of facts, the task is to
predict the answer A. C includes a subset Fs of at
least two facts that together provide support for A.

Let τ denote a test of multifact reasoning and
τ(q) the output a model should produce when
tested on input q. Consider the Support Identifi-
cation test, where τ(q) = Fs. Let there be two
proper subsets of the supporting facts Fs1 and Fs2
such that Fs = Fs1 ∪ Fs2. We argued above that a
model performs disconnected reasoning if it does
not use information in Fs1 to select and use infor-
mation in Fs2 and vice versa. One way we can
catch this behavior is by checking if the model is
able to identify Fs1 given C \ Fs2 and identify Fs2

3Identifying one of the facts in isolation is fine, as long as
information from this fact is used to identify the other fact.
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given C \ Fs1. To pass the test successfully the
model only needs to trivially combine its outputs
from the two subsets C \ Fs2 and C \ Fs1.

Concretely, we say M performs Disconnected
Reasoning on q from the perspective of a test τ if
the following condition holds:

DIRE condition: There exists a proper bi-
partition4{Fs1, Fs2} of Fs such that the two out-
puts of M with input q modified to have C \ Fs2
and C \Fs1 as contexts, respectively, can be triv-
ially combined to produce τ(q).

The need for considering all proper bi-partitions
is further explained in Appendix A.2, using an ex-
ample of 3-hop reasoning (Figure 8). The DIRE

condition does not explicitly state what constitutes
a trivial combination; this is defined below individ-
ually for each test. We note that it only captures
disconnected reasoning, which is one manifestation
of the lack of a meaningful synthesis of facts.

For Answer Prediction, trivial combination cor-
responds to producing answers (which we assume
are associated confidence scores) independently for
the two contexts, and choosing the answer with the
highest score. Suppose M answers a1 with score
s(a1) on the first context in the DIRE condition;
similarly a2 for the second context. We say the
condition is met if A = arg maxa∈{a1,a2} s(a).

For the Support Identification test, as in the ex-
ample discussed earlier, set union constitutes an
effective trivial combination. SupposeM identifies
G1 and G2 as the sets of supporting facts for the
two inputs in the DIRE condition, respectively. We
say the condition is met if G1 ∪G2 = Fs.

In the above discussion, we assumed the so
called ‘exact match’ or EM metric for assessing
whether the answer or supporting facts produced
by the combination operator were correct. In gen-
eral, let mτ(q, µ(q)) be any metric for scoring the
output µ(q) of a model against the true label τ(q)
for a test τ on question q (e.g., answer EM, support
F1, etc.). We can apply the same metric to the out-
put of the combination operator (instead of µ(q))
to assess the extent to which the DIRE condition is
met for q under the metric mτ .

3.2 Probing Disconnected Reasoning
The DIRE condition allows devising a probe for
measuring how much can a model cheat on a test

4{X,Y } is a proper bi-partition of a set Z if X ∪ Y =

Z,X ∩ Y = φ,X ≠ φ, and Y ≠ φ.

τ , i.e., how much can it score using disconnected
reasoning. The probe for a dataset D comprises an
automatically generated dataset Pτ(D), on which
the model is evaluated, with or without training.

For simplicity, consider the case where Fs =
{f1, f2}. Here {{f1}, {f2}} is the unique proper
bi-partition of Fs. The DIRE condition checks
whether a modelM can arrive at the correct test out-
put τ(q) for input q = (Q,C;A) by trivially com-
bining its outputs on contextsC\{f1} andC\{f2}.
Accordingly, for each q ∈ D, the probing dataset
Pans+supp(D) for Answer Prediction and Support
Identification contains a group of instances:

(Q,C \ {f1};L
?
ans=A,Lsupp={f2}) (1)

(Q,C \ {f2};L
?
ans=A,Lsupp={f1}) (2)

where Lsupp denotes the support identification label
and L?

ans=A represents an optional answer label
that is included only if A is present in the support-
ing facts retained in the context. These labels are
only used if the model is trained on Pτ(D).

Models operate independently over instances in
Pτ(D), whether or not they belong to a group.
Probe performance, however, is measured via a
grouped probe metric, denoted mP

τ , that captures
how well does the trivial combination of the two
corresponding outputs match τ(q) according to
metricmτ , as per the DIRE condition for τ . Specif-
ically, for Answer Prediction, we use the highest
scoring answer (following the argmax operator in
Section 3.1) across the two instances in the group,
and evaluate it against A using a standard metric
mans (EM, F1, etc.). For Support Identification, we
take the union of the two sets of supporting facts
identified (for the two instances), and evaluate it
against {f1, f2} using a standard metric msupp.

General case of ∣Fs∣ ≥ 2: We translate each
q ∈ D into a collection Pτ(q) of 2

∣Fs∣−1−1 groups
of instances, with Pτ(q; s1) denoting the group for
the bi-partition {Fs1, Fs2} of Fs. This group, for
answer and support prediction tests, contains:

(Q,C \ Fs1;L
?
ans=A,Lsupp=Fs2) (3)

(Q,C \ Fs2;L
?
ans=A,Lsupp=Fs1) (4)

As per the DIRE condition, as long as the model
cheats on any one bi-partition, it is considered to
cheat on the test. Accordingly, the probe metric
m

P
τ uses a disjunction over the groups:

m
P
τ (q, µ(Pτ(q))) = max{Fs1, }m

P
τ (q, µ(Pτ(q; s1))) (5)
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where µ(Pτ(q)) denotes the model’s prediction on
the probe group Pτ(q), the max is over all proper
bi-partitions of Fs, and mP

τ (q, µ(Pτ(q; s1))) de-
notes the probe metric for the group Pτ(q; s1)
which incorporates the trivial combination oper-
ator, denoted ⊕, associated with τ as follows:

m
P
τ (q, µ(Pτ(q; s1))) = mτ(q,⊕q′∈P(q;s1)µ(q

′)) (6)

For example, when τ is answer prediction, we view
µ(q′) as both the predicted answer and its score for
q
′, ⊕ chooses the answer with the highest score,

and mans evaluates it against A. When τ is support
identification, µ(q′) is the set of facts the model
outputs for q′, ⊕ is union, and msupp is a standard
evaluation of the result against the true label Fs.

3.3 Use Cases of DiRe Probe
The probing dataset Pτ(D) can be used by model
designers to assess what portion of their model
M ’s performance on D can be achieved on a test τ
via disconnected reasoning, by computing:

DiReτ(M,D) = S
τ
cond(M,Pτ(D) ∣ D) (7)

This is a zero-shot evaluation5 where M is not
trained on Pτ(D). S

τ
cond represents M ’s score on

Pτ(D) conditioned on its score on D, computed
as the question-wise minimum of M ’s score on D
and Pτ(D), in terms of metrics mτ and mP

τ , resp.6

Similarly, Pτ(D) can be used by a dataset de-
signer to assess how cheatable D is by computing:

DiReτ(D) = S
τ(M∗

,Pτ(D)) (8)

where M∗ is the strongest available model archi-
tecture for τ that is trained on Pτ(D) and S

τ is its
score under metric mP

τ .

