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Abstract

In the realm of dialogue-to-image retrieval, the
primary challenge is to fetch images from a
pre-compiled database that accurately reflect
the intent embedded within the dialogue his-
tory. Existing methods often overemphasize
inter-modal alignment, neglecting the nuanced
nature of conversational context. Dialogue his-
tories are frequently cluttered with redundant
information and often lack direct image descrip-
tions, leading to a substantial disconnect be-
tween conversational content and visual repre-
sentation. This study introduces VCU, a novel
framework designed to enhance the compre-
hension of dialogue history and improve cross-
modal matching for image retrieval. VCU lever-
ages large language models (LLMs) to perform
a two-step extraction process. It generates pre-
cise image-related descriptions from dialogues,
while also enhancing visual representation by
utilizing object-list texts associated with im-
ages. Additionally, auxiliary query collections
are constructed to balance the matching pro-
cess, thereby reducing bias in similarity com-
putations. Experimental results demonstrate
that VCU significantly outperforms baseline
methods in dialogue-to-image retrieval tasks,
highlighting its potential for practical applica-
tion and effectiveness in bridging the gap be-
tween dialogue context and visual content.

1 Introduction

Recent advancements in communication technol-
ogy have significantly enhanced online conversa-
tional systems (Jiang et al., 2019; Hosseini-Asl
et al., 2020; Qin et al., 2023), which now play a
crucial role in facilitating instant messaging and
information sharing. However, purely textual ex-
changes often fail to fully convey the speaker’s
intentions and emotions, leading to the develop-
ment of multimodal conversational systems that
enrich dialogue with images and audio etc (Liao

*Corresponding Author.

You know last weekend i was taking a walk in the woods,
and saw a squirrel!

Oh, squirrels are so cute! What color was it?

He wasn't afraid of me so I went up close and took a photo.

Nice! I tried to do that once but it ran away from me.

Oh, nice. I only remember seeing brown squirrels!

It was a grey squirrel. This is the closest I've been to a
squirrel haha! Wanna see a photo?

[ share a photo ]

Figure 1: An example of image-sharing in a multi-modal
conversational system from the PhotoChat dataset.

et al., 2018; Zhang et al., 2019; Tan and Bansal,
2019; Wang et al., 2020; Shuster et al., 2021; Yang
et al., 2021; Ye et al., 2022). As shown in Figure 1,
sharing photographs provides a vivid and intuitive
means of communication, making image-sharing
capabilities essential in dialogue systems.

Traditional text-to-image retrieval techniques
(Faghri et al., 2018; Wang et al., 2019; Chun et al.,
2021; Jia et al., 2021), which rely on direct image
categories or detailed descriptions, fall short in dia-
logue contexts. The primary challenge is to select
relevant images from a predefined repository based
on the ongoing conversation, which involves under-
standing the dialogue content and accurately match-
ing it with images. Previous studies (Zang et al.,
2021; Yin et al., 2024) typically use dual-stream
architectures for processing texts and images sepa-
rately, followed by feature-based retrieval. Recent
improvements in pre-trained visual-language mod-
els (Yin et al., 2024; Li et al., 2022, 2023a) have
enhanced the accuracy of these systems by fine-
tuning them for specific tasks.

However, current research (Zang et al., 2021;
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Yin et al., 2024) often overemphasizes inter-modal
alignment and overlooks the complexities of dia-
logue context. Dialogue context can be lengthy
and cluttered with redundant information, such as
greetings, small talk, and repeated phrases, thereby
adding extra complexity to downstream retrieval
tasks. Long texts make it more difficult for the
model to understand, and may also be constrained
by the encoder’s limitation on the length of the
input tokens. Consequently, it is crucial to better
understand and extract image-related information
from the dialogue context. In addition, dialogue
context involves multi-turn exchanges, which may
not directly describe the details of the images, lead-
ing to a significant disparity between the represen-
tations of dialogue contexts and images, directly
affecting the matching results.

To address the aforementioned problems, we pro-
pose a systematic framework (VCU) for Balancing
Visual Context Understanding in dialogue for im-
age retrieval. Initially, to better understand the
conversational content and mitigate interference
from redundant information, we devise a two-step
conversational content extraction process based on
the Large Language Model (LLM). Specifically, in
the first step, leveraging the comprehension and
generative capabilities of LLM, we directly extract
potential keywords related to images from the dia-
logue context. Then these keywords serve as hints
for generating sentence-form visual description in
the second step. Furthermore, to bridge the gap be-
tween the dialogue context and visual content, we
enhance the visual representation using object-list
texts associated with images. By computing sim-
ilarity scores between token-level object-list text
and patch-level image embeddings, we derive im-
portance weights for each token, ultimately merg-
ing these weights with the original word embed-
dings and the global image embeddings to obtain
enhanced image representation. Lastly, inspired by
(Wang et al., 2024), we introduce a method to con-
struct auxiliary query text collections to balance the
matching, thereby reducing the bias during similar-
ity calculation and improving retrieval accuracy.

To sum up, our contributions are threefold:

• We emphasize the importance of image de-
scriptions driven by large language models and
demonstrate their effectiveness in complex dia-
logue scenarios.

