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Abstract

Code-switching (CSW) text generation has
been receiving increasing attention as a solu-
tion to address data scarcity. In light of this
growing interest, we need more comprehensive
studies comparing different augmentation ap-
proaches. In this work, we compare three pop-
ular approaches: lexical replacements, linguis-
tic theories, and back-translation (BT), in the
context of Egyptian Arabic-English CSW. We
assess the effectiveness of the approaches on
machine translation and the quality of augmen-
tations through human evaluation. We show
that BT and CSW predictive-based lexical re-
placement, being trained on CSW parallel data,
perform best on both tasks. Linguistic theories
and random lexical replacement prove to be ef-
fective in the lack of CSW parallel data, where
both approaches achieve similar results.

1 Introduction

Code-switching (CSW) is the alternation of lan-
guage in text or speech, which can occur across dif-
ferent levels of granularity: sentences, words and
morphemes. CSW is a common phenomenon in
Arabic-speaking countries, as in other multilingual
communities. Given that Arabic is a morphologi-
cally rich language (Habash et al., 2012), speakers
produce morphological CSW, as illustrated below:

�
BAg algorithm+�Ë @ implement+�ë I. J
£ ⇐

‘Okay, I’ll+implement the+algorithm right away’

CSW introduces a set of challenges to NLP sys-
tems, not least of which is data scarcity. This is at-
tributed to CSW being a predominantly spoken phe-
nomenon, only recently increasing in written form
on social media. Data augmentation has proved to
be a successful workaround for this limitation. Re-
searchers have investigated several techniques for
CSW data augmentation, including learning CSW
points (Solorio and Liu, 2008; Gupta et al., 2021),
lexical replacements (Appicharla et al., 2021; Xu
and Yvon, 2021; Gupta et al., 2021; Hamed et al.,

2022c), linguistic theories (Pratapa et al., 2018;
Lee et al., 2019; Hussein et al., 2023), neural-based
approaches (Chang et al., 2018; Winata et al., 2018,
2019; Menacer et al., 2019; Song et al., 2019; Li
and Vu, 2020), and machine translation (MT) (Vu
et al., 2012; Tarunesh et al., 2021). With increasing
efforts in this area, we need more comparative stud-
ies to better understand the merits and requirements
of different approaches.

Efforts along these lines include the work of
Pratapa and Choudhury (2021), where different
linguistic-driven and lexical replacement tech-
niques were compared through human evaluation,
but not for NLP tasks. Winata et al. (2018) pro-
pose the use of pointer-generator network and com-
pare it against the equivalence constraint (EC) the-
ory (Poplack, 1980) and random lexical replace-
ment for LM, without human evaluation. Hamed
et al. (2022c) compare multiple lexical replace-
ment techniques covering human evaluation and
performance on language modeling (LM), auto-
matic speech recognition (ASR), MT, and speech
translation. Hussein et al. (2023) compare using
the EC theory and random lexical replacement for
LM and ASR, also reporting human assessments.

In this work, we compare three main ap-
proaches: lexical replacements, linguistic the-
ories, and back-translation (BT). We evaluate
the approaches for both naturalness of CSW gen-
erations and performance on MT, where we fo-
cus on CSW Egyptian Arabic-English to English
translation. The rationale for our focus on MT is
the scarcity of work around data augmentation as
opposed to LM and ASR. Furthermore, previous
work on MT focuses on lexical replacements (Men-
acer et al., 2019; Song et al., 2019; Appicharla
et al., 2021; Xu and Yvon, 2021; Gupta et al.,
2021; Hamed et al., 2022c) and BT (Tarunesh et al.,
2021), without substantial comparison between ap-
proaches. Through our comparative study, we pro-
vide answers to the following research questions:
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• RQ1: Which augmentation technique per-
form best in zero-shot and non-zero-shot set-
tings (with/without the availability of CSW
parallel corpora) for MT?

• RQ2: Does generating more natural synthetic
CSW sentences entail improvements in MT?

2 Data Augmentation Techniques

We provide an overview on the investigated tech-
niques.1 Our aim is to augment Arabic-to-English
parallel sentences, converting the source side of
the parallel data from monolingual Arabic to CSW
Arabic-English, further extending the MT training
data with CSW instances. In Figure 1, we provide
an example showing possible augmentations across
techniques. More examples are shown in Table 4.

2.1 Lexical Replacements
We investigate the following three approaches:

Dictionary Replacement: We replace x random
Arabic words on the source side with English
gloss entries. We obtain the gloss entries using
MADAMIRA (Pasha et al., 2014), an Arabic mor-
phological analyzer and tagger. Such a specialized
analysis system is required for this task as Ara-
bic is morphologically rich and orthographically
ambiguous. We refer to this approach as LEXDict.

Aligned with Random CSW Point Assignment:
We augment the Arabic-to-English parallel sen-
tences by randomly picking x source-target aligned
words (using intersection alignments) and replac-
ing the source words with their counterpart words
on the target side. In Hamed et al. (2022c), the
authors investigated two types of alignments for
performing source-target replacements: (1) word
replacements using intersection alignments and
(2) segment replacements where grow-diag-final
alignments are used to identify aligned segments.
Given that segment replacements were shown to be
superior, we follow that setup in our experiments.
We refer to this approach as LEXRand.

Aligned with Learnt CSW Point Prediction:
Similar to the previous approach, we perform
target-to-source replacements; however, the choice
of words on the target side to be inserted into the
source side is based on a CSW predictive model
(Appicharla et al., 2021; Hamed et al., 2022c). The

1We make our relevant code available at:
http://arzen.camel-lab.com/

S
VP

S
VP

VP
NP NP

PRP VBP TO VB JJ NN .
  I want to try Italian food .

 ا؎ׇ  ໝׇތ  ا൹ൠب ၐဋا  ᇃᆰׇاݚ  . 