4 Reducing Disconnected Reasoning

This section introduces an automatic transforma-
tion of a dataset to make it less cheatable by discon-
nected reasoning. It also defines a probe dataset for
assessing how cheatable the transformed dataset is.

A disconnected reasoning model does not con-
nect information across supporting facts. This has
an important consequence: when a supporting fact
is dropped from the context, the model’s behav-
ior on other supporting facts remains unchanged.
Figure 2 illustrates this for the example in Figure 1.

5Our experiments also include inoculation (i.e., finetuning
on a small fraction of the dataset) before evaluation.

6For answer prediction with exact-match, this corresponds
to M getting 1 point for correctly answering a question group
in P(D) only if it correctly answers the corresponding original
question in D as well.

Support Facts
Identification Test

Contrastive Support
Sufficiency Test Labels

Labels

connect?

connect?

connect?

Output Output

has red? & has blue?

Output Output

has red? & has blue?

has red? & has blue?

Figure 2: Transformation of a question for Contrastive
Support Sufficiency evaluation. Top-Left: Original in-
stance q labeled with red ( ) and blue ( ) supporting
facts Fs. Bottom-Left: Its transformation into a group
T(q) of 3 instances, one with sufficient and two with
insufficient context, with labels denoting context suffi-
ciency. Right: Behavior of good vs. bad models on q
and T(q). A good multifact model would realize that
the potentially relevant facts are not sufficient (do not
connect) whereas a bad model would find potentially
relevant facts and assume they are sufficient.

Suppose we create an insufficient context C ′

by removing the blue fact ( ) from C (shown
in the last row of Figure 2, with the removed fact
crossed out). With the full context C, the cheating
model discussed earlier did not use the information
in the blue fact ( ) to produce the answer or to
identify the red fact ( ). Therefore, the absence
of the blue fact in C ′ will induce no change in this
model’s answer or its ability to select the red fact
( ). Further, to return a second supporting fact,
the model would choose the next best matching
fact ( ) that also indicates the start of a war and
thus appears to be a reasonable choice (see bottom-
right of Figure 2). Without considering interaction
between the two identified facts, this model would
not realize that the light blue fact ( ) does not
fit well with the red fact ( ) because of the year
mismatch (1950 vs. 1947), and the two together are
thus insufficient to answer Q.

A good multifact model, on the other hand, con-
nects information across different supporting facts.
Thus, when evaluated on context C ′ with the blue
fact ( ) missing, its answer as well as behavior for
selecting the other supporting facts will be affected.

4.1 Contrastive Support Sufficiency

The above example illustrates that sufficiency of
supporting facts in the input context matters to a
good multifact model (i.e., it behaves differently
under C and C ′) but not to a disconnected reason-
ing model. This suggests that if we force models
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to pay attention to sufficiency, we can reduce dis-
connected reasoning. We formalize this idea and
introduce the notion of contrastive support suffi-
ciency. Informally, for each question, we consider
several variants of the context that are contrastive:
some contain sufficient information (i.e., Fs ⊆ C)
while others don’t. Evaluating models with these
contrastive inputs allows discerning the difference
in behavior between good and bad models. Fig-
ure 2 illustrates an example of contrastive contexts
and the expected behavior of such models.

4.2 Transforming Existing Datasets
To operationalize this idea, we introduce an auto-
mated dataset transformation, Contrastive Support
Sufficiency Transform (T), applicable to any mul-
tifact reading comprehension dataset where each
question is associated with a set of facts as context,
of which a subset is annotated as supporting facts.
Intuitively, given a contextC, we want the model to
identify whether C is sufficient to answer the ques-
tion. If sufficient, we also want it to provide correct
outputs for other tests (e.g., answer prediction).

Formally, T(D) transforms each instance q =
(Q,C;A) in a dataset D into a group T(q) of two
types of instances, those with sufficient support and
those without. For simplicity, consider the case of
Fs = {f1, f2} as in Section 3.2. The transformed
instance group T(q) is illustrated in the bottom half
of Figure 2. It includes two insufficient context in-
stances corresponding to the two non-empty proper
subsets of Fs, with the output label set to Lsuff = 0
(illustrated as × in Figure 2):

(Q,C \ {f1}; Lsuff=0), (Q,C \ {f2}; Lsuff=0)
Since these contexts lack sufficient information, we
omit labels for answer or supporting facts.
T(q) also includes a single sufficient context in-

stance, but not with entire C as the context. To
avoid introducing a context length bias relative to
the above two instances, we remove from C a fixed,
uniformly sampled non-supporting fact fr chosen
from C \ Fs (we assume ∣C∣ ≥ 3). The output
label is set to Lsuff = 1. Since the context is suffi-
cient, the correct answer and supporting facts are
included as additional labels, to use for Answer and
Support tests if desired, resulting in the instance:

(Q,C \ {fr}; Lans=A,Lsupp=Fs, Lsuff=1) (9)

For any performance metric mτ(q, ⋅) of inter-
est in D (e.g., answer EM, support F1, etc.), the
corresponding transformed metric mT

τ+suff(q, ⋅)

operates in a conditional fashion: it equals 0 if any
Lsuff label in the group is predicted incorrectly, and
equals mτ(qsuff, ⋅) otherwise, where qsuff denotes
the unique sufficient context instance in T(q). A
model that predicts all instances to be insufficient
(or sufficient) will get 0 pts under mT

τ+suff .
The case of ∣Fs∣ ≥ 2 is left to Appendix A.3.

Intuitively, mT
τ+suff(q, ⋅) ≠ 0 suggests that when

reasoning with any proper subset of Fs, the model
relies on at least one supporting fact outside of that
subset. High performance on T(D) thus suggests
combining information from all facts.7,8

4.3 Probing Disconnected Reasoning in T(D)
The sufficiency test (CSST) used in the transform
discourages disconnected reasoning by encourag-
ing models to track sufficiency. Much like other
tests of multifact reasoning, we can apply the DIRE

condition to probe models for how much they can
cheat on CSST. As explained in Appendix A.4,
the probe checks whether a model M can indepen-
dently predict whether Fs1 and Fs2 are present in
the input context, without relying on each other. If
so, M can use disconnected reasoning to correctly
predict sufficiency labels in T(D).

For Fs = {f1, f2}, if the transformed group
T(q) uses fact fr for context length normalization,
the probing group P(T(q)) contains 3 instances:

(Q,C \ {f1, fr};L
?
ans=A,Lsupp={f2}, L∗suff=0)

(Q,C \ {f2, fr};L
?
ans=A,Lsupp={f1}, L∗suff=0)

(Q,C \ {f1, f2};L
∗
suff= − 1)

Metric mPT
τ+suff(q, ⋅) on this probing group equals

0 if the model predicts any of the L∗suff labels in-
correctly. Otherwise, we use the grouped probe
metric mP

τ (q, ⋅) from Section 3.2 for the first two
instances, ignoring their L∗suff label. Details are
deferred to Appendices A.4 and A.5

We can use P(T(D)) to assess how cheatable
T(D) is via disconnected reasoning by computing:

DiRe
τ+suff(T(D)) = S

τ+suff(M ′∗
,P(T(D))) (10)

where M ′∗ is the strongest available model archi-
tecture for τ + suff that is trained on P(T(D)),
and S

τ+suff is its score under the metric mPT
τ+suff .

