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Abstract
Generating image captions with user inten-
tion is an emerging need. The recently
published Localized Narratives dataset takes
mouse traces as another input to the image cap-
tioning task, which is an intuitive and efficient
way for a user to control what to describe in
the image. However, how to effectively em-
ploy traces to improve generation quality and
controllability is still under exploration. This
paper aims to solve this problem by propos-
ing a novel model called LoopCAG, which
connects Contrastive constraints and Attention
Guidance in a Loop manner, engaged explicit
spatial and temporal constraints to the gener-
ating process. Precisely, each generated sen-
tence is temporally aligned to the correspond-
ing trace sequence through a contrastive learn-
ing strategy. Besides, each generated text to-
ken is supervised to attend to the correct visual
objects under heuristic spatial attention guid-
ance. Comprehensive experimental results
demonstrate that our LoopCAG model learns
better correspondence among the three modal-
ities(vision, language, and traces) and achieves
SOTA performance on trace controlled image
captioning task. Moreover, the controllability
and explainability of LoopCAG are validated
by analyzing spatial and temporal sensitivity
during the generation process.

1 Introduction

Image captioning is a fundamental task to examine
whether an intelligent system can understand the
visual world by letting the system describe it with
natural language. Generating a reasonable caption
requires the model to link linguistic tokens to ob-
jects, relationships, scenes of the visual world in
the input image. Thus, a great captioning model
will help us better understand what characteristics
promise a good joint visual-linguistic representa-
tion.

∗Contribution during internship at MSRA.

In this picture there is a
stand on a ground. On the 
backside there is a person.
He is riding on a horse. He
is wearing a cap. He is in
between the fence. There
is a flags on a wall. On the
left side there is a score 
board on a table and
flower plants. We can see
in the background sky and
trees.

Figure 1: A showcase of Trace Controlled Image Cap-
tion. Given an image together with a mouse trace rep-
resenting user intention, the task is to generate the cor-
responding captions aligned with each part of the trace.
In this case, the trace and the caption marked with the
same color correspond to each other.

Most previous attempts aim to describe the im-
age indicating the salient objects and relations with-
out considering user intention. To generate con-
trollable and explainable captions, recent works
dedicated to establishing a new controllable image
captioning task to generate the caption at will. The
captioning process can be controlled by POS tag-
ging (Deshpande et al., 2018), sentiment (You et al.,
2018), length (Deng et al., 2020), bounding boxes
(Cornia et al., 2019), and mouse traces (Pont-Tuset
et al., 2020).

In this paper, we mainly investigate trace-
controlled image captioning, since it is not only a
more natural and interactive paradigm for real web
applications, e.g. automatic presentation or help
people with visual difficulties but also a new per-
spective for us to better understand how the long-
pursued cross-modality alignment is performed in
deep learning models. Figure 1 presents a showcase
of the scenario. Given an image, users can easily
draw a trace to ask the AI agent to describe the
scene in the image along the trace automatically.

In the Localized Narratives dataset (Pont-Tuset
et al., 2020), the annotators describe the image
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while drawing the traces of their attention move-
ment, which presents a spatial alignment between
visual objects and caption tokens as well as a tem-
poral alignment between user intention(by trace)
and caption sentences. From Figure 1, we see that
the caption tokens, e.g. “person”, “horse”, “trees”
can be grounded to the visual objects spatially, and
the order of caption sentences can be arranged to
align to the order of traces temporally. Although it
is easy for humans to recognize which visual object
is indicated by the traces, it is a challenge for the
agent to recognize, emphasize and arrange visual
semantics solely based on several tracepoints’ co-
ordinates. Thereby, we mainly devote our effort to
the spatial grounding and temporal controllability
of image captioning.

Inspired by the above observation, we design
two novel approaches to tackle the above chal-
lenges. Specifically, we design sentence-level con-
trastive constraints to align the generated sentences
to the corresponding trace sequences temporally.
Besides, we design a type of heuristic spatial at-
tention guidance to supervise each generated text
tokens to attend to the correct visual objects. Com-
posing the above together, We propose a novel
trace-controlled image captioning model called
LoopCAG and demonstrate its superior capability
on captioning quality and flexible controllability.

