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Abstract
Grammatical error correction (GEC) is a well-
explored problem in English with many exist-
ing models and datasets. However, research
on GEC in morphologically rich languages has
been limited due to challenges such as data
scarcity and language complexity. In this paper,
we present the first results on Arabic GEC using
two newly developed Transformer-based pre-
trained sequence-to-sequence models. We also
define the task of multi-class Arabic grammati-
cal error detection (GED) and present the first
results on multi-class Arabic GED. We show
that using GED information as an auxiliary in-
put in GEC models improves GEC performance
across three datasets spanning different genres.
Moreover, we also investigate the use of con-
textual morphological preprocessing in aiding
GEC systems. Our models achieve SOTA re-
sults on two Arabic GEC shared task datasets
and establish a strong benchmark on a recently
created dataset. We make our code, data, and
pretrained models publicly available.1

1 Introduction

English grammatical error correction (GEC) has
witnessed significant progress in recent years due
to increased research efforts and the organization of
several shared tasks (Ng et al., 2013, 2014; Bryant
et al., 2019). Most state-of-the-art (SOTA) GEC
systems borrow modeling ideas from neural ma-
chine translation (MT) to translate from erroneous
to corrected texts. In contrast, grammatical error
detection (GED), which focuses on locating and
identifying errors in text, is usually treated as a se-
quence labeling task. Both tasks have evident ped-
agogical benefits to native (L1) and foreign (L2)
language teachers and students. Also, modeling
GED information explicitly within GEC systems
yields better results in English (Yuan et al., 2021).

When it comes to morphologically rich lan-
guages, GEC and GED have not received as much

1https://github.com/CAMeL-Lab/arabic-gec

attention, largely due to the lack of datasets and
standardized error type annotations. Specifically
for Arabic, the focus on GEC started with the
QALB-2014 (Mohit et al., 2014) and QALB-2015
(Rozovskaya et al., 2015) shared tasks; however,
recent sequence-to-sequence (Seq2Seq) modeling
advances have not been explored much in Arabic
GEC. Moreover, multi-class Arabic GED has not
been investigated due to the lack of error type in-
formation in Arabic GEC datasets. In this paper,
we try to address these challenges. Our main con-
tributions are as follows:

1. We are the first to benchmark newly developed
pretrained Seq2Seq models on Arabic GEC.

2. We tackle the task of Arabic GED by introduc-
ing word-level GED labels for existing Arabic
GEC datasets, and present the first results on
multi-class Arabic GED.

3. We systematically show that using GED infor-
mation in GEC models improves performance
across GEC datasets in different domains.

4. We leverage contextual morphological prepro-
cessing in improving GEC performance.

5. We achieve SOTA results on two (L1 and L2)
previously published Arabic GEC datasets.
We also establish a strong benchmark on a
recently created L1 Arabic GEC dataset.

2 Related Work

GEC Approaches Early efforts focused on build-
ing feature-based machine learning (ML) classifiers
to fix common error types (Chodorow et al., 2007;
Tetreault and Chodorow, 2008; Dahlmeier and Ng,
2011; Kochmar et al., 2012; Rozovskaya and Roth,
2013; Farra et al., 2014). Such models required fea-
ture engineering and lacked the ability to correct
all error types simultaneously.

Reformulating GEC as a monolingual MT task
alleviated these issues, first with statistical MT ap-
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proaches (Felice et al., 2014; Junczys-Dowmunt
and Grundkiewicz, 2014, 2016) and then neural
MT approaches (Yuan and Briscoe, 2016; Xie et al.,
2016; Junczys-Dowmunt et al., 2018; Watson et al.,
2018), with Transformer-based models being the
most dominant (Yuan et al., 2019; Zhao et al.,
2019; Grundkiewicz et al., 2019; Katsumata and
Komachi, 2020; Yuan and Bryant, 2021).

More recently, edit-based models have been pro-
posed to solve GEC (Awasthi et al., 2019; Malmi
et al., 2019; Stahlberg and Kumar, 2020; Mallinson
et al., 2020; Omelianchuk et al., 2020; Straka et al.,
2021; Mallinson et al., 2022; Mesham et al., 2023).
While Seq2Seq models generate corrections to erro-
neous input, edit-based models generate a sequence
of corrective edit operations. Edit-based models
add explainability to GEC and improve inference
time efficiency. However, they generally require
human engineering to define the size and scope of
the edit operations (Bryant et al., 2023).

GED Approaches Rei and Yannakoudakis
(2016) presented the first GED results using a
neural approach framing GED as a binary (cor-
rect/incorrect) sequence tagging problem. Others
used pretrained language models (PLMs) such as
BERT (Devlin et al., 2019), ELECTRA (Clark
et al., 2020), and XLNeT (Yang et al., 2019) to
improve binary GED (Bell et al., 2019; Kaneko
and Komachi, 2019; Yuan et al., 2021; Rothe et al.,
2021). Zhao et al. (2019) and Yuan et al. (2019)
demonstrated that combining GED and GEC yields
improved results: they used multi-task learning to
add token-level and sentence-level GED as auxil-
iary tasks when training for GEC. Similarly, Yuan
et al. (2021) showed that binary and multi-class
GED improves GEC.

Arabic GEC and GED The Qatar Arabic Lan-
guage Bank (QALB) project (Zaghouani et al.,
2014, 2015) organized the first Arabic GEC shared
tasks: QALB-2014 (L1) (Mohit et al., 2014) and
QALB-2015 (L1 and L2) (Rozovskaya et al., 2015).
Recently, Habash and Palfreyman (2022) created
the ZAEBUC corpus, a new L1 Arabic GEC corpus
of essays written by university students. We report
on all of these sets.

Arabic GEC modeling efforts ranged from
feature-based ML classifiers to statistical MT
models (Rozovskaya et al., 2014; Bougares and
Bouamor, 2015; Nawar, 2015). Watson et al.
(2018) introduced the first character-level Seq2Seq

Dataset Split Words Err. Type Domain

QALB-2014
Train-L1 1M 30% L1 Comments
Dev-L1 54K 31% L1 Comments
Test-L1 51K 32% L1 Comments

QALB-2015

Train-L2 43K 30% L2 Essays
Dev-L2 25K 29% L2 Essays
Test-L2 23K 29% L2 Essays
Test-L1 49K 27% L1 Comments

ZAEBUC
Train-L1 25K 24% L1 Essays
Dev-L1 5K 25% L1 Essays
Test-L1 5K 26% L1 Essays

Table 1: Corpus statistics of Arabic GEC datasets.

model and achieved SOTA results on the L1 Arabic
GEC data used in the QALB-2014 and 2015 shared
tasks. Recently, vanilla Transformers (Vaswani
et al., 2017) were explored for synthetic data gen-
eration to improve L1 Arabic GEC and were tested
on the L1 data of the QALB-2014 and 2015 shared
tasks (Solyman et al., 2021, 2022, 2023). To the
best of our knowledge, the last QALB-2015 L2
reported results were presented in the shared task
itself. We compare our systems against the best
previously developed models whenever feasible.