• We propose a framework that leverages LLMs
for conversational context extraction, integrates

object descriptions to enhance visual embeddings
and constructs an auxiliary query text collection
to balance matching.

• Comprehensive experiments show that our pro-
posed VCU surpasses baselines, enabling precise
image retrieval based on given conversational
context.1

2 Related Work

2.1 Image-text Retrieval

The core of image-text retrieval tasks lies in effec-
tively understanding and aligning the two distinct
modalities of image and text. Early research, such
as VSE++ (Faghri et al., 2018), proposes using the
hardest negative triplet loss to learn superior joint
visual-textual features. Subsequently, the focus of
research has shifted to visual-semantic embedding
(Wang et al., 2019; Chun et al., 2021; Jia et al.,
2021). ALIGN (Jia et al., 2021) leverages a noisy
dataset and employs contrastive learning to align
visual and textual representations.

Moreover, several studies (Lee et al., 2018; Liu
et al., 2019; Cui et al., 2021) have followed the de-
velopment trend of attention mechanisms. SCAN
(Lee et al., 2018) employs a cross-attention mecha-
nism to establish finer-grained alignments between
image regions and words, while BFAN (Liu et al.,
2019) additionally considers the positional relation-
ships among multiple image regions.

Recently, the emergence of large-scale pre-
trained models has provided new perspectives for
image-text retrieval tasks (Chen et al., 2020; Rad-
ford et al., 2021; Kim et al., 2021; Li et al., 2021;
Bao et al., 2022; Li et al., 2022, 2023a). BLIP (Li
et al., 2022) employs a multi-task learning strat-
egy, thus excelling in various cross-modal tasks.
In this study, our task can also be considered an
image-text retrieval problem. However, unlike the
traditional direct textual description of images, the
textual component in our task comprises more com-
plex dialogue histories.

2.2 Multimodal Dialogue

In recent years, research in multimodal dialogue
has become a popular field, breaking through
the limitations of traditional text-only interactions.
Current research can be divided into two categories:
the first one involves dialogue contexts that include

1The experimental codes are available at https://github.
com/JupiterTop/VCU.
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visual content, requiring models to better under-
stand visual information or answer questions about
the images (Tan and Bansal, 2019; Wang et al.,
2020; Liao et al., 2021; Shuster et al., 2021; Park
et al., 2021; Yang et al., 2021; Wu et al., 2022);
the other one requires models to generate multi-
modal responses, which not only include texts but
also involve retrieving or generating images (Agar-
wal et al., 2018; Sun et al., 2022, 2023; Yin et al.,
2024).

PhotoChat (Zang et al., 2021) is the first open-
domain multimodal dialogue dataset to facilitate
the task of image-sharing. As the field evolves, an
increasing number of studies (Shuster et al., 2020;
Lee et al., 2021; Feng et al., 2023; Ahn et al., 2023;
Lee et al., 2023) focus on this task, providing new
available data. Most dialogue-to-image retrieval
works use the raw dialogue history directly. DE*
(Zang et al., 2021) uses a dual-encoder structure
to encode dialogue history and visual content sep-
arately. PaCE (Li et al., 2023b) adopts a divide-
and-conquer strategy to construct a pre-training
framework suitable for different multimodal dia-
logue tasks. However, the dialogue context often
contains redundant information that can compli-
cate model understanding and may not directly de-
scribe the details of the image, adding complex-
ity to downstream retrieval tasks. Therefore, our
work focuses on better understanding and extract-
ing image-relevant information from the dialogue
context, thus bridging the gap between dialogue
context and visual content.

3 Preliminary

Task Formulation For the task of dialogue-to-
image retrieval, the model aims to select the image
that best matches the current image-sharing inten-
tion from a pre-compiled database based on the
dialogue history. We regard all the utterances pre-
ceding the image-sharing turn as dialogue history
and denote it as H = {U1, U2, · · · , Um−1, Um},
where Ui represents the i-th turn of dialogue in
the form of {User : Content}, and m is the length
of the dialogue history. At turn m+1, the model
is required to retrieve an appropriate image from
the pre-compiled image databaseD = {vj , oj}Nj=1,
where vj represents a candidate image and oj is the
list of objects present in the corresponding image.
Throughout the inference process, given the dia-
logue history H , the model will retrieve the image
v from image database D for sharing.

Pre-trained Encoders CLIP (Radford et al.,
2021) is a multi-modal model that efficiently pro-
cesses textual and visual data. Pre-trained using a
contrastive learning framework on a large dataset of
text-image pairs, CLIP maps textual and visual em-
beddings into a common feature space, capturing
semantic relationships between texts and images.
In our research, we employ the text encoder ψt and
image encoder ψv pre-trained by CLIP to extract
embeddings of dialogue contexts and images. We
then assess the alignment between these embed-
dings by calculating their cosine similarity. Our
optimization objective is to enhance the model’s
performance in cross-modal retrieval task, specifi-
cally dialogue-to-image retrieval, by maximizing
the similarity of correctly matched text-image pairs
while minimizing the similarity of mismatched
pairs.