Our contribution can be summarized as:
1) We propose a novel model LoopCAG,

which learns the caption tokens’ spatial grounding
through attention guidance and temporal localiza-
tion between trace input and the caption sentences
through contrastive constraints in an end-to-end
loop manner among the three modalities(vision,
language, and traces).

2) The quantitative results show that our
LoopCAG model can generate better trace-
controlled captions and achieve SOTA performance
on automatic criteria. The qualitative results
present that our model can generate highly rele-
vant captions given users’ trace inputs.

3) We intensively study the controllability and
explainability of trace-controlled image captioning.

2 Preliminary

2.1 Task Definition

For image captioning, the task is to generate a
text description y given an image I . We first
apply a pre-trained visual object detector on the
image and get an object level visual feature set

V = {v1, . . . , vN}, in which vi ∈ R2048 is the
i-th object visual feature, and N is the number of
visual objects. The text description sequence is
y = {y1, . . . , yl}, in which yj is the j-th token and
l is the text sequence length. The output is condi-
tioned on model parameters θ, and the optimization
process can be formulated as the following maxi-
mum likelihood form:

θ∗ = argmax
θ

log p(y | V ;θ). (1)

For trace-controlled image captioning, the raw
trace input is a sequence of tracepoints coordinates
with timestamps. To reduce those tracepoints to an
acceptable length due to the limit of GPU memory,
we segment the tracepoints sequences uniformly by
the same time window τ , and then each trace seg-
ment is converted to its minimal bounding rectan-
gle. Every bounding rectangle can be represented
by a 5D vector which contains normalized coordi-
nates of the top-left and bottom-right corners, and
the area ratio with respect to the whole image. We
denote the trace input as T = {t1, . . . , tM}, where
ti ∈ R5. The trace controlled captioning objective
can be formulated as follow:

θ∗ = argmax
θ

log p(y | V ,T ;θ) (2)

3 Method

Our method consists of three components: the
caption generation module with a transformer
encoder-decoder backbone, the attention guidance
for object-level spatial grounding, and the con-
trastive constraints for sentence-level temporal
alignment. The overall model structure is illus-
trated in Figure 2. The model is trained by jointly
optimizing the three objectives listed in the follow-
ing subsections.

3.1 Caption Generation

The caption generation backbone is a transformer-
based encoder-decoder proposed by Vaswani et al.
(2017), which mainly employs a multi-head atten-
tion mechanism and achieves top-tier performance
in many sequential related tasks. Here, we high-
light several task-oriented modifications.

Vision-Trace Encoder The visual embeddings
V and traces embeddings T are encoded separately
and then concatenated together as a single input
sequence feeding into a transformer encoder.
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Figure 2: Model Architecture Overview. The model consists of three modules: (a) Caption Generation: We
directly concatenate the visual object embedding and the trace embedding as encoder input, and then employ a
transformer decoder for caption generation. (b) Attention Guidance: We use a heuristic supervision attention
score matrix to supervise the vision-linguistic cross-attention generated by the transformer backbone, grounding
the caption tokens to visual objects spatially (c) Contrastive Constraints: We split the hidden states of caption
tokens and traces by sentence respectively and then apply the contrastive loss to make the representations of the
sentence and trace segment with same order indices closer, thereby aligning caption sentences to trace segments
temporally.

• Object visual embedding: We first repre-
sent the spatial info of each object proposal
by a 5D vector (in the same way as the
traces), then project it into a spatial embed-
ding pi ∈ Rd, where d is the embedding size
across the model. Each object visual feature
vi is projected into a lower dimension vec-
tor v̂i ∈ Rd. The final visual embedding is
Ṽ = {ṽ1, . . . , ṽN}, where ṽi = v̂i + pi.