A number of researchers reported on Arabic bi-
nary GED. Habash and Roth (2011) used feature-
engineered SVM classifiers to detect Arabic hand-
writing recognition errors. Alkhatib et al. (2020)
and Madi and Al-Khalifa (2020) used LSTM-based
classifiers. None of them used any of the publicly
available GEC datasets mentioned above to train
and test their systems. In our work, we explore
multi-class GED by obtaining error type annota-
tions from ARETA (Belkebir and Habash, 2021),
an automatic error type annotation tool for MSA.
To our knowledge, we are the first to report on
Arabic multi-class GED. We report on publicly
available data to enable future comparisons.

3 Background

3.1 Arabic Linguistic Facts

Modern Standard Arabic (MSA) is the official form
of Arabic primarily used in education and media
across the Arab world. MSA coexists in a diglos-
sic (Ferguson, 1959) relationship with local Arabic
dialects that are used for daily interactions. When
native speakers write in MSA, there is frequent
code-mixing with the dialects in terms of phonolog-
ical, morphological, and lexical choices (Habash
et al., 2008). In this paper, we focus on MSA GEC.
While its orthography is standardized, written Ara-
bic suffers many orthographic inconsistencies even
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in professionally written news articles (Buckwalter,
2004; Habash et al., 2012). For example, hamzated
Alifs (


@ Â, @ Ǎ)2 are commonly confused with the

un-hamzated letter ( @ A), and the word-final letters
ø
 y and ø ý are often used interchangeably. These
errors affect 11% of all words (4.5 errors per sen-
tence) in the Penn Arabic Treebank (Habash, 2010).
Additionally, the use of punctuation in Arabic is
very inconsistent, and omitting punctuation marks
is very frequent (Awad, 2013; Zaghouani and Awad,
2016). Punctuation errors constitute ∼40% of er-
rors in the QALB-2014 GEC shared task. This is
ten times higher than punctuation errors found in
the English data used in the CoNLL-2013 GEC
shared task (Ng et al., 2013). Arabic has a large vo-
cabulary size resulting from its rich morphology,
which inflects for gender, number, person, case,
state, mood, voice, and aspect, and cliticizes nu-
merous particles and pronouns. Arabic’s diglossia,
orthographic inconsistencies, and morphological
richness pose major challenges to GEC models.

3.2 Arabic GEC Data
We report on three publicly available Arabic GEC
datasets. The first two come from the QALB-
2014 (Mohit et al., 2014) and QALB-2015 (Ro-
zovskaya et al., 2015) shared tasks. The third is
the newly created ZAEBUC dataset (Habash and
Palfreyman, 2022). None of them were manually
annotated for specific error types. Table 1 presents
a summary of the dataset statistics. Detailed dataset
statistics are presented in Appendix B.

QALB-2014 consists of native/L1 user com-
ments from the Aljazeera news website, whereas
QALB-2015 consists of essays written by Arabic
L2 learners with various levels of proficiency. Both
datasets have publicly available training (Train),
development (Dev), and test (Test) splits. The
ZAEBUC dataset comprises essays written by na-
tive Arabic speakers, which were manually cor-
rected and annotated for writing proficiency using
the Common European Framework of Reference
(CEFR) (Council of Europe, 2001). Since the ZAE-
BUC dataset did not have standard splits, we ran-
domly split it into Train (70%), Dev (15%), and
Test (15%), while keeping a balanced distribution
of CEFR levels.

The three sets vary in a number of dimensions:
domain, level, number of words, percentage of er-
roneous words, and types of errors. Appendix C

2Arabic HSB transliteration (Habash et al., 2007).

presents automatic error type distributions over
the training portions of the three datasets. Ortho-
graphic errors are more common in the L1 datasets
(QALB-2014 and ZAEBUC) compared to the L2
dataset (QALB-2015). In contrast, morphological,
syntactic, and semantic errors are more common in
QALB-2015. Punctuation errors are more common
in QALB-2014 and QALB-2015 compared with
ZAEBUC.

3.3 Metrics for GEC and GED
GEC systems are most commonly evaluated us-
ing reference-based metrics such as the MaxMatch
(M2) scorer (Dahlmeier and Ng, 2012), ERRANT
(Bryant et al., 2017), and GLEU (Napoles et al.,
2015), among other reference-based and reference-
less metrics (Felice and Briscoe, 2015; Napoles
et al., 2016; Asano et al., 2017; Choshen et al.,
2020; Maeda et al., 2022). In this work, we use
the M2 scorer because it is language agnostic and
was the main evaluation metric used in previous
work on Arabic GEC. The M2 scorer compares
hypothesis edits made by a GEC system against an-
notated reference edits and calculates the precision
(P), recall (R), and F0.5. In terms of GED, we fol-
low previous work (Bell et al., 2019; Kaneko and
Komachi, 2019; Yuan et al., 2021) and use macro
precision (P), recall (R), and F0.5 for evaluation.
We also report accuracy.

4 Arabic Grammatical Error Detection

Most of the work on GED has focused on En-
glish (§2), where error type annotations are
provided manually (Yannakoudakis et al., 2011;
Dahlmeier et al., 2013) or obtained automatically
using an error type annotation tool such as ER-
RANT (Bryant et al., 2017). However, when it
comes to morphologically rich languages such as
Arabic, GED remains a challenge. This is largely
due to the lack of manually annotated data and stan-
dardized error type frameworks. In this work, we
treat GED as a mutli-class sequence labeling task.
We present a method to automatically obtain error
type annotations by extracting edits from parallel
erroneous and corrected sentences and then passing
them to an Arabic error type annotation tool. To
the best of our knowledge, this is the first work that
explores multi-class GED in Arabic.