Approach Augmentation Example

LEXDict . ú
ÍA¢�
@ É¿ @ H. Qk. @ wanting A 	K @ ⇐
LEXRand . ú
ÍA¢�
@ É¿ @ H. Qk. @ want to A 	K @ ⇐
LEXPred . Italian É¿ @ H. Qk. @ 	QK
A« A 	K @ ⇐
EC . ú
ÍA¢�
@ É¿ @ try

	QK
A« A 	K @ ⇐
EC & ML . Italian food H. Qk. @ 	QK
A« A 	K @ ⇐

Figure 1: An example showing possible augmentations
by the different techniques. We show the parse tree
for the English sentence and word alignments. The
permissible switching points under the EC theory are
shown by the dotted lines.

model is trained to identify words on the target side
that would be plausible CSW words on the source
side. The task of CSW point prediction is modeled
as a sequence-to-sequence classification task. The
neural network takes as input the target sentence
word sequence x = {x1, x2, .., xN}, where N is
the length of the sentence. The network outputs a
sequence y = {y1, y2, .., yN}, where yn ∈ {1,0}
represents whether the word xn is a plausible CSW
word or not. To obtain the training data for the
predictive model, we utilize a limited amount of
CSW Egyptian Arabic-English to English parallel
sentences, where we tag the words on the target
side as 0 or 1 based on whether they appear as CSW
words on the source side or not. This is done us-
ing a matching algorithm described in Hamed et al.
(2022c). The CSW predictive model is then trained
by fine-tuning mBERT on this data.2 Afterwards,
to augment Arabic-to-English parallel data, we use
the model to identify CSW candidates on the target
side which are inserted in the source side using
segment replacements. For a detailed description
of this approach, see Hamed et al. (2022c). We
refer to this approach as LEXPred.

2The hyperparameters are shown in Appendix C.
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2.2 Linguistic Theories
We cover the following two linguistic theories:

Equivalence Constraint (EC) Theory: The EC
Theory (Poplack, 1980) is an alternational model
for CSW, where there are no defined matrix and
embedded languages. Instead, the theory states that
code-switching can occur at points where the sur-
face structures of both languages map onto each
other. In the example in Figure 1, the permissible
alternations are indicated by dotted lines. Generat-
ing “É¿


@ Italian” and “Italian É¿


@” is not allowed as

the syntactic rules of both languages are different
(Arabic adjectives follow the nouns they modify).

Matrix Language Frame (MLF) Theory: The
MLF Theory (Myers-Scotton, 1997), on the other
hand, is an insertional model. It is based on the
identification of a matrix language, to which con-
stituents of the embedded language are inserted
such that the sentence follows the grammatical
structure of the matrix language, and the embed-
ded language is inserted at grammatically correct
points. Unlike the EC theory, replacements from
the embedded to matrix language are not allowed
within nesting sub-trees. Replacements of closed-
class constituents are also not allowed, including
determiners, quantifiers, prepositions, possessive,
auxiliaries, tense morphemes, and helping verbs.

For both linguistic theories, we use the GCM
tool (Rizvi et al., 2021).3 The tool provides mul-
tiple augmentations per source-target parallel sen-
tence, following a linguistic theory. To sample
from these generations, it provides two sampling
approaches: random and Switch-Point Fraction
(SPF) (Pratapa et al., 2018). In random sampling,
k generations are picked randomly. In SPF sam-
pling, the generations are ranked based on their
SPF distribution compared to a reference distribu-
tion obtained from real CSW data and the top-k
generations are chosen. SPF is calculated as the
number of switch points divided by the total num-
ber of language-dependent tokens in a sentence.4

We set k to 1, which is unified across all techniques.
We include both sampling approaches, where we
refer to the variants as ECRand, ECSPF , MLRand,
and MLSPF .

3The tool takes ≈ 12 hours to augment 309k parallel sen-
tences for each linguistic theory.

4The current version of the GCM tool provides an imple-
mentation for Switch Point (SP) which does not account for
the number of tokens in the sentence. We implement our own
code for ranking based on SPF. See footnote 1.

Model top-k #Aug
1 [en-csw&ar] 1 0.1k
2 [en-csw&ar]→[en-csw] 1 10k
3 [en-csw&ar]+[en-en]→[en-csw] 1 19k
4 [en-csw&ar]+[en-en]→[en-csw] 19 151k

Table 1: The number of CSW generations (#Aug) ob-
tained from the different BT setups: (1) BT model
trained on English to Arabic and English to CSW
Arabic-English parallel sentences, (2) same as 1 and fol-
lowed by fine-tuning using the English to CSW Arabic-
English parallel data, (3) similar to 2, with appending
English sentences to both sides of the training data, and
(4) same as 3 with utilizing the top-19 hypotheses.

2.3 Back-translation
Despite BT (Sennrich et al., 2015) being a well-
known data augmentation technique, it has received
little attention in the scope of CSW (Tarunesh et al.,
2021). In this approach, we train a BT model to
translate English sentences to CSW Arabic-English.
We then use this model to translate the target side
of the Arabic-to-English parallel sentences, gen-
erating synthetic CSW Arabic-English to English
parallel sentences. The BT model is trained on a
limited amount of English to CSW Arabic-English
parallel sentences and a larger amount of English
to Arabic parallel data. However, when using this
model to translate 309k English sentences, only
109 CSW sentences are generated, with the rest of
the translations being monolingual Arabic. This is
due to the training data of the BT model only consti-
tuting of 0.7% of sentences having CSW. We boost
the number of generated CSW synthetic sentences
through the following steps:

1. We fine-tune the model using the English to
CSW Arabic-English parallel data.

2. In the BT model training data, we further ap-
pend the English sentences in the parallel cor-
pus to both source and target sides.

3. At inference, instead of obtaining the top-1
hypothesis for each English sentences, we uti-
lize the top-k hypotheses and obtain the CSW
translation with the highest confidence score.
We set k to 19, where we could not further
increase the value of k due to computational
constraints.