4 Methodology

To address the challenges of conversational under-
standing and cross-modal matching in dialogue-
to-image retrieval task, we propose a systematic
framework VCU, as illustrated in Figure 2. The
framework mainly consists of three main compo-
nents: first, employing LLMs for conversational
extraction in Section 4.1; second, using object-list
texts to enhance visual embeddings in Section 4.2;
and finally, balancing matching by building an aux-
iliary query text collection in Section 4.3. Further-
more, we detail our learning objectives in Section
4.4.

4.1 LLM-Driven Conversational Extraction

Dialogue history is typically lengthy and contains
considerable redundant information, such as greet-
ings, inquiries, etc. These redundant contents are
often irrelevant to the image, so directly using the
entire dialogue history as query text can easily lead
to biases. Recent studies on large language models
(LLMs), such as RAG (Lewis et al., 2020) and CoT
(Wei et al., 2022), suggest that providing specific
"hints" to input queries can guide LLMs to generate
higher-quality content. Inspired by these findings,
we propose a LLM-driven two-step conversational
content extraction process to better understand the
dialogue and refine the information relevant to re-
trieved image.

Specifically, given the dialogue history H , the
first step involves using the LLM to directly select
keywords k related to the image to be shared, rather
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Figure 2: An overview of our VCU framework. A) Given the dialogue context, VCU employs the LLM to extract
a keyword-format description of the image in step 1. In step 2, these keywords serve as input hints to generate a
sentence-format visual description. Both descriptions are encoded to form dialogue context representation t. B) We
enrich the image representation with object-list texts. By computing the similarity scores between token-level object
text and patch-level image embeddings, we derive the importance weights for each token. These weights are merged
with the original word embeddings o and the global image embeddings to obtain enhanced image representation v.
C) VCU constructs an auxiliary query text collection from the dataset to balance the matching process. The final
retrieval score is obtained by summing the cross-modal score rcross and the intra-modal score rintra.

than generating new ones. In the second step, the
keywords selected above serve as specific "hints"
for input to generate descriptive text s about the
image in the form of sentence:

k = LLM([H]), (1)

s = LLM([H, k]). (2)

We believe that sentence-form texts contain more
information than keywords alone, and generating
sentences based on keywords can effectively guide
the sentence-generation process. Ultimately, both
forms of text are processed through the text encoder
ψt to obtain corresponding embedding representa-
tions. We add them as the final conversational
representation for subsequent retrieval task:

k = ψt(k), s = ψt(s), (3)

t = k+ s, (4)

where t represents the representation of the dia-
logue history, which is obtained by adding the rep-

resentations of keyword k and sentence s. More
details on LLM generation are provided in the Ap-
pendix A.1.

4.2 Object-Enriched Visual Embedding

During the description generation process, the
shared images are invisible to the LLMs, so the
quality of generated descriptions depends on dia-
logue history. In addition, dialogue history may not
include statements that directly describe the details
of images. These factors suggest that additional
noises may be introduced during the generation
process, resulting in a significant divergence be-
tween the dialogue context and the ground truth
image, thereby affecting matching performance.
To address this, we leverage resources on the im-
age side, specifically utilizing object-list texts as-
sociated with images to enhance the visual repre-
sentation. By emphasizing salient objects within
the image and enhancing the image representation,
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we aim to reduce the gap between the visual and
textual representations.

To obtain more precise text-to-image saliency,
we modify CLIP’s basic encoders. For each pair of
image and its corresponding object list text {v, o}
in the image database, we first using an adapted
text encoder ψ′

t to obtain token-level embeddings
OM×D = {w1 ,w2 , . . .,wM} of the object list
text o as queries. For the image v, we perform
patchify and flatten operations, add an additional
classification token [CLS] and position embed-
dings, and then process them through the Trans-
former Encoder to obtain patch-level image embed-
dings PN×D = {p1 ,p2 , . . .,pN}, which serve as
keys. By calculating the cosine similarity between
the queries and keys, we have a similarity score
matrix WM×N , computed as

W = Softmax(OPT ) = [s1,1 , . . . , sM,N ], (5)

sm,n =
exp(ϕ(wm ,pn))∑N
k=1 exp(ϕ(w

k
,pn))

, (6)

where m ∈ M,n ∈ N and each column of
WM×N represents the normalized relevance scores
between a particular patch and various tokens. ϕ(·)
denotes the cosine similarity function.

The saliency weight wtoken of each token is cal-
culated as the mean of its relevance scores with
all patches. Finally, we compute the dot product
between the obtained token-level weights and the
original token embeddings OM×D and integrate
the global image embeddings pcls to derive the
final enhanced visual representation v:

v = w
token

·O+ p
cls
, (7)

w
token

= [w
token

(1), . . . , w
token

(M)], (8)

w
token

(i) =
1

N

N∑

j=1

si,j . (9)

4.3 Text-Assisted Similarity Adjustment
Although CLIP (Radford et al., 2021) is commonly
used for cross-modal zero-shot learning, previous
research (Wang et al., 2024) has found that the
performance in text-to-image retrieval is affected
by imbalances in similarity scores, leading to bias.
Considering that there may be a significant gap be-
tween the predicted description texts and the actual
image descriptions, we propose a text-assisted sim-
ilarity adjustment method for dialogue-to-image
retrieval to mitigate bias in dialogue understanding
by balancing the matching process.