7We say suggests rather than guarantees because the be-
havior of the model with partial context C ′

⊂ C may not be
qualitatively identical to its behavior with full context C.

8The transformation encourages a model to combine infor-
mation from all facts in Fs. Whether the information that is
combined is semantically meaningful or how it is combined is
interesting is beyond its scope.
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Dataset Definition Purpose How to measure Metric

D HotpotQA Measure state of multihop reasoning Evaluate trained M on D S
τ (M,D)

P(D) Probing dataset
of D

Measure how much disconnected reason-
ing M does on τ test of D

Evaluate M on Pτ (D) in zero-
shot setting or with inoculation

DiReτ (M,D)
[Equation 7]

Measure how much cheatable τ test of D
is via disconnected reasoning

Train and evaluate a strong NLP
model on Pτ (D)

DiReτ (D)
[Equation 8]

T(D) Transformed
dataset of D

Measure truer state of multi-hop reason-
ing, by reducing the amount of cheatabil-
ity compared to D

Evaluate trained M ′ on T(D) S
τ+suff(M ′

,T(D))
[Section 4.2]

P(T(D)) Probing dataset
of T(D)

Measure how much cheatable τ+suff test
of T(D) is via disconnected reasoning

Train and evaluate a strong NLP
model on Pτ+suff(T(D))

DiReτ+suff(T(D))
[Equation 10]

Table 1: Summary of dataset variations we create, their purposes and how we use them. τ can be any test, but our
experiments are with Ans + Supp. M and M ′ are models that can take τ and τ + suff tests respectively. In our
experiments, they are trained on D and T (D) respectively with supervision for τ and τ + suff respectively.

5 Experiments

To obtain a more realistic picture of the progress in
multifact reasoning, we compare the performance
of the original Glove-based baseline model (Yang
et al., 2018) and a state-of-the-art transformer-
based LM, XLNet (Yang et al., 2019) on the multi-
hop QA dataset HotpotQA (Yang et al., 2018).
While it may appear that the newer models are
more capable of multifact reasoning (based on an-
swer and support prediction tasks), we show most
of these gains are from better exploitation of dis-
connected reasoning. Our proposed transforma-
tion reduces disconnected reasoning exploitable by
these models and gives a more accurate picture of
the state of multifact reasoning. To support these
claims, we use our proposed dataset probes, trans-
formations, and metrics summarized in Table 1.

Datasets D and T(D): HotpotQA is a popular
multi-hop QA dataset with about 113K questions
which has spurred many models (Nishida et al.,
2019; Xiao et al., 2019; Tu et al., 2020; Fang et al.,
2020). We use the distractor setting where each
question has a set of 10 input paragraphs, of which
two were used to create the multifact question.
Apart from the answer span, each question is anno-
tated with these two supporting paragraphs and the
supporting sentences within them. As described in
Sec. 4.2, we use these supporting paragraph annota-
tions as Fs to create a transformed dataset T(D).9

Models: We evaluate two models: (1) XLNet-
Base: Since HotpotQA contexts are 10 paragraphs
long, we use XLNet, a model that can handle con-
texts longer than 1024 tokens. We train XLNet-
Base to predict the answer, supporting sentences,

9We do not use the sentence-level annotations as we found
them to be too noisy for the purposes of transformation.

supporting paragraphs, and the sufficiency label
(only on transformed datasets). As shown in Ta-
ble 2 of Appendix B.4, our model is comparable to
other models of similar sizes on the HotpotQA dev
set. (2) Baseline: We re-implement the baseline
model from HotpotQA. It has similar answer scores
and much better support scores than the original
implementation (details in Appendix B).

Metrics: We report metrics for standard tests for
HotpotQA: answer span prediction (Ans), support
identification (paragraph-level: Suppp, sentence-
level: Supps), as well as joint tests Ans +Suppp and
Ans +Supps. For each of these, we show F1 scores,
but trends are similar for EM scores.10 These met-
rics correspond to mτ(q, ⋅) in Section 3 and to
S
τ(M,D) in Table 1. When evaluating on the

probing or transformed datasets, we use the corre-
sponding metrics shown in Table 1.

Measuring Disconnected Reasoning

We first use our DiRe probe to estimate the amount
of disconnected reasoning in HotpotQA models
(Eqn. 7). For this, we train our models on D and
evaluate them against P(D), the probe dataset, un-
der three settings: (1) zero-shot evaluation (no train-
ing on P(D)), (2) after fine-tuning on 1% of P(D),
and (3) after fine-tuning on 5% of P(D). Since the
model has never seen examples with the modified
context used in the probe, the goal of fine-tuning or
inoculation (Liu et al., 2019) is to allow the model
to adapt to the new inputs, while not straying far
from its original behavior on D.

Figure 3 summarizes the results. The total
heights of the bars depict overall scores of the
baseline and XLNet models on D. The upper,

10See Appendix F for these metrics for all our results.
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Figure 3: F1 scores for two models under various met-
rics. Progress on HotpotQA from Baseline model to
XLNet (entire bars) is largely due to progress in dis-
connected reasoning (upper, darker regions), with little
change in multifact reasoning (lower, ligher regions).

darker regions depict the portion of the overall
score achieved via disconnected reasoning as esti-
mated by the DiRe probe.11 Their height is based
on the average across the three fine-tuning settings,
with white error margins depicting min/max. Im-
portantly, results vary only marginally across the
3 settings. The lower, lighter regions show the re-
maining score, attributable to multifact reasoning.

First, the amount of multifact reasoning in XL-
Net is low—ranging from 10.5 to 21.6 F1 across
the metrics. Second, even though the scores have
improved going from the baseline model to XLNet,
the amount of multifact reasoning (lighter regions
at the bottom) has barely improved. Notably, while
the XLNet model improves on the Ans + Suppp
metric by 14 pts, the amount of multifact reasoning
has only increased by 3 pts! While existing met-
rics would suggest substantial progress in multifact
reasoning for HotpotQA, the DiRe probe shows
that this is likely not the case—empirical gains are
mostly due to higher disconnected reasoning.

As a sanity check, we also train a Single-Fact
XLNet model (Appendix B.2) that only reasons
over one paragraph at a time—a model incapable
of multifact reasoning. This model achieves nearly
identical scores on D as P(D), demonstrating that
our DiRe probe captures the extent of disconnected
reasoning performed by a model (see Appendix E).