In Table 1, we show the effect of each step on the
number of obtained CSW generations, reaching a
total of 151k CSW augmentations by applying all
three steps (augmenting 49% of original sentences).
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3 Experimental Setup

3.1 Data
We use two sources of data: (1) ArzEn-ST (Hamed
et al., 2022b), which is a CSW-focused paral-
lel corpus and (2) monolingual Egyptian Arabic-
to-English parallel corpora. ArzEn-ST contains
English translations of a CSW Egyptian Arabic-
English speech corpus (Hamed et al., 2020) gath-
ered through informal interviews with bilingual
speakers. The corpus is divided into train, dev,
and test sets having 3.3k, 1.4k, and 1.4k sentences
(containing 2.2k, 0.9k, and 0.9k CSW sentences).

For Egyptian Arabic-to-English parallel sen-
tences, we obtain 309k parallel sentences from
the following parallel corpora: Callhome Egyp-
tian Arabic-English Speech Translation Corpus
(Gadalla et al., 1997; LDC, 2002b,a; Kumar
et al., 2014), LDC2012T09 (Zbib et al., 2012),
LDC2017T07 (Chen et al., 2017), LDC2019T01
(Chen et al., 2019), LDC2021T15 (Tracey et al.,
2021), and MADAR (Bouamor et al., 2018). The
corpora cover web (LDC2012T09/LDC2019T01),
chat (LDC2017T07/LDC2021T15), and conversa-
tional (Callhome/MADAR) domains. We use the
corpora data splits if pre-defined, otherwise, we fol-
low the guidelines provided by Diab et al. (2013).
Data preprocessing is discussed in Appendix B.

3.2 Setup of Augmentation Approaches
Through augmentation, we convert the source side
of the 309k Arabic-to-English parallel sentences
to CSW Arabic-English. For word alignments, we
use Giza++ (Och and Ney, 2003).5 For the aug-
mentation approaches that require CSW parallel
sentences, we utilize ArzEn-ST. In BT, we train
the model on the train sets of the parallel corpora
outlined in Section 3.1, with reversed source and
target sides. The predictive model in LEXPred is
trained on the portion of ArzEn-ST train set hav-
ing CSW sentences. That subset is also utilized
in the linguistic theories to obtain the reference
SPF distribution (= 0.22). It is also utilized in
LEXDict and LEXRand, where the value of x is set
to 19% of the source words based on the percent-
age of English words in ArzEn-ST train set CSW

5Following Hamed et al. (2022c), in lexical replacements,
we take the union of grow-diag-final alignments trained on
word and stem spaces. We use the same alignments in lin-
guistic theories, as it produces more generations compared to
the default alignment setup used in the GCM tool (grow-diag-
final-and alignments trained on word space using fast-align
(Dyer et al., 2013)).

sentences, which is 18.8%. However, the average
percentage calculated over sentences is 22.1% with
a standard deviation of 17.5%. The decision of 19%
is in agreement with Hussein et al. (2023) where
the authors report LM perplexities achieved by em-
bedding different percentages of English words in
Arabic text using random lexical replacement and
decide on a percentage of 20%. In future work, we
believe an interesting direction is to model CSW
distribution to obtain a wider coverage of various
CSW levels rather than targeting a single percent-
age for all sentences.

3.3 Machine Translation System
We train a Transformer model using Fairseq (Ott
et al., 2019) on a single GeForce RTX 3090 GPU.
We use the hyperparameters from the FLORES
benchmark for low-resource machine translation
(Guzmán et al., 2019).6 The hyperparameters are
given in Appendix C. We use a BPE model trained
jointly on source and target sides with a vocabulary
size of 16k (which outperforms 1, 3, 5, 8, 32, 64k).
The BPE model is trained using Fairseq with char-
acter_coverage set to 1.0. For MT training data,
we use the train sets of the corpora outlined in Sec-
tion 3.1. For the augmentation experiments, we
append the synthetically generated CSW Arabic-
English to English parallel sentences. For devel-
opment and evaluation of the MT models, we use
ArzEn-ST dev and test sets.

4 Evaluation

In this section, we present intrinsic evaluation, hu-
man evaluation, and extrinsic evaluation.

4.1 Intrinsic Evaluation
In Table 2, we report the number of CSW sentences
generated per technique as well as CSW statis-
tics. We report that the number of augmentations
varies considerably across techniques: LEXDict >
LEXRand > BT > EC > LEXPred > ML.

With regards to CSW metrics, we report Code-
mixing Index (CMI) (Gambäck and Das, 2016),
SPF, and the average percentage of English tokens
over sentences. CMI reflects the level of mixing
between multiple languages, and is calculated on
the sentence-level as follows:

CMI(x) =
1
2
∗(N(x)−maxLi∈L{tLi

}(x))+ 1
2
P (x)

N(x)

6FLORES hyperparameters outperformed Vaswani et al.
(2017) in Gaser et al. (2022) on the same utilized datasets.
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Size (k) CMI SPF SPFσ %En
ArzEn-ST - 0.21 0.22 0.13 22.1
LEXDict 239.6 0.28 0.33 0.12 22.5
LEXRand 192.7 0.25 0.24 0.12 31.9
LEXPred 112.9 0.24 0.22 0.13 36.8
ECRand 142.1 0.30 0.29 0.14 59.0
ECSPF 142.1 0.25 0.24 0.08 64.4
MLRand 98.2 0.27 0.27 0.14 60.8
MLSPF 98.2 0.25 0.25 0.10 63.1
BT 151.1 0.18 0.19 0.14 65.2

Table 2: The number of generated sentences per tech-
nique, and their CMI and SPF mean and standard de-
viation (SPF/SPFσ) values and average percentage of
English words (%En). We also report the figures for the
CSW sentences in ArzEn-ST train set as reference.

where N is the number of language-dependent to-
kens in sentence x; Li ∈ L is the set of languages
in the corpus; maxLi∈L{tLi} is the number of to-
kens in the dominating language in x; and P is the
number of switch points in x, where 0 ≤ P < N .
The corpus-level CMI is calculated as the average
of sentence-level CMI values.