4.1 Edit Extraction
Before automatically labeling each erroneous sen-
tence token, we need to align the erroneous and
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A
lignm

ents

13 12 11 10 9 8 7 6 5 4 3 2 1
Erroneous واׇඞৃڬ ۹ܿشحڰ ׇቘቇ܁ اׇؔر ׇଔଐ ᄸჱකڬ ف ᇃᆭׇڏغ܄কا ا۳غݨاܬۭ وׇۭܿ إܿغَام ܁܆ খࡻ

wAyjAbyh slbyħ mnhA AθAr lhA f bHkmh AlĂjtmAςy AltwASl wsAŷl ĂstxdAm mn lAbd

14 13 12 11 10 9 8 7 6 5 4 3 2 1
Corrected . وׇඞዥৃڰ ۹ܿشحڰ آׇؔر ۹٣ڳׇ ، ᄸჱකڰ ᇃᆭׇڏغ܄খا ا۳غݨاܬۭ وׇۭܿ اܿغَام ܁܆ খ ࡻ

wAyjAbyħ slbyħ ĀθAr flhA bHkmħ AlAjtmAςy AltwASl wsAŷl AstxdAm mn bd lA

E
dits

M² R

K K R K SLev. R M
R

M
R RARETA R K D R R

Ours I R K D M I

E
rror Type

43-Class PM OH+OT Delete OH Merge PM OT OH OH Split

13-Class P O Delete O Merge P O O O Split

2-Class E E E E E E E E E E

Figure 1: An example showing the differences between the alignments of the M2 scorer, a standard Levenshtein
distance, ARETA, and our proposed algorithm. The edit operations are keep (K), replace (R), insert (I), delete (D),
merge (M), and split (S). Dotted lines between the erroneous and corrected sentences represent gold alignment. The
last three rows present different granularities of ARETA error types based on our alignment. The sentence in the
figure can be translated as “Social media must be used wisely, as it has both negative and positive effects”.

corrected sentence pairs to locate the positions of
all edits so as to map errors to corrections. This
step is usually referred to as edit extraction in GEC
literature (Bryant et al., 2017).

We first obtain character-level alignment be-
tween the erroneous and corrected sentence pair
by computing the weighted Levenshtein edit dis-
tance (Levenshtein, 1966) for each pair of tokens in
the two sentences. The output of this alignment is
a sequence of token-level edit operations represent-
ing the minimum number of insertions, deletions,
and replacements needed to transform one token
into another. Each of these operations involves one
token at most belonging to either sentence. How-
ever, some errors may involve more than one single
edit operation. To capture multi-token edits, we
extend the alignment to cover merges and splits
by implementing an iterative algorithm that greed-
ily merges or splits adjacent tokens such that the
overall cumulative edit distance is minimized.

4.2 Error Type Annotation
Next, we pass the extracted edits to an automatic
annotation tool to label them with specific error
types. We use ARETA, an automatic error type an-
notation tool for MSA (Belkebir and Habash, 2021).
Internally, ARETA is built using a combination of
rule-based components and an Arabic morphologi-
cal analyzer (Taji et al., 2018; Obeid et al., 2020).
It uses the error taxonomy of the Arabic Learner
Corpus (ALC) (Alfaifi and Atwell, 2012; Alfaifi

QALB-2014 QALB-2015
P ↑ R ↑ AER ↓ P ↑ R ↑ AER ↓

M2 92.5 87.1 0.10 90.8 83.3 0.13
Lev. 86.8 84.3 0.14 84.5 84.2 0.16
ARETA 84.3 82.9 0.16 84.1 84.7 0.16
Ours 99.6 99.7 0.00 97.7 98.0 0.02

Table 2: Evaluation of different alignment algorithms.

et al., 2013) which defines seven error classes cov-
ering orthography (O), morphology (M), syntax
(X), semantics (S), punctuation (P), merges, and
splits. The error classes are further differentiated
into 32 error tags that can be assigned individually
or in combination.

ARETA comes with its own alignment algorithm
that extracts edits, however, it does not handle
many-to-one and many-to-many edit operations
(Belkebir and Habash, 2021). We replace ARETA’s
internal alignment algorithm with ours to increase
the coverage of error typing. Using our edit ex-
traction algorithm with ARETA enables us to au-
tomatically annotate single-token and multi-token
edits with various error types. Appendix C presents
the error types obtained from ARETA by using our
alignment over the three GEC datasets we use.

To demonstrate the effectiveness of our align-
ment algorithm, we compare our algorithm to the
alignments generated by the M2 scorer, a standard
Levenshtein edit distance, and ARETA. Table 2
presents the evaluation results of the alignment al-
gorithms against the manual gold alignments of the
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QALB-2014 and QALB-2015 Dev sets in terms
of precision (P), recall (R), and alignment error
rate (AER) (Mihalcea and Pedersen, 2003; Och
and Ney, 2003). Results show that our alignment
algorithm is superior across all metrics.

Figure 1 presents an example of the different
alignments generated by the algorithms we evalu-
ated. The M2 scorer’s alignment over-clusters mul-
tiple edits into a single edit (words 6–13). This is
not ideal, particularly because the M2 scorer does
not count partial matches during the evaluation,
which leads to underestimating the models’ per-
formances (Felice and Briscoe, 2015). A standard
Levenshtein alignment does not handle merges cor-
rectly, e.g., words 8 and 9 in the erroneous sentence
are aligned to words 9 and 10 in the corrected ver-
sion. Among the drawbacks of ARETA’s alignment
is that it does not handle merges, e.g., erroneous
words 8 and 9 are aligned with corrected words 9
and 10, respectively.

5 Arabic Grammatical Error Correction

Recently developed GEC models rely on
Transformer-based architectures, from standard
Seq2Seq models to edit-based systems built on
top of Transformer encoders. Given Arabic’s
morphological richness and the relatively small
size of available data, we explore different
GEC models, from morphological analyzers and
rule-based systems to pretrained Seq2Seq models.
Primarily, we are interested in exploring modeling
approaches to address the following two questions:

• RQ1: Does morphological preprocessing im-
prove GEC in Arabic?

• RQ2: Does modeling GED explicitly improve
GEC in Arabic?

Morphological Disambiguation (Morph) We
use the current SOTA MSA morphological ana-
lyzer and disambiguator from CAMeL Tools (In-
oue et al., 2022; Obeid et al., 2020). Given an input
sentence, the analyzer generates a set of potential
analyses for each word and the disambiguator se-
lects the optimal analysis in context. The analyses
include minimal spelling corrections for common
errors, diacritizations, POS tags, and lemmas. We
use the dediacritized spellings as the corrections.