Specifically, when using conversational text t
for image retrieval, we construct a set of text de-
scriptions about the candidate images within the
image database D = {vi, oi}Ni=1, together with
t, forming an auxiliary query collection S =
{t1 , . . . , tL}(L ≤ N). Details of construction are
provided in Section 5.4.2. We then calculate the
similarity scores between each candidate image v

i

and each query text tj in the collection, normalizing
these scores to balance the similarity score ranges
between each image and different texts. Finally, we
take the scores of candidate images and t, which
is adjusted by the query text set, as cross-modal
scores rcross:

rcross(t,vi
) =

exp(ϕ(t
j
,v

i
))

∑L
k=1 exp(ϕ(t

k
,v

i
))
. (10)

During the matching process, these auxiliary
texts offer diverse descriptions and perspectives,
reducing the bias that may arise from a single text
description (i.e., t), thereby making the similar-
ity scores more representative. Consequently, if a
candidate image obtains relatively high similarity
scores with t across multiple different descriptive
texts, the match between the image and t is more
probable to be accurate. In addition, we introduce
intra-modal scores rintra between conversational
text t and image object texts in the same way, and
the sum of these two scores is used as the final
retrieval score r̂:

rintra(t,oi
) =

exp(ϕ(t
j
,o

i
))

∑L
k=1 exp(ϕ(t

k
,o

i
))
, (11)

r̂ = rcross(t,vi
) + rintra(t,oi

). (12)

4.4 Learning Objectives

During the training phase, we finetune CLIP us-
ing the train set to optimize the embedding space.
To ensure stable model training and retain the pre-
trained model’s image features, we freeze the pa-
rameters of CLIP’s image encoder ψv and only
adjust the parameters of the text encoder ψt. The
text encoder is trained using a contrastive learn-
ing strategy and optimized with the widely-used
symmetric cross-entropy loss function. Given a
batch size of B, each training set triplet denotes
{t, v, o}, where t, v, and o respectively represent
the dialogue context representation, the enhanced
image representation, and the object-list text repre-
sentation. The current triplet is treated as positive
sample, while the remaining B − 1 triplets serve
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as negative samples. Our optimization objective is
to maximize the similarity between the conversa-
tional embeddings and both the image and object-
list text embeddings within the positive samples,
while minimizing the similarity for the negative
samples. The overall loss function takes into ac-
count bidirectional optimization:

Lt2v = − 1

B

∑

k∈B
log

exp(ϕ(t
k
,v

k
)/τ)∑

j∈B
exp(ϕ(t

k
,v

j
)/τ)

, (13)

Lv2t = − 1

B

∑

k∈B
log

exp(ϕ(t
k
,v

k
)/τ)∑

j∈B
exp(ϕ(t

j
,v

k
)/τ)

, (14)

L
total

=
1

4
(Lt2v + Lt2v + Lt2o + Lo2t), (15)

where the loss functions of Lt2o and Lo2t are
obtained by replacing image embedding v with
object-list embedding o in Eq. 13 and Eq. 14.

5 Experiments

5.1 Experimental Setup
Dataset. We conduct experiments on two pub-
lic datasets: PhotoChat (Zang et al., 2021) and
DialogCC (Lee et al., 2023). PhotoChat is an
open-domain multi-modal dialogue dataset manu-
ally constructed via a crowd-sourcing platform, and
it is the first dataset to propose the image-sharing
task. Each dialogue in PhotoChat includes one
image shared, accompanied by a text describing
the objects present in the image. DialogCC, on
the other hand, is a high-quality multimodal di-
alogue dataset constructed through an automatic
pipeline. Reflecting real-world scenarios and fea-
turing diverse images, each dialogue in DialogCC
comprises multiple image-sharing turns, with each
turn involving several images. Each image is ac-
companied by a caption describing the objects. To
maintain the complexity of dialogue history, we
set all utterances preceding the final image-sharing
turn as the dialogue history and designate the first
image in the list as the ground truth. Detailed statis-
tics are provided in Appendix A.2.

Baselines. We compare VCU with several robust
baseline models, including: VSE++ (Faghri et al.,
2018), a cross-modal retrieval method that opti-
mizes learning by leveraging hard negatives; DE*
(Zang et al., 2021), a dual-encoder model that sep-
arately encodes textual and visual content; PaCE
(Li et al., 2023b), a pre-training framework em-
ploying a divide-and-conquer strategy, suitable for

various multimodal dialogue tasks; CLIP (Rad-
ford et al., 2021), a powerful pre-trained vision-
language model that efficiently aligns text and im-
age embeddings in the feature space and demon-
strates exceptional zero-shot capability; and Di-
alCLIP (Yin et al., 2024), a parameter-efficient
prompt-tuning method designed specifically for
multi-modal response retrieval tasks. In particular,
we believe that conversational utterances closer to
the image-sharing action are likely to be more rel-
evant to the retrieved image. Consequently, when
building the above CLIP baseline model, we opt to
truncate the latter part of dialogue history exceed-
ing the token limit of the text encoder, rather than
the initial part. Similar to VCU, we consider the
relationships between dialogue texts and images as
well as between dialogue texts and object-list texts.
We employ dot product to measure the similarity
between embeddings.