We observe that in general, LEXRand and
LEXPred provide the closest figures to ArzEn-ST
with regards to CSW metrics. It is to be noted
that unlike LEXRand and SPF-based linguistic the-
ories, no explicit CSW heuristics were provided to
LEXPred, and the predictive model learnt to imi-
tate the CSW frequency in ArzEn-ST. In the case
of linguistic theories, we note that SPF sampling
provides CMI and SPF figures that are closer to
ArzEn-ST than random sampling. Finally, we re-
port that the linguistic theories and BT augmenta-
tions contain high percentages of English words.

4.2 Human Evaluation
In order to assess the quality of the synthetically
generated CSW sentences, we perform a human
evaluation study. Out of the original sentences that
get augmented by all techniques, we randomly sam-
ple 150 sentences.7 These sentences are evaluated
by three annotators across the eight augmentation
techniques against two measures: understandabil-
ity and naturalness. All three annotators are female
Egyptian Arabic-English bilingual speakers, in the
age range of 33-39, all graduates of private English
schools. We follow the rubrics introduced by Prat-

7The sentences are sampled uniformly across the six cor-
pora used in data augmentation to have equal representation
of the different domains (web/chat/conversational).

Understandability
1 No, this sentence doesn’t make sense.
2 Not sure, but I can guess the meaning of this

sentence.
3 Certainly, I get the meaning of this sentence.

Naturalness
1 Unnatural, and I can’t imagine people using

this style of code-mixed Arabic-English.
2 Weird, but who knows, it could be some style

of code-mixed Arabic-English.
3 Quite natural, but I think this style of code-

mixed Arabic-English is rare.
4 Natural, and I think this style of code-mixed

Arabic-English is used in real life.
5 Perfectly natural, and I think this style of code-

mixed Arabic-English is very frequently used.

Table 3: The evaluation dimensions for human evalua-
tion, following Pratapa and Choudhury (2021).

apa and Choudhury (2021), outlined in Table 3.
Understandability is rated on a scale of 1-3 and nat-
uralness is rated on a scale of 1-5 where scores of
3-5 are assigned to natural sentences with different
levels of commonality to be encountered in real
life. A total of 1,200 augmentations are annotated
by each of the three annotators for both understand-
ability and naturalness, giving a total of 7,200 an-
notations.8 For each augmentation, we calculate
the mean opinion score (MOS) as the average of
scores received by the three annotators. The full
results are provided in Appendix E, where the per-
centage of sentences falling under each MOS range
per technique is presented in Table 7. In Figure 2,
we show the percentage of sentences perceived as
natural by annotators across techniques (summa-
tion of the last two rows in Table 7). We observe
the following ranking between techniques: BT >
LEXPred > ML > EC > LEXRand > LEXDict.

With regards to linguistic theories, as noted by
Doğruöz et al. (2021), computational implementa-
tions of linguistic theories do not necessarily gen-
erate natural CSW sentences that would mimic
human CSW generation. We elaborate on this
point in Section 6. While ML achieves higher
naturalness ratings than EC, we do not observe su-
periority across the different sampling techniques,
which can be due to the SPF values only chang-
ing slightly between both techniques in our case.

8The annotation task took an average of 9 hours per anno-
tator, and each annotator was paid $160.
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Figure 2: The percentage of augmentations with
3≤ MOS ≤5 (quite natural but rarely used - perfectly
natural and frequently used) per technique.

This can be different in other setups with different
reference SPF distributions. With regards to un-
derstandability, there is less variability across the
techniques (91-96% of the augmentations are given
ratings between 2 and 3), except for LEXDict (the
percentage is 65%). We perform inter-annotator
agreement by applying pairwise Cohen Kappa (Co-
hen, 1960), reporting 0.25-0.28 (fair agreement) on
naturalness between annotator pairs. Low agree-
ment on this task is expected, as CSW attitude
is speaker-dependent (Vu et al., 2013). The pair-
wise Cohen Kappa scores for understandability are
higher (0.33-0.35), yet still showing fair agreement.
We also apply Fleiss’ Kappa (Fleiss, 1971) across
all annotators, scoring fair agreement of 0.312 and
0.249 for understandability and naturalness.9

4.3 Extrinsic MT Evaluation
The augmentation techniques covered in this study
vary in terms of requirements. One main differ-
ence is the reliance on CSW parallel data, which
is only available for a few CSW language pairs
(Hamed et al., 2022b). To have a fair comparison
and to show the effectiveness of the techniques in
both cases (availability and lack of CSW-focused
parallel corpora), we run two sets of experiments:

• Zero-shot setting: In this setting, our baseline
system is trained only using the 309k mono-
lingual Arabic-to-English parallel sentences.

9We use the implementation provided in:
https://github.com/Shamya/FleissKappa/
blob/master

We extend the training data with augmenta-
tions generated using techniques that do not
require CSW parallel data, namely: LEXDict,
LEXRand, EC, and ML.

• Non-zero-shot setting: In this setting, we as-
sume the availability of CSW parallel data.
We train our baseline system using the mono-
lingual Arabic-to-English parallel sentences
in addition to ArzEn-ST corpus. We then ap-
pend the augmentations generated by each of
the investigated techniques.

In the following sections, we present our base-
line systems and the results for zero-shot and non-
zero-shot settings. The full results are reported in
Table 5, showing BLEU (Papineni et al., 2002),
chrF, chrF++ (Popović, 2017), and BERTScore
(F1) (Zhang et al., 2019). BLEU, chrF and chrF++
are calculated using SacreBLEU (Post, 2018). We
report performance on ArzEn-ST test set; on all
sentences as well as CSW sentences only. Our
analysis in this section is based on chrF++. This
choice is based on chrF++ showing higher corre-
lation with human judgments over chrF (Popović,
2017) and chrF showing higher correlation over
BLEU (Kocmi et al., 2021). We report performance
on ArzEn-ST test set CSW sentences, as this is our
main concern. Statistical significance tests for zero-
and non-zero-shot settings are shown in Table 6.

4.3.1 Baselines
We develop the following MT baselines, showing
the improvements achieved by each source of data:

• BLCSW : We train it solely on ArzEn-ST train
set, having 3.3k parallel sentences.

• BLMono: We train it on the 309k monolingual
Arabic-to-English parallel sentences.