Next, we use the DiRe probe to estimate how
cheatable is the HotpotQA dataset via discon-
nected reasoning (Eqn. 8). For this, we train and
evaluate the powerful XLNet model on P(D).12

11This is a conditional score as explained in Eqn. (7).
12The use of even stronger models is left to future work.
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DiReτ(D) vs DiReτ+suff(T(D)) using XLNet

DiReτ(D) DiReτ+suff(T(D))

Figure 4: F1-based DiRe scores of D and T(D) using
XLNet-Base. Dataset transformation reduces discon-
nected reasoning bias, demonstrated by DiRe scores be-
ing substantially lower on T(D) than on D.

While the answer prediction test is known to be
cheatable, we find that even the supporting fact
(paragraph/sentence) identification test is highly
cheatable (up to 91.2 and 75.7 F1, resp.).

Reducing Disconnected Reasoning
Our automatic transformation reduces discon-
nected reasoning bias in the dataset and gives
a more realistic picture of the state of multi-
fact reasoning. We show this by comparing
how much score can a strong model (XLNet)
achieve using disconnected reasoning on the orig-
inal dataset, by training it on P(D) and comput-
ing DiReτ(D) (Eqn. 8), and on the transformed
dataset, by training it on P(T(D)) and comput-
ing DiReτ+suff(T(D)) (Equation 10). Training the
model allows it to learn the kind of disconnected
reasoning needed to do well on these probes, thus
providing an upper estimate of the cheatability of
D and T(D) via disconnected reasoning.

Figure 4 shows that the XLNet model’s DiRe
score on the Ans +Suff metric for T(D) is only
40.7, much lower compared to its DiRe score of
59.8 on Ans for D. Across all metrics, T(D) is
significantly less exploitable via disconnected rea-
soning than D, drops ranging from 12 to 26 pts.

T(D) is a Harder Test of Multifact Reasoning
By reducing the amount of exploitable discon-
nected reasoning in T(D), we show that our trans-
formed dataset is harder for models that have relied
on disconnected reasoning. Figure 5 shows that
the transformed dataset is harder for both mod-
els across all metrics. Since a true-multihop model
would naturally detect insufficient data, the drops in
performance on T(D) show that the current model
architectures when trained on D are reliant on dis-
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Figure 5: F1 scores of two models on D and T(D)
under two common metrics. Transformed dataset is
harder for both models since they rely on disconnected
reasoning. The weaker, Baseline model drops more as
it relies more heavily on disconnected reasoning.

connected reasoning. The weaker baseline model
has substantially lower scores on T(D), suggesting
that simple models cannot get high scores.

Single-Fact XLNet (the model incapable of mul-
tifact reasoning as described earlier) also sees a big
drop (-23 F1 pts on Ans) going from D to T(D)
– almost all of which was caught as disconnected
reasoning by our DiRe probe (see Appendix E).

T(D) is Hard for the Right Reasons
Our transformation makes two key changes to the
original dataset D: (C1) adds a new sufficiency
test, and (C2) uses a grouped metric over a set of
contrastive examples. We argue that these changes
by themselves do not result in a score drop inde-
pendent of the model’s ability to perform multifact
reasoning (details in Appendices D and G).

Transformation vs. Adversarial Augmentation
An alternate approach to reduce disconnected rea-
soning is via adversarial examples for single-fact
models. Jiang and Bansal (2019) proposed such
an approach for HotpotQA. As shown in Figure 6,
our transformation results in a larger reduction in
disconnected reasoning across all metrics; e.g., the
XLNet model only achieves a DiRe score (metric:
Ans +Supps) of 36 F1 on T(D) as compared to 47
F1 on Tadv(D), computed using Eqns. (10) and (8),
resp. Moreover, since our approach can be applied
to any dataset with supporting fact annotations, we
can even transform the adversarial dataset, further
reducing the DiRe score to 33 F1.

6 Conclusions

Progress in multi-hop QA under the reading com-
prehension setting relies on understanding and
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Figure 6: F1-based DiRe score on various met-
rics using XLNet-base for D, adversarial Tadv(D),
transformed T(D), and transformed adversarial
T(Tadv(D)). Transformation here is more effective
than, and complementary to, adversarial augmentation.

quantifying the types of undesirable reasoning cur-
rent models may perform. This work introduced
a formalization of disconnected reasoning, a form
of bad reasoning prevalent in multi-hop models.
It showed that a large portion of current progress
in multifact reasoning can be attributed to discon-
nected reasoning. Using a notion of contrastive
sufficiency, it showed how to automatically trans-
form existing support-annotated multi-hop datasets
to create a more difficult and less cheatable dataset
that results in reduced disconnected reasoning.

Our probing and transformed dataset construc-
tion assumed that the context is an unordered set
of facts. Extending it to a sequence of facts (e.g.,
as in MultiRC (Khashabi et al., 2018)) requires ac-
counting for the potential of new artifacts by, for
instance, carefully replacing rather than dropping
facts. Additionally, for factual reading compre-
hension datasets where the correct answer can be
arrived at without consulting all annotated facts in
the input context, our probe will unfairly penalize
a model that uses implicitly known facts, even if it
correctly connects information across these facts.
However, our transformation alleviates this issue: a
model that connects information will have an edge
in determining the sufficiency of the given context.
We leave further exploration to future work.

It is difficult to create large-scale multihop QA
datasets that do not have unintended artifacts, and it
is also difficult to design models that do not exploit
such shortcuts. Our results suggest that carefully
devising tests that probe for desirable aspects of
multifact reasoning is an effective way forward.
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A Probe and Transformation Details

A.1 Probes and Transformation for ∣Fs∣ = 2

Figure 7 summarizes in a single place all probes
and transformation discussed for the case of two
supporting facts (∣Fs∣ = 2).

A.2 Need for Considering All Bi-partitions
Figure 8 illustrates support bi-partitions and two
examples of disconnected reasoning for a 3-hop
reasoning question. It highlights the need for con-
sidering every bi-partition in the DIRE condition.
For instance, if we only consider partitions that
separate the purple ( ) and yellow ( ) facts, then
the model performing the lower example of discon-
nected reasoning would not be able to output the
correct labels in any partition and would thus ap-
pear to not satisfy the DIRE condition. We would
therefore not be able to detect that it is doing dis-
connected reasoning.

A.3 Transformation for ∣Fs∣ ≥ 2

The Contrastive Support Sufficiency Transform de-
scribed in Section 4.2 for the case of two supporting
facts can be generalized as follows for ∣Fs∣ ≥ 2.
There are two differences. First, there are 2

∣Fs∣ − 2
choices of proper subsets of Fs that can be re-
moved to create insufficient context instances. Sec-
ond, these subsets are of different sizes, potentially
leading to unintended artifacts models can exploit.
Hence, we use context length normalization to en-
sure every context has precisely ∣C∣ − ∣Fs∣ + 1
facts. To this end, let Fr be a fixed, uniformly
sampled subset of C \ Fs of size ∣Fs∣ − 1 that we
will remove for the sufficient context instance.13

Further, for each non-empty insufficient context
Fs1 ⊂ Fs, Fs1 ≠ φ, let Fr1 denote a fixed, uni-
formly sampled subset of Fr of size ∣Fs∣−∣Fs1∣−1.
The transformed group T(q) contains the following
2
∣Fs∣ − 1 instances:

(Q,C \ Fr; Lans=A,Lsupp=Fs, Lsuff=1) (11)

(Q,C \ (Fs1 ∪ Fr1); Lsuff=0) for all Fs1 (12)

Note that ∣Fr∣ = ∣Fs1∣ + ∣Fr1∣ = ∣Fs∣ − 1 by
design, and therefore all instances have exactly
∣C∣ − ∣Fs∣ + 1 facts in their context.

