
ACL 2019

The 57th Annual Meeting of the
Association for Computational Linguistics

Proceedings of System Demonstrations

July 28 - August 2, 2019
Florence, Italy

c©2019 The Association for Computational Linguistics

Order copies of this and other ACL proceedings from:

Association for Computational Linguistics (ACL)
209 N. Eighth Street
Stroudsburg, PA 18360
USA
Tel: +1-570-476-8006
Fax: +1-570-476-0860
acl@aclweb.org

ISBN 978-1-950737-49-9

ii

Preface

Welcome to the proceedings of the system demonstrations session. This volume contains the papers of
the system demonstrations presented at the 57th Annual Meeting of the Association for Computational
Linguistics on July 28th - August 2nd, 2019 in Florence, Italy.

The ACL 2019 demonstrations track invites submissions ranging from early research prototypes to ma-
ture production-ready systems. We received 100 submissions this year, of which 34 were selected for
inclusion in the program (acceptance rate of 34%) after review by three members of the program com-
mittee. We would like to thank the members of the program committee for their timely help in reviewing
the submissions. The best demo paper was selected by the demo chairs based on the feedback received
by reviewers. These are the papers nominated for the best demo paper:

• GLTR: Statistical Detection and Visualization of Generated Text by Sebastian Gehrmann, Hendrik
Strobelt and Alexander Rush

• OpenKiwi: An Open Source Framework for Quality Estimation by Fabio Kepler, Jonay Trenous,
Marcos Treviso, Miguel Vera and André F. T. Martins

• ConvLab: Multi-Domain End-to-End Dialog System Platform by Sungjin Lee, Qi Zhu, Ryuichi
Takanobu, Zheng Zhang, Yaoqin Zhang, Xiang Li, Jinchao Li, Baolin Peng, Xiujun Li, Minlie
Huang and Jianfeng Gao

• Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation by Zhiting Hu, Hao-
ran Shi, Bowen Tan, Wentao Wang, Zichao Yang, Tiancheng Zhao, Junxian He, Lianhui Qin, Di
Wang, Xuezhe Ma, Zhengzhong Liu, Xiaodan Liang, Wanrong Zhu, Devendra Sachan and Eric
Xing

The winner of the best demo paper will be announced at ACL 2019. Lastly, we thank the many authors
that submitted their work to the demonstrations track. Demonstrations papers will be presented during
the three day conference along side the poster sessions.

Best,

Marta R. Costa-jussà and Enrique Alfonseca

ACL 2019 Demonstration Track Chairs

iii

Demo Chairs:

Marta R. Costa-jussà, Technical University of Catalonia
Enrique Alfonseca, Google

Program Committee:

John Arevalo
Laurent Besacier
Eduardo Blanco
Vittorio Castelli
Angel Chang
Hai Leong Chieu
Christos Christodoulopoulos
Stephen Clark
Vincent Claveau
Bonaventura Coppola
Danilo Croce
Marina Danilevsky
Daniël de Kok
Jesse Dodge
Doug Downey
Dimitris Galanis
Marcos Garcia
Pawan Goyal
Dilek Hakkani-Tur
Xianpei Han
Ales Horak
Shajith Ikbal
Douwe Kiela
Mamoru Komachi
Valia Kordoni
Jayant Krishnamurthy
Carolin Lawrence
John Lee
Alessandro Lenci
Nikola Ljubešić
Wei Lu
Suraj Maharjan
Wolfgang Maier
Benjamin Marie
Stella Markantonatou
Pascual Martínez-Gómez
Ivan Vladimir Meza Ruiz
Makoto Miwa
Taesun Moon

v

Alessandro Moschitti
Philippe Muller
Preslav Nakov
Borja Navarro-Colorado
Pierre Nugues
Constantin Orasan
Yannick Parmentier
Stelios Piperidis
Maja Popović
Prokopis Prokopidis
Alessandro Raganato
German Rigau
Satoshi Sekine
Michel Simard
Sunayana Sitaram
Vivek Srikumar
Irina Temnikova
Juan-Manuel Torres-Moreno
Andrea Varga
Ivan Vulić
Huazheng Wang
Rui Wang
Qingyun Wu
Kun Xu
Tae Yano
Hai Zhao
Jun Zhao
Guangyou Zhou
Imed Zitouni

vi

Table of Contents

Sakura: Large-scale Incorrect Example Retrieval System for Learners of Japanese as a Second Language
Mio Arai, Tomonori Kodaira and Mamoru Komachi . 1

SLATE: A Super-Lightweight Annotation Tool for Experts
Jonathan K. Kummerfeld . 7

lingvis.io - A Linguistic Visual Analytics Framework
Mennatallah El-Assady, Wolfgang Jentner, Fabian Sperrle, Rita Sevastjanova, Annette Hautli-

Janisz, Miriam Butt and Daniel Keim . 13

SARAL: A Low-Resource Cross-Lingual Domain-Focused Information Retrieval System for Effective
Rapid Document Triage

Elizabeth Boschee, Joel Barry, Jayadev Billa, Marjorie Freedman, Thamme Gowda, Constan-
tine Lignos, Chester Palen-Michel, Michael Pust, Banriskhem Kayang Khonglah, Srikanth Madikeri,
Jonathan May and Scott Miller .19

Jiuge: A Human-Machine Collaborative Chinese Classical Poetry Generation System
Guo Zhipeng, Xiaoyuan Yi, Maosong Sun, Wenhao Li, Cheng Yang, Jiannan Liang, Huimin Chen,

Yuhui Zhang and Ruoyu Li . 25

Rapid Customization for Event Extraction
Yee Seng Chan, Joshua Fasching, Haoling Qiu and Bonan Min . 31

A Multiscale Visualization of Attention in the Transformer Model
Jesse Vig. .37

PostAc : A Visual Interactive Search, Exploration, and Analysis Platform for PhD Intensive Job Postings
Chenchen Xu, Inger Mewburn, Will J Grant and Hanna Suominen . 43

An Adaptable Task-oriented Dialog System for Stand-alone Embedded Devices
Long Duong, Vu Cong Duy Hoang, Tuyen Quang Pham, Yu-Heng Hong, Vladislavs Dovgalecs,

Guy Bashkansky, Jason Black, Andrew Bleeker, Serge Le Huitouze and Mark Johnson 49

AlpacaTag: An Active Learning-based Crowd Annotation Framework for Sequence Tagging
Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu Lan and Xiang Ren . 59

ConvLab: Multi-Domain End-to-End Dialog System Platform
Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Zheng Zhang, Yaoqin Zhang, Xiang Li, Jinchao Li, Baolin

Peng, Xiujun Li, Minlie Huang and Jianfeng Gao . 65

Demonstration of a Neural Machine Translation System with Online Learning for Translators
Miguel Domingo, Mercedes García-Martínez, Amando Estela Pastor, Laurent Bié, Alexander Helle,

Álvaro Peris, Francisco Casacuberta and Manuel Herranz Pérez . 71

FASTDial: Abstracting Dialogue Policies for Fast Development of Task Oriented Agents
Serra Sinem Tekiroglu, Bernardo Magnini and Marco Guerini . 76

A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks
Álvaro Peris and Francisco Casacuberta . 82

vii

NeuralClassifier: An Open-source Neural Hierarchical Multi-label Text Classification Toolkit
Liqun Liu, Funan Mu, Pengyu Li, Xin Mu, Jing Tang, Xingsheng Ai, Ran Fu, Lifeng Wang and

Xing Zhou . 88

ADVISER: A Dialog System Framework for Education & Research
Daniel Ortega, Dirk Väth, Gianna Weber, Lindsey Vanderlyn, Maximilian Schmidt, Moritz Völkel,

Zorica Karacevic and Ngoc Thang Vu . 94

KCAT: A Knowledge-Constraint Typing Annotation Tool
Sheng Lin, Luye Zheng, Bo Chen, Siliang Tang, Zhigang Chen, Guoping Hu, Yueting Zhuang, Fei

Wu and Xiang Ren . 100

An Environment for Relational Annotation of Political Debates
Andre Blessing, Nico Blokker, Sebastian Haunss, Jonas Kuhn, Gabriella Lapesa and Sebastian Padó

106

GLTR: Statistical Detection and Visualization of Generated Text
Sebastian Gehrmann, Hendrik Strobelt and Alexander Rush .112

OpenKiwi: An Open Source Framework for Quality Estimation
Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel Vera and André F. T. Martins 118

Microsoft Icecaps: An Open-Source Toolkit for Conversation Modeling
Vighnesh Leonardo Shiv, Chris Quirk, Anshuman Suri, Xiang Gao, Khuram Shahid, Nithya Govin-

darajan, Yizhe Zhang, Jianfeng Gao, Michel Galley, Chris Brockett, Tulasi Menon and Bill Dolan . . 124

PerspectroScope: A Window to the World of Diverse Perspectives
Sihao Chen, Daniel Khashabi, Chris Callison-Burch and Dan Roth . 130

HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
Prithviraj Sen, Yunyao Li, Eser Kandogan, Yiwei Yang and Walter Lasecki 136

My Turn To Read: An Interleaved E-book Reading Tool for Developing and Struggling Readers
Nitin Madnani, Beata Beigman Klebanov, Anastassia Loukina, Binod Gyawali, Patrick Lange, John

Sabatini and Michael Flor . 142

GrapAL: Connecting the Dots in Scientific Literature
Christine Betts, Joanna Power and Waleed Ammar . 148

ClaimPortal: Integrated Monitoring, Searching, Checking, and Analytics of Factual Claims on Twitter
Sarthak Majithia, Fatma Arslan, Sumeet Lubal, Damian Jimenez, Priyank Arora, Josue Caraballo

and Chengkai Li . 154

Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang, Zichao Yang, Tiancheng Zhao, Junxian He,

Lianhui Qin, Di Wang, Xuezhe Ma, Zhengzhong Liu, Xiaodan Liang, Wanrong Zhu, Devendra Sachan
and Eric Xing . 160

Parallax: Visualizing and Understanding the Semantics of Embedding Spaces via Algebraic Formulae
Piero Molino, Yang Wang and Jiawei Zhang . 166

Flambé: A Customizable Framework for Machine Learning Experiments
Jeremy Wohlwend, Nicholas Matthews and Ivan Itzcovich . 182

viii

A Modular Tool for Automatic Summarization
Valentin Nyzam and Aurélien Bossard . 190

TARGER: Neural Argument Mining at Your Fingertips
Artem Chernodub, Oleksiy Oliynyk, Philipp Heidenreich, Alexander Bondarenko, Matthias Hagen,

Chris Biemann and Alexander Panchenko. .196

MoNoise: A Multi-lingual and Easy-to-use Lexical Normalization Tool
Rob van der Goot . 202

Level-Up: Learning to Improve Proficiency Level of Essays
Wen-Bin Han, Jhih-Jie Chen, Chingyu Yang and Jason Chang . 208

Learning to Link Grammar and Encyclopedic Information of Assist ESL Learners
Jhih-Jie Chen, Chingyu Yang, Peichen Ho, Ming Chiao Tsai, Chia-Fang Ho, Kai-Wen Tuan, Chung-

Ting Tsai, Wen-Bin Han and Jason Chang . 214

ix

Conference Program

Monday, July 29, 2019

13:50–15:30 Demo Poster Session 1

Sakura: Large-scale Incorrect Example Retrieval System for Learners of Japanese
as a Second Language
Mio Arai, Tomonori Kodaira and Mamoru Komachi

SARAL: A Low-Resource Cross-Lingual Domain-Focused Information Retrieval
System for Effective Rapid Document Triage
Elizabeth Boschee, Joel Barry, Jayadev Billa, Marjorie Freedman, Thamme Gowda,
Constantine Lignos, Chester Palen-Michel, Michael Pust, Banriskhem Kayang
Khonglah, Srikanth Madikeri, Jonathan May and Scott Miller

Rapid Customization for Event Extraction
Yee Seng Chan, Joshua Fasching, Haoling Qiu and Bonan Min

NeuralClassifier: An Open-source Neural Hierarchical Multi-label Text Classifica-
tion Toolkit
Liqun Liu, Funan Mu, Pengyu Li, Xin Mu, Jing Tang, Xingsheng Ai, Ran Fu, Lifeng
Wang and Xing Zhou

GLTR: Statistical Detection and Visualization of Generated Text
Sebastian Gehrmann, Hendrik Strobelt and Alexander Rush

ClaimPortal: Integrated Monitoring, Searching, Checking, and Analytics of Factual
Claims on Twitter
Sarthak Majithia, Fatma Arslan, Sumeet Lubal, Damian Jimenez, Priyank Arora,
Josue Caraballo and Chengkai Li

Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
Zhiting Hu, Haoran Shi, Bowen Tan, Wentao Wang, Zichao Yang, Tiancheng Zhao,
Junxian He, Lianhui Qin, Di Wang, Xuezhe Ma, Zhengzhong Liu, Xiaodan Liang,
Wanrong Zhu, Devendra Sachan and Eric Xing

A Modular Tool for Automatic Summarization
Valentin Nyzam and Aurélien Bossard

TARGER: Neural Argument Mining at Your Fingertips
Artem Chernodub, Oleksiy Oliynyk, Philipp Heidenreich, Alexander Bondarenko,
Matthias Hagen, Chris Biemann and Alexander Panchenko

xi

Tuesday, July 30, 2019

13:30–15:10 Demo Poster Session 2

SLATE: A Super-Lightweight Annotation Tool for Experts
Jonathan K. Kummerfeld

lingvis.io - A Linguistic Visual Analytics Framework
Mennatallah El-Assady, Wolfgang Jentner, Fabian Sperrle, Rita Sevastjanova, An-
nette Hautli-Janisz, Miriam Butt and Daniel Keim

Jiuge: A Human-Machine Collaborative Chinese Classical Poetry Generation Sys-
tem
Guo Zhipeng, Xiaoyuan Yi, Maosong Sun, Wenhao Li, Cheng Yang, Jiannan Liang,
Huimin Chen, Yuhui Zhang and Ruoyu Li

PostAc : A Visual Interactive Search, Exploration, and Analysis Platform for PhD
Intensive Job Postings
Chenchen Xu, Inger Mewburn, Will J Grant and Hanna Suominen

AlpacaTag: An Active Learning-based Crowd Annotation Framework for Sequence
Tagging
Bill Yuchen Lin, Dong-Ho Lee, Frank F. Xu, Ouyu Lan and Xiang Ren

KCAT: A Knowledge-Constraint Typing Annotation Tool
Sheng Lin, Luye Zheng, Bo Chen, Siliang Tang, Zhigang Chen, Guoping Hu, Yuet-
ing Zhuang, Fei Wu and Xiang Ren

An Environment for Relational Annotation of Political Debates
Andre Blessing, Nico Blokker, Sebastian Haunss, Jonas Kuhn, Gabriella Lapesa
and Sebastian Padó

PerspectroScope: A Window to the World of Diverse Perspectives
Sihao Chen, Daniel Khashabi, Chris Callison-Burch and Dan Roth

HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-
Loop
Prithviraj Sen, Yunyao Li, Eser Kandogan, Yiwei Yang and Walter Lasecki

My Turn To Read: An Interleaved E-book Reading Tool for Developing and Strug-
gling Readers
Nitin Madnani, Beata Beigman Klebanov, Anastassia Loukina, Binod Gyawali,
Patrick Lange, John Sabatini and Michael Flor

xii

13:30–15:10 Demo Poster Session 2 (Continued)

GrapAL: Connecting the Dots in Scientific Literature
Christine Betts, Joanna Power and Waleed Ammar

Level-Up: Learning to Improve Proficiency Level of Essays
Wen-Bin Han, Jhih-Jie Chen, Chingyu Yang and Jason Chang

Learning to Link Grammar and Encyclopedic Information of Assist ESL Learners
Jhih-Jie Chen, Chingyu Yang, Peichen Ho, Ming Chiao Tsai, Chia-Fang Ho, Kai-
Wen Tuan, Chung-Ting Tsai, Wen-Bin Han and Jason Chang

xiii

Wednesday, July 31, 2019

13:50–15:30 Demo Poster Session 3

A Multiscale Visualization of Attention in the Transformer Model
Jesse Vig

An Adaptable Task-oriented Dialog System for Stand-alone Embedded Devices
Long Duong, Vu Cong Duy Hoang, Tuyen Quang Pham, Yu-Heng Hong, Vladislavs
Dovgalecs, Guy Bashkansky, Jason Black, Andrew Bleeker, Serge Le Huitouze and
Mark Johnson

ConvLab: Multi-Domain End-to-End Dialog System Platform
Sungjin Lee, Qi Zhu, Ryuichi Takanobu, Zheng Zhang, Yaoqin Zhang, Xiang Li,
Jinchao Li, Baolin Peng, Xiujun Li, Minlie Huang and Jianfeng Gao

Demonstration of a Neural Machine Translation System with Online Learning for
Translators
Miguel Domingo, Mercedes García-Martínez, Amando Estela Pastor, Laurent Bié,
Alexander Helle, Álvaro Peris, Francisco Casacuberta and Manuel Herranz Pérez

FASTDial: Abstracting Dialogue Policies for Fast Development of Task Oriented
Agents
Serra Sinem Tekiroglu, Bernardo Magnini and Marco Guerini

A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks
Álvaro Peris and Francisco Casacuberta

ADVISER: A Dialog System Framework for Education & Research
Daniel Ortega, Dirk Väth, Gianna Weber, Lindsey Vanderlyn, Maximilian Schmidt,
Moritz Völkel, Zorica Karacevic and Ngoc Thang Vu

OpenKiwi: An Open Source Framework for Quality Estimation
Fabio Kepler, Jonay Trénous, Marcos Treviso, Miguel Vera and André F. T. Martins

Microsoft Icecaps: An Open-Source Toolkit for Conversation Modeling
Vighnesh Leonardo Shiv, Chris Quirk, Anshuman Suri, Xiang Gao, Khuram Shahid,
Nithya Govindarajan, Yizhe Zhang, Jianfeng Gao, Michel Galley, Chris Brockett,
Tulasi Menon and Bill Dolan

Parallax: Visualizing and Understanding the Semantics of Embedding Spaces via
Algebraic Formulae
Piero Molino, Yang Wang and Jiawei Zhang

MoNoise: A Multi-lingual and Easy-to-use Lexical Normalization Tool
Rob van der Goot

Flambé: A Customizable Framework for Machine Learning Experiments
Jeremy Wohlwend, Nicholas Matthews and Ivan Itzcovich

xiv

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 1–6
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Sakura: Large-scale Incorrect Example Retrieval System
for Learners of Japanese as a Second Language

Mio Arai Tomonori Kodaira
Tokyo Metropolitan University

Hino City, Tokyo, Japan
arai-mio@ed.tmu.ac.jp, kodaira.tomonori@gmail.com,

komachi@tmu.ac.jp

Mamoru Komachi

Abstract

This study develops an incorrect example re-
trieval system, called Sakura, that uses a large-
scale Lang-8 dataset for Japanese language
learners. Existing example retrieval systems
either exclude grammatically incorrect exam-
ples or present only a few examples. If a re-
trieval system has a wide coverage of incor-
rect examples along with their correct coun-
terparts, learners can revise their composition
themselves. Considering the usability of re-
trieving incorrect examples, our proposed sys-
tem uses a large-scale corpus to expand the
coverage of incorrect examples and present
correct as well as incorrect expressions. Intrin-
sic and extrinsic evaluations indicate that our
system is more useful than existing systems.

1 Introduction

A standard method that supports second language
learning effort is the use of examples. Example re-
trieval systems such as Rakhilina et al. (2016) and
Kilgarriff et al. (2004) particularly check for the
appropriate use of words in the context in which
they are written. However, in such a system, if
the query word is incorrect, finding appropriate
examples is impossible using ordinary search en-
gines such as Google. Even if learners have access
to an incorrect example retrieval system, such as
Kamata and Yamauchi (1999) and Nishina et al.
(2014), they are often unable to rewrite a com-
position without correct versions of the incorrect
examples. Furthermore, existing example retrieval
systems only provide a small number of examples;
hence, learners cannot acquire sufficient informa-
tion when they search. These systems are primar-
ily developed for use by Japanese teachers; there-
fore, they are not as helpful for learners without a
strong background in Japanese.

Another difficulty in learning Japanese as a
second language is to learn the use of parti-

cles. Particles in Japanese indicate grammat-
ical relations between verbs and nouns. For
example, the sentence, “日本語を勉強する。”,
which means “I study Japanese.” includes an
accusative case marker “を”, which introduces
the direct object of the verb. However, in
this case, Japanese learners often make mistakes,
such as “日本語が勉強する。”, which means
“Japanese language studies.” Thus, the appropri-
ate use of particles is not obvious for non-native
speakers of Japanese. Particle errors and word
choice are the most common Japanese grammat-
ical errors (Oyama et al., 2013), both of which
require a sufficient number of correct and incor-
rect examples to understand the usage in context.
Word n-gram search provides only few or no ex-
amples for a phrase because Japanese is a rela-
tively free language in terms of word order, in
which a syntactically dependent word may appear
in a distant position.

Considering this, our study develops an incor-
rect example retrieval system, called Sakura1, that
uses the large-scale Lang-82 dataset for learners of
Japanese as a second language (JSL) by focusing
on the usability of incorrect example retrieval. The
main contributions of this work are as follows:

• We use a large corpus; hence, the new system
has far more examples than previous systems.