• BLMonoTgt: In BLMono, we observe that En-
glish words on the source side get dropped
in translation. This issue has been previously
tackled by researchers using techniques in-
cluding direct copying (Song et al., 2019) or
the use of a pointer network (Menacer et al.,
2019). We propose a simple technique of in-
cluding target-target pairs in the training pro-
cess. In other words, in addition to the source-
target sentences used in BLMono, we append
the English (target) sentences on both source
and target sides, ending up with 617k parallel
sentences. Our hypothesis is that by doing so,
the model learns to retain the English words
on the source side through translation.
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Figure 3: chrF++ scores of the different baselines on
ArzEn-ST test set CSW sentences.

• BLAll: We include the same data as in
BLMonoTgt, in addition to ArzEn-ST train set,
giving a total of 620k parallel sentences.

The chrF++ scores are shown in Figure 3 (full
results in Table 5 Exp 1-4). The effectiveness of
the simple step of adding target-target pairs during
training is confirmed, where BLMonoTgt achieves
an increase of +15.6 chrF++ points over BLMono.
Adding ArzEn-ST train set (BLAll) results in fur-
ther +2.3 chrF++ points, achieving 57.3 on chrF++.

4.3.2 Zero-shot Setting Experiments
This setting is tailored to the majority of CSW
language pairs, that are under-resourced and lack
CSW-focused parallel corpora. We demonstrate
the effectiveness of the augmentation techniques
in a zero-shot setting. Given that LEXPred and
BT are reliant on CSW parallel data, they are ex-
cluded from this comparison. We include the fol-
lowing approaches: LEXDict, LEXRand, ECRand,
ECSPF , MLRand, and MLSPF . We acknowledge
that some of these approaches rely on heuristics
obtained from CSW data, such as SPF value or the
enforced CSW percentage. However, we argue that
these figures can be obtained from textual data (that
is more easily accessible than parallel data). The
baseline in this setting is BLMonoTgt, which is our
best baseline that does not utilize real CSW data.

We report that LEXDict degrades the MT per-
formance, falling 3.2 chrF++ points below the
baseline. We present the chrF++ scores for the
other techniques in Figure 4 (full results in Ta-
ble 5 Exp 5-10). We observe that linguistic-based
models and LEXRand perform equally well, de-
spite LEXRand generating more data. As shown
in Table 6, there is no statistical significance be-
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Figure 4: The effectiveness of the augmentation tech-
niques in a zero-shot setting. We show the chrF++
scores on ArzEn-ST test set CSW sentences. The solid
and dashed lines represent BLMonoTgt and BLAll.

tween LEXRand and linguistic-based models. Com-
paring the linguistic theories, EC performs bet-
ter than ML, however, there is no difference be-
tween SPF and random sampling strategies. Over-
all, ECRand performs the best, with statistical sig-
nificance over MLRand and MLSPF , achieving
+1.3 chrF++ points over BLMonoTgt.

4.3.3 Non-zero-shot Experiments
In this setting, we assume the availability of CSW-
focused parallel data, and thus compare all aug-
mentation techniques. The baseline for this setting
is BLAll. The chrF++ scores are shown in Figure 5
(full results in Table 5 Exp 11-18).10

LEXDict falls below BLAll by 1.4 chrF++ points,
we thus exclude it from Figure 5. We observe that
LEXPred and BT outperform LEXRand and linguis-
tic theories. The best performance is achieved by
BT, achieving +1.3 chrF++ points over BLAll. We
also report that LEXRand and linguistic theories are
unable to achieve significant improvements over
BLAll.11 We examine the amount of real in-domain
CSW data that would result in equivalent perfor-
mance achieved by LEXRand and linguistic theo-
ries in the zero-shot setting. In Figure 6, we show
a learning curve by adding different amounts of
ArzEn-ST train set CSW sentences to BLMonoTgt

training data, and show that LEXRand and linguis-
10The lexical replacements results differ from Hamed et al.

(2022c) due to the following design decisions: (1) we append
target-target pairs in the training data; and (2) we only include
generated CSW sentences, and not sentences that get fully
converted to English, in order to better control for variables.

11The improvement achieved by MLRand over BLAll is
not statistically significant.
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Figure 5: The effectiveness of the augmentation tech-
niques in a non-zero-shot setting. We show the chrF++
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Figure 6: Learning curve of adding different amounts of
ArzEn-ST train set CSW sentences to the BLMonoTgt

training data. We show the chrF++ scores on ArzEn-ST
test set CSW sentences.

tic theories (generating 98-192k CSW synthetic
sentences) perform on par at 50% of ArzEn-ST
train set CSW sentences (≈ 1,080 sentences).

5 Discussion

In this section, we revisit our RQs:

RQ1 - Which augmentation techniques per-
form the best for MT? In the zero-shot setting,
LEXRand and linguistic theories achieve similar
performance, with EC outperforming ML models.
In the non-zero shot setting, BT outperforms all
techniques, followed by LEXPred. Both techniques,
being trained on real CSW data, are able to gener-
ate more natural CSW sentences, that could also be
closer in CSW style to ArzEn-ST.

RQ2 - Does generating more natural synthetic
CSW sentences entail improvements in MT?
Here, we look into the relation between MT scores
and naturalness ratings. In the non-zero shot set-
ting, we report a correlation of 0.97 between the
chrF++ scores (presented in Figure 5) and the
percentage of sentences perceived as natural (pre-
sented in Figure 2). This demonstrates a strong
positive correlation between MT performance and
naturalness of augmentations.