Similar to the case of ∣Fs∣ = 2, for any per-
formance metric mτ(q, ⋅) of interest in D (e.g.,
answer EM, support F1, etc.), the correspond-
ing transformed metric mT

τ+suff(q, ⋅) operates in
13We assume ∣C∣ ≥ 2∣Fs∣ − 1.

a conditional fashion: it equals 0 if any Lsuff
label in the group is predicted incorrectly, and
equals mτ(qsuff, ⋅) otherwise, where qsuff denotes
the unique sufficient context instance in T(q).

A.4 Probing T(D) for ∣Fs∣ = 2

A model M meets the DIRE condition for CSST
when given an input context C ′, it can correctly
predict whether: (i) C ′ contains Fs1, even when
Fs2 is not in C ′; (ii) C ′ contains Fs2, even when
Fs1 is not in C ′; and (iii) C ′ contains neither Fs1
nor Fs2. Intuitively, ifM can do this correctly, then
it has the information needed to correctly identify
support sufficiency for all instances in the trans-
formed group T(q), without relying on interaction
between Fs1 and Fs2.

This leads to the following probe for T(D),
denoted Pans+supp+suff(T(D)) (sometimes simply
P(T(D)) for brevity) and described here for the
case of Fs = {f1, f2}.14 Let fr be the fact used
for context length normalization in the transformed
group T(q). Similar to Eqns. (1) and (2) in Sec-
tion 3.2, the probing dataset contains a group
P(T(q)) of instances corresponding to the unique
bi-partition {{f1}, {f2}} of Fs:

(Q,C \ {f1, fr};L
?
ans=A,Lsupp={f2}, L∗suff=0)

(Q,C \ {f2, fr};L
?
ans=A,Lsupp={f1}, L∗suff=0)

(Q,C \ {f1, f2};L
∗
suff= − 1)

L
?
ans, as before, is an optional label that is included

in the instance only ifA is present in the supporting
facts retained in the context of that instance.

We use the notation L∗suff here to highlight that
this label is semantically different from Lsuff in
T(D), in the sense that when L∗suff = 0, the model
during this probe is expected to produce the partial
support and the answer (if present in the context).
When not even partial support is there, the output
label is L∗suff = −1 and we don’t care what the
model outputs as the answer or supporting facts.
Note that the label semantics being different is not
an issue, as the probing method involves training
models on the probe dataset.

The joint grouped metric here considers the suf-
ficiency label, along with any standard test(s) of
interest (answer prediction, support identification,
or both). Denoted mPT

τ+suff(q, ⋅), it is defined as
follows: similar to the conditional nature of the
transformed metric mT

τ+suff(q, ⋅), a model receives
14Appendix A.5 describes the probe for ∣Fs∣ ≥ 2.
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Original Dataset D
⇒ Question q = (Q,C;A) in D is assumed to be annotated with supporting facts {f1, f2}.

Probing Dataset Pans+supp(D) for Answer Prediction and Support Identification tests:
⇒ Probing question collection Pans+supp(q) has only one group, corresponding to the unique bi-partition {{f1}, {f2}},
containing:

1. (Q,C \ {f1};L?
ans=A,Lsupp={f2})

2. (Q,C \ {f2};L?
ans=A,Lsupp={f1})

Transformed Dataset T(D) for evaluating Constrastive Support Sufficiency:
⇒ Transformed question group T(q) in T(D) is defined using a single replacement fact fr ∈ C \ {f1, f2}:

1. (Q,C \ {fr}; Lans=A,Lsupp=Fs, Lsuff=1)
2. (Q,C \ {f1}; Lsuff=0)
3. (Q,C \ {f2}; Lsuff=0)

Probing Dataset Pans+supp+suff(T(D)) for all three tests:
⇒ Probing question collection Pans+supp+suff(T(q)) for the transformed question T(q) has only one group, corresponding to
the unique bi-partition {{f1}, {f2}}, and is defined as:

1. (Q,C \ {f1, fr}; L?
ans=A,Lsupp={f2}, L∗suff=0)

2. (Q,C \ {f2, fr}; L?
ans=A,Lsupp={f1}, L∗suff=0)

3. (Q,C \ {f1, f2}; L∗suff= − 1)

Figure 7: Proposed dataset transformation and probes for the case of ∣Fs∣ = 2 supporting facts.

a score of 0 on the above group if it predicts the
L
∗
suff label incorrectly for any instance in the group.

Otherwise, we consider only the partial support in-
stances (those with L∗suff = 0) in the group, which
we observe are identical to the un-transformed
probe group Pans+supp(q; {f1}) when ignoring the
sufficiency label, and apply the grouped probe met-
ric mP

τ from Section 3.2 to this subset of instances.

A.5 Probing T(D) for ∣Fs∣ ≥ 2

The probe for disconnected reasoning in the trans-
formed dataset T(D) described in Appendix A.4
for the case of two supporting facts can be gener-
alized as follows for ∣Fs∣ ≥ 2. For each proper
bi-partition {Fs1, Fs2} of Fs, we consider two par-
tial contexts, C \ Fs1 and C \ Fs2, and one where
not even partial support is present, C \(Fs1∪Fs2).

Recall that when constructing T(D), we had
associated non-supporting facts Fr1 and Fr2 (both
chosen from Fr) with supporting facts Fs1 and
Fs2, respectively, and had additionally removed
them from the respective input contexts for length
normalization. For the partial context instances in
the probe, we choose another non-supporting fact
fr1 ∈ Fr \∪Fr1, and combine it with Fr1 to obtain
F
′
r1 = Fr1 ∪ {fr1}; similarly define F ′r2.
For each q ∈ D, the probing dataset contains

a collection P(T(q)) of 2
∣Fs∣−1 − 1 groups of

instances, where each group corresponds to one

proper bi-partition of Fs. For the bi-partition
{Fs1, Fs2}, the group, denoted P(T(q);Fs1), con-
tains the following instances, each of which has
exactly ∣C∣ − ∣Fs∣ facts in its context:

1. (Q,C \ (Fs1 ∪ F ′r1);
L

?
ans=A,Lsupp=Fs2, L

∗
suff=0)

2. (Q,C \ (Fs2 ∪ F ′r2);
L

?
ans=A,Lsupp=Fs1, L

∗
suff=0)

3. (Q,C \ Fs; L∗suff= − 1)

The semantics of L?
ans and L∗suff remain the same as

for the case of ∣Fs∣ = 2.
The grouped metric for this bi-partition, denoted

m
PT
τ+suff(q, µ(P(T(q);Fs1))), captures whether

the model exhibits correct behavior on the entire
group (as discussed for the case of ∣Fs∣ = 2). The
overall probe metric, mPT

τ+suff(q, ⋅), continues to
follow Eqn. (5) and captures the disjunction of un-
desirable behavior across all bi-partitions.