• Trace Embedding: Each trace input item ti
is projected into t̂i ∈ Rd. We also generate
Sinusoidal Positional Embeddings (Vaswani
et al., 2017) oi to capture the temporal order
of the traces. The final trace embedding T̃ =
{t̃1, . . . , t̃M}, where t̃i = t̂i + oi.

Caption Decoder Caption decoder combines vi-
sion and trace information using cross attention
connected to the hidden states of Vision-Trace En-
coder’s last layer. Using a casual mask to encode
generated token progressively, the transformer de-
coder ensures that the predictions for position i can
depend only on the known outputs at positions less
than i. During training, the ground truth caption
tokens are shifted right, and a special token 〈BOS〉
(begin of the sentence) is inserted into the first posi-
tion. A cross-entropy generation loss Lgen is then
computed with the logits transformed from the last
decoder layer’s hidden states and un-shifted ground

truth caption token ids with a special token 〈EOS〉
(end of the sentence) appended.

Lgen = − E
ŷi∼ŷ

log p
(
ŷi | ŷ<i,T̃ ,Ṽ ;θ

)
. (3)

It is noted that ŷ is the masked version of the
ground-truth caption y. To make a fair compar-
ison with the baseline (Pont-Tuset et al., 2020), we
apply the same setting and do not employ common
techniques such as label smoothing(Szegedy et al.,
2016) or self-critical training(Rennie et al., 2017).

3.2 Attention Guidance for Spatial Ground
Attention Supervision Construction To explic-
itly guide the attention for object-level spatial
grounding, we align the semantic caption tokens
with the visual object by taking trace as an inter-
mediate bridge. In this way, we construct a super-
vision matrix to guide the attention between the
caption tokens and visual objects by the two fol-
lowing steps.

1) Language-trace temporal alignment. In the
Localized Narrative dataset, the caption ut-
terances1 u and mouse traces are highly
temporal-aligned, i.e., every utterance u has a

1We are following the naming tradition of Pont-Tuset et al.
(2020), where an utterance means one or several adjacent
tokens, not a whole sentence.
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Vision Box: person
Trace Utterance: person
Number of Tracepoints in Box: 12
Total Number of Points:  12
Supervision Attention Score=12/12=1.0

Vision Box: person
Trace Utterance: horse
Number of Tracepoints in Box: 14
Total Number of Points:  67
Supervision Attention Score=14/67=0.209

The person is riding a horse.

Figure 3: A showcase of spatial attention scoring

corresponding time window, every tracepoint
p has a timestamp. To leverage this infor-
mation, we first assign each tracepoint p to
a unique utterance u, where the tracepoint
timestamp is in the utterance time window.
Thus, every utterance u is aligned to a series
of tracepoints Pu = {p1, . . . , pku}.

2) Language-vision spatial alignment. Give the
utterance u and corresponding Pu, we cal-
culate the alignment score considering the
spatial overlap between tracepoints Pu and
each vision object vi . Every visual object
vi has a corresponding spatial bounding box
bi = (x1i , y

1
i , x

2
i , y

2
i ), and the x1i , y

1
i , x

2
i , y

2
i

are top-left and bottom-right horizontal and
vertical coordinates respectively. We set the
alignment score s(uj ,bi) between utterance uj
and bounding box bi as,

s(uj ,bi) =

∑
p∈Puj

Ibi(p)

|Puj |
(4)

where I is an indicator of whether point p is
in the bounding box bi:

Ibi(p) =


1 if x1i < xp < x2i

and y1i < yp < y2i
0 otherwise

(5)

xp and yp are the coordinates of each trace-
point in pu. An example of the alignment
score calculation is illustrated in Figure 3.

By calculating the alignment score, we establish
the spatial grounding supervision between caption
tokens and auto-detected visual objects. For every
word yi in the same utterance u, the s(yi,bj) =
s(u,bj). Eventually, we get the supervision score
matrix S ∈ [0, 1]N×T and Sij = s(yi,bj).