Maximum Likelihood Estimation (MLE) We
exploit our alignment algorithm to build a simple
lookup model to map erroneous words to their cor-
rections. We implement this model as a bigram

maximum likelihood estimator over the training
data: P (ci|wi, wi−1, ei); where wi and wi−1 are
the erroneous word (or phrases in case of a merge
error) and its bigram context, ei is the error type of
wi, and ci is the correction of wi. During inference,
we pick the correction that maximizes the MLE
probability. If the bigram context (wi and wi−1)
was not observed during training, we backoff to
a unigram. If the erroneous input word was not
observed in training, we pass it to the output.

ChatGPT Given the rising interest in using large
language models (LLMs) for a variety of NLP
tasks, we benchmark ChatGPT (GPT-3.5) on the
task of Arabic GEC. We follow the setup presented
by Fang et al. (2023) on English GEC. To the best
of our knowledge, we are the first to present Chat-
GPT results on Arabic GEC. The experimental
setup along with the used prompts are presented in
Appendix A.

Seq2Seq with GED Models We experiment
with two newly developed pretrained Arabic
Transformer-based Seq2Seq models: AraBART
(Kamal Eddine et al., 2022) (pretrained on 24GB of
MSA data mostly in the news domain), and AraT5
(Nagoudi et al., 2022) (pretrained on 256GB of
both MSA and Twitter data).

We extend the Seq2Seq models we use to incor-
porate token-level GED information during train-
ing and inference. Specifically, we feed predicted
GED tags as auxiliary input to the Seq2Seq mod-
els. We add an embedding layer to the encoders of
AraBART and AraT5 right after their correspond-
ing token embedding layers, allowing us to learn
representations for the auxiliary GED input. The
GED embeddings have the same dimensions as the
positional and token embeddings, so all three em-
beddings can be summed before they are passed to
the multi-head attention layers in the encoders.

Our approach is similar to what was done by
Yuan et al. (2021), but it is much simpler as it re-
duces the model’s size and complexity by not intro-
ducing an additional encoder to process GED input.
Since the training data we use is relatively small,
not drastically increasing the size of AraBART and
AraT5 becomes important not to hinder training.

6 Experiments

6.1 Arabic Grammatical Error Detection

We build word-level GED classifiers using
Transformer-based PLMs. From the many avail-
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43-Class 13-Class 2-Class
P R F0.5 Acc. P R F0.5 Acc. P R F0.5 Acc.

QALB-2014 Dev-L1 56.7 48.4 53.3 94.1 69.0 58.7 65.3 94.7 95.8 92.7 95.1 96.1
Test-L1 55.0 45.5 50.6 93.6 58.1 54.2 56.8 94.1 95.4 91.5 94.5 95.5

QALB-2015
Dev-L2 39.0 35.0 36.9 84.5 55.1 47.3 51.7 85.3 87.0 80.4 85.2 88.9
Test-L1 51.8 45.3 49.4 94.9 66.5 56.2 60.7 95.6 96.2 93.9 95.7 96.7
Test-L2 37.0 35.4 35.8 85.5 52.8 48.6 51.0 86.5 88.6 81.3 86.6 89.9

ZAEBUC Dev-L1 50.9 43.7 47.5 92.6 57.1 52.9 55.7 93.3 95.7 92.8 95.1 95.5
Test-L1 54.9 43.3 49.8 91.9 69.2 56.6 62.4 92.6 95.5 92.5 94.8 95.2

Table 3: GED results on the Dev and Test sets in terms of macro precision, recall, F0.5, and accuracy.

able Arabic monolingual BERT models (Antoun
et al., 2020; Abdul-Mageed et al., 2021; Lan et al.,
2020; Safaya et al., 2020; Abdelali et al., 2021),
we chose to use CAMeLBERT MSA (Inoue et al.,
2021), as it was pretrained on the largest MSA
dataset to date.

In our GED modeling experiments, we project
multi-token error type annotations to single-token
labels. In the case of a Merge error (many-to-one),
we label the first token as Merge-B (Merge begin-
ning) and all subsequent tokens as Merge-I (Merge
inside). For all other multi-token error types, we
repeat the same label for each token. We further
label all deletion errors with a single Delete tag. To
reduce the output space of the error tags, we only
model the 14 most frequent error combinations (ap-
pearing more than 100 times). We ignore unknown
errors when we compute the loss during training;
however, we penalize the models for missing them
in the evaluation. Since the majority of insertion er-
rors are related to missing punctuation marks rather
than missing words (see Appendix C), and due to
inconsistent punctuation error annotations (Mohit
et al., 2014), we exclude insertion errors from our
GED modeling and evaluation. We leave the inves-
tigation of insertion errors to future work. The full
GED output space we model consists of 43 error
tags (43-Class).

We take advantage of the modularity of the
ARETA error tags to conduct multi-class GED ex-
periments, reducing the 43 error tags to their cor-
responding 13 main error categories as well as to
a binary space (correct/incorrect). The statistics
of the error tags we model across all datasets are
in Appendix D. Figure 1 shows an example of er-
ror types at different granularity levels. Table 3
presents the GED granularity results. Unsurpris-
ingly, all numbers go up when we model fewer
error types. However, modeling more error types
does not significantly worsen the performance in
terms of error detection accuracy. It seems that
all systems are capable of detecting comparable

numbers of errors despite the number of classes,
but the verbose systems struggle with detecting the
specific class labels.

6.2 Arabic Grammatical Error Correction

We explore different variants of the above-
mentioned Seq2Seq models. For each model, we
study the effects of applying morphological prepro-
cessing (+Morph), providing GED tags as auxil-
iary input (+GED), or both (+Morph+GED). Ap-
plying morphological preprocessing simply means
correcting the erroneous input using the morpholog-
ical disambiguator before training and inference.

To increase the robustness of the models that
take GED tags as auxiliary input, we use predicted
(not gold) GED tags when we train the GEC sys-
tems. For each dataset, we run its respective GED
model on the same training data it was trained on
and we pick the predictions of the worst check-
point. During inference, we resolve merge and
delete errors before feeding erroneous sentences to
the model. This experimental setup yields the best
performance across all GEC models.

To ensure fair comparison to previous work on
Arabic GEC, we follow the same constraints that
were introduced in the QALB-2014 and QALB-
2015 shared tasks: systems tested on QALB-2014
are only allowed to use the QALB-2014 training
data, whereas systems tested on QALB-2015 are
allowed to use the QALB-2014 and QALB-2015
training data. For ZAEBUC, we train our systems
on the combinations of the three training datasets.
We report our results in terms of precision (P), re-
call (R), F1, and F0.5. F1 was the official metric
used in the QALB-2014 and QALB-2015 shared
tasks. However, we follow the most recent work
on GEC and use F0.5 (weighing precision twice as
much as recall) as our main evaluation metric.