• Our system shows the incorrect sentences and
the corresponding sentence as corrected by
a native speaker. Thus, learners can rectify
their mistakes during composition.

Figure 1 illustrates an example of the search
result obtained using our system Sakura. Sup-
pose a learner wants to view examples for the us-
age of “読みたり (yomitari, meaning “to read”)”,

1http://cl.sd.tmu.ac.jp/sakura/en
2Multi-lingual language learning and language exchange

social networking service. http://lang-8.com/

1

Figure 1: User interface of Sakura.

which is an incorrect or archaic expression. As
shown in E of Figure 1, Sakura displays the incor-
rect examples with “読みたり” written in red and
presents the correct examples using “読んだり
(yondari, which is the correct euphonic form
of “to read”)”. The learner can then identify
that “読みたり” is the incorrect expression, and
“読んだり” is the correct phrase. F in Figure
1 shows the collocation for “読む (yomu, which
is the basic form of “読んだり”)”. The learner
can grasp the common ways of using “読む”,
such as “本を読む (hon wo yomu, which means
“I read a book.”)”.

2 Sakura: Large-scale Incorrect
Example Retrieval System for JSL

This section describes the dataset and user inter-
face of our proposed system, Sakura. Our sys-
tem uses the data explained in Section 2.1 as the
database for example retrieval. The user interface
illustrated in Section 2.2 allows learners to search
for incorrect examples.

2.1 Lang-8 Dataset

In this study, we used the Lang-8 Learner Corpora
created by Mizumoto et al. (2011). The develop-
ers of the dataset used it for Japanese grammatical
error correction, whereas we used it as an example
retrieval database for JSL.

Each learner’s sentence has at least one revised
sentence. A learner’s sentence is combined with
a revised sentence to make a sentence pair. If a
learner’s sentence has more than one revised sen-
tence, each of the revised sentences is paired with
the learner’s sentence as a separate sentence pair.
Sentences with a length exceeding 100 words or
with a Levenshtein distance of more than 7 are
eliminated to remove the noise in the corpus.

We extracted 1.4 million pairs of the learner’s
sentences written by Japanese language learners
and the revised sentences corrected by Japanese
native speakers. The total number of included
Japanese essays was 185,991.

The learner’s sentences and the revised sen-
tences are tokenized and POS-tagged by the mor-
phological analyzer, MeCab (ver. 0.996)3 with
UniDic (ver. 2.2.0). Furthermore, we used the de-
pendency parser CaboCha (ver. 0.69)4 for the re-
vised sentences to extract triples of a noun phrase,
particle, and verb to be used as a co-occurrence.

2.2 User Interface
Figure 1 shows the user interface of Sakura. Its
components are explained below.

A. Query Input the word to be searched for. The
input query is assumed as a word or a phrase (se-

3https://github.com/taku910/mecab
4https://github.com/taku910/cabocha

2

quence of words).

B. Retrieval target Choose the target of re-
trieval as correct or incorrect usage. The default
option is correct usage.

C. Retrieval range Choose the retrieval range
from full sentence or partial matching with re-
vised string. The system searches the entire sen-
tence when a full sentence is selected. When par-
tial matching with the revised string is selected, it
searches the sentences where the query overlaps
the revised string. The default option is full sen-
tence. Learners can verify if their expressions are
correct by selecting this option.

D. Retrieval result Choose the priority of dis-
playing the retrieval result from the co-occurrence
and the full sentence. The default option is co-
occurrence.

E. Full Sentence The retrieval results that match
the query are displayed when the user selects
Full Sentence. The incorrect sentences written by
learners are shown in the upper part, paired with
the correct examples revised by native speakers.
The query is represented in red, and the revised
part is represented in bold.

F. Co-occurrence When the user searches for
the query, including a noun or verb, Sakura dis-
plays up to 10 triplets of the noun, particle, and
verb that co-occur with the query under the Co-
occurrence tab. These triplets are shown with
some example sentences, and the user can view up
to 10 examples by scrolling. If the user searches
for a POS other than a noun or a verb, Sakura
shows the message “Not found” under the Co-
occurrence tab, and retrieval results can be found
under the Full Sentence tab.

3 Experiment

We compared Sakura with the search system for
the “Tagged KY corpus” (hereafter, KYC) 5 in our
evaluation experiment to confirm the effectiveness
of presenting pairs of correct and incorrect exam-
ples. We evaluated our system in two parts, intrin-
sic and extrinsic evaluation.

3.1 Intrinsic Evaluation

We compared the accuracies of two systems,
Sakura and KYC. We searched for the phrases in

5http://jhlee.sakura.ne.jp/kyc/corpus/

each system (KYC and Sakura) and counted the
number of matches for each system that led to cor-
rect expressions to ensure accuracy.

We randomly extracted 55 incorrect phrases
from the learner’s erroneous sentences with cor-
rect phrases from the Lang-8 dataset, which were
not included in the corpus we used for our sys-
tem. We classified the incorrect examples into
seven types: alternating form (A), lexical choice
(L), omission (O), misformation (M), redundant
(R), pronunciation (P), and others (X). Table 1 lists
examples of the test phrases.

Table 2 shows the frequency and accuracy of
each type of error. Although KYC searches for in-
correct and correct examples, it cannot find correct
answers because it has very few examples. Even
if it finds some examples that match the query, it
cannot find the correct examples because it does
not contain revised sentences corresponding to an
incorrect sentence.

The accuracy was high for superficial er-
rors, such as omission and redundant errors, be-
cause learners tend to make similar errors. For
example, an incorrect word “ニュージランド”
requires “ー” to make the correct phrase
“ニュージーランド (New Zealand).” In contrast,
the incorrect word “みんなさん” has an additional
character “ん” when compared with the correct
phrase “みなさん (everybody).” Such error pat-
terns are common among learners of Japanese;
therefore, our system can provide correct answers
to JSL learners.

However, it is difficult for our system to find
the correct answer for Types A (alternating form)
and L (lexical choice) because they have too many
error forms, which makes identifying the appro-
priate answer challenging. For instance, an incor-
rect phrase “本がもらえる (I can get a book)” is
corrected to “本しかもらえない (I can only get
a book)” in the test corpus, but “本がもらえる”
can be paraphrased in many ways, such as
“本をもらう (I get a book).” Thus, it is diffi-
cult for learners to determine the most appropriate
phrase.

3.2 Extrinsic Evaluation

We recruited 10 Japanese non-native speakers ma-
joring in computer science in a graduate school
in Japan to solve 10 Japanese composition ex-
ercises. Participation was voluntary and unpaid.
These prompts are shown in Table 3. We assigned

3

incorrect phrase pronunciation correct phrase pronunciation Sakura Error Type

おねさん onesan おねえさん (sister) oneesan × O
ニュージランド nyu-jirando ニュージーランド (New Zealand) nyu-ji-rando ✓ O
みんなさん min’nasan みなさん (everybody) minasan ✓ R
大体に daitaini 大体 (roughly) daitai × R
疑問をして gimonwoshite 疑問に思って (in doubt) gimon’niomotte × M
驚い odoroi 驚き (surprise) odoroki ✓ M
がもらえる gamoraeru しかもらえない (only get this) shikamoraenai × A
稼ぐ kasegu 稼いだ (earned) kaseida ✓ A
ちさい chisai 少ない (few) sukunai ✓ L
助けられる tasukerareru できる (can) dekiru × L
しましだ shimashida いました (there was) imashita × P
死んちゃう shinchau 死んじゃう (will die) shinjau ✓ P
ハウス hausu 家 (house) ie ✓ X

Table 1: Examples of test results. The column “Incorrect phrase” contains the phrases written by the learner.
These are extracted from the Lang-8 test set. The column “Sakura” shows whether or not Sakura could identify
the correct answer for that phrase.

system type frequency accuracy

Sakura ALL 55 0.44
Alternating Form 19 0.37
Lexical Choice 16 0.38
Omission 8 0.75
Misformation 6 0.40
Redundant 3 0.67
Pronunciation 2 0.50
Others 1 1.00

Table 2: Frequency and accuracy of each type.

No. Prompt

1 The event of your country.
2 The most impressive adventure in your life.
3 Your favorite feature about Japanese.
4 The most favorite movie or book.
5 The food of your country.
6 The pros and cons of English

as a universal language.
7 Japanese supermarket.
8 Major incident in your country’s history.
9 The place you’d like to visit.

10 Your favorite season and the reason.

Table 3: Prompts for extrinsic evaluation.

five learners to solve the odd-numbered exercises
using KYC and the even-numbered exercises us-
ing Sakura. The other five learners solved the
even-numbered exercises using KYC and the odd-
numbered exercises using Sakura. The number of
sentences in each exercise was three to ensure a
fair comparison.

The results were evaluated using the following
method. The composition exercise was scored by
deducting points from an initial 30 points. One
point was deducted per error. The total score of
each system was summed up over five exercises.

Learner KYC Sakura

A 22 25
B 25 28
C 26 27
D 21 24
E 27 27
F 21 26
G 20 20
H 26 24
I 21 27
J 7 22
ave. 21.6 25.0

Table 4: Extrinsic evaluation. The points assigned to
the Japanese compositions of the participants. A higher
point indicates a better score.

Table 4 shows the score for each composition.
The average writing score of the learners using
Sakura was 25.0 and that with KYC was 21.6. In
addition, 7 out of 10 learners received a higher
score when using Sakura than when using KYC.
These results indicate that Sakura is useful as a
learner support system for writing a Japanese com-
position.

KYC had no revised sentences corresponding
to the incorrect sentences; hence, the composition
using KYC tended to include mistakes related to
verb conjugation and lexical choice errors. In con-
trast, Sakura did not display the POS; thus, the
composition using Sakura tended to contain par-
ticle errors.

4 Related Works

Web-based search engines are the most common
search systems that can be used to search for ex-
ample sentences. However, these search engines

4

Name Correct Sent. Incorrect Sent. Revised Sent. Co-occurrence

Learner’s Error Corpora of Japanese Searching Platform ✓ ✓ ✓ ×
Tagged KY corpus ✓ ✓ × ×
Natsume × × × ✓
Sakura ✓ ✓ ✓ ✓

Table 5: Features of example retrieval systems for Japanese language learners. “Correct Sent.” indicates whether
the system can display the correct sentences or not; “Incorrect Sent.” indicates whether the system can display the
incorrect sentences or not; “Revised Sent.” indicates whether the system can display the revised sentence corre-
sponding to the incorrect sentence; and “Co-occurrence” denotes whether the system can provide co-occurrence
examples.

are not intended to retrieve examples for language
learners; therefore, the search engines show nei-
ther example sentences nor the correct version of
a given incorrect sentence to aid learners.

Language learners can use several example re-
trieval systems. The following subsections present
information on some of those systems for learners
of English and Japanese as a second language.

4.1 Example Retrieval System for English as
a Second Language

FLOW (Chen et al., 2012) is a system that shows
some candidates for English words when learners
of English as a Second Language (ESL) write a
sentence in their native language by using para-
phrase candidates with bilingual pivoting. In con-
trast, our system suggests incorrect examples and
their counterparts based on corrections from the
learner corpus.

Another system, called StringNet
(Wible and Tsao, 2010), displays the patterns
in which a query is used, together with their
frequency. The noun and the preposition are
substituted by their parts of speech, instead of the
words themselves, to eliminate data sparseness.
Our system shows collocation patterns for each
query by using parts of speech information and
dependency parsing; however, our system does
not explicitly present the parts of speech because
our dataset is sufficiently large and need not
replace and display the part-of-speech tag.

The ESCORT (Matsubara et al., 2008) system
shows example sentences to learners based on the
grammatical relations of queries. The syntactic
structure of the English sentences is stored in the
database of a raw corpus. ESCORT analyzes the
dependency relations of the input queries and only
displays appropriate examples that match the re-
lations. Our system does not parse the query; in-
stead, it parses the learner corpus to present collo-
cations and overcome data sparseness.

Furthermore, ESL learners can check exam-
ples while writing an English sentence by us-
ing WriteAhead (Yen et al., 2015). This system
provides pattern suggestions based on collocation
and syntax. For example, when the user writes
“We discussed,” the system displays the patterns
for the use of the word “discussed.” In our system,
we also employ collocation patterns; however, we
use a large-scale learner corpus to search for de-
pendency structures.

Sketch Engine (Kilgarriff et al., 2004) displays
grammar constructs associated with words along
with thesaurus information. As previously men-
tioned, our system presents incorrect examples by
using a learner corpus apart from the correct ex-
amples extracted from a raw corpus.

4.2 Example Retrieval System for Japanese
as a Second Language

Recently, various Japanese example retrieval sys-
tems have been proposed. However, in practice,
learners find them difficult to use. Herein, we ex-
plain why these systems are ineffective when used
by JSL learners.

Table 5 lists the features of each system. Our
proposed system, Sakura, employs a large-scale
Japanese JSL corpus for correct and incorrect ex-
ample sentences along with revisions for the in-
correct example.

First, the “Learner’s Error Corpora of Japanese
Searching Platform”6 was constructed by the
Corpus-based Linguistics and Language Educa-
tion at Tokyo University of Foreign Studies. This
system displays sentences that includes incorrect
sentences in the keyword in context (KWIC) for-
mat based on the learner’s information, such as na-
tive language, age, and gender. Japanese language
teachers can identify the features of the learner’s
mistakes by using this system. However, this sys-

6http://ngc2068.tufs.ac.jp/corpus ja/

5

tem is primarily intended for educators rather than
learners. As such, learners might find it confusing
to use. In addition, this system has few examples;
hence, learners cannot acquire sufficient informa-
tion when they search.

Second, the “KY corpus” is a transcribed
speech corpus for JSL learners. “Tagged KY
corpus” (Kamata and Yamauchi, 1999) supersedes
the “KY corpus” with a search engine using POS.
It displays correct and incorrect examples for text
written by learners. However, it oftentimes fails to
provide results even for high-frequency words, be-
cause the number of incorrect examples is small;
therefore, it is difficult for language learners to use
the limited set of examples as a reference.

Third, a Japanese co-occurrence retrieval sys-
tem, called “Natsume” (Nishina et al., 2014) 7,
presents the words and particles that tend to co-
occur with the searched word (e.g., verb and ad-
jective for noun and noun for verb and adjective).
However, this system only shows words, and it
does not indicate concrete examples; therefore, us-
ing this system to write an actual composition is
difficult. In addition, it does not include incorrect
examples.

5 Conclusion

This study constructed an incorrect example re-
trieval system using the Lang-8 Learner Corpora.
Our proposed system, Sakura, displays incorrect
examples along with the revised sentences and ex-
ample sentences. The results of our experiment
indicated that Sakura was useful for JSL learners
when writing Japanese compositions. Each exam-
ple includes incorrect sentences; hence, language
teachers can identify the difficulty faced by learn-
ers and use this information for language educa-
tion.

Although this system was constructed for JSL
learners, it can easily be customized for other lan-
guages. We plan to extend our system to support
ESL learners (Tajiri et al., 2012).

Acknowledgements

We would like to thank the Lang-8 web organizer
for providing the text data for our system.

7https://hinoki-project.org/natsume/

References
Mei-Hua Chen, Shih-Ting Huang, Hung-Ting Hsieh,

Ting-Hui Kao, and Jason S. Chang. 2012. FLOW:
A first-language-oriented writing assistant system.
In Proceedings of the ACL 2012 System Demonstra-
tions, pages 157–162.

Osamu Kamata and Hiroyuki Yamauchi. 1999. KY
corpus version 1.1. Report, Vocaburary Acquisition
Study Group.

Adam Kilgarriff, Pavel Rychly, Pavel Smrž, and David
Tugwell. 2004. The sketch engine. In Proceedings
of EURALEX, pages 105–116.

Shigeki Matsubara, Yoshihide Kato, and Seiji Egawa.
2008. ESCORT: example sentence retrieval system
as support tool for English writing. In Journal of In-
formation Processing and Management, pages 251–
259.

Tomoya Mizumoto, Mamoru Komachi, Masaaki Na-
gata, and Yuji Matsumoto. 2011. Mining revi-
sion log of language learning SNS for automated
Japanese error correction of second language learn-
ers. In Proceedings of IJCNLP, pages 147–155.

Kikuko Nishina, Bor Hodošček, Yutaka Yagi, and
Takeshi Abekawa. 2014. Construction of a learner
corpus for Japanese language learners: Natane and
Nutmeg. Acta Linguistica Asiatica, 4(2):37–51.

Hiromi Oyama, Mamoru Komachi, and Yuji Mastu-
moto. 2013. Towards automatic error type classi-
fication of Japanese language learners’ writing. In
Proceedings of PACLIC, pages 163–172.

Ekaterina Rakhilina, Anastasia Vyrenkova, and Elmira
Mustakimova. 2016. Building a learner corpus for
Russian. In Proceedings of the Joint Workshop on
NLP for Computer Assisted Language Learning and
NLP for Language Acquisition, pages 66–75.

Toshikazu Tajiri, Mamoru Komachi, and Yuji Mat-
sumoto. 2012. Tense and aspect error correction for
ESL learners using global context. In Proceedings
of ACL, pages 198–202.

David Wible and Nai-Lung Tsao. 2010. StringNet as
a computational resource for discovering and inves-
tigating linguistic constructions. In Proceedings of
the NAACL HLT Workshop on Extracting and Using
Constructions in Computational Linguistics, pages
25–31.

Tzu-Hsi Yen, Jian-Cheng Wu, Jim Chang, Joanne Bois-
son, and Jason Chang. 2015. WriteAhead: Mining
grammar patterns in corpora for assisted writing. In
Proceedings of ACL-IJCNLP 2015 System Demon-
strations, pages 139–144.

6

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 7–12
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

SLATE: A Super-Lightweight Annotation Tool for Experts

Jonathan K. Kummerfeld
Computer Science & Engineering

University of Michigan
Ann Arbor, MI, USA

jkummerf@umich.edu

Abstract

Many annotation tools have been developed,
covering a wide variety of tasks and pro-
viding features like user management, pre-
processing, and automatic labeling. However,
all of these tools use Graphical User Inter-
faces, and often require substantial effort to
install and configure. This paper presents a
new annotation tool that is designed to fill the
niche of a lightweight interface for users with
a terminal-based workflow. SLATE supports
annotation at different scales (spans of char-
acters, tokens, and lines, or a document) and
of different types (free text, labels, and links),
with easily customisable keybindings, and uni-
code support. In a user study comparing with
other tools it was consistently the easiest to in-
stall and use. SLATE fills a need not met by
existing systems, and has already been used to
annotate two corpora, one of which involved
over 250 hours of annotation effort.

1 Introduction

Specialised text annotation software improves ef-
ficiency and consistency by constraining user ac-
tions and providing an effective interface. While
current annotation tools vary in the types of an-
notation supported and other features, they are all
built with direct manipulation via a Graphical User
Interface (GUI). This approach has the advantage
that it is easy for users who are not computer ex-
perts, but also shapes the design of tools to be-
come large, complex pieces of software that are
time-consuming to set up and difficult to modify.

We present a lightweight alternative that is not
intended to cover all use-cases, but rather fills
a specific niche: annotation in a terminal-based
workflow. This goal guided the design to differ
from prior systems in several ways. First, we use
a text-based interface that uses almost the entire
screen to display documents. This focuses atten-
tion on the data and means the interface can easily
scale to assist vision-impaired annotators. Second,

we minimise the time cost of installation by imple-
menting the entire system in Python using built-in
libraries. Third, we follow the Unix Tools Philos-
ophy (Raymond, 2003) to write programs that do
one thing well, with flat text formats. In our case,
(1) the tool only does annotation, not tokenisation,
automatic labeling, file management, etc, which
are covered by other tools, and (2) data is stored in
a format that both people and command line tools
like grep can easily read.

SLATE supports annotation of items that are
continuous spans of either characters, tokens,
lines, or documents. For all item types there are
three forms of annotation: labeling items with cat-
egories, writing free-text labels, or linking pairs
of items. Category labels are easily customisable,
with no limit on the total number and the option
to display a legend for reference. All keybindings
are customisable, and additional commands can be
defined with relatively little code. There is also an
adjudication mode in which disagreements are dis-
played and resolved.

To compare with other tools we conducted a
user study in which participants installed tools and
completed a verb tagging task in a 623 word doc-
ument. When using SLATE, participants finished
the task in 13 minutes on average, with more than
half spending 3 minutes or less on setup.

Two research projects have used SLATE for an-
notation: token-level classification of 25,624 to-
kens of cybercriminal web forum data (Portnoff
et al., 2017), and line-level linking of 77,563 mes-
sages of chat data (Kummerfeld et al., 2019).

2 System Description

Rather than specifying a task, such as named en-
tity recognition, SLATE is designed to flexibly sup-
port any annotation that can be formulated as one
of three annotation types: applying categorical la-
bels, writing free text, or linking portions of text.
These can be applied to items that are single docu-

7

(a) Annotation of a cybercriminal forum post. The under-
lined token is the one currently selected. The mapping from
colours to labels and the keys to apply them are indicated by
the legend at the bottom. Two extra labels were added for this
picture, to show how the legend will wrap as needed. The in-
formation about progress, the legend, and the current item
can be hidden if desired.

(b) Adjudication of a linking task annotating reply-to rela-
tions on IRC. The current message in green, an antecedent
that is agreed on is dark blue, one that is not agreed on is
light blue, other messages with disagreements are red, and
the underline indicates a message that is being considered for
linking to the green message (incorrectly in this case).