Attention-guided Grounding A cross-attention
matrix is generated in shape (N,T, L,H) during
the transformer’s decoding steps. Here N denotes
the number of pre-detected visual objects, T de-
notes the number of tokens in a caption sentence
after padding, L denotes the number of transformer
layers, and H denotes the number of attention
heads in transformer layers. Two linear projec-
tions and layer normalization (Ba et al., 2016) are
applied sequentially on dimension L and H , re-
spectively reducing the dimension to 1. Thus, for a
single instance, we eventually calculate an attention
matrix A ∈ RN×T .

To train the model, the goal can be achieved by
minimizing the following attention guidance loss
function Latt:

Latt = − E
a∼A,s∼S

s · [s log a+ (1− s) log (1− a)] , (6)

which is a weighted Binary Cross Entropy between
A and S. Noted that we also choose to mask out
some stop-words columns of the matrix A and S
to avoid introducing too much annotation noise.

3.3 Contrastive Constraints for Temporal
Alignment

As illustrated on the left side of Figure 4, we
first use a “split by sentence” procedure to build
a sentence-level alignment between caption and
traces, and then employ contrastive loss to con-
strain the temporal order of the generation process.

In this picture there is a 
stand on a ground.
On the backside there is 
a person. 
He is riding on a horse.
He is wearing a cap. 
There is a flag on a wall. 
On the left side there is 
a score board on a table 
and flower plants. 

In this picture there is
a stand on a ground. 
On the backside 
there is a person. He
is riding on a horse.
He is wearing a cap.
He is in between the
fence. There is a flag 
on a wall. On the left
side there is a score 
board on a table and
flower plants. 

Contrastive Constraints

Split By 
Sentence

Figure 4: A showcase of split by sentence and con-
trastive constraints for temporal alignment

Split by Sentence An annotated instance con-
sists of an image, a tracepoint list, and a caption
paragraph consisting of a list of ordered caption
sentences. Here, we define a caption sentence as a



2018

series of utterances segmented out by a period(’.’).
In section 3.2, we already maintain an alignment
between utterances and tracepoints. Following this
setting, we can unite a list of ordered utterance
U = {u1, . . . , uk} in the same caption sentence,
and then orderly unite a list of tracepoints corre-
sponding to U ’s elements into a so-called trace seg-
ment. The alignment between caption sentences
and trace segments can be established by simply
uniting the association between utterances and tra-
cepoints with respect to the above sentence split.
We call this procedure as split by sentence.

Temporal Contrastive Constraints According
to the split mentioned above, we aggregate the
transformer’s last layer hidden states of trace seg-
ments and caption sentences respectively, and de-
note them as Hts = {h1ts, . . . , hnts} and Hcs =
{h1cs, . . . , hncs}. Here n is the number of caption
sentences.

We adopt the NCE loss to learn to discriminate
the positive from negative trace-caption pairs. The
positive is defined as all the temporal aligned corre-
sponding caption sentence and trace segment pairs
i.e. with the same order indices, and other pairs
without temporal alignment in the same image as
negative samples. This contrastive loss function
Lcts is defined as follows,

Lcts = − E
hts∼Hts

log
exp(s(hits, h

i
cs))

Z
, (7)

Z =

n∑
j=1

exp(s(hits, h
j
cs)) (8)

where s(·, ·) means two linear layers and an L2
normalization applied on the elements respectively,
and a dot production between them. By minimiz-
ing the Lcts, we force the model to learn a repre-
sentation being aware of sentence-level temporal
ordering, which leads to more precise captioning.

3.4 Loss

Finally, the model is trained with three losses Lgen,
Latt, and Lcts, where Lgen is the caption genera-
tion loss, Latt is the spatial attention guidance loss,
and Lcts is the temporal contrastive loss.We jointly
optimize our model by minimizing all losses added
together:

Lall =Lgen + Latt + Lcts. (9)

4 Experiments

4.1 Dataset

We use the annotated COCO subset of Localized
Narratives to evaluate our method. We call this
dataset split as LN-COCO for short. Each image
has one or several pairs of the captioning paragraph
and corresponding mouse traces. Every single pair
is a so-called localized narrative. The training and
validation splits are identical to Pont-Tuset et al.
(2020)’s setting. There are 134,272 localized narra-
tives in the training set and 8,573 in the validation
set. We train on the whole training set and eval-
uate our model performance against the identical
validation set.