B XLNet QA Model Details

B.1 XLNet-Base (Full)
We concatenate all 10 paragraphs together into one
long context with special paragraph marker token
[PP] at the beginning of each paragraph and
special sentence marker token at the beginning of
each sentence in the paragraph. Lastly, the question
is concatenated at the end of this long context.
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Examples of Disconnected Reasoning

Which year did the 
cold war start?

Which country got
independence?

What is the 
capital city of #2?

Which year did the 
cold war start?

Which country got
independence in #1?

What is the 
capital city?

Identify: Identify: Identify:

Eg. artifact: Context mentions only one country that got independence.

Eg. artifact: Context mentions only one capital city

Identify: Identify: Identify:

Which year did the 
cold war start?

Which country got
independence in #1?

What is the 
capital city of #2?

Identify: Identify: Identify:

Example Question with Connected Reasoning

#1 #2 #3

Input Output

Input Output

        What's the capital city of the
country that got independence   
in the year the cold war started? 

, , ,

#2 #3

#1 #2

, ,

, #3,,

Partition that detects cheating

Figure 8: Generalization of disconnected reasoning to a 3-fact reasoning question. As shown in the bottom half,
a model could perform multifact reasoning on two disjoint partitions to answer this question. We consider such
a model to be performing disconnected reasoning as it does not use the entire chain of reasoning and relies on
artifacts (specifically, it uses 1-fact and 2-fact reasoning, but not 3-fact reasoning). For each of the two examples,
there exists a fact bi-partition (shown on the right) that we can use to detect such reasoning as the model would
continue to produce all the expected labels even under this partition.

Apart of questions that have answer as a span in the
context, HotpotQA also has comparison questions
for which the answer is ”yes” or ”no” and it’s
not contained in the context. So we also prepend
text "<yes> <no>" to the context to deal
with both types of questions directly by answer
span extraction. Concretely, we have, [CLS]
<yes> <no> [PP] [SS] sent1,1 [SS]
sent1,2 [PP] [SS] sent2,1 [QQ] q.

We generate logits for each paragraph and sen-
tence by passing marker tokens through feedfor-
ward network. Supporting paragraphs and sen-
tences are supervised with binary cross entropy
loss. Answer span extraction is using standard way
(Devlin et al., 2019) where span start and span end
logits are generated with feedforward on each to-
ken and it’s supervised with cross entropy loss. We
use first answer occurrence among of the answer
text among the supporting paragraphs as the correct
span. This setting is very similar to recent work
(Beltagy et al., 2020), and our results in Table 2,
show that this model achieves comparable accuracy
to other models with similar model complexity. We
haven’t done any hyperparameter (learning rate,
num epoch) tuning on the development set because
of the expensive runs, which could explain the mi-
nor difference.

For predicting sufficiency classification, we use
feedforward on [CLS] token and train it with cross
entropy loss. In our transformed dataset, because
HotpotQA has K=2, there are twice the number
of instances with insufficient supporting informa-
tion than the instances with insufficient supporting
information. So during training we balance the
number of insufficient instances by dropping half
of them.

B.2 XLNet-Base (Single Fact)

To verify the validity of our tests, we also evaluate
a variant of XLNet incapable of Multifact reason-
ing. Specifically, we train our XLNet model that
makes predictions one paragraph at a time (similar
to Min et al. (2019)). Although these previous
works showed that answer prediction is hackable,
we adapt it to predict supporting facts and suffi-
ciency as well.

Specifically, we process the following through
the XLNet transformer [CLS] <yes> <no>
[PP] [SS] sent1,1 [SS] sent1,2
[QQ] q for each paragraph. We then supervise
[PP] tokens for two tasks: identify if paragraph is
a supporting paragraph and identify if paragraph
has the answer span (for yes/no question both
supporting paragraphs are supervised to be having
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the answer). We then select top ranked paragraph
for having the answer and generate the best answer
span. Similarly, select top two ranked paragraphs
for having being supporting and predict the
corresponding supporting sentences. The logits for
answer span and supporting sentences are ignored
when the paragraph doesn’t have the answer and
is not supporting respectively. We train for three
losses jointly: (i) ranking answer containing
paragraph, (ii) ranking supporting paragraphs
(iii) predicting answer from answer containing
paragraph (iv) predicting supporting sentences
from supporting paragraphs. We use binary cross
entropy for ranking of paragraphs, so there’s
absolutely no interaction the paragraphs in this
model. To get the sufficiency label, we apply check
if the sufficiency classification label based on the
number of supporting paragraphs predicted15. For
original dataset, if ∣ predicted(Suppp)∣ > 1, then
C = 1 otherwise C = 0. For probing dataset, if
∣ predicted(Suppp)∣ > 0, then C = 0 otherwise
C = −1.

B.3 Glove-based Baseline

We have re-implemented the baseline described
in (Yang et al., 2018) in AllenNLP (Gardner
et al., 2017) library. Unlike original implemen-
tation, which uses only answer and sentence sup-
port identification supervision, we also using para-
graph supervision identification supervision. Ad-
ditionally, we use explicit paragraph and sentence
marker tokens as in our XLNet-based implemen-
tation, and supervise model to predict paragraph
and sentences support logits via feedforward on
these token marker representations. We train an-
swer span identification by cross-entropy loss and
both paragraph and sentence support identification
with binary cross-entropy loss.

B.4 QA Model Results

Table 2 shows results for QA models. Our XLNet
model is comparable to other models of similar
sizes on the HotpotQA dev set. Our implemen-
tation of RNN baseline model has answer scores
similar to the reported ones, and has much better
support identification scores than the original im-
plementation.

15This heuristic exploits the fixed number of hops=2 and
doesn’t need any training on the sufficiency label. We use this
heuristic because we want to predict sufficiency label without
interaction across any of the facts.

Model Ans F1 Supps F1 Joint F1

Baseline (reported) 58.3 66.7 40.9
QFE (BERT-Base) 68.7 84.7 60.6
DFGN (BERT-Base) 69.3 82.2 59.9
RoBERTa-Base 73.5 83.4 63.5
LongFormer-Base 74.3 84.4 64.4

Baseline (our) 60.2 76.2 48.0
XLNet-Base 71.9 83.9 61.8

Table 2: Performance of XLNet-Base compared to
other transformer models (of similar size) on Hot-
potQA. Our model scores higher than BERT-Base mod-
els QFE (Nishida et al., 2019) and DFGN (Xiao et al.,
2019), and performs comparable to recent models us-
ing RoBERTa and Longformer (Beltagy et al., 2020).