Implementation Details. In our experiments, we
primarily follow the dual-stream architecture based
on CLIP, utilizing the pre-trained CLIP ViT-B/32.
To ensure stability during model training, we freeze
the parameters of the CLIP visual encoder and only
finetune the text encoder. The model is trained on
a single NVIDIA GeForce RTX 3090 GPU with
the random seed fixed at 42 and a batch size of 56.
We conduct one epoch of training on the train set
and subsequently test on the test set. The Adam
optimizer is employed with an initial learning rate
of 1e-5. For the LLM in Section 1, we use Llama-3-
8B-Instruct2 and GPT-3.5-Turbo3 for comparison.
During the generation phase, we set the max-tokens
to 80 while keeping other parameters at their de-
fault settings to ensure correct formatting and in-
ference capabilities. Details of running time and
memory consumption are provided in Appendix
A.5.

Evaluation Metrics. We evaluate the models on
the image retrieval aspect. Following previous
works (Zang et al., 2021; Li et al., 2023b; Yin et al.,
2024), we still employ Recall@K (R@K) as the
evaluation metric to calculate the proportion of cor-
rectly retrieved images within the top K results.
In particular, we select R@1, R@5, and R@10
as metrics, and their cumulative sum, denoted as
R@Sum, to provide a comprehensive assessment
of the models’ visual retrieval performance.

2https://github.com/meta-llama/llama3
3https://openai.com
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Methods Training PhotoChat DialogCC
R@1 R@5 R@10 R@Sum R@1 R@5 R@10 R@Sum

VSE++ Required 10.2 25.4 34.2 69.8 - - - -
DE* Required 9.0 26.4 35.7 71.1 - - - -
PaCE Required 15.2 36.7 49.6 101.5 - - - -

CLIP
Free 20.2 37.3 45.7 103.2 4.1 12.3 18.4 34.8

Required 27.0 50.0 60.2 137.2 12.8 34.2 47.2 94.2
DialCLIP Required 19.5 44.0 55.8 119.3 - - - -

VCU(Llama)
Free 35.6 57.6 65.9 159.1 12.6 32.2 43.2 88.0

Required 40.2 62.9 71.1 174.2 14.3 36.6 49.1 100.0

VCU(GPT)
Free 37.6 58.8 67.1 163.5 11.0 29.2 39.7 79.9

Required 42.8 64.0 73.4 180.2 13.5 35.0 46.1 94.6

Table 1: Main results of dialog-to-image retrieval on PhotoChat and DialogCC. Bold denotes the best result, and
underline is the second-best result. “-”: result is not available.

5.2 Main Results

In terms of dialog-to-image retrieval performance,
we compare the proposed VCU with baseline meth-
ods on two datasets, with the main results summa-
rized in Table 1. Overall, it is evident that our VCU
significantly outperforms previous methods on all
metrics. This demonstrates that our framework ef-
fectively captures critical visual information within
complex dialogues, and improves cross-modal
matching. Additionally, we observe that meth-
ods based on ViT image encoders (PaCE, CLIP,
DialCLIP, and VCU), outperform those based on
ResNet image encoders (VSE++ and DE*). This
superiority can be attributed to ViT’s advantages
in modeling long-range dependencies, handling
large-scale data, and extracting multi-scale features.
Moreover, our VCU, similar to CLIP, supports zero-
shot settings meaning it can achieve performance
superior to baseline methods without extra training.
The model’s performance is also influenced by the
language model (LLM) utilized. As shown in the
last four rows of the table, in the PhotoChat dataset,
the GPT-based VCU outperforms the Llama-based
VCU, whereas in the DialogCC dataset, the reverse
is true. This may be due to our setting about the
DialogCC, which results in longer dialog contexts
compared to PhotoChat. In such cases, GPT’s ro-
bust generative capabilities might produce longer
keyword descriptions than Llama, thereby introduc-
ing irrelevant information, generating inaccurate
sentence-form descriptions, and affecting perfor-
mance. It is worth noting that Llama-based gener-
ation requires additional manual data cleaning, as
it often generates redundant content despite con-
straints in the prompt.

Modules PhotoChat
LCE OVE TSA R@1 R@5 R@10
× × × 20.2 37.3 45.7
� × × 31.4 51.9 60.1
� � × 31.5 53.2 61.4
� × � 37.2 57.5 66.7
� � � 37.6 58.8 67.1

Table 2: Ablation study of three fundamental modules
on PhotoChat under zero-shot GPT setting. Bold de-
notes the best result.

Modules DialogCC
LCE OVE TSA R@1 R@5 R@10
× × × 4.1 12.3 18.4
� × × 8.6 25.0 35.0
� � × 8.5 25.3 35.3
� × � 12.2 31.3 42.0
� � � 12.6 32.2 43.2

Table 3: Ablation study of three fundamental modules
on DialogCC under zero-shot Llama setting.