Figure 1: Screenshots of terminal windows with SLATE running. We have intentionally used two different font
sizes to show how the user interface can scale, which is helpful for visually impaired users.

ments, lines, tokens, or characters, and continuous
spans of lines, tokens, and characters. For exam-
ple, from this perspective, NER is a task with cat-
egorical labels over continuous token spans.

The tool also supports adjudication of annota-
tion disagreements. Multiple sets of annotations
are read in and compared to determine disagree-
ments to be displayed to the user, which can then
be resolved, producing a new annotation file.

In the process of describing the tool, we will
refer to two datasets that it was used to annotate:1

(1) Portnoff et al. (2017) studied cybercriminal
web forums. Experts in computer security and
NLP collaborated to label posts in which the user
is trying to exchange money from one form into
another. For each post, we labeled tokens that ex-
pressed what was being offered, what was being
requested, and the rate. Three annotators labeled a
set of 600 posts containing 25,624 tokens. 200 of
the posts were triple annotated and disagreements
were adjudicated using the tool.

(2) Kummerfeld et al. (2019) developed a new
conversation disentanglement dataset an order
of magnitude larger than all previously released
datasets combined. 77,563 messages were an-
notated with links indicating the message(s) they
were a response to. For 11,100 messages, multi-
ple annotations were collected and adjudicated us-
ing the tool. Annotations took 7 to 11 seconds per

1 No formal user satisfaction surveys were conducted, but
the tool received positive feedback on both projects.

message depending on the complexity of the dis-
cussion, and adjudication took 5 seconds per mes-
sage (lower because many messages did not have a
disagreement, but not extremely low because those
that did were the difficult cases). Overall, annota-
tors spent approximately 240 hours on annotation
and 15 hours on adjudication.
Display The interface is text-based and contained
entirely within a terminal window. By default, the
entire terminal area displays the text being anno-
tated, as shown in Figure 1b. There are also op-
tions to use space to display information about the
current annotations, as shown in Figure 1a.

Colour is used to indicate annotations. For cat-
egorical labels a different colour is used for each
label, and a special colour is used to indicate when
multiple labels have been assigned to the same
item. For linking, one colour is used to indicate
the item being linked, another is used to indicate
what items are currently linked to it, and a third is
used to indicate any item that has a link.

The most frequently needed visual customisa-
tion is changing the colours used to indicate la-
bels when assigning categories. These colours
are specified in a simple text file. More substan-
tial changes, such as a different colour to indi-
cate disagreements, requires changing the code,
but colours for each situation are defined in one
place with intuitive names.
Input All interaction occurs via the keyboard.
Commands are designed to be intuitive, e.g. arrow

8

Annotation Adjud- External Programming User
System Types ication Dependencies Language Interface

SLATE Classify, Link Yes - Python Terminal
brat (Stenetorp et al., 2012) Classify, Link Yes apache Python, Javascript GUI
GATE (Bontcheva et al., 2013) Classify, Link Yes - Java GUI
YEDDA (Yang et al., 2018) Classify - - Python GUI

ANALEC (Landragin et al., 2012) Classify, Link - - Java GUI
Anafora (Chen and Styler, 2013) Classify, Link Yes - Python GUI
CAT (Lenzi et al., 2012) Classify - apache Java GUI
Chooser (Koeva et al., 2008) Classify, Link - - C++, Python, Perl GUI
CorA (Bollmann et al., 2014) Classify - - PHP, JavaScript GUI
Djangology (Apostolova et al., 2010) Classify Yes Django Python GUI
eHost (South et al., 2012) Classify, Link Yes - Java GUI
Glozz (Widlöcher and Mathet, 2012) Classify, Link Yes - Java GUI
GraphAnno (Gast et al., 2015) Classify, Link - - Ruby GUI
Inforex (Marcinczuk et al., 2012) Classify, Link - - JavaScript GUI
Knowtator (Ogren, 2006) Classify, Link Yes Protégé Java GUI
MAE and MAI (Stubbs, 2011) Classify, Link Yes - Java GUI
MMAX2 (Müller and Strube, 2006) Classify, Link - - Java GUI
PALinkA (Orasan, 2003) Classify, Link - - Java GUI
SAWT (Samih et al., 2016) Classify - - Python, PHP GUI
SYNC3 (Petasis, 2012) Classify Yes Ellogon C GUI
Stanford (Lee, 2004) Classify - - Java GUI
UAM (O’Donnell, 2008) Classify Yes - Java GUI
WAT-SL (Kiesel et al., 2017) Classify Yes apache Java GUI
WebAnno (Yimam et al., 2013) Classify, Link Yes - Java GUI
WordFreak (Morton and LaCivita, 2003) Classify, Link Yes - Java GUI

Table 1: A comparison of annotation tools in terms of properties of interest (in some cases tools support extra
types of annotation, e.g. syntax, that we do not consider here).

keys change which item is selected. Keybindings
can be modified to suit user preferences and multi-
key commands can be defined, like the labels in
Figure 1a (e.g. SPACE+a), providing flexibility
and an unlimited set of combinations.

Basic commands cover selecting a span, assign-
ing an annotation, and undoing annotations. Ex-
act string search is included, which was used in
the disentanglement project to search for previ-
ous messages by a given user. Typing a number
before a command will apply the command that
many times. A range of commands exist to toggle
properties of the view, including line numbering,
the legend, showing the label for the selected item,
and progress through a set of files.
Data Items in annotations are represented by tu-
ples of integers and labels are represented as
strings. Tokens are defined by splitting on whites-
pace, and characters are counted with separate
numbering for each token. This makes the annota-
tions easy to read in and interpret.

Externally, annotations are saved in stand-off
files, with one annotation per line. This makes
them easy to process with command line tools, e.g.
using wc to count the number of annotations.
Extension The system is written with a modular
design intended to be easily modifiable. For exam-

ple, at one point in the disentanglement project we
wanted to go back and check messages that started
conversations. This involved adding 21 lines of
code, extending the existing search commands to
jump to the next line that started a conversation.
Internal Architecture The system is written in
2,300 lines of Python, with extensive use of the
standard built-in curses library for input and dis-
play handling. Setting up the tool involves down-
loading and unzipping the code. The tool can then
be run from anywhere, does not require adminis-
trator privileges, and will only make modifications
to the local directory it is being run from.
Dependencies On macOS and all Linux distribu-
tions we are aware of, there is nothing else to in-
stall: Python and the relevant libraries are already
installed. On Windows, Python (either 2 or 3) and
the curses library need to be installed.

3 Related Work

Table 1 presents a comparison of a range of an-
notation tools.2 Note that all prior work has fo-
cused on graphical user interfaces. The top section
shows the tools we consider in our user study, cho-

2 Non-academic tools also focus on GUIs, including open
source tools (e.g. DocAnno, Flat), and commercial tools (e.g.
TagTog, Prodigy, MAT, LightTag, DataTurks).

9

sen because they are widely used (brat and GATE)
or have a similar design motivation (YEDDA).
brat (Stenetorp et al., 2012), is a synchronous
web-based system with a central server that users
connect to using a web browser. The tool sup-
ports annotation of spans of text and relations be-
tween them, either binary relations, equivalence
classes, or n-ary associations. It provides a search
mechanism, automatic validation, tagging with ex-
ternal tools, multi-lingual processing, and a com-
parison mode that places two annotations side-by-
side. The tool has been used to annotate a range
of datasets, particularly for information extraction
from biomedical documents.
GATE (Bontcheva et al., 2013), is both a desk-
top application and a web-based system. It is de-
signed to support the entire lifecycle of a project,
including data preparation, schema creation, an-
notation, adjudication, data storage and use. To
achieve this, it contains a wide array of compo-
nents, covering various annotation types and tools
to define workflows that determine the stages of
annotation of a document. The system has been
used in a range of projects in both academic and
commercial settings, including with users who did
not have a computer science background.
YEDDA (Yang et al., 2018), is a desktop appli-
cation that supports annotation of character spans
with up to 8 categories using a GUI. It is designed
to be lightweight, with no external dependencies,
though it only supports Python 2. It has a built-
in recommendation system that automatically pro-
poses labels based on annotations so far, which
Yang et al. (2018) found decreased named entity
recognition annotation time by 16%. For input,
the tool supports both selection with the mouse
and specifying a sequence of character-level anno-
tations with the keyboard, e.g. 2c3b to assign the
label c to the next two characters and b to the three
after that. The tool also has an analysis component
that produces a LaTeX document comparing a pair
of annotations of a document, or F-scores for all
pairs of annotations. It does not support annota-
tion of links or adjudication of disagreements.

4 User Study

We conducted a user study3 to investigate the ef-
fort required to install and use four tools. For each
tool, participants had 25 minutes to install the tool
and use it to identify verbs in a 623 word news

3 Approved by the Michigan IRB, ID: HUM00155689.

Time (minutes)
Tool Ubuntu macOS

SLATE 10 16
YEDDA 14 14
GATE 21 22
brat - -

Table 2: Average time for users to set up the tool and
identify verbs in a 623 word news article. Only one
participant managed to install and use brat, taking 18
minutes on Ubuntu. The differences between GATE
and either SLATE or YEDDA are significant at the 0.01
level according to a t-test.

article.4 We measured how long they took to in-
stall the tool and to finish the task. After each tool,
participants completed a survey asking about their
experience installing and using the tool.

We set up the study to simulate a real usage
scenario as closely as possible. Participants were
computer science graduate students and all but one
used their own computer. Four participants used
macOS and four used Ubuntu. Every participant
used all four tools. To reduce bias due to fa-
tigue (which could make later tools appear slower)
and familiarity with the news article (which could
make later tools appear faster), the order of tools
varied so that each one occurred 1st, 2nd, 3rd, and
4th once for each operating system.

Table 2 presents the time required to install
each tool and complete the first annotation task.
We combined these two because some participants
read usage instructions while installing the tool,
while others went back and forth during initial an-
notations. SLATE and YEDDA are comparable in
effort, which fits with their common design as sim-
ple tools with minimal dependencies. Participants
had great difficulty with brat, with only two man-
aging to install it, one just as their time finished.

We also had an additional participant try using
the tools in Windows. They were able to install
and use SLATE and GATE, but did not complete
the task on either. GATE had the easiest set up pro-
cess, with a provided installer. SLATE required the
curses package to be installed. They experienced
difficulty with YEDDA because it is not Python
3 compatible, and rewriting the code to make it
compatible led to other issues. brat only supports
Windows via the use of a virtual machine.

4 We also considered having participants do a linking task,
specifying the antecedents of pronouns, but found there was
not enough time (also, linking is not supported by YEDDA).

10

4.1 Feedback Summary
brat Participants got stuck on various issues
during installation and generally commented that
they wanted more information in the documen-
tation. The two most common issues were be-
ing unable to get the system to communicate with
apache, and being unable to load files to annotate.

GATE Participants often had to try more than
one installation method. Six participants com-
mented on lag or missed clicks during annotation,
and six commented that the documentation was
not helpful for the process of installing the tool
and understanding the user interface.

YEDDA All participants found installation easy,
though three commented that it required familiar-
ity with git, and one recommended adding it to
the python package index. Every participant com-
mented that the recommendation mode produced
many false positives, making it inconvenient. Four
commented that the way labels appear during an-
notation shifted the text in a way that made them
lose their place or made it hard to read. All Ubuntu
participants commented that the system scrolled to
the top of the document after each annotation.

SLATE All participants found installation easy,
though one recommended adding it to the python
package index. One participant commented that
they wished they could use their cursor as well,
one suggested adding an explicit indication that
saving was successful, one found the selected span
hard to see, and one was surprised that pressing the
down arrow selected the same position on the next
line in terms of tokens, rather than visually.

Each of these tools has strengths and weak-
nesses, and this study was designed to test the spe-
cific gap our tool was designed to address. For
projects with annotators who are not computer ex-
perts, we expect GUIs, and in particular web in-
terfaces like the one provided by brat, will remain
dominant. However, the results demonstrate that
SLATE effectively fills the gap of an easy to use
and efficient terminal-based tool.

5 Future Development

There are many directions in which we hope to de-
velop SLATE further, by collaborating with other
researchers and the open-source community. The
system is designed to be simple to modify and ex-
tend, with some possible next steps including:

Multi-lingual Support The tool can already dis-
play a range of scripts given Python’s unicode sup-
port, but to properly support annotation would re-
quire modifications. For example, changing the
direction of script writing would involve adjusting
the visual display module, while adding support
for selecting parts of glyphs would require modi-
fying the data representation.
Accessibility For users who require large fonts (or
prefer small ones) the tool is extremely flexible
and convenient. However, the extensive use of
colour could be a problem for colour-blind users.
The colours can be modified by editing a simple
configuration file, or colour could be avoided en-
tirely by modifying the display code to display in-
line labels.
Data Formats Support for additional data for-
mats, such as CoNLL-U, and ISO 24612:2012.
Mouse Input While the motivation for this tool
was to make a text-based interface controlled
by the keyboard, the curses library does process
mouse inputs, making it possible to add support
for the mouse in the future.

6 Conclusion

A wide range of effective annotation tools already
exist, but they all use a GUI and many involve
substantial effort to set up. SLATE is designed for
terminal-users who want a fast, easy to install, and
flexible annotation tool. It supports a range of an-
notation types, and adjudication of disagreements
in annotations. The code is publicly available5 un-
der a permissive open-source license. The tool has
already been used in two research projects, includ-
ing one that involved over 250 hours of annotation.

Acknowledgements

Thank you to Will Radford and the anonymous re-
viewers for helpful suggestions. Also thanks to
the study participants, and to the annotators who
have used the tool. This material is based in part
on work supported by IBM as part of the Sapphire
Project at the University of Michigan, and by ONR
under MURI grant N000140911081. Any opin-
ions, findings, conclusions or recommendations
expressed above are those of the author and do not
necessarily reflect the views of the sponsors.

5http://jkk.name/slate/

11

References
Emilia Apostolova, Sean Neilan, Gary An, Noriko To-

muro, and Steven Lytinen. 2010. Djangology: A
light-weight web-based tool for distributed collabo-
rative text annotation. In Proceedings of LREC.

Marcel Bollmann, Florian Petran, Stefanie Dipper, and
Julia Krasselt. 2014. Cora: A web-based annotation
tool for historical and other non-standard language
data. In Proceedings of the LaTeCH Workshop.

Kalina Bontcheva, Hamish Cunningham, Ian Roberts,
Angus Roberts, Valentin Tablan, Niraj Aswani,
and Genevieve Gorrell. 2013. Gate teamware: a
web-based, collaborative text annotation framework.
Language Resources and Evaluation, 47(4):1007–
1029.

Wei-Te Chen and Will Styler. 2013. Anafora: A web-
based general purpose annotation tool. In Proceed-
ings of NAACL, Demos.

Volker Gast, Lennart Bierkandt, and Christoph Rzym-
ski. 2015. Creating and retrieving tense and aspect
annotations with graphanno, a lightweight tool for
multi-level annotation. In Proceedings of the ISA
Workshop.

ISO 24612:2012. 2012. Language resource man-
agement – Linguistic annotation framework (LAF).
Standard, International Organization for Standard-
ization.

Johannes Kiesel, Henning Wachsmuth, Khalid
Al Khatib, and Benno Stein. 2017. Wat-sl: A
customizable web annotation tool for segment
labeling. In Proceedings of EACL, Demos.

Svetla Koeva, Borislav Rizov, and Svetlozara Leseva.
2008. Chooser: a multi-task annotation tool. In Pro-
ceedings of LREC.

Jonathan K. Kummerfeld, Sai R. Gouravajhala, Joseph
Peper, Vignesh Athreya, Chulaka Gunasekara,
Jatin Ganhotra, Siva Sankalp Patel, Lazaros Poly-
menakos, and Walter S. Lasecki. 2019. A large-
scale corpus for conversation disentanglement. In
Proceedings of ACL.

Frederic Landragin, Thierry Poibeau, and Bernard Vic-
torri. 2012. Analec: a new tool for the dynamic an-
notation of textual data. In Proceedings of LREC.

Miler Lee. 2004. Annotator / stanford manual
annotation tool. http://nlp.stanford.
edu/software/stanford-manual-
annotation-tool-2004-05-16.tar.gz.
Stanford University.

Valentina Bartalesi Lenzi, Giovanni Moretti, and
Rachele Sprugnoli. 2012. Cat: the celct annotation
tool. In Proceedings of LREC.

Michal Marcinczuk, Jan Kocon, and Bartosz Broda.
2012. Inforex – a web-based tool for text corpus
management and semantic annotation. In Proceed-
ings of LREC.

Thomas Morton and Jeremy LaCivita. 2003. Wordf-
reak: An open tool for linguistic annotation. In Pro-
ceedings of NAACL, Demos.

Christoph Müller and Michael Strube. 2006. Multi-
level annotation of linguistic data with MMAX2. In
Corpus Technology and Language Pedagogy: New
Resources, New Tools, New Methods. Peter Lang.

Mick O’Donnell. 2008. Demonstration of the UAM
CorpusTool for text and image annotation. In Pro-
ceedings of ACL, Demos.

Philip V. Ogren. 2006. Knowtator: A protégé plug-in
for annotated corpus construction. In Proceedings
of NAACL, Demos.

Constantin Orasan. 2003. PALinkA: A highly cus-
tomisable tool for discourse annotation. In Proceed-
ings of SIGdial.

Georgios Petasis. 2012. The sync3 collaborative anno-
tation tool. In Proceedings of LREC.

Rebecca S. Portnoff, Sadia Afroz, Greg Durrett,
Jonathan K. Kummerfeld, Taylor Berg-Kirkpatrick,
Damon McCoy, Kirill Levchenko, and Vern Paxson.
2017. Tools for automated analysis of cybercriminal
markets. In Proceedings of WWW.

Eric S. Raymond. 2003. Basics of the Unix Philosophy.
Addison-Wesley Professional.

Younes Samih, Wolfgang Maier, and Laura Kallmeyer.
2016. Sawt: Sequence annotation web tool. In Pro-
ceedings of the Second Workshop on Computational
Approaches to Code Switching.

Brett South, Shuying Shen, Jianwei Leng, Tyler For-
bush, Scott DuVall, and Wendy Chapman. 2012. A
prototype tool set to support machine-assisted anno-
tation. In Proceedings of BioNLP.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for nlp-assisted text
annotation. In Proceedings of EACL, Demos.

Amber Stubbs. 2011. Mae and mai: Lightweight an-
notation and adjudication tools. In Proceedings of
LAW.

Antoine Widlöcher and Yann Mathet. 2012. The glozz
platform: A corpus annotation and mining tool. In
Proceedings of the ACM Symposium on Document
Engineering.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. Yedda: A lightweight collaborative text span
annotation tool. In Proceedings of ACL, Demos.

Seid Muhie Yimam, Iryna Gurevych, Richard
Eckart de Castilho, and Chris Biemann. 2013.
Webanno: A flexible, web-based and visually
supported system for distributed annotations. In
Proceedings of ACL, Demos.

12

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 13–18
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

lingvis.io — A Linguistic Visual Analytics Framework

Mennatallah El-Assady1, Wolfgang Jentner1, Fabian Sperrle1,
Rita Sevastjanova1, Annette Hautli-Janisz2, Miriam Butt2, and Daniel Keim1

1Department of Computer Science, University of Konstanz, Germany
2Department of Linguistics, University of Konstanz, Germany

Abstract

We present a modular framework for the rapid-
prototyping of linguistic, web-based, visual
analytics applications. Our framework gives
developers access to a rich set of machine
learning and natural language processing
steps, through encapsulating them into micro-
services and combining them into a compu-
tational pipeline. This processing pipeline is
auto-configured based on the requirements of
the visualization front-end, making the lin-
guistic processing and visualization design de-
tached, independent development tasks. This
paper describes the constellation and modality
of our framework, which continues to support
the efficient development of various human-
in-the-loop, linguistic visual analytics research
techniques and applications.

1 Introduction

Research at the intersection of computational lin-
guistics, visual analytics, and explainable machine
learning, is a vibrant, interesting field that broad-
ens the horizons of all disciplines involved. Over
the last years, a team of computer scientists, lin-
guists, as well as social scientists from differ-
ent areas, at the University of Konstanz, have
come together to push their disciplinary bound-
aries through collaborative research. This col-
laboration resulted in the development of several
mixed-initiative visual analyitcs approaches, rang-
ing from generating high-level corpus overviews
using Lexical Episode Plots (Gold et al., 2015) to
sophisticated human-in-the-loop topic refinement
techniques (El-Assady et al., 2018b, 2019).

This effort has helped establish the subarea
of Linguistic Visualization (short: LingVis) re-
search (Butt et al., 2019). Within this subarea,
application topics we worked on include content
analysis, e.g., NEREx (El-Assady et al., 2017b);
discourse analysis, e.g., ThreadReconstructor (El-

Assady et al., 2018a); language change, e.g.,
HistoBankVis (Schätzle et al., 2017) or COHA
Vis (Schneider et al., 2017); readability analysis,
e.g., literature fingerprinting (Oelke et al., 2012);
language modeling, e.g., LTMA (El-Assady et al.,
2018c); argumentation analysis, e.g., ConToVi (El-
Assady et al., 2016); explainable machine leran-
ing, e.g., verbalization and active learning (Sev-
astjanova et al., 2018a,b); interactive model re-
finement, e.g., SpecEx (Sperrle et al., 2018);
multi-corpora analysis, e.g., Alignment Vis (Jent-
ner et al., 2017); modeling of speech features, e.g.,
SOMFlow (Sacha et al., 2018).