4.2 Implementation Details

For the visual feature, we adopt Faster-RCNN(Ren
et al., 2015) to extract 100 bounding box proposals.
For trace feature, we use τ = 0.4s to extract trace
segment for feature extraction. The embedding size
d, number of transformer layers, hidden size of the
transformer feed-forward layer are 768, 2, and 768,
respectively. The number of attention heads is 8,
and the dropout rate is 0.1. We adopt the Adam-
W optimizer (Loshchilov and Hutter, 2019) with
learning rate of 7e-4(which is the best performance
setting of baseline, and adopted widely for other
trials), and set two momentum parameters β1= 0.9
and β2= 0.99. We set the batch size to 256. All
models are trained on 4 Tesla V100 GPUs with
32GB memory for 10 to 12 hours.

4.3 Evaluation Metrics

This generation task adopts the traditional image
captioning evaluation metric using the open-source
tool2 with a minor modification3 to suit with LN-
COCO, including BLEU(Papineni et al., 2002),
METEOR (Banerjee and Lavie, 2005), ROUGE-
L (Lin and Och, 2004), ROUGE-1-F1(Pont-Tuset
et al., 2020), and CIDEr-D (Vedantam et al., 2015).

4.4 Results

Baseline and +Trace methods The Baseline and
+Trace methods are our re-implementations follow-
ing (Pont-Tuset et al., 2020)’s method description.
The Baseline method only takes image feature as
input while the +Trace model take image feature

2https://github.com/tylin/coco-caption
3We add an additional id to every trace-image-caption

triplet and adjust some code of the standard evaluation tool to
meet the ”1 trace-vs-1 caption” evaluation need.
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and trace both as input. They employ the architec-
ture in Changpinyo et al. (2019) with a few minor
differences. First, they set the number of Trans-
formers’ layers for both the encoder and the de-
coder to 2 instead of 6. Second, their projection
layers also consist of layer normalization(Ba et al.,
2016). Third, they set the maximum number of it-
erations to 150k. Finally, they allow the maximum
number of target captions to be as long as 225 to
account for the narration’s longer nature.

LoopCAG methods Our model comprises of
four components: 1) the transformer encoder-
decoder framework; 2) the trace input; 3) Attention
Guidance(+AG for short) grounding loss; 4) Con-
trastive constraints(+C for short).

Main Results The Table 1 shows the overall per-
formance comparison on the LN-COCO dataset.
To reduce the deviation caused by different im-
plementation details, we first present our imple-
mentations’ performance (with *), which have a
higher score than Pont-Tuset et al. (2020) reported.
Thus, we have a more strict baseline to evaluate
the improvement purely coming from our innova-
tive method. Compared to Baseline* method, the
performance on all metrics improves significantly
when controlling captioning using the mouse trace
(+Trace*), it indicates that using the mouse trace
enables the system to describe better those user
intended parts of the image.

Most importantly, the results indicate that our
LoopCAG method achieves state of the art on
all automatic criteria, outperforming the previous
state-of-art model by 2.4 and 7.5 on BLEU-4 and
CIDEr-D, respectively. This demonstrates our pro-
posed Attention Guidance method helps the model
generate better spatially grounded and more pre-
cise captions. When considering the 2.0 rising
on ROUGE-L score, we can conclude that Con-
trastive constraints can help the model better align
the order of generated sentence to the user intent
because ROUGE-L mainly employs an order mat-
tered longest common sequence F-measure.