We use Hugging Face’s Transformers (Wolf
et al., 2019) to build our GED and GEC models.
The hyperparameters we used are detailed in Ap-
pendix A.
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QALB-2014 QALB-2015 ZAEBUC Avg.
P R F1 F0.5 P R F1 F0.5 P R F1 F0.5 F0.5

B&B (2015) - - - - 56.7 34.8 43.1 50.4 - - - - -
W+ (2018) 80.0 62.5 70.2 75.8 - - - - - - - - -
Morph 76.4 30.4 43.5 58.7 56.2 9.4 16.2 28.2 78.0 36.9 50.1 63.8 50.2
MLE 89.2 41.3 56.5 72.4 73.7 20.1 31.6 48.0 90.1 55.6 68.8 80.1 66.9

+Morph 88.5 44.9 59.6 74.1 68.3 22.0 33.2 48.0 89.1 61.8 73.0 81.9 68.0
ChatGPT 67.7 60.6 63.9 66.1 54.9 36.9 44.1 50.0 68.1 52.1 59.1 64.2 60.1
AraT5 82.5 66.3 73.5 78.6 69.3 39.4 50.2 60.2 84.1 67.4 74.8 80.1 73.0

+Morph 83.1 65.8 73.4 78.9 69.7 40.6 51.3 60.9 85.0 71.3 77.5 81.8 73.9
+GED43 82.6 67.1 74.1 79.0 69.5 41.9 52.3 61.4 85.7 66.7 75.0 81.0 73.8
+Morph +GED43 83.1 67.9 74.7 79.6 68.4 41.5 51.7 60.6 85.2 71.2 77.6 82.0 74.0

AraBART 83.2 64.9 72.9 78.7 68.6 42.6 52.6 61.2 87.3 70.6 78.1 83.4 74.4
+Morph 82.4 67.2 74.0 78.8 68.5 44.3 53.8 61.7 87.2 71.6 78.7 83.6 74.7
+GED43 83.3 65.9 73.6 79.1 68.2 45.3 54.4 61.9 87.2 72.9 79.4 83.9 75.0
+Morph +GED43 83.4 66.3 73.9 79.3 68.2 46.6 55.4 62.4 87.3 73.6 79.9 84.2 75.3

Table 4: GEC results on the Dev sets of QALB-2014, QALB-2015, and ZAEBUC. B&B (2015) and W+ (2018)
refer to Bougares and Bouamor (2015) and Watson et al. (2018), respectively. The best results are in bold.

QALB-2014 QALB-2015 ZAEBUC Avg.
P R F1 F0.5 P R F1 F0.5 P R F1 F0.5 F0.5

43-Class [Oracle] 85.5 73.3 79.0 82.8 73.9 57.2 64.5 69.8 89.8 82.0 85.7 88.1 80.2
13-Class [Oracle] 85.4 73.2 78.8 82.6 73.5 55.9 63.5 69.2 89.4 82.2 85.7 87.9 79.9

2-Class [Oracle] 84.2 72.1 77.7 81.4 71.6 54.5 61.9 67.4 86.6 80.0 83.2 85.2 78.0
43-Class 83.4 66.3 73.9 79.3 68.2 46.6 55.4 62.4 87.3 73.6 79.9 84.2 75.3
13-Class 83.9 65.7 73.7 79.5 68.0 46.6 55.3 62.3 87.6 73.9 80.2 84.5 75.4

2-Class 82.5 67.3 74.2 79.0 68.3 45.0 54.3 61.9 86.0 72.3 78.6 82.9 74.6

Table 5: GED granularity results when used within the best GEC system (AraBART+Morph+GED) on the Dev sets
of QALB-2014, QALB-2015, and ZAEBUC. The best results are in bold.

7 Results

Table 4 presents the results on the Dev sets.

Baselines The Morph system which did not use
any training data constitutes a solid baseline for
mostly addressing the noise in Arabic spelling. The
MLE system claims the highest precision of all
compared systems, but it suffers from low recall as
expected. ChatGPT has the highest recall among
the baselines, but with lower precision. A sample
of 100 ChatGPT mismatches reveals that 37% are
due to mostly acceptable punctuation choices and
25% are valid paraphrases or re-orderings; however,
38% are grammatically or lexically incorrect.

Seq2Seq Models AraT5 and AraBART outper-
form previous work on QALB-2014 and QALB-
2015, with AraBART being the better model on
average.

Does morphological preprocessing improve Ara-
bic GEC? Across all models (MLE, AraT5, and
AraBART), training and testing on morphologically
preprocessed text improves the performance, ex-
cept for MLE+Morph on QALB-2015 where there
is no change in F0.5.

Does GED help Arabic GEC? We start off
by using the most fine-grained GED model (43-
Class) to exploit the full effect of the ARETA GED
tags and to guide our choice between AraBART
and AraT5. Using GED as an auxiliary input in
both AraT5 and AraBART improves the results
across all three Dev sets, with AraBART+GED
demonstrating superior performance compared to
the other models, on average. Applying mor-
phological preprocessing as well as using GED
as an auxiliary input yields the best performance
across the three Dev sets, except for QALB-
2015 in the case of AraT5+Morph+GED. Overall,
AraBART+Morph+GED is the best performer
on average in terms of F0.5. The improvements
using GED with GEC systems are mostly due to re-
call. An error comparison between AraBART and
the AraBART+Morph+GED model (Appendix E)
shows improved performance on the majority of
the error types.