To make our linguistic visualization techniques
accessible to a wider public, we strive to im-
plement them as web-based applications. How-
ever, this is only possible on a larger scale us-
ing a framework architecture that accommodates
the needs for rapid-prototyping, disguising the in-
volved engineering complexity for application de-
velopers. Hence, we established the lingvis.io
framework as a common platform, facilitating the
share and reuse of implementation components. A
prominent application powered by our framework
is VisArgue (El-Assady et al., 2017a), an approach
for multi-party discourse analysis.

In this paper, we report on our shared frame-
work and infrastructure that drives a multitude
of linguistic visualization projects, as depicted in
Figure 1. The core of our framework is a flexi-
ble pipeline with automatic dependency resolution
that enables application developers to request nat-
ural language processing (NLP) steps for their vi-
sualizations, which, in turn, are auto-configured
based on user-defined parameters. These are cho-
sen in a user interface that is designed to enable
experts and non-experts, alike, to adapt the NLP
processing to their tasks and data. The results
of this processing are closely intertwined with the
interactive visual analytics components, enabling,

13

Figure 1: The lingvis.io framework driving various linguistic visualization projects based on rich NLP pipelines.

for instance, visual debugging for linguists, or in-
sights for domain experts, such as writers, political
scientists, etc. To address the trade-offs between
tailored and expressive interface design, rapid-
prototyping, and processing flexibility, our frame-
work architecture strictly separates and modular-
izes tasks into atomic components that are com-
partmentalized in subdomains (i.e., auto-scaling
cluster environments). Developers work on their
designated feature branches and efficiently test
their prototypes through continuous deployment.

Related Work – Other notable frameworks re-
lated to ours include Stanford CoreNLP1, GATE2

and Weblicht3. Facebook has recently released a
deep-learning based framework for various NLP
tasks, called pytext4. While they provide state-of-
the-art models, they are code-only platforms that
require developers to write processing pipelines
from scratch every time. More general (deep
learning) frameworks, including tensorflow5 and
pytorch6 can also be used for text processing
or to generate rich feature vectors like sentence-
or word-embeddings. KNIME7 and TABLEAU8

are platforms for intuitively creating data science
workflows with reusable components, but are not
tailored to NLP tasks specifically. While we
can communicate with those frameworks through
APIs to enrich our own NLP pipeline, these toolk-
its are solely tailored to linguistic analysis and of-
fer no, or very limited, visualizations possibilities.

1 stanfordnlp.github.io/CoreNLP
2 gate.ac.uk
3 weblicht.sfs.uni-tuebingen.de
4 github.com/facebookresearch/pytext
5 tensorflow.org
6 pytorch.org
7 knime.com
8 tableau.com

2 Auto-Configured Processing Pipeline

Our framework is based on the assumption that
the individual processing steps can and should be
atomic in their nature. Each step holds a well-
defined list of dependencies which the respec-
tive step requires to execute its task successfully.
This allows us to model a processing pipeline for
a given type of data input as an acyclic graph
which can be processed in parallel. For exam-
ple, as shown in Figure 2, to retrieve the result
of a topic model, the visualization requests one
or more models. Based on their dependencies to
other steps, a pipeline is generated (that takes into
account all user-defined parameters). Here, the
topic modeling is based on descriptor vectors ex-
tracted for each document in the corpus, as well as
word embedding results.

Figure 2: Dependency graph for topic model relations.

A successful implementation requires a consis-
tent, flexible, and well-defined data model such
that each step can use its transformation capabili-
ties to semantically enrich the data. We therefore
do not allow any step to modify or delete data but
each step can further add metadata. This section
describes the modeling of processing steps in our
pipeline, as well as the underlying data structure.

2.1 Processing Steps
Our framework allows for progressive steps where
intermediate results can be investigated and fur-

14

ther steered by the user. As shown in Figure 3, in
the user interface (UI), users first upload and se-
lect the data they want to process. Based on their
intended tasks they then select suitable visualiza-
tion components. Internally every visualization
defines a list of atomic processing steps as depen-
dencies that need to run in order to generate the
desired information to visualize. In addition to a
list of dependencies, visualizations define one or
multiple controller endpoints. These serve as com-
munication medium between the processing steps
and the UI, and are characterized by the fact that
they do not further enrich the data and cannot be
defined as dependencies by any other processing
step. This implies that visualization steps termi-
nate the acyclic graph and, thus, the resulting pro-
cessing pipeline.

For the initial processing, a controller in the
streaming-control-layer handles the communica-
tion with every specific processing step and pro-
vides the parameter-configuration interface to the
UI. This enables users to parameterize the pro-
cessing for increasing flexibility. For example, a
POS tagger step can be parameterized with differ-
ent tagger models. Such a tagset does not need to
be static but can depend on a language or be based
on a user’s selection. It is only constrained by the
necessity of having a standardized tag set, as later
steps use these tags to further process the data.

The endpoints in the two control layers sepa-
rate static (default) from streaming controllers. In
the default case, controllers are used to commu-
nicate the results of a completed processing step
to the visualization. Streaming controllers, on the
other hand, intercept a processing step while it is
running to support direct user interactions. Here,
progressive visualizations are shown while the re-
spective processing step is running. The users can,
therefore, directly observe, adapt, and refine the
underlying machine learning models. This enables
the design of tightly-coupled, human-in-the-loop
interfaces for interactive model refinement and ex-
plainable machine learning.

2.2 Data Structure Modeling

We represent a corpus hierarchy as a recursively
stacked data structure consisting of, so-called,
‘document objects’. These are a modular abstrac-
tion of all levels of the hierarchy, including cor-
pora, documents, paragraphs, sentences, etc. The
highest level of our data structure consists of a

Figure 3: Schematic overview of the framework.

collection of document objects that typically rep-
resents all analyzed corpora, whereas the lowest
level are single word tokens. Hence, from an or-
dered list of all corpora, we can descend the data
structure to find a list of documents for each cor-
pus, all the way to sub-sentence structures, multi-
word objects, and finally words consisting of an
ordered list of tokens. This flexible data structure
allows us to model arbitrary complex object hier-
archies, with each object level containing an or-
dered list of the objects on the next level, while to-
kens define the terminal level.

Each processing step in the pipeline has access
to the full data hierarchy. Throughout the process-
ing, steps append additional data elements to the
hierarchy objects to enrich them with computa-
tional results and metadata, making their process-
ing results accessible to other steps downstream.
Hence, through defining the pipeline dependen-
cies, processing steps can request input data that is
provided by its previous steps through defined for-
mats, which ensures atomicity and encapsulation.
This appended data is independent of a step’s so-
phistication, which can range from simple wordlist
lookups to complex deep neural network models.
In the following, we describe the three data for-
mats that can be appended to document objects.

(1) Weighted Feature Vectors (FV) – One of
the key structures attached to document objects are
feature vectors. These represent the transforma-
tion of text from a semi-structured data source to
a high-dimensional feature space. Feature vectors
represent the discretized elements of the text, of-
ten weighted descriptors extracted from the under-
lying text. These vectors are defined by a global
signature vector that prescribes an ordered refer-
ence for the numerical weights contained in in-
dividual FVs for each document object. For ex-
ample, to build a frequency-based bag-of-words
model, we enable users to choose from a set of
token-classes including POS-tags, named entities,
lexical chains, n-grams, stop-words, etc. These are

15

(a) Named Entity and Measure Settings UI (b) Topic Modeling Settings UI

Figure 4: UI components for parameterizing processing steps. Available settings depend on the underlying models.

scored based on several weighting schemes, such
as tf-idf, ttf-idf, log-likelihood ratio, and other
metrics, as described by El-Assady et al. (2018b).
Such weighted feature vectors can describe the im-
portance of keywords on a global level (e.g., for all
analyzed corpora) or on an individual object level
(e.g., for a single document). Other types of fea-
ture vectors include ones extracted using word- or
sentence-embeddings, as well as vectors based on
linguistic annotation pipelines.

(2) Attributes (A) – As opposed to numeric
feature vectors, attributes consist of labels or
pointers attached during processing. Both of these
attribute types can be used to aggregate feature
vectors or measures in the data hierarchy. For
example, for dynamically computing all measure
values related to a particular speaker and topic in
a conversation, these attributes are utilized.

Labels (L) can be single flags, such as POS tags,
or could consist of n-tuples, for example, to inform
the types of arguments contained in the underlying
text. To accommodate for labels that describe only
parts of a hierarchy, we also feature window la-
bels. These are stored in the hierarchy level above
the targeted level and contain a beginning and end-
ing indices of the children. For example, the sen-
tence hierarchy level may contain a label consen-
sus with a beginning index of 0 and ending index
of 6, pointing to a sub-sentence structure that en-
codes that the first six tokens of that sentence are
indicating a consensus.

Pointers (P), on the other hand, are attributes
that point to external structures, such as topics,
speakers, or other entities. Such structures are usu-
ally modeled by specific processing steps and con-
tain descriptive features of the elements they rep-
resent. For example, a topic might contain a list
of descriptive keywords, whereas a speaker object
would contain metadata and biography informa-
tion on a speaker.

(3) Measures (M) – As a pendant to nominal
attributes, measures are numeric or boolean values

attached to the document objects. These are used
to describe linguistic features of various types. As
with the labels, a measure consists of a class name
and a singular value. They are typically used to
qualify properties of objects and, thus, can be ag-
gregated through the data hierarchy. In addition,
measures can be normalized, for example, based
on the number of tokens in a document. We distin-
guish three types of measures: Boolean; numeric
continuous; and numeric bi-polar. Such measures
can be extracted through a variety of processing
steps, ranging from simple word-list-based tag-
gers, statistical analysis steps, rule-based annota-
tors, through sophisticated machine learning based
measure calculators. We use such measures to ex-
tract semantically relevant information or to moni-
tor the quality of document objects with respect to
selected criteria. Hence, such measures inform the
visual analytics methods and expand the dimen-
sionality of the underlying objects.

3 User Interface

“Simplicity comes at the cost of flexibility” (Jent-
ner et al., 2018). The dependency-based process-
ing model automatizes many decisions a user has
to take in other frameworks. However, in order to
allow domain-experts to use their knowledge and
influence the underlying models, parameterization
is necessary. We run a linearization of the acyclic
graph prior to executing the pipeline. This allows
us to display the steps and their parameters in the
order of the processing-flow to support the users
in their parameter estimation. To further support
users we deploy guidance in the form of informa-
tion pop-ups and built-in tutorials. This includes
explaining how a respective processing step trans-
forms the data and the value it adds to the task, but
furthermore involves descriptions of the parame-
ters and their estimated impact.

To exemplify this process, we describe a par-
tial pipeline that is commonly used in our frame-

16

work to demonstrate its expressiveness and flex-
ibility. Let this partial pipeline be: (1) Named
Entity Recognizer (A-L)→ (2) Document Feature
Extractor (FV) → (3) Topic Modeling (A-P) →
(4) Measure Calculator (M). The (1) NER step la-
bels (A-L) tokens with Named Entities. As shown
in Figure 4a, the user can define parameters such
as the minimum distance and similarity score. The
(2) DFE creates feature vectors (FV) on all data
hierarchies. Based on the data and task, the user
selects and weights the features and selects an ap-
propriate scoring scheme. In the (3) TM step,
the user selects one or multiple of the available
topic models (e.g., LDA, IHTM) and parameter-
izes them, for example, with the number of de-
sired topics (Figure 4b). Note that this step uses
only the feature vectors extracted in the previous
step. It assigns additional pointer attributes (A-P)
for each document reflecting their probability to
belong to a certain topic. The (4) MC then uses,
for example, the topic labels to calculate measures
(M) such as Topic Shift where the topic of discus-
sion is changed within a document, or Topic Per-
sistence where a given topic continues to be pur-
sued by the author or speaker.

Such a pipeline is part of multiple visualization
creation cycles. For example, we utilize the re-
sults of topic modeling to analyze the dynamics
of speakers in a conversation transcript in Con-
ToVi (El-Assady et al., 2016). Hence, to build such
visualization approaches, we rely on the auto-
configuration of the processing pipeline, as well
as the familiarity of users with their analyzed data
and tasks, enabling application developers to fo-
cus on their encapsulated implementation environ-
ment without worrying about the complexity of
the underlying linguisic processing.

4 Microservice Architecture

The modularity of our framework and atomicity of
the steps is further emphasized by the use of mi-
croservices (Figure 5, s1, s2, s3). A microservice
is a small, single-purpose service that exposes an
API. Because our microservices are dockerized,9

the microservice itself is independent of any pro-
gramming language and environment which pro-
vides us with great flexibility. Additionally, in-
dividual microservices are easier to maintain than
a large, monolithic framework. An example mi-
croservice from our framework returns POS tags

9 docker.com

Figure 5: Multiple environments (env1, env2) of the
lingvis.io framework are managed in a kubernetes clus-
ter. Microservices (s1, s2, s3) are tailored to a specific
task and resemble different steps of the pipeline. Any
microservice can be redefined in a specific environment
if variations of the functionality are needed.

for tokenized texts. Requests to that service con-
tain a list of tokens, and are parametrized with
the tagger model to use. The middleware handles
the user authentication, the (processed) data, the
pipeline steps, and the controllers (Figure 3). In
addition, it coordinates the microservices and han-
dles communication with their respective APIs to
obtain results to add to the data.

Our framework lives in a kubernetes clus-
ter10 which effectively manages and orchestrates
docker containers. This allows us to scale
microservices, running multiple instances and
balancing their load automatically—even across
physical servers (Figure 5, see s2). We are further
able to run multiple environments of the lingvis.io
framework (middleware & frontend) in our cluster
allowing our researchers to deploy a tailored ver-
sion, for example, for a user evaluation. Kuber-
netes in combination with the reverse proxy trae-
fik11 automatically assigns a URL to the frontend
and the middleware to make them accessible from
anywhere in the world.

5 Conclusion

A demo of our framework is available under
https://demo.lingvis.io/. Currently available visu-
alizations with attendant NLP microservices are
presented via the demo video or can be found un-
der the “Visualizations” button. To the best of our
knowledge, lingvis.io represents the first scaleable
and modular web-based framework that combines
NLP with visual analytics applications. Its unique
contribution lies in combining these applications
in a novel way on the one hand, but in separating
NLP processing and visualizations on the opera-
tional level through an auto-configured pipeline on

10 kubernetes.io
11 traefik.io

17

the other hand. This enables developers to focus
on the individual task at hand, rather than being
distracted by needing to solve general NLP or vi-
sual analytics problems. As such, the framework
is ideal for rapid prototyping and should serve as
a productive base for more developments within
LingVis, the interdisciplinary combination of, lin-
guistics, NLP and visual analytics.

References
Miriam Butt, Annette Hautli-Janisz, and Verena Lyd-

ing. 2019. LingVis: Visual Analytics for Linguistics.
CSLI lecture notes. CSLI Publications, to appear.

Mennatallah El-Assady, Valentin Gold, Carmela
Acevedo, Christopher Collins, and Daniel Keim.
2016. ConToVi: Multi-Party Conversation Explo-
ration using Topic-Space Views. Computer Graph-
ics Forum, 35(3):431–440.

Mennatallah El-Assady, Annette Hautli-Janisz,
Valentin Gold, Miriam Butt, Katharina Holzinger,
and Daniel Keim. 2017a. Interactive Visual Analy-
sis of Transcribed Multi-Party Discourse. In Pro-
ceedings of ACL 2017, System Demonstrations,
pages 49–54, Stroudsburg, PA. ACL.

Mennatallah El-Assady, Rita Sevastjanova, Bela Gipp,
Daniel Keim, and Christopher Collins. 2017b.
NEREx: Named-Entity Relationship Exploration in
Multi-Party Conversations. Computer Graphics Fo-
rum, 36(3):213–225.

Mennatallah El-Assady, Rita Sevastjanova, Daniel
Keim, and Christopher Collins. 2018a. Thread-
Reconstructor: Modeling Reply-Chains to Untan-
gle Conversational Text through Visual Analytics.
Computer Graphics Forum, 37(3):351–365.

Mennatallah El-Assady, Rita Sevastjanova, Fabian
Sperrle, Daniel Keim, and Christopher Collins.
2018b. Progressive Learning of Topic Modeling Pa-
rameters: A Visual Analytics Framework. IEEE
Transactions on Visualization and Computer Graph-
ics, 24(1):382–391.

Mennatallah El-Assady, Fabian Sperrle, Oliver
Deussen, Daniel Keim, and Christopher Collins.
2019. Visual Analytics for Topic Model Optimiza-
tion based on User-Steerable Speculative Execution.
IEEE Trans. on Visualization and Computer Graph-
ics, 25(1):374–384.

Mennatallah El-Assady, Fabian Sperrle, Rita Sevast-
janova, Michael Sedlmair, and Daniel Keim. 2018c.
LTMA: Layered Topic Matching for the Compar-
ative Exploration, Evaluation, and Refinement of
Topic Modeling Results. In International Sympo-
sium on Big Data Visual and Immersive Analytics
(BDVA), pages 1–10.

Valentin Gold, Christian Rohrdantz, and Mennatallah
El-Assady. 2015. Exploratory Text Analysis using
Lexical Episode Plots. In Proc. of EuroVis., pages
85–89. The Eurographics Association.

Wolfgang Jentner, Mennatallah El-Assady, Bela Gipp,
and Daniel A Keim. 2017. Feature Alignment for
the Analysis of Verbatim Text Transcripts. In Eu-
roVis Workshop on Visual Analytics, EuroVA 2017,
Barcelona, Spain, 12-13 June 2017, pages 13–17.
Eurographics Association.

Wolfgang Jentner, Dominik Sacha, Florian Stoffel, Ge-
offrey P Ellis, Leishi Zhang, and Daniel A Keim.
2018. Making machine intelligence less scary for
criminal analysts: reflections on designing a visual
comparative case analysis tool. The Visual Com-
puter, 34(9):1225–1241.

Daniela Oelke, David Spretke, Andreas Stoffel, and
Daniel A. Keim. 2012. Visual readability analysis:
How to make your writings easier to read. IEEE
Transactions on Visualization and Computer Graph-
ics, 18(5):662–674.

Dominik Sacha, Matthias Kraus, Jrgen Bernard,
Michael Behrisch, Tobias Schreck, Yuki Asano,
and Daniel A Keim. 2018. Somflow: Guided ex-
ploratory cluster analysis with self-organizing maps
and analytic provenance. IEEE transactions on vi-
sualization and computer graphics, 24(1):120–130.

Christin Schätzle, Michael Hund, Frederik L Dennig,
Miriam Butt, and Daniel A Keim. 2017. Histo-
BankVis: Detecting Language Change via Data Vi-
sualization. In Proceedings of the NoDaLiDa 2017
Workshop on Processing Historical Language, 133,
pages 32–39. University of Konstanz, Germany.

Gerold Schneider, Mennatallah El-Assady, and
Hans Martin Lehmann. 2017. Tools and Meth-
ods for Processing and Visualizing Large Corpora.
Studies in Variation, Contacts and Change in En-
glish, 19.

Rita Sevastjanova, Fabian Beck, Basil Ell, Cagatay
Turkay, Rafael Henkin, Miriam Butt, Daniel Keim,
and Mennatallah El-Assady. 2018a. Going be-
yond Visualization: Verbalization as Complemen-
tary Medium to Explain Machine Learning Models.

Rita Sevastjanova, Mennatallah El-Assady, Annette
Hautli-Janisz, Aikaterini-Lida Kalouli, Rebecca
Kehlbeck, Oliver Deussen, Daniel Keim, and
Miriam Butt. 2018b. Mixed-initiative active learn-
ing for generating linguistic insights in question
classification. In Workshop on Data Systems for In-
teractive Analysis (DSIA) at IEEE VIS.

Fabian Sperrle, Jürgen Bernard, Michael Sedlmair,
Daniel Keim, and Mennatallah El-Assady. 2018.
Speculative Execution for Guided Visual Analytics.
In Proc. of IEEE VIS Workshop on Machine Learn-
ing from User Interaction for Visualization and An-
alytics.

18

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 19–24
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

SARAL: A Low-Resource Cross-Lingual Domain-Focused Information
Retrieval System for Effective Rapid Document Triage

Elizabeth Boschee♦, Joel Barry♦, Jayadev Billa♦, Marjorie Freedman♦, Thamme Gowda♦,
Constantine Lignos♦, Chester Palen-Michel♦, Michael Pust♦, Banriskhem K. Khonglah♣,

Srikanth Madikeri♣, Jonathan May♦, Scott Miller♦
♦Information Sciences Institute, University of Southern California

♣Idiap Research Institute
{boschee,joelb,jbilla,mrf,tg,lignos,cpm,pust,

jonmay,smiller}@isi.edu
{banriskhem.khonglah,srikanth.madikeri}@idiap.ch

Abstract
With the increasing democratization of elec-
tronic media, vast information resources are
available in less-frequently-taught languages
such as Swahili or Somali. That informa-
tion, which may be crucially important and
not available elsewhere, can be difficult for
monolingual English speakers to effectively
access. In this paper we present SARAL, an
end-to-end cross-lingual information retrieval
(CLIR) and summarization system for low-
resource languages that 1) enables English
speakers to search foreign language reposito-
ries of text and audio using English queries,
2) summarizes the retrieved documents in En-
glish with respect to a particular informa-
tion need, and 3) provides complete transcrip-
tions and translations as needed. The SARAL
system achieved the top end-to-end perfor-
mance in the most recent IARPA MATERIAL
CLIR+summarization evaluations.