Ablations We perform three ablations to verify
the most improvements in-deed come from the At-
tention Guidance and Contrastive constraints. Start-
ing from standard captioning (Baseline*), we add
the Attention Guidance to help the model better
spatially ground visual objects and caption tokens
(Table 2, “+ Ag”). This affects performance, sug-
gesting that the model does benefit from knowing

where to find the highly semantic related appear-
ance feature in the image. Next, we add the trace
feature (Table 2, “+ Trace”). This introduces user
intention to the model. We also take this line to
show the performance lift caused by Contrastive
constraints fairly. Then we add the contrastive mod-
ule (Table 2, “+C”) and see a good improvement
on almost all criteria. Hence, we verify the signif-
icance of the positive influence of temporal con-
trastive constraints. Moreover, in the last line is our
full LoopCAG model. We can see the two proposed
methods are not exclusive to each other.

4.5 Quantitative Analysis

Controllability Analysis on Temporal Order
We also design an experiment to further demon-
strate LoopCAG’s superior controllability on the
caption sentences’ temporal order. Specifically,
we split each localized narrative input by sentence
as described in Sec3.3, and reverse the sequential
order of the splits, i.e., the last sentence of a cap-
tion paragraph will become the first one, the same
processing is applied to trace segments, too. We
conduct an evaluation on the sentence&segment re-
verted dataset, and the performance comparison is
shown in Table 3. With the Contrastive constraints
mechanism’s help, the LoopCAG model is much
more robust to trace input reversing, even compet-
itive with the model trained on reverted data. In
contrast, the base models all face a dramatic drop
on almost all metrics when the input trace order is
reversed. This also implies there are some biased
habits of human annotators. For example, they al-
ways describe the salient objects first and end with
a sentence about the background of the image.

Controllability Analysis on Temporal Fre-
quency Then, we analyze the controllability of
the temporal frequency τ to present whether the
coarse-grained or fine-grained tracepoints (sam-
pling rate, in other words) affects the generation
performance. As the Table 4 shows, we change the
temporal frequency τ from 0.4 to 1.2. A perfor-
mance drop is impressive with the τ getting larger.
The purpose of this experiment for various τ is to
simulate the trace drawing speed of users in a real
application scenario, and a larger τ is equivalent
to a faster drawing speed. As Deng et al. (2020)
has demonstrated, the length is one of the critical
facts that impact quantitative performance. This
result implies we can further decide to generate
either a coarse-grained or fine-grained caption by
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Method ROUGE-L ROUGE-1-F1 BLEU-1 BLEU-4 CIDEr-D METEOR
Baseline(Pont-Tuset et al., 2020) 31.7 47.9 32.2 8.1 29.3 -
+Trace(Pont-Tuset et al., 2020) 48.3 60.7 52.2 24.6 106.5 -
Baseline* 34.1 54.0 36.0 10.3 29.5 16.4
+Trace* 49.0 68.1 55.4 25.0 107.9 25.2
LoopCAG(our) 50.3 69.8 57.2 27.0 114.0 26.0

Table 1: Comparison with baseline methods results: Baseline means an encoder-decoder model without taking
trace as input. +Trace means concatenating encoded trace feature to the encoder input, i.e., trace controlled caption
performance. LoopCAG is our complete model. The results with * are the baseline performance re-implemented
by ourselves

Method ROUGE-L ROUGE-1-F1 BLEU-1 BLEU-4 CIDEr-D METEOR
Baseline* 34.1 54.0 36.0 10.3 29.5 16.4
+AG 34.7(+0.6) 55.5(+1.5) 37.4(+1.4) 10.5(+0.2) 30.1(+0.6) 16.6(+0.2)
+Trace* 49.0 68.1 55.4 25.0 107.9 25.2
+Trace+C 50.1(+1.1) 69.3(+1.2) 56.7(+1.3) 26.4(+1.4) 113.6(+5.7) 25.9(+0.7)
LoopCAG 50.3(+1.3) 69.8(+1.7) 57.2(+1.8) 27.0(+2.0) 114.0(+6.1) 26.0(+0.8)