Given that the number of augmentations varies
considerably across techniques (shown in Table 2),
this variation could empower some techniques
over others, affecting performance as an effect of
quantity rather than quality. Therefore, we per-
form another set of experiments where we con-
trol for this variable. We report results under a
constrained setup, where we restrict the augmen-
tations appended to the baseline training data to
only those that are successfully augmented across
all techniques (= 24.8k sentences). We first ap-
pend the constrained augmentations per technique
to BLMonoTgt training data. The results are pre-
sented in Table 5 Exp 19-26. The order based
on chrF++ is: BT > LEXPred > [LEXRand & lin-
guistic theories] > LEXDict. The correlation be-
tween the chrF++ scores achieved on ArzEn-ST
test set CSW sentences and the percentage of sen-
tences perceived as natural is 0.95. We replicate
the constrained experiments with appending the
constrained augmentations to BLAll training data.
Given the availability of CSW data in the training
data, and with constraining the amounts of aug-
mented data, the majority of the models show no
improvements over BLAll. We therefore cannot use
this setup to make conclusions on the relation be-
tween quality and performance. However, from the
previously discussed findings, we confirm a posi-
tive relation between the naturalness of generated
synthetic sentences and MT performance.

6 Insights into Augmentations

In this section, we present insights into the aug-
mentations produced by the different techniques,
further elaborating on their strengths and weak-
nesses. All examples mentioned in this section
refer to the examples demonstrated in Table 4.

Lexical Replacements: The main drawback in
LEXDict is that the replaced words might not be
correct translations within context, which can neg-
atively affect the MT model. As shown in Table 4
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Example 1, ©Ëð@ AwlE12 ‘turn on’, in the context
of turn on this light, is replaced by ‘kindle’. This
drawback is also observed in the case of ambigu-
ous words, as shown in Example 2, where the word
©K. A£ TAbE ‘stamp’ is replaced by ‘impression’.
With regards to LEXRand, CSW can occur at un-
natural locations, such as replacing èX dh ‘this’ in
Example 1. This is less likely for LEXPred, which
is reflected in human evaluation.

Linguistic theories: We observe that applying
linguistic theories does not guarantee naturalness,
e.g., the augmentation provided by ECSPF shown
in Example 3, despite being a correct augmentation
under the EC theory, was given a rating of ‘2’ by
all annotators. Moreover, the effectiveness of these
techniques is tied to (and currently restricted by)
the performance of the available tools that imple-
ment them. We observe that the augmentations ob-
tained from the GCM tool in some cases violate the
EC or ML theories. For the EC theory, in Example
4, we demonstrate a case where Arabic-to-English
alternation occurs at the word ‘station’ which is
a point of syntactic divergence in ��
K. ñ�KðB@ �é¢m×
mHTp AlAwtwbys and ‘the coach station’. For the
ML theory, in Example 5, the augmentation in-
cludes the stand-alone CSW segment ‘in’, while
replacements of closed-class constituents (includ-
ing prepositions) is prohibited. As the tool relies on
generating Arabic parse trees from English parse
trees using alignments, errors are likely to be in-
troduced. Furthermore, as noted by Hussein et al.
(2023), the augmentations are sometimes missing
information from the original sentences.13

BT: We observe that BT is capable of generat-
ing correct morphological code-switching (MCS).
As shown in Example 6, the MCS construction
‘ �IK.+handle’ bt+handle ‘handles’ is correctly com-

posed of �IK. bt ‘progressive-imperfect-2nd-masc-
sing’ preceding the verb ‘handle’ and ‘field’ is cor-
rectly preceded by the definite article È@ Al ‘the’.
While researchers have provided insights into com-
mon Arabic-English MCS constructs (Kniaź, 2017;
Kniaź and Zawrotna, 2021; Hamed et al., 2022a),
there is no current research that allows for model-
ing Arabic-English MCS in a rule-based approach.

12Buckwalter Arabic Transliteration (Habash et al., 2007).
13We reduce the effect of this issue by validating that the

generated sentences are complete using the alternational matri-
ces computed by the tool in the generation process, and giving
priority to sampling from validated augmentations.

Therefore, the ability of neural-based approaches
to generate MCS is an advantage. On the other
hand, similar to the partial transcription issue noted
in Chowdhury et al. (2021) for ASR models using
BPE, the BT approach can provide partial transla-
tions of words, such as ‘modifications’ translated
to s+ÉK
Yª�K tEdyl+s ‘modification+s’(Example 7).
BT might also provide literal translation. With
both issues combined, we find cases such as ‘locker’
being translated to er+É 	®�̄ qfl+er ‘lock+er’.

7 Conclusion and Future Work

We present a comparative study between different
CSW data augmentation techniques and their ef-
fectiveness for MT in both zero-shot and non-zero-
shot settings. We show that in the zero-shot setting,
random lexical replacement performs equally well
as linguistic theories. In the case of non-zero shot
setting, back-translation performs best, followed by
CSW predictive-based lexical replacement. Both
approaches also stand out in human evaluation,
where we confirm a positive correlation between
naturalness of augmentations and MT performance.
However, both approaches are reliant on expensive
and limited CSW parallel data. Overall, the set of
approaches examined proves useful in alleviating
data scarcity. Each approach comes with partic-
ular merits and requirements, guiding the choice
for different research needs. In future work, we
plan on enhancing the back-translation approach to
leverage larger amounts of English data. In parallel,
we will investigate the effectiveness of generative
AI to broaden the benchmark of approaches, and
expand our study to cover other NLP tasks.

Limitations

One limitation of the presented work is that the
models were evaluated on one test set only, and
therefore, we cannot interpret how the models will
perform on other sets, covering other domains and
sources (spoken versus written). Another limitation
is that the study involves only one language pair.
Further research is needed to investigate whether
the findings hold for other language pairs. A third
limitation is the low variability in the annotators’
demographics, as the three annotators are female
annotators, in the same age group, receiving similar
levels of education. Including a broader set of
annotators would enrich research with insights on
the level of agreement between annotators with
wider background differences.
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Ethics Statement

We could not identify any ethical issues in the
work, and to our best knowledge, we believe it
complies with the ACL Ethics Policy. We use
ArzEn-ST corpus, which is distributed under an
Attribution-ShareAlike 4.0 International license,
where we adhere to its intended usage. All other
parallel corpora are also publicly available, includ-
ing MADAR, Callhome, and LDC corpora.
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A Augmentation Examples

In Table 4, we present examples of augmentations
generated by the different techniques. These exam-
ples are discussed in Section 6.