5.3 Ablation Study

In this section, we conduct the ablation study to
evaluate the effectiveness of the VCU module un-
der the zero-shot setting on the PhotoChat and
DialogCC. The proposed VCU comprises three
fundamental components: LLM-Driven Conversa-
tional Extraction (LCE), Object-Enriched Visual
Embedding (OVE), and Text-Assisted Similarity
Adjustment (TSA). As results shown in Table 2
and 3, both using raw CLIP (Row 1) as the base-
line, we perform ablation experiments on these
components. For the results on PhotoChat in Table
2, the introduction of LCE (Row 2) demonstrates
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Figure 3: Effectiveness of LLM-Driven Extraction.

the capability to effectively extract key information
from complex dialogues, showing improvements
over the baseline by 11.2%, 14.6%, and 14.4% in
R@1, R@5, and R@10 metrics, respectively. Sub-
sequently, the individual introduction of OVE (Row
3) and TSA (Row 4) also resulted in performance
enhancements to varying degrees, among which
TSA notably improves the metric R@1 by 5.8%.
Furthermore, introducing OVE and TSA together
(Row 5) leads to further performance gains, indi-
cating their synergy in reducing the modality gap
and enhancing cross-modal matching, thereby sig-
nificantly improving VCU’s performance on Pho-
toChat. The ablation results on DialogCC have a
similar trend.

5.4 Further Analysis
We conduct an in-depth analysis of VCU. The fol-
lowing experiments are performed on the test set
of PhotoChat under zero-shot setting.

5.4.1 Effectiveness of LLM-Driven Extraction
The dialogue history is often redundant and lacks
specific image details, leading to modality gap in
image retrieval. Therefore, it’s crucial to effectively
extract visual-related content from the dialogue for
successful retrieval. We conduct extensive compar-
ative experiments to evaluate the effectiveness of
LLM-Driven Conversational Extraction. In these
experiments, we ensured the use of the same LLM,
GPT, and identical metric calculation method, dif-
fering only in generation methods. Used prompts
are shown in Appendix A.1.

The pure CLIP (Raw) is employed as a baseline,
utilizing the entire dialogue history as query text.
The results shown in Figure 3 indicate that extract-
ing keywords directly from the dialogue history
(Keyword-Extract) yields better results than gen-
erating new keywords (Keyword-Generate). Fur-
thermore, generating sentences based on hint key-
words (Sentence-Hints) is more effective than gen-
erating sentences directly (Sentence-Generate),

Strategies Source R@1 R@5 R@10
Random Train 32.9 55.6 64.5
Random Test 36.0 57.0 66.2

Full Test 37.6 58.8 67.1

Table 4: Different strategies for selecting assistive texts
on PhotoChat.
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Figure 4: Comparison of results on PhotoChat under
different settings about the number of texts within aux-
iliary query set.

as the hint keywords effectively guide the direc-
tion of sentence generation. In addition, sentence-
form descriptions outperform keyword-form de-
scriptions, and using both forms together (Mixture)
can achieve the best results. This aligns with the
fact that sentence-form texts inherently contain
more information than keyword-form texts.

5.4.2 Strategies for Selecting Assistive Text

In the Text-Assisted Similarity Adjustment module,
we construct an auxiliary query text collection S.
We further analyze how to select these texts. As
shown in Table 4, we adopt two selection strategies:
random and full. The random strategy involves ran-
domly selecting a certain number of descriptive
texts from the data source and ground truth text to
form the set, while the full strategy uses all fixed
number of descriptive texts within the test set. It is
evident that regardless of whether the data source
is from test set or train set, the full strategy signifi-
cantly outperforms the random strategy, where the
random quantity is half of number of images in the
image database. Furthermore, we explore the im-
pact of different numbers of query texts on retrieval
performance under the random strategy in Figure 4.
Specifically, as the number of texts in the auxiliary
query collection increases, the balance matching
effect improves. This is because more high-quality
descriptions better differentiate the images. When
candidate images match more suitable text in the
auxiliary query collection than the current ground
truth text, the influence on the target image nat-
urally decreases, thereby improving the retrieval
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performance of the ground truth text to the target
image.

6 Conclusion

In this work, we proposed the VCU framework to
enhance the understanding of conversational con-
text and improve cross-modal matching in dialogue-
to-image retrieval task. Based on the dialogue his-
tory, our approach leverages the LLMs for two-step
extraction, enhances visual representation through
object-list texts, and constructs auxiliary query col-
lections to balance the matching. These effectively
bridge the gap between dialogue context and vi-
sual content. Experimental results demonstrate
that VCU outperforms baseline methods in image-
sharing accuracy, highlighting the importance of
considering the unique characteristics of dialogue.
Future research could further explore better conver-
sational extraction strategies and the more effective
utilization of image-side information.

Limitations

Our work is subject to the following limitations: (1)
Content generated by LLMs. While our method
effectively extracts conversational information, it
does not perform any cleaning or filtering on the
generated content, nor does it involve supervised
training. This may lead to generated content being
biased towards the dialogue side or mixed with
wrong information, thereby weakening its rele-
vance to image side. (2) Dependence on data.
The proposed image enhancement method relies on
datasets that include image captions or object-list
descriptions. This imposes certain pre-processing
requirements on the datasets, involving the use of
techniques such as object detection or caption gen-
eration. (3) Analysis of dialogue history. We plan
to further dissect the dialogue history content and
analyze sentence structure. By employing more
fine-grained methods to eliminate redundant infor-
mation within the dialogue, we aim to enhance the
accuracy of predicting visual content.
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A Appendix

A.1 Prompts for LLMs
Here, we show the prompts used in the module of
LLM-Driven Conversational Extraction, as shown
in Figure 5. For the two different LLMs, GPT-3.5
and Llama-3, due to their different generation ca-
pabilities, we have made minor adjustment in the
design of prompts to ensure that the generated con-
tent can be presented in a correct and uniform form.
Specifically, when using Llama-3 to generate key-
words based on the dialogue context, an additional
restriction of “Output only keywords, separated by
,” is added.