C Implementation and Model Training

All our models are implemented using Al-
lenNLP (Gardner et al., 2017) library. For XLNet-
base, we have also used Huggingface Transform-
ers (Wolf et al., 2019). For all XLNet-base experi-
ments, we train for two epochs, checkpointing ev-
ery 15K instances and early stopping after 3 check-
points of no validation metric improvement. For
Glove-based baseline model, we do the same but
for 3 epochs. For both models, effective batch size
were 32. For XLNet-based model, we used learn-
ing rate of 0.00005 and linear decay without any
warmup. The hyper-parameters were chosen as the
default parameters used by hugging-face transform-
ers to reproduce BERT results on SQuAD dataset.
Our experiments were done using V100 gpus from
Google Cloud. On average XLNet training runs
took 2 days on 1 gpu and baseline model took less
than 1 day.

D Human Evaluation of Sufficiency
Prediction

The sufficiency test can cause a spurious drop if
sufficiency labels are incorrect, i.e., the context is
sufficient even after f1 or f2 is removed. To rule
this out, we randomly evaluated (using MTurk) 115
paragraphs from C \ Fs, and found only 2 (1.7%)
could be used in place of f1 or f2 to answer the
question. As we show below, this would result in
only a marginal score drop compared to the roughly
20% observed drops.

To estimate this, we setup an annotation task
on MTurk for turkers to annotate whether a pair
of facts has sufficient information to arrive at an
answer. For each question, we create three pair
(f1, f2), (f1, fr) and (fr, f2), where f1 and f2

are annotated supporting paragraphs, and fr is a
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QXeVWLRQ: Did GUeg CoVWik\an haYe Whe Vame pUofeVVion aV John Dolma\an? 
AQVZeU : no 

I1 : John HoYig Dolma\an (AUmenian: Ջոն      
Դոլմայան , boUn JXl\ 15, 1973) iV a        
LebaneVe-boUn AUmenian±AmeUican  
VongZUiWeU and dUXmmeU. He iV beVW knoZn aV        
Whe dUXmmeU of S\VWem of a DoZn. Dolma\an        
iV alVo Whe dUXmmeU foU Whe band IndicaWoU and         
foUmeU dUXmmeU foU ScaUV on BUoadZa\. HiV       
eneUgeWic liYe peUfoUmanceV ZiWh S\VWem Of A       
DoZn oYeU Whe \eaUV, haYe gaUneUed him       
cUiWical acclaim. LoXdZiUe liVWed him aV one of        
Whe "Top 50 HaUd Rock + MeWal DUXmmeUV Of         
All Time" , ZiWh Dolma\an being Uanked aW        
#22. 

I2 : GUeg CoVWik\an (boUn JXl\ 22, 1959, in        
NeZ YoUk CiW\), VomeWimeV knoZn XndeU Whe       
pVeXdon\m "DeVigneU X", iV an AmeUican      
game deVigneU and Vcience ficWion ZUiWeU. 

IU : S\VWem of a DoZn, VomeWimeV VhoUWened Wo        
S\VWem and abbUeYiaWed aV SOAD, iV an       
AUmenian-AmeUican heaY\ meWal band fUom     
Glendale, CalifoUnia, foUmed in 1994. The      
band cXUUenWl\ conViVWV of SeUj Tankian (lead       
YocalV, ke\boaUdV), DaUon Malakian (YocalV,     
gXiWaU), ShaYo Odadjian (baVV, backing YocalV)      
and John Dolma\an (dUXmV). 

QXeVWLRQ: BoWh DXVW\ DUake and Joe Diffie Ving Zhich genUe of mXVic? 
AQVZeU: coXnWU\ 

I1 : Dean BXffalini (boUn FebUXaU\ 23, 1965) iV        
an AmeUican coXnWU\ mXVic aUWiVW, knoZn      
pUofeVVionall\ aV DXVW\ DUake . DUake pla\ed      
YaUioXV YenXeV in hiV naWiYe PennV\lYania foU       
VeYeUal \eaUV befoUe moYing Wo NaVhYille,      
TenneVVee, co-ZUiWing a 1996 Vingle foU Joe       
Diffie. B\ 2003, DUake ZaV Vigned Wo WaUneU        
BUoV. RecoUdV aV a UecoUding aUWiVW. ThaW       
\eaU, he UeleaVed WhUee VingleV fUom hiV       
Velf-WiWled debXW albXm, inclXding "One LaVW      
Time", hiV fiUVW Top 40 enWU\ on Whe HoW         
CoXnWU\ SongV chaUWV. DUake UeleaVed a      
foXUWh Vingle foU Whe label befoUe e[iWing in        
2004. 

I2 : Joe Logan Diffie (boUn DecembeU 28, 1958)        
iV an AmeUican coXnWU\ mXVic VingeU. AfWeU       
ZoUking aV a demo VingeU in Whe 1980V, he         
Vigned ZiWh Epic RecoUdV\' NaVhYille diYiVion      
in 1990. BeWZeen When and 2004, Diffie       
chaUWed 35 cXWV on Whe "BillboaUd" HoW CoXnWU\        
SongV chaUW, inclXding fiYe nXmbeU one      
VingleV: hiV debXW UeleaVe "Home", "If Whe DeYil        
Danced (In EmpW\ PockeWV)", "ThiUd Rock fUom       
Whe SXn", "PickXp Man" (hiV longeVW-laVWing      
nXmbeU one, aW foXU ZeekV) and "BiggeU Than        
Whe BeaWleV". In addiWion Wo WheVe cXWV, he haV         
12 oWheU Wop Wen VingleV and Wen oWheU Wop 40          
hiWV on Whe Vame chaUW. He alVo co-ZUoWe        
VingleV foU Holl\ DXnn, Tim McGUaZ, and Jo        
Dee MeVVina, and haV UecoUded ZiWh MaU\       
Chapin CaUpenWeU, GeoUge JoneV, and MaUW\      
SWXaUW. 

IU : M\ GiYe a Damn\'V BXVWed iV a Vong ZUiWWen          
b\ AmeUican coXnWU\ mXVic aUWiVW Joe Diffie       
along ZiWh Tom ShapiUo and Ton\ MaUWin.       
Diffie oUiginall\ UecoUded Whe Vong on hiV 2001        
albXm "In AnoWheU WoUld". The Vong ZaV laWeU        
UecoUded b\ Jo Dee MeVVina on heU albXm        
"DelicioXV SXUpUiVe". ReleaVed on JanXaU\ 3,      
2005, MeVVina\'V YeUVion VpenW WZo ZeekV aW       
Whe Wop of Whe "BillboaUd" HoW CoXnWU\ SongV        
chaUWV WhaW \eaU, and heU fiUVW chaUW Vingle        
Vince "I WiVh" in laWe 2003 ± eaUl\ 2004.         
Canadian coXnWU\ mXVic VingeU Michelle     
WUighW inclXded heU YeUVion of Whe Vong on heU         
2006 albXm "EYeU\Whing and MoUe". 