B Data Preprocessing

Following Hamed et al. (2022c), we remove corpus-
specific annotations, remove URLs and emoticons
through tweet-preprocessor, tokenize numbers, ap-
ply lowercasing, run Moses’ (Koehn et al., 2007) to-
kenizer as well as MADAMIRA (Pasha et al., 2014)
simple tokenization (D0), and perform Alef/Ya nor-

malization.14 For entries with words having literal
and intended translations, we opt for one translation
having all literal translations and another having all
intended translations. For LDC2017T07, we utilize
the work by Shazal et al. (2020), where the authors
used a sequence-to-sequence model to transliterate
the corpus text from Arabizi (where Arabic words
are written in Roman script) to Arabic orthogra-
phy. For the Egyptian Arabic-to-English parallel
corpora discussed in Section 3.1, we only utilize
the 309k monolingual Egyptian Arabic-to-English
parallel sentences available in these corpora, where
we do not utilize the parallel sentences with code-
switching within the scope of this work. In future
work, it would be interesting to investigate how the
effectiveness of data augmentation varies with the
availability of different amounts of real CSW paral-
lel data, to draw further conclusions under different
levels of low-resourcefulness. Also, for MADAR
and LDC2012T09, we only utilize the Egyptian
Arabic subsets of both corpora.

C Hyperparameters

For finetuning mBERT for the CSW predictive
model, we set the epochs to 5, drop-out rate to
0.1, warmup steps to 500, batch size to 13, and
learning rate to 0.0001. The training and inference
time took ≈ 12 hours.

For MT, we use the following train command:
python3 fairseq_cli/train.py $DATA_DIR –source-
lang src –target-lang tgt –arch transformer –share-
all-embeddings –encoder-layers 5 –decoder-layers
5 –encoder-embed-dim 512 –decoder-embed-dim
512 –encoder-ffn-embed-dim 2048 –decoder-ffn-
embed-dim 2048 –encoder-attention-heads 2 –
decoder-attention-heads 2 –encoder-normalize-
before –decoder-normalize-before –dropout 0.4 –
attention-dropout 0.2 –relu-dropout 0.2 –weight-
decay 0.0001 –label-smoothing 0.2 –criterion la-
bel_smoothed_cross_entropy –optimizer adam –
adam-betas ’(0.9, 0.98)’ –clip-norm 0 –lr-scheduler
inverse_sqrt –warmup-updates 4000 –warmup-
init-lr 1e-7 –lr 1e-3 –stop-min-lr 1e-9 –max-
tokens 4000 –update-freq 4 –max-epoch 100 –save-
interval 10 –ddp-backend=no_c10d

D MT Results

In Table 5, we report the MT results, showing
BLEU, chrF, chrF++, and BERTScore(F1). The

14https://pypi.org/project/
tweet-preprocessor/
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Examples
Src ? èX Pñ	JË @ ©Ëð@ ø
 @ 	P@
Tgt how can i turn on this light ?
LEXDict ? èX Pñ	JË @ kindle ø
 @ 	P@
LEXRand ? this Pñ	JË @ ©Ëð@ ø
 @ 	P@

1 LEXPred ? èX light ©Ëð@ ø
 @ 	P@
ECRand ? èX Pñ	JË @ how can i turn on

ECSPF ? this light ©Ëð@ ø
 @ 	P@
MLRand ? èX light ©Ëð@ ø
 @ 	P@
MLSPF ? Pñ	JË @ how can i turn on this

BT ? èX light È@ i�J 	̄ @ PY�̄ @ ø
 @ 	P@
Src ? ú


	GA�K ©K. A£ �IJ.k.
2 Tgt got another stamp ?

LEXDict ? ú

	GA�K impression �IJ.k.

Src 	áK
QîD�� É¿ A¢	J£ ú

	̄ �èP@XB@ 	áÓ H. @ñk. Y 	gA 	K Ð 	PB

3 Tgt we must take a letter from the management in tanta ; every two months
ECRand

	áK
QîD�� in tanta ; every �èP@XB@ 	áÓ H. @ñk. Y 	gA 	K Ð 	PB
Src ? 	á�
 	̄ ��
K. ñ�KðB@ �é¢m× ñë

4 Tgt where ’s the coach station ?
ECRand ? 	á�
 	̄ ��
K. ñ�KðB@ station ñë
Src . ½Êm× ú


	̄ ú

�æ 	¢ 	®m× �I�.� A 	K @

5 Tgt i left my wallet in your shop .
MLRand . ½Êm× in ú


�æ 	¢ 	®m× left A 	K @
Src ? èX ú
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 @ ú

	̄

Table 4: Examples of synthetic CSW sentences generated by the different augmentation techniques, demonstrating
strengths and weaknesses of techniques. Given that Arabic is written from right to left, we display all augmentations
in a right-to-left orientation.

statistical significance between the models in the
zero-shot and non-zero-shot settings for chrF++
achieved on ArzEn-ST test set CSW sentences are
shown in Table 6. The number of parameters in the
models for Exp 1 is 39,712,768 and Exp 2-26 is
44,967,936. The training time taken by Exp 1 is
≈ 8 minutes, Exp 2 ≈ 2.6 hours, and Exp 3-26 ≈
5.2-6.5 hours.