The prompts utilized in the comparative experi-
ment are presented in Table 5.

A.2 Statistics of Datasets
We conduct a comprehensive analysis of the
datasets used in our experiments. PhotoChat (Zang
et al., 2021) is a public multimodal dialogue dataset,
divided into training, validation, and test sets in a ra-
tio of 10:1:1, containing a total of 10,917 different
images. DialogCC (Lee et al., 2023) aims to ex-
ploit the capabilities of the Large Language Model
(LLM) and Vision Language Model (VLM) to au-
tomatically construct a high-quality multimodal
dialogue dataset, encompassing 83,370 dialogues.
Unlike PhotoChat, where only one image is shared
per dialogue, DialogCC dialogues contain multi-
ple image-sharing turns, with each turn containing
multiple images. We standardize the DialogCC
setting to make it suitable for dialogue-to-image
retrieval tasks by setting all utterances before the
last image-sharing turn as dialogue history and the
first image in the sharing list as ground truth. In
addition, we filter out dialogues containing images
that cannot be accessed and downloaded via Python
scripts based on their URLs. Detailed statistics of
the filtered data are presented in Table 6.

A.3 Additional analysis
A.3.1 Differences Between LLMs for

Extraction
To further investigate the specific impact of dif-
ferent LLMs on the LLM-Driven Conversational
Extraction module in Section 4.1, we conduct ad-
ditional experimental explorations on this module
independently.

As illustrated in Figure 6 and Figure 7, the qual-
ity of the descriptions they generate also varies.
In particular, GPT-3.5 always shows an advantage
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Category Description Prompt
Keyword-Generate Directly predict and generate key-

words related to the image from
the dialogue history

Please read the following dia-
logue context: [context]. Based
on the dialogue context, please
use some short keywords to de-
scribe the objects or events that
may appear in the photograph
shared by speaker A. Answers:

Sentence-Generate Generate a single descriptive sen-
tence about the image using the
LLM

Please read the following dia-
logue context: [context]. Based
on the dialogue context, please
use one sentence to describe the
objects or events that may ap-
pear in the photograph shared by
speaker A. Answers:

Table 5: Prompts utilized in the comparative experiment for Section 4.1.

Dataset Split Raw Images Filtered Images Raw Dials Filtered Dials

PhotoChat
train 8,917 8,878 10,286 10,275
valid 1,000 998 1,000 998
test 1,000 1,000 1,000 1,000

DialogCC
train 30,253 26,636 68,402 60,480
valid 4,875 4,508 7,644 6,869
test 4,809 4,571 7,324 6,993

Table 6: Detailed statistics of PhotoChat and DialogCC after filtering unavailable images and corresponding
dialogues.

over Llama-3 in terms of description generation
on PhotoChat, regardless of the generation method
used. On the DialogCC dataset, however, the sit-
uation is exactly the opposite, with Llama-3 per-
forming better. This difference may be due to the
complexity and length of the dialogue history in
DialogCC. Since GPT-3.5 has better generation
capabilities, it may be able to extract more key-
words, but it may also introduce more wrong infor-
mation, which in turn affects its performance on
this dataset.

A.3.2 Impact of Intra-Modal Score

In the process of calculating retrieval scores, in
addition to utilizing the basic cross-modal scores
rcross between dialogue text and candidate images,
we also incorporate intra-modal scores rintra be-
tween dialogue text and object-list texts. We assess
the impact of the intra-modal scores through abla-
tion studies on PhotoChat and DialogCC datasets.
The results presented in Table 7 demonstrate that
the inclusion of intra-modal scores significantly en-
hances recall performance, leading to substantial

improvements.

A.4 Case Study

In Figures 8 and 9, we conduct a case study to
compare the image retrieval performance of our
proposed VCU with the baseline CLIP model.

Specifically, the first example in Figure 8 fo-
cuses on the zero-shot experimental setting on the
PhotoChat test set, where VCU uses GPT-3.5 as
the LLM. The experimental results show that our
model effectively exploits the robustness of the
LLM to accurately extract keywords related to
the image content from the conversational context
and generate accurate image sentence descriptions
based on these keywords. Finally, the ground truth
image is successfully retrieved using the text de-
scription as a query, while the CLIP model fails
to achieve successful retrieval. Further in-depth
analysis shows that our model not only captures
the keyword “cake”, but also captures the keyword
“servant” very well, so that the retrieved images are
more related to the person. In contrast, the images
retrieved by the CLIP model are only related to
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Step One:

Prompt

 (GPT-3.5) Please read the following dialogue context: [Context]. 
 Based on the dialogue context, please use  some short keywords to describe the objects
 or events that may appear in the photograph shared by speaker A. You MUST select the 
 keywords in the given dialogue context, NOT generate a new keyword. Answers:

 (Llama-3) Please read the following dialogue context: [Context]. 
 Based on the dialogue context, please use  some short keywords to describe the objects 
 or events that may appear in the photograph shared by speaker A. You MUST select the 
 keywords in the given dialogue context, NOT generate a new keyword. 
 Output only keywords, separated by ','. Answers:

Answer
[Keywords]

Step Two:

 (GPT-3.5 & Llama-3) Please read the following dialogue context: [Context]. 
 Based on the dialogue context, please use one sentence to describe the objects or events 
 that may appear in the photograph shared by speaker A. 
 Here are some keywords  as hints: [Keywords]. Answers:

Prompt

Answer
[Sentence]

Figure 5: Used prompts for GPT-3.5 and Llama-3.