1 Introduction

The task of searching for a needle of relevant in-
formation in a haystack of documents is not as
daunting as in previous eras, thanks to decades of
information retrieval research progress. Most of us
engage in this behavior daily when we search the
web. Powerful IR algorithms choose the most likely
matches for our queries, but humans also play a
crucial role: we are typically presented with a list
of ranked results, accompanied by small snippets
of relevant content, and we make the final decision
with this information in hand.

Unfortunately, when the information content is
in a language the searcher does not understand,
serious challenges can arise. This is the problem
of cross-lingual information retrieval (CLIR), and
there are several straightforward approaches to this
problem, many of which have been well-studied.

One can translate queries into the language of the
search corpus before matching, or conversely trans-
late the documents into the language of the query.
Both approaches naturally rely on the availabil-
ity of good-quality translation, which improves as
more parallel data is available. Thus, CLIR may be
adequate when the languages are English, French,
Spanish, etc., but will be less effective for lower-
resourced languages such as Swahili or Somali.

Moreover, the crucial role played by humans in
triaging results is complicated in a low-resource
cross-lingual setting, since the system must some-
how present the user with the context for its re-
trieval, e.g. an English speaker with the context for
a Swahili document. But if the quality of the ma-
chine translation (MT) is too poor, just showing the
surrounding text (à la Google) will be insufficiently
helpful. This problem is exacerbated when the orig-
inal source is audio transcribed by a low-resource
automatic speech recognition (ASR) model, since
ASR errors will propagate through MT.

In this paper we present SARAL
(Summarization and domain-Adaptive Retrieval
Across Languages1), an end-to-end system that
addresses these challenges. SARAL operates over
both text and audio input documents from a diverse
set of genres (e.g. news, conversational speech,
etc.), answering user queries by summarizing the
retrieved documents in English with respect to
a user’s particular information need. Requests
can be expressed as a combination of a query
phrase (e.g. foreign investments) and a set of one
or more desired document domains (e.g. Health
or Military). The SARAL system achieved the
top end-to-end performance in the most recent
CLIR+summarization evaluations conducted by

1SARAL (srl) is a Hindi word which can be translated
as ingenious or simple, depending on the relevant context.

19

Figure 1: The SARAL cross-lingual search interface, which returns English query-focused snippets, domain rele-
vance confidence backed up by domain snippets, and full-text transcription (where relevant) and translation.

the IARPA MATERIAL program.

The contributions of this paper are:

1. SEARCHER, a novel CLIR approach designed
for low-resource conditions that relies on the
construction of a shared semantic space learned
from bitext and monolingual corpora

2. An intuitive snippet extraction and presentation
design which has been shown in human studies
to provide readers with sufficient evidence to
filter out erroneous query matches and preserve
good ones, even in low-resource conditions

3. The entire operable SARAL system itself, an
end-to-end CLIR and summarization system
that combines SEARCHER and traditional IR
techniques and applies them to text and speech
documents in low-resource languages

An example of the user interface is shown in
Figure 1. An instance of the system with Swahili
and Somali data may be queried at https://
material.isi.edu (register with token Pp-
nOMgavHR3j). A short demonstration video is
also available.2

2https://youtu.be/TslZiwPejcU

2 SARAL System Overview

2.1 Automatic Speech Recognition

We transcribe audio data using two systems de-
veloped for SARAL by Idiap and ISI. The Idiap
system trains 3 Kaldi-based LF-MMI models with
a CNN-BLSTM architecture, with targets derived
from alignments produced by HMM/GMM mod-
els. The first model is trained with standard data
augmented by perturbing audio speeds, the sec-
ond with data augmented by adding noise and
then speed perturbation, and the third with bottle-
neck features extracted from a multilingual system
(Tagalog, Swahili, Zulu, Turkish and Somali). The
three systems are then fused by stacking lattices
and minimum Bayes Risk (MBR) rescoring. The
ISI system uses eight Kaldi-based end-to-end LF-
MMI trained TDNN-F grapheme acoustic models.
Audio data is decoded with each of the models with
a trigram LM, followed by rescoring with an RNN-
LM to generate lattices. Similar to the Idiap system,
the final transcript is generated by stacking lattices
from these models, followed by MBR rescoring on
the composite lattice.

Based on performance on a development set, we
use the Idiap system for conversational speech and

20

the ISI system for topical and news broadcasts. All
models are trained with 40 hours of the transcribed
audio provided in the MATERIAL program, as
well as ∼500hrs of YouTube data used for unsuper-
vised training. For Somali, language models use
∼320M words, primarily composed of webcrawl
data (∼230M words) and the so16 Somali Web Cor-
pus (∼70M words); for Swahili, they use ∼100M
words of webcrawl data. For comparison, a high-
resource language would typically be trained with
thousands of hours of speech and a language model
generated from more than a billion words of data.

2.2 Machine Translation
Our low-resource MT architecture is a system
combination (Heafield and Lavie, 2010) of a
Transformer-based neural model (Vaswani et al.,
2017) and a statistical syntax-based model (Galley
et al., 2006), which bring complementary strengths,
particularly in low-resource conditions. All models
are trained with fewer than 2M words of paral-
lel data.3 By contrast, in the WMT 2018 shared
task (Bojar et al., 2018) most language pairs had
4M or more words, and many had more than 10M
words. To further adapt to low-resource conditions,
we augment our neural system with 14.5M words
of crawled English region-relevant data with par-
allel Somali or Swahili obtained from backtransla-
tion Transformer models (Sennrich et al., 2016a).
Transformer model hyperparameters are “out-of-
the-box” except that the shared Byte Pair Encoding
(Sennrich et al., 2016b) vocabulary is set to approx-
imately 8,000.

2.3 Cross-Lingual Information Retrieval
We employ a combination of two approaches to
cross-lingual information retrieval. The first re-
lies on term-level matching in both the original
document and its machine translation(s). Source-
language matching is mediated via translation ta-
bles derived from the word alignments used by our
syntax-based MT system. Terms are expanded us-
ing transformations of varying expected accuracy,
e.g. stemming, WordNet transformations (Fell-
baum, 1998), paraphrases (Pavlick et al., 2015),
semantic similarity (Huang et al., 2018), and combi-
nations of the above. For multiword search strings,
all terms must match in the same sentence, but
not necessarily in the same translation or even the

3Data was provided by the IARPA MATERIAL program
and by LDC as part of the DARPA LORELEI program (So-
mali: LDC2016E91; Swahili: LDC2017E64).

same language. For instance, the Somali phrase
xilli roobaadka could be translated rainy season
or rainy time. An English-only search for rainy
season might miss a translation that reported only
rainy time. However, our hybrid search will match
rainy in English and xilli in Somali, allowing for a
match for the phrase across the two languages.

Our second approach, SEARCHER (Shared
Embedding ARCHitecture for Effective
Retrieval), maps both queries and documents into
a shared embedding space and performs retrieval
there, rather than relying on translation of either
the document or the query terms. However, during
development, we found that standard cross-lingual
embeddings derived from monolingual corpora,
even when aligned using sophisticated transfor-
mation techniques (e.g. Lample et al., 2018), did
not provide the @1-precision necessary for the
specific requirements of MATERIAL’s “lexical”
queries, where only documents containing precise
translations of query terms are judged responsive.

To obtain sufficient precision, we train a proxy
task based on sentence relevancy. Here, a sentence
S is considered responsive to a query q if at least
one plausible translation of S contains the term
q. Training samples are derived from parallel cor-
pora. Sample queries are drawn from the English
side, with their corresponding foreign-language
sentences as positive examples and other randomly-
drawn foreign-language sentences as negative ex-
amples. The SEARCHER model consists of a
convolutional encoder (similar to Gehring et al.
2017) for encoding foreign-language sentences,
a query embedding matrix, an attention mecha-
nism for aligning query terms with specific foreign-
language terms, and a matching network to deter-
mine relevance. The model was optimized using
a cross-entropy objective. In recent experiments,
SEARCHER’s performance exceeded that of the
term-level matching approach, improving AQWV
(see Section 3) from 23.1 to 25.2 on the Somali
MATERIAL evaluation corpus, even when transla-
tion is performed by state-of-the-art MT systems.

2.4 Domain Identification

The New York Times Annotated corpus4 provides
∼2M articles with topic annotations from a closed
topic set. For each domain of interest,5 we manu-

4https://catalog.ldc.upenn.edu/
LDC2008T19

5Business & Commerce, Government & Politics, Health,
Law & Order, Military, Religion, Sports

21

Figure 2: Example summary for the query conflict.

ally select the topics that best map to the domain,
giving us a set of in-domain documents. We then
calculate a score for each n-gram (n ≤ 3) that rep-
resents how indicative it is of a particular domain,
simply countin domain/countall. We discard all n-
grams involving capitalized letters (mostly names)
as likely irrelevant (or even misleading) to the tar-
get datasets (e.g. Somali news). Our binary domain
classifier then has three parameters: a threshold for
unigrams, a threshold for bi/trigrams, and the num-
ber of n-grams whose scores meet those thresholds
that must be found for a document to be considered
in-domain. We tune these parameters for each do-
main via grid search on the development corpus,
optimizing for AQWV on the CLIR task.

2.5 Summary Generation

The goal of summarization is to concisely explain,
in English, a particular document’s relevance to a
query. Our primary approach highlights in blue
those terms ranked most highly by our CLIR and
displays them in a fixed-context window. Semanti-
cally related words are colored in lighter blue, as
with tension in Figure 2. When query terms are
found in the source language or matched in the
SEARCHER embedding space, we attempt to high-
light aligned terms in one of our English machine
translations, where possible. (In some cases, no
translation of a particular foreign term might be
found; in that case we simply present the whole
sentence without highlighting.)

The primary barrier to providing accurate sum-
maries is poor MT quality. Even if an exact match
is highlighted, the context may be so garbled that
a reader is unable to label it as a reliably relevant
match. To mitigate this, we provide additional con-
text for the MT system’s decisions, specifically the
set of options the system considers when producing
word(s) matching the query. For instance, consider
a summary for back injuries. If the word back
was translated from the Swahili word mgongo, we
might show alternate translations spine, backbone,
and spinal, reassuring the reader that the transla-
tion of back is correct and of the appropriate word

sense. In contrast, if the word was originally trans-
lated from kurejea, we would present alternative
translations return, returning, referring, leading the
reader to correctly identify a false alarm.

For the purposes of summarization, we provide
this kind of information via footnotes (see Figure
2), where the size of a word in the footnote reflects
how likely the system thinks it is (in isolation) to
be a translation of the original source term. We
also underline the exact query term if it is present
in that list, to help draw the user’s attention to it.

We generate summaries for domains using the
n-grams extracted for domain classification (Sec-
tion 2.4). We identify these n-grams in an English
machine translation of a document and create mul-
tiple candidate display windows of varying size for
each. We then employ a greedy search to select
and merge such windows to (a) include as much
domain-relevant information as possible (a func-
tion of both the number of domain-relevant terms
and their quality), (b) present exactly as much con-
text as is necessary to make the terms understand-
able, and (c) avoid redundancy / prefer diversity.
When presenting summaries to the user, we high-
light domain-relevant terms in blue, with the shade
intensity indicating the strength of its relevance to
the domain. A sample summary for the Law and
Order domain is shown in Figure 1.

2.6 User Interface Design

SARAL’s user interface allows users to search for
a single English query phrase. Following the most
common practice of the MATERIAL program, we
focus on direct cross-lingual search rather than
conceptual expansion. So, for the query vaccine,
synonyms (e.g. immunization) and morphological
variations (e.g. vaccinated) would be considered
responsive, but a sentence generically discussing
methods for the prevention of the flu would not.
(Users may also opt to exclude morphological vari-
ations.) Users also select the target language and
optionally restrict to either text or audio documents.

In the MATERIAL program, queries typically
require exactly one domain. However, a user’s in-
terests might extend to more than one domain at a
time. We therefore allow the user to select multi-
ple domains; any document that matches at least
one domain of interest is allowed to be returned
as relevant. To avoid crowding the screen when a
document is relevant to multiple domains, we show
instead, for each document, a bar graph displaying

22

Figure 3: ASR & MT excerpt for an audio document.

the relative strength of each domain that the sys-
tem identified as being potentially represented in a
document. Clicking on the Why? button next to a
domain displays the evidence that the system found
for that domain, i.e. the domain-specific summary,
as shown in Figure 1.

For the purposes of the demonstration, we re-
strict query summaries to 50 words, keeping them
comfortably at the top of the page and quickly
gistable. We allow 80 words for each domain sum-
mary, enough to provide convincing evidence with-
out being too verbose to skim quickly.

Finally, we provide full access to each source
document (original text or audio; if audio, we also
provide the automatically-generated transcription)
and an English machine translation, for the user
who wants to dig deeper into the context of a re-
sponse. A small excerpt is shown in Figure 3.

2.7 New Languages

It is simple to add a new language to the system.
In a recent exercise, we brought up an end-to-end
system in Lithuanian in three days using the speech
and parallel text resources provided by the MATE-
RIAL program; this required only a few hours of
actual human effort. The two largest bottlenecks
for improved performance over the three-day sys-
tem are data collection (scraping monolingual data
from the web to improve ASR language models)
and ASR model training. With ten days, we were
able to bring up a significantly improved ASR sys-
tem in Lithuanian; with more efficient use of com-
pute resources (e.g. parallelizing the web scraping),
this time could be significantly reduced.

3 System Evaluation & Analysis

The Phase 1 MATERIAL evaluation was performed
on a corpus of ∼15K Somali documents annotated

for relevance for 1,000 queries by native speakers.
The official evaluation metric is AQWV (Average
Query Weighted Value),6 which uses a parameter
β to balance missed detections and false alarms.

End-to-end AQWV was calculated after human
readers triaged an initial set of system results, re-
moving those documents they judged to be false
alarms using only the English summaries generated
by the system. Documents were sampled evenly
across queries and across true positives and false
alarms; system performance was then projected
to any unassessed documents. For the SARAL
system, ∼15K query/document summaries were
assessed, using Amazon Mechanical Turk. Overall,
the SARAL system was the top-ranked end-to-end
system in the evaluation.7

Projected across all responses, the SARAL sum-
marization component results in the acceptance of
87% of true positives and the rejection of 45% of
false negatives. Rates are essentially consistent
across speech and text documents. Because the
AQWV β for the evaluation penalizes misses much
more than false alarms, these results are consistent
with our goal of minimizing false rejections even
if that means retaining more false positives.

The majority of errors on true positive docu-
ments come from insufficient summaries. For in-
stance, a query about deception results in the sum-
mary text Punamin was arrested for trafficking, but
he made amazing cheating that he thought about
the long arrest. Two alternative translations pro-
vided for cheating are deception and trick. Still,
the English context is difficult to understand. Thus
although it is in reality a true positive, it is not
unreasonable that a human rejected it.

Human acceptance of a false positive happens
most frequently when readers accept an alternate
translation as accurate when the context did not
make sense. For instance, a query for midwife
returns summary text I would like to advise you
to be united people who create their own skills ...
you will be a company that will support themselves.
Our system indicates that an alternate translation
for skills could be midwife, which is accepted by
the reader even though clearly incorrect in context.

A so-called false positive found by the system—
6https://www.nist.gov/sites/default/

files/documents/2019/04/02/openclir19_
evalplan_v1.19.pdf

7Four end-to-end systems were evaluated from four sep-
arate teams. However, per program policy, only system rank
may be publicly reported, so we cannot provide any further
details on cross-system comparisons here.

23

and retained by human readers during triage—can
actually be a true positive that was missed by the
original foreign-language annotator. For instance, a
query for mockery returns will present a exhibition
to show insults to our Prophet ... aimed at pre-
senting images of insulting Prophet Muhammed.
It seems reasonable that insults here is a transla-
tion variant for mockery; both our system and a
human reader think so. This shows the strength
of the system; not only can it provide a monolin-
gual speaker with access to content in low-resource
foreign languages, but it can sometimes surpass
search by native speakers.

4 Related Work

Recent research in CLIR and query-based summa-
rization uses expansive, concept-based definitions
of relevance. For example, given the query agricul-
ture, documents are relevant if they describe fields,
pastures, or crops, even if the word agriculture is
not used, and the goal of summarization is to show
that the document as a whole is relevant. In con-
trast, in this work we aim to retrieve documents
that meet a more precise notion of relevance, sim-
ilar to that used for keyword spotting. This goal
influences our retrieval approach, which seeks to
account for variation in translation but does not
perform more expansive embedding-based query
expansion, and the summarization approach, which
presents in-context search term matches rather than
a narrative summary of the document as a whole.

5 Conclusion

The SARAL system provides a monolingual user
with effective access to multimodal information in
lower-resourced languages through a user interface
that enables rapid triage of system results. We look
forward to future work improving the quality of the
underlying components for low-resource settings as
well as expanding the user interface to incorporate
additional semantic constraints or requests.

Acknowledgments

Thanks to Heng Ji for fruitful discussions. This
research is based upon work supported in part by
the Office of the Director of National Intelligence
(ODNI), Intelligence Advanced Research Projects
Activity (IARPA), via contract # FA8650-17-C-
9116. The views and conclusions contained herein
are those of the authors and should not be inter-
preted as necessarily representing the official poli-

cies, either expressed or implied, of ODNI, IARPA,
or the U.S. Government. The U.S. Government is
authorized to reproduce and distribute reprints for
governmental purposes notwithstanding any copy-
right annotation therein.

References
Ondřej Bojar, Christian Federmann, Mark Fishel,

Yvette Graham, Barry Haddow, Matthias Huck,
Philipp Koehn, and Christof Monz. 2018. Find-
ings of the 2018 conference on machine translation
(WMT18). In Proc. WMT, Belgium, Brussels.

Christiane Fellbaum. 1998. WordNet: An Electronic
Lexical Database. Bradford Books.

Michel Galley, Jonathan Graehl, Kevin Knight, Daniel
Marcu, Steve DeNeefe, Wei Wang, and Ignacio
Thayer. 2006. Scalable inference and training of
context-rich syntactic translation models. In Proc.
COLING/ACL, Sydney, Australia.

Jonas Gehring, Michael Auli, David Grangier, Denis
Yarats, and Yann N Dauphin. 2017. Convolutional
sequence to sequence learning. In Proc. ICML, Syd-
ney, Australia.

Kenneth Heafield and Alon Lavie. 2010. Voting on n-
grams for machine translation system combination.
In Proc. AMTA, Denver, Colorado, USA.

Lifu Huang, Kyunghyun Cho, Boliang Zhang, Heng
Ji, and Kevin Knight. 2018. Multi-lingual common
semantic space construction via cluster-consistent
word embedding. In Proc. EMNLP, Brussels, Bel-
gium.

Guillaume Lample, Alexis Conneau, Marc’Aurelio
Ranzato, Ludovic Denoyer, and Hervé Jégou. 2018.
Word translation without parallel data. In Proc.
ICLR, Vancouver, Canada.

Ellie Pavlick, Pushpendre Rastogi, Juri Ganitkevich,
Benjamin Van Durme, and Chris Callison-Burch.
2015. PPDB 2.0: Better paraphrase ranking, fine-
grained entailment relations, word embeddings, and
style classification. In Proc. ACL, Beijing, China.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016a. Improving neural machine translation mod-
els with monolingual data. In Proc. ACL, Berlin,
Germany.

Rico Sennrich, Barry Haddow, and Alexandra Birch.
2016b. Neural machine translation of rare words
with subword units. In Proc. ACL, Berlin, Germany.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Proc. NeurIPS.

24

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 25–30
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Jiuge: A Human-Machine Collaborative Chinese Classical Poetry
Generation System

Zhipeng Guo1∗ , Xiaoyuan Yi1∗, Maosong Sun1† ,
Wenhao Li1, Cheng Yang1, Jiannan Liang1, Huimin Chen1, Yuhui Zhang1, Ruoyu Li2
1Department of Computer Science and Technology, Tsinghua University, Beijing, China

Institute for Artificial Intelligence, Tsinghua University, Beijing, China
State Key Lab on Intelligent Technology and Systems, Tsinghua University, Beijing, China

26ESTATES PTE LTD, Singapore

Abstract

Research on the automatic generation of po-
etry, the treasure of human culture, has lasted
for decades. Most existing systems, however,
are merely model-oriented, which input some
user-specified keywords and directly complete
the generation process in one pass, with lit-
tle user participation. We believe that the
machine, being a collaborator or an assistant,
should not replace human beings in poetic cre-
ation. Therefore, we proposed Jiuge, a human-
machine collaborative Chinese classical po-
etry generation system. Unlike previous sys-
tems, Jiuge allows users to revise the unsatis-
fied parts of a generated poem draft repeatedly.
According to the revision, the poem will be dy-
namically updated and regenerated. After the
revision and modification procedure, the user
can write a satisfying poem together with Ji-
uge system collaboratively. Besides, Jiuge can
accept multi-modal inputs, such as keywords,
plain text or images. By exposing the options
of poetry genres, styles and revision modes, Ji-
uge, acting as a professional assistant, allows
constant and active participation of users in
poetic creation.