E Human Evaluation

We present the full results of the human evaluation
study discussed in Section 4.2. For each evaluated
augmentation, we calculate the mean opinion score
(MOS) as the average of scores received by the
three annotators. In Table 7, we present the per-
centage of sentences falling under each MOS range
for understandability and naturalness per augmen-
tation technique. In Table 8, we present the average
MOS scores per technique.
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All Test Sentences CSW Test Sentences
Exp Model |Train| BLEU chrF chrF++ BertScore(F1) BLEU chrF chrF++ BertScore(F1)

Baselines
1 BLCSW 3,340 8.3 27.2 26.6 0.218 8.3 27.8 27.1 0.175
2 BLMono 308,689 22.2 42.1 41.4 0.387 20.7 39.9 39.4 0.315
3 BLMonoTgt 617,378 31.7 54.9 53.5 0.519 32.8 56.5 55.0 0.510
4 BLAll 620,718 34.4 57.4 55.7 0.547 35.6 59.1 57.3 0.549

Zero-shot Experiments
5 +LEXDict 857,022 29.8 52.3 51.1 0.499 30.2 53.1 51.8 0.474
6 +LEXRand 810,030 32.8 55.7 54.3 0.531 34.1 57.5 56.0 0.529
7 +ECRand 759,478 33.7 56.1 54.7 0.528 34.9 57.8 56.3 0.522
8 +ECSPF 759,478 33.1 55.8 54.5 0.530 34.5 57.6 56.2 0.527
9 +MLRand 715,610 32.6 55.5 54.2 0.527 33.9 57.2 55.8 0.520
10 +MLSPF 715,610 33.0 55.8 54.4 0.529 34.2 57.4 56.0 0.523

Non-zero-shot Experiments
11 +LEXDict 860,362 33.6 56.0 54.5 0.536 34.8 57.6 55.9 0.530
12 +LEXRand 813,370 34.2 57.1 55.5 0.546 35.9 59.2 57.5 0.546
13 +LEXPred 733,660 35.2 57.5 56.1 0.550 36.8 59.5 58.0 0.551
14 +ECRand 762,818 33.5 56.6 55.1 0.544 34.9 58.6 56.9 0.547
15 +ECSPF 762,818 34.6 57.0 55.5 0.547 36.2 59.0 57.3 0.549
16 +MLRand 718,950 34.9 57.4 55.8 0.548 36.3 59.3 57.6 0.549
17 +MLSPF 718,950 34.3 57.3 55.7 0.548 35.7 59.2 57.5 0.547
18 +BT 771,793 35.8 58.2 56.6 0.550 37.5 60.3 58.6 0.553

Constrained Experiments
19 +LEXDict 642,221 30.4 53.3 52.0 0.502 31.2 54.5 53.0 0.482
20 +LEXRand 642,221 32.2 55.3 53.9 0.529 33.3 56.9 55.5 0.524
21 +LEXPred 642,221 32.9 55.8 54.3 0.530 34.3 57.6 56.1 0.527
22 +ECRand 642,221 32.2 55.5 54.0 0.525 33.6 57.4 55.7 0.521
23 +ECSPF 642,221 32.7 55.3 53.9 0.526 34.1 57.2 55.6 0.520
24 +MLRand 642,221 32.3 55.3 53.9 0.524 33.4 56.9 55.4 0.517
25 +MLSPF 642,221 32.5 55.3 53.9 0.523 33.9 57.0 55.5 0.518
26 +BT 642,221 34.3 56.4 55.0 0.534 36.1 58.4 56.9 0.531

Table 5: We report the MT results (BLEU, chrF, chrF++, and BertScore) on ArzEn-ST test set, for all sentences
as well as CSW sentences only. We report the results of the baselines (Section 4.3.1), zero-shot (Section 4.3.2),
non-zero-shot (Section 4.3.3), and constrained (Section 5) settings. The best performing models in each setting are
bolded. The overall best performing model is underlined.
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LEXDict LEXRand ECRand ECSPF MLRand

chrF++ 51.8 56.0 56.3 56.2 55.8
LEXDict 51.8
LEXRand 56.0 0.0010*
ECRand 56.3 0.0010* 0.0539
ECSPF 56.2 0.0010* 0.1139 0.2208
MLRand 55.8 0.0010* 0.0959 0.0030* 0.0120*
MLSPF 56.0 0.0010* 0.2667 0.0240* 0.0649 0.1518

(a) Statistical significance between the models in the zero-shot setting.
LEXDict LEXRand LEXPred ECRand ECSPF MLRand MLSPF

chrF++ 55.9 57.5 58.0 56.9 57.3 57.6 57.5
LEXDict 55.9
LEXRand 57.5 0.0010*
LEXPred 58.0 0.0010* 0.0190*
ECRand 56.9 0.0010* 0.0040* 0.0010*
ECSPF 57.3 0.0010* 0.1359 0.0030* 0.0280*
MLRand 57.6 0.0010* 0.2957 0.0310* 0.0020* 0.1149
MLSPF 57.5 0.0010* 0.4096 0.0240* 0.0030* 0.1239 0.3137
BT 58.6 0.0010* 0.0010* 0.0040* 0.0010* 0.0010* 0.0010* 0.0010*

(b) Statistical significance between the models in the non-zero-shot setting.

Table 6: Statistical significance between models in the zero- and non-zero-shot settings calculated on the chrF++
scores achieved on ArzEn-ST test set CSW sentences. We present the p-values and mark p-values < 0.05 with ∗,
where the null hypothesis can be rejected. We include the chrF++ scores for easier readability and comparison.

MOS LEXDict LEXRand LEXPred ECrand ECspf MLrand MLspf BT
Understandability

1≤*< 2 35.3 4.0 4.0 7.3 8.0 8.7 9.3 6.0
2≤*< 3 64.7 96.0 96.0 92.7 92.0 91.3 90.7 94.0

Naturalness
1≤*< 2 62.7 27.3 13.3 28.7 24.7 20.0 20.0 6.7
2≤*< 3 21.3 25.3 20.0 22.7 25.3 19.3 25.3 13.3
3≤*< 4 12.0 21.3 27.3 27.3 27.3 32.7 31.3 26.7
4≤*≤ 5 4.0 26.0 39.3 21.3 22.7 28.0 23.3 53.3

Table 7: The percentage of synthetic sentences per augmentation technique falling under each mean opinion score
(MOS) range for understandability and naturalness, as obtained through human evaluation.

LEXDict LEXRand LEXPred ECrand ECspf MLrand MLspf BT
Understandability 2.16 2.78 2.77 2.72 2.68 2.73 2.70 2.75
Naturalness 1.80 2.84 3.34 2.74 2.84 3.08 2.96 3.76

Table 8: The average mean opinion scores (MOS) for understandability and naturalness per technique, as obtained
through human evaluation.
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