Setting PhotoChat DialogCC
R@1 R@5 R@10 R@Sum R@1 R@5 R@10 R@Sum

w/o rintra 36.9 57.9 67.7 162.5 11.9 30.8 41.5 84.2
w/ rintra 37.6 58.8 67.1 163.5 12.6 32.2 43.2 88.0

Table 7: Comparison of zero-shot results with/without intra-modal score rintra. Results on PhotoChat use GPT-3.5
as LLM, while those on DialogCC employ Llama-3.
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Figure 6: Differences in extraction between Llama-3
and GPT-3.5 on PhotoChat.

“cake”.

The second case in Figure 9 examines the perfor-
mance of the models on the DialogCC test set, also
under the zero-shot setting, but VCU uses Llama-
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Figure 7: Differences in extraction between Llama-3
and GPT-3.5 on DialogCC.

3 as the LLM. Similarly, the experimental results
show that VCU shows a higher concentration in
retrieving image content, mainly focusing on house
images related to “balcony”. The image content

7941



Context

Top-5 Retrieved Images

CLIP

VCU

The photograph shared by speaker A likely shows a servant 
holding a plate fully covered with cake pieces.

Sentence-format
Description

servant, cake, plat, cake piecesKeyword-format
Description

   A: hii 
   B: hi, you see the photo? 
   A: you can see image 
   B: ok what type of photo? 
   A: yes here the servant serve the cake 
   B: wow..
   A: he hold one plat fully covered cake pieces 
   B: i like the cake very much 
   A: me also 
   B: do you like the cake? ok super 
   A: yeah i like a lot 
   A: (share a photo)

Figure 8: An example of results on PhotoChat dataset
about image retrieval performance between VCU (used
GPT-3.5) and CLIP.

retrieved by the CLIP model is quite different, in-
cluding images related to “beach” and “family”.
Although both models successfully retrieved the
ground truth image within the top 5 images, VCU
retrieved a higher ranking, which will have a posi-
tive impact on the improvement of other indicators
such as “Recall@1”.

In summary, through these two case studies, we
can clearly see that our proposed VCU shows a sig-
nificant advantage in image retrieval performance
compared to the baseline CLIP model.

Dataset GPT-3.5 Llama-3
KEY SEN KEY SEN

PhotoChat 2.22 2.46 0.66 0.90
DialogCC 3.34 4.45 0.66 1.00

Table 8: Comparison of the time required to generate
examples in PhotoChat and DialogCC using GPT-3.5
and Llama-3, measured in seconds. KEY and SEN
represent the Keyword-format and Sentence-format de-
scription generation stages respectively.

A.5 Running Time and Memory
Consumption

In this study, we sequentially executed the genera-
tion of Llama-3-8B-Instruct and the CLIP training
phase on a single NVIDIA RTX 3090, while we
made API calls to utilize GPT-3.5 for generation.
We provide detailed generation time in Table 8. On
the PhotoChat standard test set (1,000 samples), the

Context

Top-5 Retrieved Images

CLIP

VCU

The photograph shared by Lauretta may show the stunning view 
from the balcony of the beachfront condo at Miramar Beach in 
Florida, likely featuring the Gulf of Mexico or the surrounding 
coastal landscape.

Sentence-format
Description

Largo, beachfront, condo, balcony, Miramar, Florida, viewKeyword-format
Description

Lauretta:
Mariellen:
Lauretta:

Lauretta:

My family and I are going on vacation in a few weeks.
Oh I love the beach!! Which beach are you going to go to?
We are going to be staying at miramar beach in florida, about an 
hour panama city beach. The view is amazing from our balcony 
and we are so ready! 
(share a photo)

Figure 9: An example of results on DialogCC dataset
about image retrieval performance between VCU (used
Llama-3) and CLIP.

average generation time per sample for GPT-3.5
is 4.68 seconds, and for Llama-3, it is 1.56 sec-
onds. The average time taken over whole test set
for balanced similarity computation is 49 seconds,
consuming 2GB of memory. For the DialogCC
standard test set (6,993 samples), the average gen-
eration time per sample for GPT-3.5 is 7.79 seconds
(the difference from the time reported in PhotoChat
mainly because of the different time period for api
calls and the prompt length), and for Llama-3, it is
1.66 seconds. The balanced similarity computation
costs 4 minutes 14 seconds and 2GB of memory.
Moreover, the average memory consumption for
Llama-3-8B-Instruct during running is 16GB.
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