Table 2: Ablation study results: Baseline means an encoder-decoder model without taking trace as input. +AG
means using attention guidance. +Trace means concatenating trace feature to the encoder input, i.e., trace con-
trolled caption performance. +C means applying the contrastive constraints method. LoopCAG is our complete
model.The results with * are the baseline performance re-implemented by ourselves

Method Reverse
Trained

Reverse
Evaluated

BLEU-1 BLEU-4 METEOR ROUGE-L CIDEr-D

Baseline* X 36.0 10.1 16.3 28.7 29.1
+Trace* X 50.8 15.5 19.9 33.2 43.4
+Trace* X 50.2 16.4 20.1 36.4 45.2
+Trace* X X 53.4 19.6 21.6 38.2 55.1
LoopCAG X 53.7 18.6 21.7 34.6 52.2

Table 3: Analysis on temporal order results: Model performance on caption sentence and trace segment reversed
evaluation dataset.The results with * are the baseline performance re-implemented by ourselves.

τ BLEU-4 METEOR ROUGE-L CIDEr-D
0.4 26.9 25.5 47.2 91.7
0.6 26.7 25.5 46.9 91.1
0.8 26.1 25.3 46.2 88.3
1.0 24.8 24.7 44.9 82.4
1.2 24.1 24.4 44.3 79.1

Table 4: Analysis on temporal frequency results.

controlling the time-frequency τ .

Controllability Analysis on Spatial Semantic
Grounding One of our important purposes of
using attention guidance is introducing more inter-
pretability to the model while improving the cap-
tion performance. When generating each token, the
model is forced to show which visual elements are
the most effective reason for the current generation.
And this effectiveness is supervised by our pseudo

attention label. In this way, we can hopefully ob-
tain better visual-linguistic joint representation. In
appendix A, we showcase the attention values com-
parison of models w/wo attention guidance. We
find that the AG model has a more diverse dis-
tribution across all different types of tokens. A
”neater” activation is observed in Appendix A (a)
compared with (c), e.g., activations of ”who”, ”is”
and ”on” are clearly suppressed. We observe that
these suppressions happen on most function word,
so we add this illustration for further discussion
and exploration by our research community.

4.6 Qualitative Case Study

We present a showcase of a captioning result of
different methods in Figure 7. We can easily find
that the Baseline captioning describes the image
in random order while the +Trace Captioning and
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LoopCAG Captioning almost have the same or-
der as Ground Truth Captioning. It is also awe-
inspiring that the Baseline captioning and +Trace
Captioning both consist of some preposterous de-
scription highlighted in red color. In contrast, the
LoopCAG captioning is all reasonable. This is evi-
dence of superior fact grounding advantage brought
by our Attention Guidance Method.

Ground Truth Captioning

In this picture there is a stand on a ground. On the backside
there is a person. He is riding on a horse. He is wearing a cap.
He is in between the fence. There is a flags on a wall. On the

left side there is a score board on a table and flower plants.
We can see in the background sky. trees.

Baseline Captioning

In this image I can see a horse which is in white color, at left
there is a person sitting on the horse, at the back ground there

are some people standing, in the background there are few
buildings, trees and sky.

+Trace Captioning

This picture might be taken outside of the city. in this image,
in the middle there is a man sitting on horse and holding the

collar rope of a horse. on the right side, we can also see
another horse and a person is riding it. In the background,
there are group of people, flags, trees, plants, metal fence,

hoardings, trees. on top there is s a sky, at the bottom there
are some grass and a land.

LoopCAG Captioning

There is a person sitting on a horse. he is holding a horse
thread and he is wearing a cap. there are flags, board on the

left side. we can see in the background sky, trees.

Figure 5: Controlled Captioning Qualitative Examples
1: Ground Truth Captioning by annotator versus Baseline
captioning where the input is only the image, captioning con-
trolled by mouse traces where the mouse traces are also an
input to the model (+Trace and LoopCAG Captioning). Gradi-
ent indicates time.