1 Introduction

Language is one of the most important forms of
human intelligence, among different genres, po-
etry is a beautiful, poetic and artistic genre which
expresses one’s emotions and ideas with relatively
fewer words. Across various countries, nationali-
ties, and cultures, poetry is always fascinating, im-
pacting profoundly on the development of human
civilization.

Recently, researchers have worked on automatic
poetry generation. Meanwhile, neural networks
have proven to be powerful on this task (Zhang
and Lapata, 2014; Wang et al., 2016; Yan, 2016;

∗ indicates equal contribution
† Corresponding author: M.Sun(sms@tsinghua.edu.cn)

Zhang et al., 2017; Yi et al., 2017). Besides the
research value of exploring human writing mech-
anism and computer creativity, these models and
systems could also benefit electronic entertain-
ment, advertisement, and poetry education.

However, the recently released Chinese poetry
generation systems are mainly model-oriented,
which take some user inputs and directly complete
the generation in one pass, resulting in poor user
participation. Moreover, these systems generate
poetry in fewer styles and genres, and provide lim-
ited options for users. For example, the Daoxi-
angju system1 requires the user to determine the
rhyme, which creates a barrier for beginners. The
Oude system2 simplifies the user’s choices and
only allows the input of a few options and genres.
The Microsoft Quatrain3 provides limited candi-
dates of a theme and each line, but it only supports
the generation of quatrains.

Due to the lack of user participation, the above
systems are mainly designed for entertainment.
We argue that the leading role in literary creation
should not be a machine, or at least not only a ma-
chine, because it is difficult for machines to handle
the complex expressions of one’s emotion and the
use of images in poetic creation.

Rather than completely replace humans, a better
way is to utilize the system to assist human cre-
ation. The human-machine collaboration mech-
anism in Jiuge system can not only improve the
emotions and semantics of generated poems but
also guide and teach beginners to understand the
poetic creation process.

In summary, the contributions of our Jiuge sys-
tem are as follows:

• Multi-modal input. Jiuge can accept multi-

1http://www.poeming.com/web/
2https://crl.ptopenlab.com:8800/poem/index
3http://duilian.msra.cn/jueju/

25

Keywords:

Plain Text:

Picture:

plane, blue sky

There is a plane in the blue sky.

Extract

Expand

Transform

Genre: Quatrain, Acrostic, Iambic

Style: Standard, Sadness about seasons, …

Input Preprocessing Module

Working Memory Model

Genere Control

Unsupervised Style Control

Main Framework

Acrostic Poetry Generation

Generation Model

Pattern Checking

Re-Ranking

Postprocessing Model

Automatic Reference Recommendation

Collaborative Revision Module

Revision Modes

Static/Local Dynamic/Global Dynamic

������

�
���

������

��	���

Final Poetry

The swan goose is flying outside

the clouds.

The heavy mist almost make the

ferry invisible.

The vast road has extended to

thousands of miles away.

It's so remote that it seems like it

reaches the sky.

Keywords: fly, blue sky, swan goose, vast

Figure 1: The architecture of Jiuge system.

modal input such as keywords, plain text, and
even images. For modern concepts in the in-
put, Jiuge utilizes a knowledge graph to map
them into relevant keywords in classical Chi-
nese poetry.

• Various styles and genres. Unlike previous
systems, Jiuge provides more than twenty op-
tions of genre and ten options of style, and
can generate more diverse poems.

• Human-machine collaboration. Jiuge sup-
ports human-machine collaborative and inter-
active generation. The user can revise the un-
satisfied parts of a generated poem. In terms
of the revision, Jiuge will dynamically update
and re-generate the poem. During this pro-
cess, Jiuge also offers candidate words and
human-authored poetry as references for be-
ginners.

2 Architecture

2.1 Overview

We show the overall architecture of Jiuge system
in Fig. 1, which mainly consists of four modules:
1) input preprocessing, 2) generation, 3) postpro-
cessing and 4) collaborative revision. Given the
user-specified genre, style, and inputs (keywords,
plain text or images), the preprocessing module
extracts several keywords from the inputs and then
conducts keyword expansion to introduce richer
information. Jiuge also transforms the words in
modern concepts, which are incompatible with
classical Chinese poetry (written in ancient Chi-
nese language), such as refrigerator and airplane,
to appropriate relevant ones, e.g., airplane → fly.
With these preprocessed keywords, the generation
module generates a poem draft. The postprocess-
ing module re-ranks the candidates of each line

and removes the ones that do not conform to struc-
tural and phonological requirements. At last, the
collaborative revision module interacts with the
user and dynamically updates the draft for several
times according to the user’s revision, to collabo-
ratively create a satisfying poem.

We detail each module in the following parts.

2.2 Input Preprocessing Module
Keyword Extraction. Jiuge allows multi-modal
input to meet the needs of generating poetry ac-
cording to keywords, tweets or photos.

For plain text, we first use THULAC4 (Li and
Sun, 2009) to conduct Chinese word segmentation
and compute the importance r(w) of each wordw:

r(w)=[α∗ti(w)+(1−α)∗tr(w)], (1)

where ti(w) and tr(w) are the TF-IDF (Term
Frequency-Inverse Document Frequency) value
and TextRank (Mihalcea and Tarau, 2004) score
calculated with the whole poetry corpus respec-
tively. α is a hyper-parameter to balance the
weights of ti(w) and tr(w). Afterwards, we se-
lect top K words with the highest scores.

For each image, we use the Aliyun image recog-
nition tool5, which gives the names of five rec-
ognized objects with corresponding probability
s(w). Then we select top K words with the high-
est s(w) · r(w).

Keyword Mapping. The extracted or recog-
nized keywords could be some modern concepts,
such as airplane and refrigerator. Since these
words never occur in the classical poetry corpus,
the generation module will take them as a UNK
symbol and generate totally irrelevant poems.

To address this problem, we build a Poetry
Knowledge Graph (PKG) from Wikipedia data,

4http://thulac.thunlp.org/
5https://ai.aliyun.com/image

26

PKG

! = 0.33

! = 0.13 ! = 0.08

��

�
(fly)
�

(airplane)
��

�
(wind) (wing)

�

(a)

PWCG

!"#$% = 25.3

��
�
!"#$% = 27.1 !"#$% = 20.7

(egret)
��

(swan goose)
��

(fly)
�

(butterfly)
��

(b)

Figure 2: (a) A sampled subgraph of PKG. (b) A sam-
pled subgraph of PWCG.

which contains 616, 360 entities and 5, 102, 192
relations. 40, 276 of these entities occur in our po-
etry corpus. Before keywords extension and selec-
tion, we first use PKG to map the modern concepts
to its most relevant entities in poetry, to guarantee
both quality and relevance of generated poems.

For a modern concept word wi, we score its
each neighbor word wj by:

g(wj)= tfwiki(wj |wi) · log(N

1+df(wj)
) · arctan(p(wj)

τ
),

(2)

where tfwiki(wj |wi) is the term frequency of wj

in the Wikipedia article of wi, df(wj) is the num-
ber of Wikipedia articles containing wj , N is the
number of Wikipedia articles, and p(wj) is the
word frequency counted in all articles. We give an
example of mapping the modern word “airplane”
in Fig. 2(a).

Keyword Extension. The generation module
can handle multi-keywords input. More keywords
could lead to richer contents and emotions in gen-
erated poems. Therefore, if the number of ex-
tracted keywords is less than K, we further con-
duct keywords extension. To this end, we build
a Poetry Word Co-occurrence Graph (PWCG) as
shown in Fig. 2 (b). This graph indicates the co-
occurrence of two words in the same poem. The
weight of the edge between two words is calcu-
lated according to the Pointwise Mutual Informa-
tion (PMI) as follows:

PMI(wi, wj) = log
p(wi, wj)

p(wi) ∗ p(wj)
, (3)

where p(wi) and p(wi, wj) are the word frequency
and co-occurrence frequency in poetry corpus. For
a given word w, we get all its adjacent words wk

in PWCG and select those with higher values of
log p(wk) ∗ PMI(w,wk) + β ∗ r(wk) where β is
a hyperparameter.

2.3 Generation Module
As shown in Fig. 3, the core component of the
generation module is our proposed working mem-

Figure 3: The simplified structure of the working mem-
ory model, which mainly comprise an encoder, a de-
coder and there memory components. xi is the i-th line
and xi,j is the j-word in the i-th line. Please refer to (Yi
et al., 2018b) for more details.

ory model (Yi et al., 2018b), which takes at most
K preprocessed keywords as input. The encoder
maps each word or line into vector representa-
tions, and the decoder generates each line word-
by-word. The topic memory stores keywords ex-
plicitly and independently, which can learn a flex-
ible order and form of keywords expression. The
history memory and local memory are dynami-
cally read and written to improve the context co-
herence of generated poems.

Genere Control. Chinese classical poetry in-
volves various genres, and each genre strictly de-
fines the structural and phonological pattern of a
poem, such as the length of each line, the tone
of each word, and the number of lines. We use
our designed genre embedding (Yi et al., 2018b)
to disentangle the semantic content and the genre
pattern. The genre embedding indicates the line
length, word tone, and rhyme, which is fed to the
decoder. By this way, we can train one model with
all genres of poems and control the genre of gen-
erated poems by specifying a pattern.

Training patterns are automatically extracted
from the corpus. For generating, we make the
genre as a user option. However, the selection of
rhyme may be difficult for users without relevant
literature knowledge. Therefore, we train a classi-
fier (implemented with a feedforward neural net-
work) to predict an appropriate rhyme in terms of
the keywords.

Unsupervised Style Control. Besides genres,
there are also diverse styles in Chinese poetry such
as battlefield, romantic, pastoral, etc. For certain
contents or topics, creating different styles of po-
etry is one main user requirement. Since the la-
belled data is quite rare and expensive, we use

27

our proposed style disentanglement model (Yang
et al., 2018) to achieve unsupervised style control.
This method disentangles the style space into M
different sub-spaces by maximizing the mutual in-
formation between the style distribution and the
generated poetry distribution.

It is noteworthy that this method is transparent
to model structures which can be applied to any
generation model. In this stage, we employ it for
the generation of Chinese quatrain poetry (Jueju),
which will be extended to more genres in the fu-
ture. We set the number of styles M = 10. Af-
ter training, we manually annotate each style with
some descriptive phrases, such as sorrow during
drinking and rural scenes, to indicate the theme of
the corresponding style. The style selection is also
set as a user option.

Acrostic Poetry Generation In Chinese po-
etry, there is another special genre called acros-
tic poetry. Given a sequence of words seq =
(x0,0, x1,0, · · · , xn,0), which could be someone’s
name or a blessing sentence, the author is re-
quired to create a poem using each word xi,0 as
the first word of each line xi and the created poem
should also conform to the genre pattern and con-
vey proper semantic meanings.

The input for this genre is the sequence seq.
As our generation module takes keywords as in-
put, we first use pre-trained word2vec embeddings
(Mikolov et al., 2013) to get K keywords related
to seq according to the cosine distance of each
keyword and the words in seq. Then we directly
feed each xi,0 into the decoder at the first step.

To alleviate the disfluency caused by this
constraint, we generate the second word with
the conditional probability: pgen(xi,1|xi,0) =
pdec(xi,1|xi,0)+ δ ∗plm(xi,1|xi,0), where pdec and
plm are probability distributions of the decoder
and a neural language model respectively.

If the length of the input sequence is less than
n (the number of lines in a poem), we also use the
language model to extend it to n words.

2.4 Postprocessing Module

Jiuge takes a line-to-line generation schema and
generates each line with beam search (beam
size=B). As a result, we can get B candidates for
each line. We design a postprocessing module to
automatically check and re-rank these candidates,
and then select the best one, which is used for the
generation of subsequent lines in a poem.

Pattern Checking. The genre embedding intro-
duced in Sec. 2.3 cannot guarantee that generated
poems perfectly adhere to required patterns. Thus,
we further remove the invalid candidates accord-
ing to the specified length, rhythm, and rhyme.

Re-Ranking. Our preliminary experiments
show that the best candidate may not be ranked as
the top 1 because the training objective is Maxi-
mum Likelihood Estimation (MLE), which tends
to give the generic and meaningless candidates
lower costs (Yi et al., 2018a). To automatically
select the best candidate, we adopt the automatic
rewarders we proposed in (Yi et al., 2018a), in-
cluding a fluency rewarder, a context coherence
rewarder, and a meaningfulness rewarder. Then
the candidate with the highest weighted-average
rewards given by them will be selected.

2.5 Collaborative Revision Module
We call the poem generated by the generation
module in one pass the draft, since the user may
revise it for several times to collaboratively cre-
ate a satisfying poem together with the machine.
We implement such collaboration with a revision
module.

Revision Modes. Define a n-line poem draft
as X = (x1, x2, · · · , xn), and each line contain-
ing li words as xi = (xi,1, xi,2, ..., xi,li). At ev-
ery turn, the user can revise one word in the draft.
Then the revision module returns the revision in-
formation to the generation module which updates
the draft according to the revised word. We imple-
ment three revision modes in terms of the updating
way: static, local dynamic, and global dynamic.

• Static updating mode. The revision is re-
quired to meet the phonological pattern of the
draft and the draft will not be updated except
the revised word. The rhythm and rhyme in-
formation is given to the user together with
the generated draft and the invalid revision
will be alerted. During the beam search pro-
cess, we also store top 10 candidate words in
each position as recommendations.

• Local dynamic updating mode. If the
user revises word xi,j , then Jiuge will
re-generate the succeeding subsequence,
xi,j+1, · · · , xi,li , in the i-th line by feeding
the revised word to the decoder for the re-
vised position.

• Global dynamic updating mode.

28

If the user revises word xi,j , Jiuge
will re-generate all succeeding words,
xi,j+1, · · · , xi,li , · · · , xn,ln . In terms of the
revision position, e.g., the rhymed positions,
a new phonological pattern may be adopted.

Thanks to this collaborative revision-updating pro-
cess, the user can choose a mode and gradually re-
vise the draft until she/he feels satisfied.

Automatic Reference Recommendation. For
poetry writing beginners or these lacking profes-
sional knowledge, it is hard to revise the draft ap-
propriately. To aid in the revision process, we
implement an automatic recommendation compo-
nent. This component searches several human-
authored poems, which are semantically similar
to the generated draft, for the user as references.
Then the user could decide how to make revision
with these references.

In detail, define a n-line human-created poem as
Y = (y1, · · · , yn) and a relevance scoring func-
tion as rel(xi, yi) to give the relevance of two
lines. Then we return N poems with the highest
relevance score rs(X,Y), calculated as:

rs(X,Y)=

n∑

i=1

rel(xi, yi) + γ ∗ I(Y ∈ Dmaster), (4)

where Dmaster is a poetry set of masterpieces, I
is the indicator function, and the hyper-parameter
γ is specified to balance the quality and relevance
of searched poems. For more details of the rele-
vance scoring function, we refer the reader to our
previous work (Liang et al., 2018).

3 Demonstration

We implement a webpage version of Jiuge6 which
allows users to create diverse poems and share
with the others conveniently. The initial page pro-
vides some basic options: multi-modal input and
the selection of genre and style, as shown in Fig. 4.

Jiuge is easy to use. After selecting the in-
put mode and providing corresponding content,
the user can further choose a favourite genre and
style7. As shown in Fig. 5 (a), the user inputs two
keywords, desert and cavalry, and chooses to gen-
erate a quatrain with the normal style. Then the
user clicks the “Generate Poetry” button. After a
few seconds, the system returns the processed key-
words and a poem draft.

6Our system is available at https://jiuge.
thunlp.cn/ .

7Temporarily only the Jueju genre supports multiple
styles.

Figure 4: The initial page of Jiuge System.

In order to help the user collaboratively revise
the generated poem, Jiuge provides some high-
quality human-authored poems which are seman-
tically similar to the generated one, as the refer-
ences. The user can click the button to change
the references. At this time, the user can select
an unsatisfying word to be revised in the draft
and then Jiuge will give some recommended re-
vision candidates. Besides these candidates, other
choices are also allowed. After selecting the revi-
sion mode introduced in Sec. 2.5, Jiuge will update
or re-generate the draft according to the revised
word. Through several turns of collaborative revi-
sion, the user and Jiuge work together to create a
satisfying poem, as in Fig. 5 (b)8.

In addition, Jiuge also supports picture sharing.
By clicking the “Share Poetry” button, Jiuge will
print the created poem on a beautiful picture so
that the user can share it with others.

4 Conclusion and Future Work

We demonstrate Jiuge, a human-machine collab-
orative Chinese classical poetry generation sys-
tem. Our system accepts multi-modal input and
allows deep user participation in the choice of var-
ious styles and genres, as well as in collaborative
revision. With an easy-to-use web interface, the
user can collaboratively create a satisfying poem
together with the system. Instead of being a simple
entertainment software, Jiuge takes a step towards
professional AI assistant for poetic education.

We collect a large number of human usage
records from the interface, laying the foundation
for enhancing the collaborative creation method
in the future. We will also continue to integrate

8The poems in Fig.5 are manually translated for better
demonstration. In practice, we utilize a neural translation
model to conduct automatic translation.

29

(a) (b)

Figure 5: The collaborative creation page: an example of revision. (a) The poem draft generated in one pass. (b)
The poem after four turns of revision and updating.

more styles and extend the collaborative creation
to more genres.

5 Acknowledgements

We would like to thank Cunchao Tu, Yunqiu Shao
and anonymous reviewers for their insightful com-
ments. It is supported by Natural Science Foun-
dation of China (NSFC) Grant 61532001 and the
NExT++ project, the National Research Founda-
tion, Prime Ministers Office, Singapore under its
IRC@Singapore Funding Initiative.

References
Zhongguo Li and Maosong Sun. 2009. Punctuation as

implicit annotations for chinese word segmentation.
computational linguistics. Computational Linguis-
tics, 35(4):505–512,.

Jiannan Liang, Maosong Sun, Xiaoyuan Yi, Cheng
Yang, Huimin Chen, and Zhenghao Liu. 2018. Neu-
ral network-based jiju poetry generation. In Pro-
ceedings of the Seventeenth China National Con-
ference on Computational Linguistics, Changsha,
China.

Rada Mihalcea and Paul Tarau. 2004. Textrank: Bring-
ing order into text. In Proceedings of the 2004 Con-
ference on Empirical Methods in Natural Language
Processing.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word
representations in vector space. arXiv preprint
arXiv:1301.3781.

Zhe Wang, Wei He, Hua Wu nad Haiyang Wu, Wei
Li, Haifeng Wang, and Enhong Chen. 2016. Chi-
nese poetry generation with planning based neu-
ral network. In Proceedings of COLING 2016,
the 26th International Conference on Computational
Linguistics:Technical Papers, pages 1051–1060, Os-
aka, Japan.

Rui Yan. 2016. i,poet:automatic poetry composition
through recurrent neural networks with iterative pol-
ishing schema. In Proceedings of the Twenty-Fifth
International Joint Conference on Artificial Intelli-
gence, pages 2238–2244, New York, USA.

Cheng Yang, Maosong Sun, Xiaoyuan Yi, and Wenhao
Li. 2018. Stylistic chinese poetry generation via un-
supervised style disentanglement. In Proceedings of
the 2018 Conference on Empirical Methods in Nat-
ural Language Processing, pages 3960–3969, Brus-
sels, Belgium.

Xiaoyuan Yi, Ruoyu Li, and Maosong Sun. 2017. Gen-
erating chinese plassical poems with rnn encoder-
decoder. In Proceedings of the Sixteenth Chinese
Computational Linguistics, pages 211–223, Nan-
jing, China.

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and Wenhao
Li. 2018a. Automatic poetry generation with mu-
tual reinforcement learning. In Proceedings of the
2018 Conference on Empirical Methods in Natural
Language Processing, pages 3143–3153, Brussels,
Belgium.

Xiaoyuan Yi, Maosong Sun, Ruoyu Li, and Zong-
han Yang. 2018b. Chinese poetry generation with
a working memory mode. In Proceedings of the
Twenty-Seventh International Joint Conference on
Artificial Intelligence, pages 4553–4559, Stock-
holm, Sweden.

Jiyuan Zhang, Yang Feng, Dong Wang, Yang Wang,
Andrew Abel, Shiyue Zhang, and Andi Zhang.
2017. Flexible and creative chinese poetry gener-
ation using neural memory. In Proceedings of the
55th Annual Meeting of the Association for Compu-
tational Linguistics, pages 1364–1373. Association
for Computational Linguistics.

Xingxing Zhang and Mirella Lapata. 2014. Chinese
poetry generation with recurrent neural networks.
In Proceedings of the 2014 Conference on Empiri-
cal Methods in Natural Language Processing, pages
670–680, Doha, Qatar.

30

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 31–36
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Rapid Customization for Event Extraction

Yee Seng Chan, Joshua Fasching, Haoling Qiu, and Bonan Min
Raytheon BBN Technologies, Cambridge, Massachusetts

{yeeseng.chan,joshua.fasching}@raytheon.com
{haoling.qiu,bonan.min}@raytheon.com

Abstract
Extracting events in the form of who is in-
volved in what at when and where from text,
is one of the core information extraction tasks
that has many applications such as web search
and question answering. We present a sys-
tem for rapidly customizing event extraction
capability to find new event types (what hap-
pened) and their arguments (who, when, and
where). To enable extracting events of new
types, we develop a novel approach to allow
a user to find, expand and filter event triggers
by exploring an unannotated development cor-
pus. The system will then generate mention-
level event annotation automatically and train
a neural network model for finding the corre-
sponding events. To enable extracting argu-
ments for new event types, the system makes
novel use of the ACE annotation dataset to
train a generic argument attachment model for
extracting Actor, Place, and Time. We demon-
strate that with less than 10 minutes of hu-
man effort per event type, the system achieves
good performance for 67 novel event types.
Experiments also show that the generic argu-
ment attachment model performs well on the
novel event types. Our system (code, UI, doc-
umentation, demonstration video) is released
as open source.1

1 Introduction
Event extraction is the task of identifying events
of interest with associated participating arguments
in text. For instance, given the following sentence:

S1: 21 people were wounded in Tuesday’s
southern Philippines airport blast.