To study the effect of GED granularity on GEC,
we train two additional AraBART+Morph+GED
models with 13-Class and 2-Class GED tags. The
results in Table 5 show that 13-Class GED was best
in QALB-2014 and ZAEBUC, whereas 43-Class
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QALB-2014 QALB-2015-L1 QALB-2015-L2 ZAEBUC Avg.
P R F1 F0.5 P R F1 F0.5 P R F1 F0.5 P R F1 F0.5 F0.5

B&B (2015) - - - - - - - - 54.1 33.3 41.2 48.1 - - - - -
W+ (2018) - - 70.4 - - - 73.2 - - - - - - - - - -
S+ (2022) 79.1 65.8 71.8 76.0 78.4 70.4 74.2 76.6 - - - - - - - - -
AraBART 84.0 64.7 73.1 79.3 82.0 71.7 76.5 79.7 69.6 43.5 53.5 62.1 86.0 71.6 78.2 82.7 75.9

+Morph 83.3 67.4 74.5 79.5 81.7 73.0 77.1 79.8 68.7 43.6 53.3 61.6 85.3 71.8 78.0 82.3 75.8
+GED43 84.2 65.4 73.6 79.6 81.2 72.4 76.5 79.3 69.0 45.4 54.7 62.5 85.4 72.6 78.5 82.5 76.0
+Morph+GED43 83.9 65.7 73.7 79.5 82.6 72.1 77.0 80.3 67.6 45.2 54.2 61.5 85.4 73.7 79.1 82.7 76.0
+GED13 84.1 65.0 73.3 79.4 81.5 72.7 76.8 79.5 69.3 44.9 54.5 62.5 85.9 73.4 79.2 83.1 76.1
+Morph+GED13 83.9 65.3 73.4 79.4 81.1 73.4 77.1 79.5 68.2 44.8 54.1 61.8 85.2 73.7 79.0 82.6 75.8
+GED2 83.8 64.5 72.9 79.1 81.4 71.5 76.2 79.2 69.1 44.9 54.4 62.4 85.7 71.5 78.0 82.4 75.8
+Morph+GED2 83.0 67.0 74.1 79.2 81.3 73.8 77.4 79.7 68.1 45.3 54.4 61.9 85.7 72.4 78.5 82.7 75.9

Table 6: GED granularity results when used within GEC on the Test sets of QALB-2014, QALB-2015, and
ZAEBUC. B&B (2015), W+ (2018), and S+ (2022) refer to Bougares and Bouamor (2015), Watson et al. (2018),
and Solyman et al. (2022), respectively. The best results are in bold.

QALB-2014 QALB-2015-L1 QALB-2015-L2 ZAEBUC Avg.
P R F1 F0.5 P R F1 F0.5 P R F1 F0.5 P R F1 F0.5 F0.5

AraBART 89.5 77.3 83.0 86.8 90.1 81.4 85.5 88.2 71.8 40.7 52.0 62.3 89.5 76.9 82.7 86.6 81.0
+Morph 88.4 78.9 83.4 86.3 89.9 83.1 86.4 88.5 70.2 41.8 52.4 61.8 88.4 76.3 81.9 85.7 80.6
+GED43 89.7 78.9 84.0 87.3 89.8 81.8 85.6 88.1 70.7 43.6 53.9 62.9 89.2 77.0 82.7 86.5 81.2
+Morph+GED43 88.8 80.1 84.2 86.9 90.0 83.8 86.8 88.7 69.0 43.6 53.4 61.8 88.7 78.4 83.2 86.4 80.9
+GED13 89.8 78.9 84.0 87.3 89.8 82.2 85.8 88.2 71.0 42.8 53.4 62.7 89.9 77.8 83.4 87.2 81.4
+Morph+GED13 88.6 80.0 84.1 86.7 89.5 84.1 86.7 88.3 68.9 43.5 53.3 61.7 88.9 78.4 83.3 86.5 80.8
+GED2 89.3 77.6 83.0 86.7 89.4 81.8 85.5 87.8 70.6 42.4 53.0 62.3 89.0 77.0 82.6 86.3 80.8
+Morph+GED2 87.8 79.8 83.6 86.1 89.9 83.0 86.3 88.5 69.5 43.5 53.5 62.1 89.2 77.7 83.1 86.6 80.8

Table 7: No punctuation GED granularity results when used within GEC on the Test sets of QALB-2014, QALB-
2015, and ZAEBUC. The best results are in bold.

GED was best in QALB-2015 in terms of F0.5.
However, in terms of precision and recall, GED
models with different granularity behave differently
across the three Dev sets. On average, using any
GED granularity improves over AraBART, with
13-Class GED yielding the best results, although
it is only 0.1 higher than 43-Class GED in terms
of F0.5. For completeness, we further estimate an
oracle upper bound by using gold GED tags with
different granularity. The results (in Table 5) show
that using GED with different granularity improves
the results considerably. This indicates that GED
is providing the GEC system with additional infor-
mation; however, the main bottleneck is the GED
prediction reliability as opposed to GED granular-
ity. Improving GED predictions will most likely
lead to better GEC results.

Test Results Since the best-performing models
on the three Dev sets benefit from different GED
granularity when used with AraBART+Morph, we
present the results on the Test sets using all dif-
ferent GED granularity models. The results of
using AraBART and its variants on the Test sets
are presented in Table 6. On QALB-2014, using

Morph, GED, or both improves the results over
AraBART, except for 2-Class GED. AraBART+43-
Class GED is the best performer (0.3 increase in
F0.5, although not statistically significant).3 It is
worth noting that AraBART+Morph achieves the
highest recall on QALB-2014 (2.7 increase over
AraBART and statistically significant at p < 0.05).
For QALB-2015-L1, using GED by itself across
all granularity did not improve over AraBART, but
when combined with Morph, the 43-Class GED
model yields the best performance in F0.5 (0.6 in-
crease statistically significant at p < 0.05). When
it comes to QALB-2015-L2, Morph does not help,
but using GED alone improves the results over
AraBART, with 43-Class and 13-Class GED being
the best (0.4 increase). Lastly, in ZAEBUC, Morph
does not help, but using 13-Class GED by itself
improves over AraBART (0.4 increase). Overall,
all the improvements we observe are attributed to
recall, which is consistent with the Dev results.

Following the QALB-2015 shared task (Ro-
zovskaya et al., 2015) reporting of no-punctuation

3Statistical significance was done using a two-sided ap-
proximate randomization test.
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results due to observed inconsistencies in the ref-
erences (Mohit et al., 2014), we present results on
the Test sets without punctuation errors in Table 7.
The results are consistent with those with punc-
tuation, indicating that GED and morphological
preprocessing yield improvements compared to us-
ing AraBART by itself across all Test sets. The
score increase among all reported metrics when
removing punctuation, specifically in the L1 data,
indicates that punctuation presents a challenge for
GEC models and needs further investigation both
in terms of data creation and modeling approaches.

Analyzing the Test Results Table 8 presents the
average absolute changes in precision and recall
over the Test sets when introducing Morph, GED,
or both. Adding Morph alone or GED alone im-
proves recall (up to 0.8 in the case of Morph) and
slightly hurts precision. When using both Morph
and GED, we observe significant improvements in
recall with an average of 1.5 but with higher drops
of precision with an average of −0.7.