5 Related Work

Controllable Image Captioning is an emerg-
ing research direction. Previous works aim to
control the captioning by Part-Of-Speech tag-
ging(Deshpande et al., 2018), sentiment, (You et al.,
2018), length (Deng et al., 2020), bounding box
(Cornia et al., 2019) etc. Those works either tried
to describe a semantic guided captioning. Other
works relied on predefined categories, e.g., bound-
ing box or sentiment classes. Similar works (Yu
et al., 2018; Cornia et al., 2019) control the cap-
tion by a sequence of ordered topics and bounding
boxes. However, those methods limit the caption-
ing on the pre-defined or recognized objects in
the bounding box and hard to scale out. Besides,
the trace is a more natural way to input than the
bounding box. The most similar work (Pont-Tuset
et al., 2020) proposed a trace-controlled image cap-
tioning task and designed a simple benchmark by
directly concatenating the mouse trace coordinates
and size into a self-attention module. Although
mouse trace is flexible and interactive, it is easy for
humans to understand the trace’s semantic repre-
sentation but hard for AI agents. Unlike previous
works, we propose a novel trace-controlled model
for capturing the semantic representation of trace
from both fine-grained and coarse-grained spatial
and temporal characteristics.
Contrastive Learning Recently, contrastive learn-
ing has been widely studied in unsupervised rep-
resentation learning for vision, (He et al., 2020;
Chen et al., 2020; Grill et al., 2020; Caron et al.,
2020; Chen and He, 2020), language (Mikolov
et al., 2013; Saunshi et al., 2019; Chi et al., 2020;
Fang and Xie, 2020; Giorgi et al., 2020; Kong
et al., 2020; Gunel et al., 2021), or multi-modal
(Sun et al., 2019; Luo et al., 2020). The goal is to
learn semantic representation between two views
by allowing the positive sample to be similar (in
semantic space) and negatives to be dissimilar se-
mantically simultaneously. CLIP (Radford et al.)
and MIL-NCE (Miech et al., 2020) has demon-
strated the effectiveness for learning the semantic
mapping between vision and language. Previous
attempts mainly exploit the InfoNCE (Oord et al.,
2018) objective to maximize a lower bound of the
mutual information. This paper extends the multi-
modal contrastive learning between the trace in the
image and captioning sentence. In the same image,
they correspond to each other semantically. This
motivates us to design a contrastive loss for better
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alignment between the trace and language.

6 Conclusion

In this paper, we focus on the controlled image
captioning task and find mouse traces provide an
intuitive and efficient way for a user to control the
description. We propose a novel caption generation
model with contrastive constraints and attention
guidance called LoopCAG to control the captioning
process spatially and temporally. The experimental
results demonstrate the our model’s effectiveness,
and our work will inspire more future research on
vision-linguistic understanding and generation.
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(c) Attention Activation (Without
Attention Guidance)

(a) Attention Activation (With Attention
Guidance)

(d) Words Activation Comparison
(Without Attention Guidance)

(b) Words Activation Comparison (With
Attention Guidance)

Figure 6: Appendix A: Controllability Analysis on Spatial Semantic Grounding
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Original Image Image with Trace

Ground Truth Captioning Baseline Captioning

In this image i can see a person wearing white
shirt, blue tie, blue blazer, skirt and black shoes
is standing and holding a black colored bag in
his hand. In the background i can see the white
colored wall.

in this picture we can see a man standing and
holding a mobile in his hand, in the background
we can find a wall.

+Trace Captioning LoopCAG Captioning

in the middle of the image a man is standing and
smiling and he is holding a tennis racket. behind
him there is a cloth on the red color wall. bottom
left side of the room there are two shoes.

in this image i can see a person wearing blue
coat, black pant and black shoe is standing and
holding a black colored bag in his hand. in the
background i can observe the white colored wall.

Figure 7: Appendix B: Controlled Captioning Qualitative Examples 2: Ground Truth Captioning by annotator versus
Baseline captioning where the input is only the image (top left), captioning controlled by mouse traces where the mouse traces
are also an input to the model (+Trace and LoopCAG Captioning). Gradient indicates time.