Event extraction aims to recognize the two
events (Injury and Attack), triggered by the words
“wounded” and “blast” respectively. We also rec-
ognize that “21 people” and “airport” take on the
event argument roles Actor(s) involved and Place
respectively.

1github.com/BBN-E/Rapid-customization-events-acl19

For event trigger and argument extraction, state-
of-the-art approaches employ supervised machine
learning methods. These methods assume a pre-
defined event ontology and learn from a corpus
of manually labeled examples that are specific
to that ontology. For instance, the popular Au-
tomatic Content Extraction (ACE) (Doddington
et al., 2004) corpus contains 599 documents man-
ually annotated with examples for 33 event types,
such as Attack and Justice events.

However, producing such type-specific exam-
ples is labor intensive. To extract triggers and ar-
guments of a new event type, one needs to anno-
tate a large amount of training examples specific to
that new event type. For instance, ACE provides
event-type specific argument annotations, such as
Attacker for Attack events. This prevents existing
event argument examples from being useful to-
wards extracting participants of new event types,
as initially defined.

In this paper, we present a system that facilitates
rapid extension of extraction capabilities to a large
number of novel event types. We summarize the
contributions of this paper as follows:

• We present an approach to rapidly gather
event trigger examples for new event types,
with minimal human effort.
• We develop a User Interface (UI) to further

expedite and improve the time efficiency of
our approach.
• For event arguments, we show how to lever-

age annotations of existing event types and
argument roles, to train a classifier that ex-
tracts event arguments such as Actor (who
is involved), Place (where it happened) and
Time (when it happened) for the new event
types.
• We demonstrate the practical utility of our

approach by applying it on a set of 67 novel
event types.

31

Figure 1: A user interface that allows a user to provide, expand, and filter event triggers for new types. A demon-
stration video is available on github.com/BBN-E/Rapid-customization-events-acl19.

We first describe the task of event extraction in
the next section. In Section 3, we describe our ex-
traction model, how we leverage our UI to rapidly
gather event trigger examples for new event types,
and how to extract event arguments for new event
types. We present experiment results in Section 4.
We discuss related work in Section 5 before con-
cluding in Section 6.

2 Problem Definition

We focus on the problem of rapid customization
of event extractors for new event types where we
don’t have a large amount of hand-labeled data
available. Given an English sentence, we perform
event extraction using a two-stage process:

• Trigger classification: Labeling words in the
sentence with their predicted event type (if
any). For instance, in sentence S1, the ex-
traction system should label “wounded” as a
trigger of an Injury event, and label “blast” as
a trigger of an Attack event.
• Argument classification: If a sentence con-

tains predicted event triggers {ti}, we pair
each ti with each entity and time mention
{mj} in the sentence to generate candidate
event arguments. Given a candidate event ar-
gument (ti,mj), the system predicts its asso-
ciated event role (if any). For instance, given
(“wounded”, “airport”), the system should
predict the event role Place.

3 Approach

3.1 A Convolutional Neural Network Model
for Event Extraction

We developed a convolution neural network
(CNN) model to perform event trigger classifica-
tion, and another CNN model for event argument
classification used with our novel trigger and argu-
ment example collection approaches. Both CNN

Figure 2: A CNN based model for event argument
classification. WE is word embeddings. PEt and
PEa are position embeddings, capturing a token’s dis-
tance to the candidate trigger and argument respec-
tively. These position embeddings are randomly ini-
tialized and learnt during training.

models are very similar, with the argument model
incorporating more features. Hence, we will de-
scribe the argument model in detail, then provide
a summary of the trigger model.

As shown in Figure 2, the argument model con-
sists of (1) an embedding layer to encode words
and word positions in the sentence, (2) a convolu-
tion and max pooling layer to generate high-level
features from the embedding representation of the
sentence, (3) a layer which concatenates the max
pool layer and local context window around the
candidate trigger and argument, (4) followed by
the softmax function for classifying the example
into one of the target classes.

For argument classification, the input is a sen-
tence in which a trigger word and a candi-
date event argument is identified, e.g. (“relief”,
“states”) in Figure 2.

Embedding Layer encodes each word with:

• Word embeddings (WE): Given an input sen-
tence x of length t, we first transform each
word into a real-valued vector of dimension
d1 by looking up a word embedding matrix
W 1 ∈ Rd1×|V |, where V is the vocabulary.
We use word embeddings trained by Baroni

32

et al. (2014), which achieved state-of-the-art
results in a variety of NLP tasks.
• Position embeddings (PE): PEt encodes the

relative distance of each word to the trigger
word as a real-valued vector of dimension
d2 by a embedding matrix W 2 ∈ Rd2×|D|,
where D is the set of relative distances in a
dataset. W 2 is randomly initialized and learnt
during training. We similarly use PEa to en-
code relative distances to the candidate argu-
ment, by defining W 3 ∈ Rd3×|D|.

The final embedding dimension for each token is
n1 = (d1 + d2 + d3). This layer produces an
embedding representation x(1) ∈ Rn1×t when fed
with an input sentence x(0) = x.

Convolution and Max Pooling Layer: We use
a set of filters with different window sizes to cap-
ture important n-gram features from an input sen-
tence. Due to space constraints, we omit the def-
initions of the convolution and max pool layers.
We denote the max pool layer using a fixed-sized
feature vector x(2) ∈ Rn2 , where n2 is the total
number of filters.

Concatenate Layer: We select the word em-
beddings of the trigger, the candidate argument,
and their local windows. We define the window
surrounding a word, as the k=3 tokens to the left
and right of the word. We concatenate these em-
beddings to the max pool layer, to obtain a con-
catenated vector x(3).

Event Argument Classification: We have o =
W (3)x(3) +b(3), where W (3) and b(3) are param-
eters learnt in this layer. Here, o ∈ Rn3 , where
n3 is equal to the number of event argument roles
including the “NONE” label for candidate argu-
ments which are not actual event arguments to the
trigger. Given an input example x, our network
with parameters θ outputs the vector o, where the
i-th component contains the score for event role i.
To obtain the conditional probability p(i|x, θ), we
apply softmax:

p(i|x, θ) = eoi∑
j e

oj
(1)

The CNN for trigger classification is largely the
same as the above CNN for argument classifica-
tion, omitting just the argument associated fea-
tures, i.e. PEa and the argument window shown
at the bottom of Figure 2. The input is a sentence
in which a word is the candidate trigger word, e.g.
“relief” in Figure 2. The output is a softmax func-

tion predicting one of the event type or NONE, in-
dicating the candidate word is not a valid trigger
for any of the event types.

3.2 Rapid Customization for Event Trigger
Extraction

Our system enables rapidly gathering of event trig-
ger examples for new event types with minimal
human effort, aided by the UI shown in Figure 1,
using this work flow:

• Given a new target event type, the user
first provides some initial keywords. The
UI (backed by an unannotated text corpus)
presents up to 3 text snippets (sentences)
mentioning each trigger.
• The user can then easily gather additional dis-

criminative keywords using the UI via inter-
active search. By clicking on the “Find simi-
lar” button in each pane, the system will sug-
gest new event keywords that are similar to
the current set of keywords, displaying these
suggested keywords in the working pane on
the left of the UI. Our system suggests new
keywords using WordNet hyponyms and co-
sine similarity in a word embedding space.
• The user can then repeat this process for ad-

ditional event types. This can be seen in Fig-
ure 1, where each pane (column) shows an
event type name at the top, followed by event
triggers (in red) and text snippets (clickable
to expand to full sentence) mentioning these
triggers.
• The user can edit between event types by drag

and drop, moving a trigger or snippet from
one event to another. The user can also click
on “−” to remove an event, a trigger with
its snippets, or just a snippet. The user can
also click on the “More” button to the right of
each trigger, to display additional text snip-
pets containing the trigger.
• When the user is satisfied with the current

set of keywords and associated text snip-
pets, our system then performs distant super-
vision (Mintz et al., 2009) by using the oc-
currences of these keywords (their associated
text snippets) as event trigger examples for
the new event type.

In practice, over a set of 67 new event types de-
scribed in Section 4.2, the user spent an average of
4.5 minutes to provide 8.6 initial triggers and asso-
ciated text snippets. Then another 5 minutes inter-

33

acting with the UI to expand and filter the triggers,
for a total of less than 10 minutes per event type.

3.3 Argument Extraction for New Events
Current argument examples, such as those defined
in ACE, are event type specific. For instance,
the ACE corpus annotates Agent and Victim ar-
guments for Injure events, Attacker and Target ar-
guments for Attack events, etc. To decode event
arguments for new event types, one need to anno-
tate new event type specific argument examples as
training data.

In this paper, we propose a simple approach to
learn a generic event argument model to extract
Actor, Place, and Time arguments for any new
event types, without annotating new examples.
We define Actor as a coarse-grained event argu-
ment role, encompassing Agent-like and Patient-
like event roles. We map Actor-like argument
roles in ACE to a common Actor role label, and
use the Place and Time arguments in as they ap-
pear in ACE. The complete list of ACE event ar-
gument roles that we mapped to Actor are:

• Agent, Artifact, Adjudicator, Victim, Buyer,
Seller, Giver, Recipient, Org, Attacker, Tar-
get, Entity, Defendant, Person, Plaintiff,
Prosecutor

Using the above mapping approach, we train a
generic event argument classifier that can extract
Actor, Place, and Time arguments for any event
type.

4 Experiments

4.1 Verifying Event Extraction Model
We first conduct experiments to verify that our
CNN model implementation achieves compara-
ble performance to state-of-the-art CNN-based
event extraction systems (Chen et al., 2015; Boros,
2018) to ensure that it is suitable for use in our
rapid event customization approach. Following
these prior work, we use the ACE-2005 corpus,
with the same sets of 529 training documents, 30
development documents, and 40 test documents.
We use the same following criteria to judge the
correctness of our event extractions: A trigger is
correctly classified if its event subtype and offsets
match those of a reference trigger; an argument is
correct classified if its event subtype, event argu-
ment role, and offsets match any of the reference
event arguments.

Cds Cadj Cds′ Dev Test
#articles 818 618 618 274 273
#triggers 1674 1171 1258 643 752

Table 1: Counts of articles and trigger examples, in
training corpora for distant supervision (Cds), distant
supervision followed by human adjudication (Cadj),
and sampled distant supervision (Cds′), as well as cor-
pora for development (Dev) and test (Test).

Since the ratio of positive (valid) vs negative
examples is relatively skewed (for instance, most
words in a sentence are not triggers), we tried dif-
ferent weights for the positive examples: 1, 3, 5,
or 10. We tune this and other hyper-parameters
(batch size, number of CNN filters, number of
epoches) on the development documents. We also
follow (Chen et al., 2015) by using the Adadelta
update rule with parameters ρ = 0.95 and ε =
1e−6, and a dropout rate of 0.5. On the ACE test
data, our trigger model achieves an F1 score of
0.65, close to the scores of 0.66 and 0.68 reported
in (Chen et al., 2015) and (Boros, 2018) respec-
tively. Our argument model using gold triggers2

achieves an F1 score of 0.53, close to the score of
0.55 reported in (Boros, 2018).

4.2 Event Customization Evaluation
To evaluate the effectiveness of our event ex-
traction system in customizing extractors for new
event types, we present experiment results based
on the Common Core Ontologies3 (CCO). CCO
comprises 11 ontologies and is aimed at repre-
senting semantics for many domains of interests.
We sampled 67 event types that are not in exist-
ing event schemas (such as ACE and TAC-KBP4),
to evaluate how well our system does on novel
event types. As our experiment corpus C, we use
6,000 allafrica.com news articles, published be-
tween 2016-2017.

4.2.1 Trigger Classification
Given the set of 67 new event types, we leverage
our UI to obtain a set of keywords that are as-
sociated with about 3,000 trigger examples span-
ning 1,365 articles. We split these examples at the
article level via a 60/20/20 train/development/test
split. We show the statistics of our data in Table 1.
We then trained the following models:

• We trained a trigger model Tds using the
1,674 training examples Cds. Note that Cds

2Since comparisons using predicted triggers obfuscate
event argument performance.

3https://github.com/CommonCoreOntology
4https://tac.nist.gov/2017/KBP/Event/index.html

34

Type Triggers
Ceremony celebration, ceremony, parade,

commemoration, feast, ...
Criminal
Act

abduction, assassin, assault, ban-
dit, blackmail, bribery, ...

Cyber
Attack

botnet, cyber attack, cyber war,
cyber warfare, cybercrime, ...

Espionage espionage, infiltrate, infiltrator,
mole, saboteur, spy

Table 2: Sample triggers for some CCO event types.

Precision Recall F1
Tds 0.69 0.50 0.58
Tadj 0.69 0.46 0.55
Tds′ 0.62 0.40 0.48

Table 3: Event trigger results on new CCO event types.

consists of distant supervised (DS) trigger ex-
amples which are potentially noisy.
• We adjudicated Cds, obtaining a smaller set of

1,171 trigger examples Cadj , which we used
to train a trigger model Tadj .

Table 2 shows examples of triggers identified by
our in-house developer for sampled CCO events.
When evaluated on the test examples, Tds and Tadj
achieve F1 scores of 0.58 and 0.55 respectively
(shown in Table 3).

The impact of corpora size Surprisingly, the
DS model Tds (trained on the noisy distance su-
pervised Cds) performs better than the model Tadj
(trained on the manually adjudicated Cadj). One
possible explanation is because Cadj is a subset
of Cds and contains significantly fewer examples,
since only trigger examples that are judged to be
correct for the event types are kept.

Table 1 shows that Cadj contains substantially
fewer examples than Cds (1,171 vs 1,674). To ver-
ify that the larger number of training examples is a
reason for Tds’s higher performance, we randomly
down-sampled Cds to have the same number of
documents as Cadj . Using the resulting Cds′ , we
trained the trigger model Tds′ . When evaluated on
the test data, this obtains a F1 score of 0.48, which
is indeed worse than Tadj as expected, thus con-
firming our hypothesized explanation. We show
these results in Table 3.

4.2.2 Argument Extraction
We apply the mapping approach described in Sec-
ton 3.3 on the ACE data. We learn a generic ar-
gument model Agen on the mapped training data,
obtaining a F1 score of 0.50 when evaluated on the
mapped ACE test data (Table 4). For comparison,

Model Overall F1
P R F1 Actor Place Time

Agen 0.65 0.41 0.50 0.49 0.37 0.61
Aout 0.41 0.62 0.49 0.49 0.45 0.62
Table 4: Event argument results using gold triggers.

we also trained a model using the original ACE
event roles in the standard way, but report results
after mapping predicted and reference roles to a
common Actor role. We obtained a similar test F1
score of 0.50.

We note that Agen trains on the entire ACE
training data. However, the motivation for the
mapping is to learn an argument model for de-
coding on new event types not previously seen
in its training data. Hence, we conduct an addi-
tional set of leave-1-out experiments Aout. ACE
defines event types at a coarse-grained (8 types)
and a fine-grained (33 types) level. Hence in each
fold i, we omit argument examples associated with
a coarse-grained ACE event type i from training,
then proceed to calculate performance on just ar-
gument test examples associated with event type
i. We aggregate the test results over all folds in
row Aout of Table 4. We note that Aout achieves
reasonable performance when compared against
Agen, demonstrating the viability of our approach
towards extracting event arguments for previously
unseen new event types.

Using Tds and Agen as the trigger and argument
models, we decoded on our CCO test data. Of a
set of randomly selected 78 Actor, 8 Place, and 14
Time arguments predicted by Agen, we determine
that 62 Actor, 7 Place, and 10 Time arguments
are correctly predicted, for an overall precision of
0.79.

5 Related Work
Recent event extraction work usually employ neu-
ral network (NN) models, such as CNN-based
models (Chen et al., 2015; Boros, 2018) and
joint event extraction using recurrent neural net-
works (Nguyen et al., 2016a).

In event extraction using limited training data,
Nguyen et al. (2016b) proposed a two-stage NN
model for event type extension. Given a new
event type with a small set of seed examples, they
leverage examples from other event types. In an-
other work, Peng et al. (2016) developed a min-
imally supervised approach to event trigger ex-
traction by leveraging trigger examples gathered
from the ACE annotation guidelines. Ferrero et
al. (2017) presented InToEventS, an interactive
tool for building event schemas. Their work dif-

35

fers from ours in several important aspects. Their
tool produces schemas (triggers and role patterns)
of events based on clusters, whereas our tool al-
lows users to rapidly produce event trigger exam-
ples. Our tool also allows these examples to be
adjudicated, allows multiple event types to be ex-
amined in parallel in the same UI, and triggers (or
snippets) to be shifted across different event types.
Finally, we demonstrate a viable approach for ex-
tracting Actor, Place, and Time arguments of new
event types without any additional annotation ef-
fort.

A closely related direction is rapid customiza-
tion of systems for other information extraction
(IE) tasks. The ICE system (He and Grish-
man, 2015) allows a user to interactively cre-
ate new classes of entities and relations. The
main ideas are user-in-the-loop entity set expan-
sion and boostrap learning for relation extraction.
The WIZIE (Li et al., 2012) system guides users
to write rules for IE. Finally, Michael and Akbik
(2015) and Freedman et al. (2011) presented sys-
tems for interactively building relation extractors.

6 Conclusion and Future Work
We presented a system which allows a user to
rapidly build event extractors to find new types of
events and their arguments. We plan to use clus-
tering techniques to automatically discover salient
event trigger words in a new corpus, to further re-
duce human customization effort.

7 Acknowledgements
This work was supported by DARPA/I2O and U.S.
Army Research Office Contract No. W911NF-18-
C-0003 under the World Modelers program. The
views, opinions, and/or findings contained in this
article are those of the author and should not be in-
terpreted as representing the official views or poli-
cies, either expressed or implied, of the Depart-
ment of Defense or the U.S. Government. This
document does not contain technology or techni-
cal data controlled under either the U.S. Interna-
tional Traffic in Arms Regulations or the U.S. Ex-
port Administration Regulations.

References
Marco Baroni, Georgiana Dinu, and German

Kruszewski. 2014. Don’t count, predict! a
systematic comparison of context-counting vs.
context-predicting semantic vectors. In ACL-2014,
pages 238–247.

Emanuela Boros. 2018. Neural Methods for Event Ex-
traction. Ph.D. thesis, Universite Paris-Saclay.

Yubo Chen, Liheng Xu, Kang Liu, Daojian Zeng,
and Jun Zhao. 2015. Event extraction via dynamic
multi-pooling convolutional neural networks. In
ACL-IJCNLP2-2015, pages 167–176.

George R. Doddington, Alexis Mitchell, Mark A. Przy-
bocki, Lance A. Ramshaw, Stephanie M. Strassel,
and Ralph M. Weischedel. 2004. The automatic
content extraction (ace) program - tasks, data, and
evaluation. In LREC.

German Ferrero, Audi Primadhanty, and Ariadna Quat-
toni. 2017. InToEventS: an interactive toolkit for
discovering and building event schemas. In EACL
Software Demonstrations.

Marjorie Freedman, Lance Ramshaw, Elizabeth
Boschee, Ryan Gabbard, Gary Kratkiewicz, Nicolas
Ward, and Ralph Weishedel. 2011. Extreme extrac-
tion: machine reading in a week. In EMNLP.

Yifan He and Ralph Grishman. 2015. ICE: Rapid
Information Extraction Customization for NLP
Novices. In NAACL-D-2015, pages 31–35.

Yunyao Li, Laura Chiticariu, Huahai Yang, Frederick
Reiss, and Arnaldo Carreno-fuentes. 2012. Wizie:
A best practices guided development environment
for information extraction. In ACL-SD-2012, pages
109–114.

Thilo Michael and Alan Akbik. 2015. A web toolkit
for exploratory relation extraction. In ACL-IJCNLP
System Demonstration.

Mike Mintz, Steven Bills, Rion Snow, and Daniel Ju-
rafsky. 2009. Distant supervision for relation extrac-
tion without labeled data. In ACL-IJCNLP, pages
1003–1011.

Thien Huu Nguyen, Kyunghyun Cho, and Ralph Gr-
ishman. 2016a. Joint event extraction via recurrent
neural networks. In NAACL-HLT-2016, pages 300–
309.

Thien Huu Nguyen, Lisheng Fu, Kyunghyun Cho, and
Ralph Grishman. 2016b. A two-stage approach for
extending event detection to new types via neural
networks. In WRepL4NLP, pages 158–165.

Haoruo Peng, Yangiu Song, and Dan Roth. 2016.
Event detection and co-reference with minimal su-
pervision. In EMNLP-2016.