 

Figure 9: Two examples where we found a non-supporting fact provides an alternative support for answering the
question. f1 and f2 are annotated supporting facts, but fr in C and f1 form alternative support.

randomly sample from total non-supporting para-
graphs. The questions were taken from HotpotQA
development set. If for a question, annotators agree
that both (f1, f2) and (f1, fr) are sufficient, we
assume fr provides proxy (duplicate) information
for f2. Likewise for (f1, f2) and (fr, f2).

Out of 115 examples questions (with annotator
agreement), we found only 2 (1.7%) of them to
have a proxy fact in fr. Figure 9 shows these 2
examples. This shows that such proxy information
is very rare in HotpotQA. We next estimate the
impact of these duplicates on the human score.

D.1 Human Score Estimate on T(D)
Given the number of observed duplicates, we can
now estimate the expected drop in human perfor-
mance. For simplicity, lets consider only the Ex-
act Match score where the human would get one
point if they predict all the facts exactly. There
are two scenarios where the sufficiency test in our
transformed dataset would introduce more noise
resulting in a drop in human score.

1. The original context was not actually suffi-
cient: In this case the sufficiency label, Lsuff =

1 would be incorrect and the human score on
the sufficiency test for this example would be
zero. However, in such a case, the human
score on paragraph and sentence identifica-
tion would also be zero. As a result, there
would be no drop in human score relative to
the original task

2. The constrastive examples are actually suf-
ficient: Due to a potential proxies of f1 in
C \ f1, it is possible that our contrastive ex-
amples would be considered sufficient. While
this would also effect the original dataset, its
impact would be more extreme on our test.
We focus on this scenario in more detail next.

Lets assume that there are k such proxy para-
graphs in any given context. In such a case, there
is a 1/(k + 1) chance that a human would select
the annotated support paragraphs instead of these
proxy paragraphs. So there is a 1/(k + 1) chance
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Figure 10: F1 and F1-based DiRe scores of D and
T(D) using Single-Fact XLNet-base.

that they get one point on the original task, but they
would always get 0 points on our transformation.

Given that we observed a proxy paragraph in
1.7% of our annotated paragraphs, we can model
the likelihood of observing k proxy paragraphs
with a binomial distribution. Specifically, since
there are 8 distractor paragraphs in HotpotQA, the
probability of observing k proxy paragraphs:

P (k) = (8
k) × (0.017)k × (1 − 0.017)8−k

So the expected drop in score would be given by:
8

∑
k=1

P (k) × 1

k + 1
= 0.0628

So the expected drop in human score is only 6.28%
whereas we observed about 18% drop in EM scores
as shown in Appendix F.

E XLNet (Single-Fact) Results

Figure 10 shows the results of our Single-Fact
model on the original dataset D and the transfor-
mation T(D). On both the metrics, we can see that
our DiRe probe gets the almost the same score as
the Single-Fact model, i.e., our probe can detect
the disconnected reasoning bias in the Single-Fact
model. Additionally, we can see that score of this
Single-Fact model drops from 67.4 to 44.1, a drop
of 23 F1 pts, going from D to T(D) (on the Ans
metric). This shows that our transformed dataset is
less exploitable by a disconnected reasoning model.

F Exact Match Numbers

Figure 11 shows the EM scores of our models
on the original dataset D and transformed dataset
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Figure 11: EM scores of two models on D and T(D)
under two common metrics. Transformed dataset is
harder for both models since they rely on disconnected
reasoning. The weaker, Baseline model drops more as
it relies more heavily on disconnected reasoning.

T(D). Consistent with our F1 metric, we can see
large drops in model score going from D to T(D),
showing that the transformation is harder for these
models

Figure 12 shows the disconnected reasoning bias
in the XLNet-Base model trained on D and T(D)
using the EM scores. Again, we see the same trend
here – the transformed dataset has a reduced DiRe
score indicating lower disconnected reasoning bias.

Finally, Figure 13 shows the impact of adver-
sarial examples and the transformation on the EM
scores. While the drops are lower due to the strict-
ness of the EM scores, the trends are still the same
– adversarial examples have a minor impact on
the DiRe scores but transformation of the original
dataset as well transformation of the adversarial
examples results in a big drop in the disconnected
reasoning bias.

G Grouped Metric on Trivial
Transformation

The grouped metric combines decisions over a set
of instances and, one can argue, is therefore inher-
ently harder. However, one can show that unless
the instances within a group test for qualitatively
different information, the grouped metric will not
be necessarily lower than the single instance met-
ric.

To support this claim, we compute grouped met-
ric over a trivial transform that is similar to T(D)
but does not involve the contrastive sufficiency pre-
diction test. This trivial transform, denoted Ttrv,
creates 3 copies of each instance but drops at ran-
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Figure 12: EM-based DiRe scores of D and T(D)
using XLNet-Base. Dataset transformation reduces
disconnected reasoning bias, demonstrated by DiRe
scores being substantially lower on T(D) than on D.
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Figure 13: EM-based DiRe score on various metrics
using XLNet-base for four datasets: original D, adver-
sarial Tadv(D), transformed T(D), and transformed ad-
versarial T(Tadv(D)). Transformation is more effec-
tive than, and complementary to, Adversarial Augmen-
tation for reducing DiRe scores.

dom one non-supporting fact from each instance.
Similar to T(D) in which we require the model
to produce correct sufficiency labels for all 3 in-
stances, here we require the model to produce cor-
rect answer and support on all 3 copies.16

1. (Q,C \ {fr1}; Lans=A,Lsupp=Fs)
2. (Q,C \ {fr2}; Lans=A,Lsupp=Fs)
3. (Q,C \ {fr3}; Lans=A,Lsupp=Fs)

In Figure 14, we show the EM results corre-
sponding to the respective grouped metrics for
Ttrv(D) and T(D)). We see barely any drop
of results from D to Ttrv(D), but do see signif-
icant drop going from D to T(D). This shows that

16Note that our transformed dataset does not even require
the answer and support labels on all the examples, making
T(D), in some ways, easier than this dataset.

Ans Suppp Ans + Suppp

0

20

40

60

80

100

57.7

93.6

55.156.3

92.1

53.4
46.7

79.5

46.5

EM scores on datasets using XLNet

D

Ttrv(D)

T(D)

Figure 14: EM scores of XLNet-base on three met-
rics for original HotpotQA (D), trivially transformed
HotpotQA (Ttrv(D)) and our transformed HotpotQA
(T(D)). Model scores barely drop from D to Ttrv(D)
but significantly drop D to T(D) showing that drop of
scores in T(D) is not simply a result of using a grouped
metric

adding a grouped metric over an arbitrary set of
decisions would not make T(D) harder. Hence,
the drop in scores from D to T(D) is not simply a
result of using a grouped metric.