8 Conclusion and Future Work

We presented the first results on Arabic GEC using
Transformer-based pretrained Seq2Seq models. We
also presented the first results on multi-class Arabic
GED. We showed that using GED information as
an auxiliary input in GEC models improves GEC
performance across three datasets. Further, we
investigated the use of contextual morphological
preprocessing in aiding GEC systems. Our models
achieve SOTA results on two Arabic GEC shared
tasks datasets and establish a strong benchmark on
a recently created dataset.

In future work, we plan to explore other GED
and GEC modeling approaches, including the use
of syntactic models (Li et al., 2022; Zhang et al.,
2022). We plan to work more on insertions, punctu-
ation, and infrequent error combinations. We also
plan to work on GEC for Arabic dialects, i.e., the
conventional orthography of dialectal Arabic nor-
malization (Habash et al., 2018; Eskander et al.,
2013; Eryani et al., 2020).

Limitations

Although using GED information as an auxiliary in-
put improves GEC performance, our GED systems
are limited as they can only predict error types
for up to 512 subwords since they are built by
fine-tuning CAMeLBERT. We also acknowledge

P R
+Morph −0.4 0.8
+GED43 −0.2 0.7
+GED13 −0.2 0.7
+GED2 −0.3 0.5
+GED* −0.2 0.6
+Morph+GED43 −0.5 1.3
+Morph+GED13 −0.8 1.4
+Morph+GED2 −0.8 1.8
+Morph+GED* −0.7 1.5

Table 8: Average absolute changes in precision (P) and
recall (R) when introducing Morph, GED, or both to
AraBART and its variants on the Test sets. GED* indi-
cates the average absolute changes of all models using
GED. Bolding highlights the best performance across
Morph, GED* and Morph+GED*.

the limitation of excluding insertion errors when
modeling GED. Furthermore, our GEC systems
could benefit from employing a copying mecha-
nism (Zhao et al., 2019; Yuan et al., 2019), par-
ticularly because of the limited training data avail-
able in Arabic GEC. Moreover, the dataset sizes
of QALB-2015-L2 and ZAEBUC are too small to
allow us to test for statistical significance.
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A Detailed Experimental Setup

Grammatical Error Detection Our GED mod-
els were fine-tuned for 10 epochs using a learning
rate of 5e-5, a batch size of 32, and a seed of 42. At
the end of the fine-tuning, we pick the best check-
point based on the performance on the Dev sets.

Grammatical Error Correction When using
AraBART, we fine-tune the models for 10 epochs
by using a learning rate of 5e-5, a batch size of 32,
a maximum sequence length of 1024, and a seed
of 42. For AraT5, we fine-tune the models for 30
epochs by using a learning rate of 1e-4 and the rest
of the hyperparameters are the same as the ones
used in AraBART. During inference, we use beam
search with a beam width of 5 for all models. At
the end of the fine-tuning, we pick the best check-
point based on the performance on the Dev sets by
using the M2 scorer. The M2 scorer suffers from
extreme running times in cases where the generated
outputs differ significantly from the input. To mit-
igate this bottleneck, we extend the M2 scorer by
introducing a time limit for each sentence during
evaluation. If the evaluation of a single generated
sentence surpasses this limit, we pass the input sen-
tence to the output without modifications. We use
this extended version of the M2 scorer when report-
ing our results on the Dev sets. When reporting
our results on the Test sets, we use the M2 scorer
release that is provided by the QALB shared task.
We make our extended version of the M2 scorer
publicly available.

ChatGPT We start with prompting ChatGPT
with a 3-shot prompt. Our exact prompt is the
following:

"Please identify and correct any spelling and grammar
mistakes in the following sentence indicated by <input> IN-
PUT </input> tag. You need to comprehend the sentence as a
whole before gradually identifying and correcting any errors
while keeping the original sentence structure unchanged as
much as possible.

Afterward, output the corrected version directly without
any explanations. Here are some in-context examples:

(1), <input> SRC-1 </input>: <output> TGT-1 </output>.
(2), <input> SRC-2 </input>: <output> TGT-2 </output>.
(3), <input> SRC-3 </input>: <output> TGT-3 </output>.
Please feel free to refer to these examples. Remember

to format your corrected output results with the tag <out-
put> Your Corrected Version </output>. Please start: <in-
put> INPUT </input>"
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B Datasets Statistics

Dataset Split Lines Words Err. % Level Domain

QALB-2014
Train-L1 19,411 1,021,165 30% Native Comments
Dev-L1 1,017 53,737 31% Native Comments
Test-L1 968 51,285 32% Native Comments

QALB-2015

Train-L2 310 43,353 30% L2 Essays
Dev-L2 154 24,742 29% L2 Essays
Test-L2 158 22,808 29% L2 Essays
Test-L1 920 48,547 27% Native Comments

ZAEBUC
Train-L1 150 25,127 24% Native Essays
Dev-L1 33 5,276 25% Native Essays
Test-L1 31 5,118 26% Native Essays

Table 9: Corpus statistics of Arabic GEC datasets.

6445



C Error Types Statistics

Tag Error Description Example QALB-2014 QALB-2015 ZAEBUC

Orthography
(O)

OA Alif, Ya & Alif-Maqsura علي ← على 7,627 3% 290 2% 27 0%
OC Char Order تبرینا ← تربینا 466 0% 45 0% 30 0%
OD Additional Char یعدوم ← یدوم 4,086 1% 283 2% 103 2%
OG Lengthening short vowels نقیمو ← نقیم 0 0% 0 0% 0 0%
OH Hamza errors اكثر← أكثر 90,579 30% 1,076 8% 1,905 32%
OM Missing char(s) سالین ← سائلین 4,062 1% 361 3% 123 2%
ON Nun & Tanwin Confusion ثوبن ← ثوبٌ 0 0% 0 0% 0 0%
OR Char Replacement مصلنا ← وصلنا 8,350 3% 762 6% 162 3%
OS Shortening long vowels أوقت ← أوقات 0 0% 0 0% 0 0%
OT Ha/Ta/Ta-Marbuta Confusion مشاركھ ← مشاركة 14,688 5% 54 0% 408 7%
OW Confusion in Alif Fariqa وكانو ←  وكانوا 1,885 1% 32 0% 12 0%
OO Other orthographic errors - 1,632 1% 38 0% 148 2%

Morphology
(M)

MI Word inflection معروف ← عارف 1,360 0% 400 3% 127 2%
MT Verb tense تفرحني ← أفرحتني 76 0% 136 1% 4 0%
MO Other morphological errors - 15 0% 7 0% 3 0%

Syntax
(X)

XC Case رائع ← رائعاً 5,980 2% 279 2% 201 3%
XF Definiteness السن ← سن 852 0% 835 6% 51 1%
XG Gender الغربي ← الغربیة 809 0% 317 2% 86 1%
XM Missing word Null ← على 1,375 0% 763 6% 68 1%
XN Number فكرتي ← أفكاري 1,107 0% 210 2% 30 0%
XT Unnecessary word Null← على 1,047 0% 418 3% 116 2%
XO Other syntactic errors - 3,270 1% 122 1% 57 1%

Semantics
(S)

SF Conjunction error سبحان ← فسبحان 96 0% 46 0% 4 0%
SW Word selection error من ← عن 4,711 2% 865 7% 120 2%
SO Other semantic errors - 380 0% 114 1% 27 0%

Punctuation
(P)

PC Punctuation confusion قال. ← قال: 11,361 4% 854 7% 237 4%
PM Missing punctuation العظیم ←  العظیم، 97,271 32% 2,915 22% 479 8%
PT Unnecessary punctuation العام,  ← العام 5,553 2% 213 2% 204 3%
PO Other errors in punctuation - 0 0% 0 0% 0 0%

Merge MG Words are merged لایلزم ← لا یلزم 15,063 5% 377 3% 849 14%
Split SP Words are split و قال ← وقال  7,828 3% 80 1% 49 1%

Unknown UNK Unkown Errors الظالمون ← الذین ظلموا  2,053 1% 303 2% 93 2%
Comb. - Error Combinations انسانیھ ← إنسانیة  11,304 4% 848 7% 314 5%

304,886 13,043 6,037

Table 10: The statistics of the error types in the Train sets of QALB-2014, QALB-2015, and ZAEBUC. The error
types are based on the extended ALC (Alfaifi et al., 2013) taxonomy as used by Belkebir and Habash (2021).
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D GED Granularity Data Statistics

QALB-2014 QALB-2015 ZAEBUC
2-Class 13-Class 43-Class Train Dev Test Train Dev Test-L1 Test-L2 Train Dev Test

E

Delete Delete 6,442 346 540 584 339 250 309 305 64 66
Merge-B Merge-B 15,063 797 795 377 231 625 199 849 180 133
Merge-I Merge-I 15,296 812 807 390 241 629 200 851 180 133

M
M 30 0 0 14 3 4 4 6 2 2
MI 1,360 69 59 400 220 56 169 127 30 25
MT 76 0 4 136 72 2 40 4 0 1

M+O MI+OH 243 17 15 9 9 8 5 7 1 8

O

O 3,255 166 164 75 52 144 70 296 64 68
OA 7,627 313 252 290 136 514 138 27 4 6
OC 466 27 19 45 23 17 26 30 7 7
OD 4,086 207 204 283 167 146 166 103 24 21
OH 90,579 4,785 4,632 1,076 599 4,499 587 1,905 401 451
OM 4,062 228 217 361 215 188 184 123 23 30
OR 8,358 425 446 763 415 369 362 162 32 36
OT 14,688 758 623 54 37 733 26 408 101 138
OW 1,885 149 107 32 12 77 9 12 4 2

OA+OH 480 19 12 4 1 23 0 1 1 1
OA+OR 215 8 6 4 4 11 3 0 1 0
OD+OG 573 32 32 22 15 23 9 11 4 2
OD+OH 317 11 17 13 2 10 2 8 1 1
OD+OM 104 4 5 12 7 1 6 0 2 1
OD+OR 675 33 26 61 32 22 32 8 2 2
OH+OM 2,339 134 123 231 106 114 109 54 15 13
OH+OT 1,468 56 65 2 1 71 1 31 9 9
OM+OR 382 15 19 62 27 23 15 17 0 4
OR+OT 193 10 7 4 4 2 1 7 0 0

O+X OH+XC 323 24 18 6 3 15 2 20 0 4
P P 11,379 598 687 855 453 446 483 237 51 36

S
S 536 41 19 188 125 26 103 44 14 21
SF 96 5 4 46 33 2 21 4 0 2
SW 4,804 201 229 887 502 186 422 121 22 28

X

X 3,668 216 182 144 59 161 57 106 26 17
XC 5,980 373 369 279 180 289 141 201 31 46

XC+XG 296 23 40 0 3 1 0 1 0 0
XC+XN 500 18 41 29 13 23 9 24 3 3
XF 852 63 25 835 494 35 463 51 12 14
XG 809 38 30 317 175 35 158 86 20 24
XM 225 15 6 151 91 12 68 14 6 3
XN 1,107 47 41 210 115 47 84 30 9 2
XT 155 16 9 46 26 6 24 15 3 4

Split Split 7,828 432 399 80 42 382 34 49 10 10
UNK UNK 6,835 331 300 969 454 257 416 361 78 61

C C C 795,510 41,875 39,690 33,007 19,004 38,063 17,651 18,411 3,839 3,683
1,021,165 53,737 51,285 43,353 24,742 48,547 22,808 25,127 5,276 5,118

Table 11: The statistics of the different GED granularity error types we model across the three datasets. The
description of the labels in the 13-Class and 43-Class categories are in Appendix C. For the 2-Class labels, E refers
to erroneous words and C refers to correct words.
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E Error Analysis on Error Types

QALB-2014 QALB-2015 ZAEBUC
AraBART Best System AraBART Best System AraBART Best System

Delete 40.1 40.8 40.5 45.3 47.5 51.9
Merge-B 91.2 93.0 82.4 86.6 96.7 96.7
Merge-I 91.0 93.0 81.7 86.4 96.7 96.7
M 24.8 27.6 37.0 40.8 48.9 48.6
M+O 54.8 37.7 17.2 15.2 100.0 55.6
O 94.0 94.3 80.3 80.2 94.0 94.4
O+X 67.7 73.9 0.0 0.0 0.0 0.0
P 76.4 77.4 64.5 63.7 66.8 62.8
S 43.3 44.5 33.8 34.1 36.1 40.4
X 58.5 61.1 59.6 63.9 69.5 72.9
Split 87.6 87.1 78.0 78.9 88.2 88.2
UNK 50.2 57.2 37.9 35.2 57.1 63.1
C 96.2 96.8 89.9 91.4 95.4 96.1
Macro Avg 67.4 68.0 54.1 55.5 69.0 66.7

Table 12: Specific error type performance of AraBART and our best system (AraBART+Morph+GED13) on average
on the Dev sets of QALB-2014, QALB-2015, and ZAEBUC. Results are reported in terms of F0.5. The best results
are in bold.
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