36

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 37–42
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

A Multiscale Visualization of Attention in the Transformer Model

Jesse Vig
Palo Alto Research Center

3333 Coyote Hill Road
Palo Alto, CA 94304

jesse.vig@parc.com

Abstract

The Transformer is a sequence model that for-
goes traditional recurrent architectures in favor
of a fully attention-based approach. Besides
improving performance, an advantage of us-
ing attention is that it can also help to interpret
a model by showing how the model assigns
weight to different input elements. However,
the multi-layer, multi-head attention mecha-
nism in the Transformer model can be diffi-
cult to decipher. To make the model more ac-
cessible, we introduce an open-source tool that
visualizes attention at multiple scales, each of
which provides a unique perspective on the at-
tention mechanism. We demonstrate the tool
on BERT and OpenAI GPT-2 and present three
example use cases: detecting model bias, lo-
cating relevant attention heads, and linking
neurons to model behavior.

1 Introduction

In 2018, the BERT (Bidirectional Encoder Rep-
resentations from Transformers) language repre-
sentation model achieved state-of-the-art perfor-
mance across NLP tasks ranging from sentiment
analysis to question answering (Devlin et al.,
2018). Recently, the OpenAI GPT-2 (Generative
Pretrained Transformer-2) model outperformed
other models on several language modeling bench-
marks in a zero-shot setting (Radford et al., 2019).

Underlying BERT and GPT-2 is the Trans-
former model, which uses a fully attention-based
approach in contrast to traditional sequence mod-
els based on recurrent architectures (Vaswani
et al., 2017). An advantage of using attention
is that it can help interpret a model by showing
how the model assigns weight to different input
elements (Bahdanau et al., 2015; Belinkov and
Glass, 2019), although its value in explaining in-
dividual predictions may be limited (Jain and Wal-
lace, 2019). Various tools have been developed to

visualize attention in NLP models, ranging from
attention-matrix heatmaps (Bahdanau et al., 2015;
Rush et al., 2015; Rocktäschel et al., 2016) to bi-
partite graph representations (Liu et al., 2018; Lee
et al., 2017; Strobelt et al., 2018).

One challenge for visualizing attention in the
Transformer is that it uses a multi-layer, multi-
head attention mechanism, which produces dif-
ferent attention patterns for each layer and head.
BERT-Large, for example, which has 24 layers
and 16 heads, generates 24 × 16 = 384 unique at-
tention structures for each input. Jones (2017) de-
signed a visualization tool specifically for multi-
head attention, which visualizes attention over
multiple heads in a layer by superimposing their
attention patterns (Vaswani et al., 2017, 2018).

In this paper, we extend the work of Jones
(2017) by visualizing attention in the Transformer
at multiple scales. We introduce a high-level
model view, which visualizes all of the layers and
attention heads in a single interface, and a low-
level neuron view, which shows how individual
neurons interact to produce attention. We also
adapt the tool from the original encoder-decoder
implementation to the decoder-only GPT-2 model
and the encoder-only BERT model.

2 Visualization Tool

We now present a multiscale visualization tool
for the Transformer model, available at https:
//github.com/jessevig/bertviz. The
tool comprises three views: an attention-head
view, a model view, and a neuron view. Below, we
describe these views and demonstrate them on the
GPT-2 and BERT models. We also present three
use cases: detecting model bias, locating relevant
attention heads, and linking neurons to model be-
havior. A video demonstration of the tool can be
found at https://vimeo.com/340841955.

37

Figure 1: Attention-head view for GPT-2, for the input text The quick, brown fox jumps over the lazy. The left and
center figures represent different layers / attention heads. The right figure depicts the same layer/head as the center
figure, but with the token lazy selected.

Figure 2: Attention-head view for BERT, for inputs the cat sat on the mat (Sentence A) and the cat lay on the rug
(Sentence B). The left and center figures represent different layers / attention heads. The right figure depicts the
same layer/head as the center figure, but with Sentence A→ Sentence B filter selected.

2.1 Attention-head view
The attention-head view visualizes the attention
patterns produced by one or more attention heads
in a given layer, as shown in Figure 1 (GPT-21) and
Figure 2 (BERT2). This view closely follows the
original implementation of Jones (2017), but has
been adapted from the original encoder-decoder
implementation to the encoder-only BERT and
decoder-only GPT-2 models.

In this view, self-attention is represented as lines
connecting the tokens that are attending (left) with
the tokens being attended to (right). Colors iden-
tify the corresponding attention head(s), while line
weight reflects the attention score. At the top of
the screen, the user can select the layer and one
or more attention heads (represented by the col-
ored squares). Users may also filter attention by

1GPT-2 small pretrained model.
2BERT-base, uncased pretrained model.

token, as shown in Figure 1 (right); in this case
the target tokens are also highlighted and shaded
based on attention weight. For BERT, which uses
an explicit sentence-pair model, users may spec-
ify a sentence-level attention filter; for example, in
Figure 2 (right), the user has selected the Sentence
A→ Sentence B filter, which only shows attention
from tokens in Sentence A to tokens in Sentence B.

Since the attention heads do not share param-
eters, each head learns a unique attention mech-
anism. In the head shown in Figure 1 (left), for
example, each word attends to the previous word
in the sentence. The head in Figure 1 (center),
in contrast, generates attention that is dispersed
roughly evenly across previous words in the sen-
tence (excluding the first word). Figure 2 shows
attention heads for BERT that capture sentence-
pair patterns, including a within-sentence pattern
(left) and a between-sentence pattern (center).

38

Figure 3: Examples of attention heads in GPT-2 that capture specific lexical patterns: list items (left); verbs
(center); and acronyms (right). Similar patterns were observed in these attention heads for other inputs. Attention
directed toward first token is likely null attention (Vig and Belinkov, 2019).

Figure 4: Attention pattern in GPT-2 related to coreference resolution suggests the model may encode gender bias.

Besides these coarse positional patterns, atten-
tion heads also capture specific lexical patterns,
such as those as shown in Figure 3. Other atten-
tion heads detected named entities (people, places,
companies), paired punctuation (quotes, brack-
ets, parentheses), subject-verb pairs, and other
syntactic and semantic relations. Recent work
shows that attention in the Transformer corre-
lates with syntactic constructs such as dependency
relations and part-of-speech tags (Raganato and
Tiedemann, 2018; Voita et al., 2019; Vig and Be-
linkov, 2019).

Use Case: Detecting Model Bias

One use case for the attention-head view is de-
tecting bias in the model, which we illustrate for
the case of conditional language generation using
GPT-2. Consider the following continuations gen-

erated3 from two input prompts that are identical
except for the gender of the pronouns (generated
text underlined):

• The doctor asked the nurse a question. She
said, “I’m not sure what you’re talking about.”

• The doctor asked the nurse a question. He
asked her if she ever had a heart attack.

In the first example, the model generates a con-
tinuation that implies She refers to nurse. In the
second example, the model generates text that
implies He refers to doctor. This suggests that
the model’s coreference mechanism may encode
gender bias (Zhao et al., 2018; Lu et al., 2018).
Figure 4 shows an attention head that appears to

3Using GPT-2 small model with greedy decoding.

39

perform coreference resolution based on the per-
ceived gender of certain words. The two examples
from above are shown in Figure 4 (right), which
reveals that She strongly attends to nurse, while He
attends more to doctor. By identifying a source of
potential model bias, the tool could inform efforts
to detect and control for this bias.

2.2 Model View

The model view (Figure 5) provides a birds-eye
view of attention across all of the model’s lay-
ers and heads for a particular input. Attention
heads are presented in tabular form, with rows rep-
resenting layers and columns representing heads.
Each layer/head is visualized in a thumbnail form
that conveys the coarse shape of the attention pat-
tern, following the small multiples design pattern
(Tufte, 1990). Users may also click on any head to
enlarge it and see the tokens.

Figure 5: Model view of BERT, for same inputs as in
Figure 2. Excludes layers 4–11 and heads 6–11.

The model view enables users to quickly browse
the attention heads across all layers and to see how
attention patterns evolve throughout the model.

Use Case: Locating Relevant Attention Heads
As discussed earlier, attention heads in BERT ex-
hibit a broad range of behaviors, and some may be
more relevant for model interpretation than oth-
ers depending on the task. Consider the case of
paraphrase detection, which seeks to determine if
two input texts have the same meaning. For this
task, it may be useful to know which words the
model finds similar (or different) between the two
sentences. Attention heads that draw connections

between input sentences would thus be highly rel-
evant. The model view (Figure 5) makes it easy to
find these inter-sentence patterns, which are rec-
ognizable by their cross-hatch shape (e.g., layer 3,
head 0). These heads can be further explored by
clicking on them or accessing the attention-head
view, e.g., Figure 2 (center). This use case is de-
scribed in greater detail in Vig (2019).

2.3 Neuron View
The neuron view (Figure 6) visualizes the in-
dividual neurons in the query and key vectors
and shows how they interact to produce attention.
Given a token selected by the user (left), this view
traces the computation of attention from that token
to the other tokens in the sequence (right).

Note that the Transformer uses scaled dot-
product attention, where the attention distribution
at position i in a sequence x is defined as follows:

αi = softmax
(qi · k1√

d
,
qi · k2√

d
, ...,

qi · kN√
d

)
(1)

where qi is the query vector at position i, kj is the
key vector at position j, and d is the dimension of
k and q. N=i for GPT-2 andN=len(x) for BERT.4

All values are specific to a particular layer / head.
The columns in the visualization are defined as

follows:

• Query q: The query vector of the selected
token that is paying attention.
• Key k: The key vector of each token receiv-

ing attention.
• q×k (element-wise): The element-wise

product of the query vector and each key vec-
tor. This shows how individual neurons con-
tribute to the dot product (sum of element-
wise product) and hence attention.
• q · k: The dot product of the selected token’s

query vector and each key vector.
• Softmax: The softmax of the scaled dot-

product from previous column. This is the
attention score.

Whereas the attention-head view and the model
view show what attention patterns the model
learns, the neuron view shows how the model
forms these patterns. For example, it can help
identify neurons responsible for specific attention
patterns, as discussed in the following use case.

4GPT-2 only considers the context up to position i, while
BERT considers the entire sequence.

40

Figure 6: Neuron view of BERT for layer 0, head 0 (same one depicted in Figure 2, left). Positive and negative
values are colored blue and orange, respectively, with color saturation based on magnitude of the value. As with
the attention-head view, connecting lines are weighted based on attention between the words.

Figure 7: Neuron view of GPT-2 for layer 1, head 10 (same one depicted in Figure 1, center) with last token
selected. Blue arrows mark positions in the element-wise products where values decrease with increasing distance
from the source token (becoming darker orange or lighter blue).

Use Case: Linking Neurons to Model Behavior
To see how the neuron view might provide ac-
tionable insights, consider the attention head in
Figure 7. For this head, the attention (rightmost
column) decays with increasing distance from the
source token. This pattern resembles a context
window, but instead of having a fixed cutoff, the
attention decays continuously with distance.

The neuron view provides two key insights
about this attention head. First, the attention

weights appear to be largely independent of the
content of the input text, based on the fact that
all the query vectors have very similar values (ex-
cept for the first token). Second, a small number
of neuron positions (highlighted with blue arrows)
appear to be mostly responsible for this distance-
decaying attention pattern. At these neuron posi-
tions, the element-wise product q× k decreases as
the distance from the source token increases (ei-
ther becoming darker orange or lighter blue).

41

When specific neurons are linked to a tangi-
ble outcome, it presents an opportunity to inter-
vene in the model (Bau et al., 2019). By altering
the relevant neurons—or by modifying the model
weights that determine these neuron values—one
could control the attention decay rate, which might
be useful when generating texts of varying com-
plexity. For example, one might prefer a slower
decay rate (longer context window) for a scientific
text compared to a children’s story. Other heads
may afford different types of interventions.

3 Conclusion

In this paper, we introduced a tool for visualizing
attention in the Transformer at multiple scales. We
demonstrated the tool on GPT-2 and BERT, and
we presented three use cases. For future work, we
would like to develop a unified interface to nav-
igate all three views within the tool. We would
also like to expose other components of the model,
such as the value vectors and state activations. Fi-
nally, we would like to enable users to manipu-
late the model, either by modifying attention (Lee
et al., 2017; Liu et al., 2018; Strobelt et al., 2018)
or editing individual neurons (Bau et al., 2019).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2015. Neural machine translation by jointly
learning to align and translate. In Proc. ICLR.

Anthony Bau, Yonatan Belinkov, Hassan Sajjad, Nadir
Durrani, Fahim Dalvi, and James Glass. 2019. Iden-
tifying and controlling important neurons in neural
machine translation. In Proc. ICLR.

Yonatan Belinkov and James Glass. 2019. Analysis
methods in neural language processing: A survey.
TACL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. ArXiv Computation and Language.

Sarthak Jain and Byron C. Wallace. 2019. Attention is
not explanation. CoRR, abs/1902.10186.

Llion Jones. 2017. Tensor2tensor transformer
visualization. https://github.com/
tensorflow/tensor2tensor/tree/
master/tensor2tensor/visualization.

Jaesong Lee, Joong-Hwi Shin, and Jun-Seok Kim.
2017. Interactive visualization and manipulation
of attention-based neural machine translation. In
EMNLP: System Demonstrations.

Shusen Liu, Tao Li, Zhimin Li, Vivek Srikumar, Vale-
rio Pascucci, and Peer-Timo Bremer. 2018. Visual
interrogation of attention-based models for natural
language inference and machine comprehension. In
EMNLP: System Demonstrations.

Kaiji Lu, Piotr Mardziel, Fangjing Wu, Preetam Aman-
charla, and Anupam Datta. 2018. Gender bias
in neural natural language processing. CoRR,
abs/1807.11714.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners. Techni-
cal report.

Alessandro Raganato and Jörg Tiedemann. 2018. An
analysis of encoder representations in transformer-
based machine translation. In EMNLP Workshop:
BlackboxNLP.

Tim Rocktäschel, Edward Grefenstette, Karl Moritz
Hermann, Tomas Kocisky, and Phil Blunsom. 2016.
Reasoning about entailment with neural attention.
In Proc. ICLR.

Alexander M. Rush, Sumit Chopra, and Jason Weston.
2015. A neural attention model for abstractive sen-
tence summarization. In Proc. EMNLP.

H. Strobelt, S. Gehrmann, M. Behrisch, A. Perer,
H. Pfister, and A. M. Rush. 2018. Seq2Seq-Vis:
A Visual Debugging Tool for Sequence-to-Sequence
Models. ArXiv e-prints.

Edward Tufte. 1990. Envisioning Information. Graph-
ics Press, Cheshire, CT, USA.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N. Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, Ryan Sepassi, Noam Shazeer, and Jakob
Uszkoreit. 2018. Tensor2tensor for neural machine
translation. CoRR, abs/1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Ł ukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. arXiv preprint arXiv:1706.03762.

Jesse Vig. 2019. BertViz: A tool for visualizing multi-
head self-attention in the BERT model. In ICLR
Workshop: Debugging Machine Learning Models.

Jesse Vig and Yonatan Belinkov. 2019. Analyzing
the structure of attention in a transformer language
model. In ACL Workshop: BlackboxNLP.

Elena Voita, David Talbot, Fedor Moiseev, Rico Sen-
nrich, and Ivan Titov. 2019. Analyzing multi-
head self-attention: Specialized heads do the heavy
lifting, the rest can be pruned. arXiv preprint
arXiv:1905.09418.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2018. Gender bias in
coreference resolution: Evaluation and debiasing
methods. In NAACL-HLT.

42

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 43–48
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

PostAc®: A Visual Interactive Search, Exploration,
and Analysis Platform for PhD Intensive Job Postings

Chenchen Xu1,2 Inger Mewburn1 Will J Grant1 Hanna Suominen1−4

1. The Australian National University (ANU) / Canberra, ACT, Australia
2. Data61, Commonwealth Scientific and Industrial Research Organization (CSIRO) /

Canberra, ACT, Australia
3. University of Canberra / Canberra, ACT, Australia

4. University of Turku / Turku, Finland
Firstname.Lastname@anu.edu.au

Abstract

Over 60% of Australian PhD graduates
land their first job after graduation outside
academia, but this job market remains largely
hidden to these job seekers. Employers’ low
awareness and interest in attracting PhD grad-
uates means that the term ”PhD” is rarely
used as a keyword in job advertisements; 80%
of companies looking to employ similar re-
searchers do not specifically ask for a PhD
qualification. As a result, typing in PhD to a
job search engine tends to return mostly aca-
demic jobs. We set out to make the market for
advanced research skills more visible to job
seekers. In this paper, we present PostAc®,
an online platform of authentic job postings
that helps PhD graduates sharpen their career
thinking. The platform is underpinned by re-
search on the key factors that identify what an
employer is looking for when they want to hire
a highly skilled researcher. Its ranking model
leverages the free-form text embedded in the
job description to quantify the most sought-
after PhD skills and educate information seek-
ers about the Australian job-market appetite
for PhD skills. The platform makes visible
the geographic location, industry sector, job ti-
tle, working hours, continuity, and wage of the
research intensive jobs. This is the first data-
driven exploration in this field. Both empirical
results and online platform will be presented
in this paper.

1 Introduction

The PhD was originally conceived - and is usu-
ally understood - to mark the commencement of
an academic career. Yet the degree has never been
entirely fit for purpose: as early as 90 years ago,
Dale (1930) questioned the role of academic de-
gree. But since then, both academic and industry
needs have changed dramatically.

On the academic side, changing workforce
structures over the last few decades have meant

PhD graduates have faced ever greater difficul-
ties landing academic employment (Bazeley et al.,
1996). In Australia, recent research has revealed
that up to 60% of students end up working out-
side of academia, making us ask whether their aca-
demic training is really fit for their final purpose
(McGagh et al., 2016).

Outside academia, governments are starting to
recognize the importance of highly trained grad-
uates to innovation, and are thus putting pressure
on universities to re-think PhD curricula so as to
target both academic and wider industry needs
(Mewburn et al., 2016). Yet limited data-driven
research exists to explain how having a PhD ac-
tually impacts job seeking in non-academic sec-
tors. Meanwhile, about 80% of the companies
looking to employ highly skilled researchers do
not specifically ask for PhD qualifications (Mew-
burn et al., 2018). In this paper, we demonstrate
an online platform — PostAc® (short video) —
that allows users to explore non-academic career
options at scale and is able to accommodate a dy-
namic industry environment as the model evolves.
This educational technology artefact builds on an
exploratory study developed through multiple iter-
ations of expert annotation, modelling, and empir-
ical evaluation. The final fine-tuned model is able
to correctly categorise jobs requiring PhD level
skills at an accuracy of 88%.

We make the following three key contributions:
First, we visualize probably the first job posting
data set with labels from domain experts showing
the intensity of PhD-level research skills. Second,
we present a ranking-based model that has been
successfully applied to predicting PhD skills in-
tensity from job postings, with empirical perfor-
mance evaluation. Third, we design and construct
a real-world online platform that offers PhD grad-
uates a dedicated job search functionality, as well
as helps governments, universities, and employers

43

Figure 1: Search Results in the Exploration View

in increasing the understanding of different indus-
tries’ absorption of PhD graduates.

Since its launch in late 2018, PostAc® has been
sharpening the research career thinking of over
1, 300 participating PhD students. Its analysis
scales out for over 1.2 million job advertisements
to quantify the most sought-after PhD skills and
educates information seekers about the Australian
job-market appetite for PhD skills in terms of geo-
graphic location, industry sector, job title, working
hours, continuity, and wage. Its 2017 pilot (Mew-
burn et al., 2018) revealed the hidden job market
for research talents to the government.

2 Data Set

To the best of our knowledge, no empirical stud-
ies on big data have previously been conducted in
this field, so we commenced the work by prepar-
ing our own data set. Over 1.2 million jobs post-
ings published during 2015 were collected from
Burning Glass International Inc. as the seeding
data set. Each posting came with the original job
title and job description, as well as 41 unique at-
tributes, including the employer, salary, and disci-
pline codes. As in this study we sought to under-
stand and support PhD graduates finding careers
outside academic institutions, academic jobs (uni-
versity lecturers, fellows, professors, etc.) were
removed (approximately 1%).

To facilitate the study of PhD-shaped jobs and
the training of our ranking model, human experts
manually annotated 1, 315 job postings based on
an agreed schema (details can be found in (Mew-

Proprocess

Proprocess

Database

Train Ranking
Model

Fine-tune
Linguistic Models Linguistic

Models

Ranking
Model

Prediction

shared

Exploration
View

Analytics
View

Processed
Job

Postings Predicted Ranking

PhD student
users

HDR
administration

users

Labelled Data

Raw Job
Postings

Similarity
System

Pruning
System

Modelling Component

Online Component

Figure 2: System Architecture

burn et al., 2018)) so that each job is associated
with a ‘PhDness score (Figure 1) that took val-
ues from 1 (least PhD-shaped) to 10 (most PhD-
shaped). As expected (not that many jobs require
PhD skills), the highly ranked jobs comprised only
a small proportion of the entire set. We alleviated
this imbalance in the generation of the annotated
data set by adding a simple rule-based filter af-
ter the random sampling process, resulting in jobs
fairly unlikely to require a PhD (e.g., a job paid by
the hour) being removed.

3 System Overview

The PostAc® platform is structured into two ma-
jor components based on the consideration of pro-
gressive enhancement of analytic models and plat-
form scalability (Figure 2). More specifically, the
model fine-tuning component has been separated
out and thus can run in parallel with the continuous
integration of data for the online platform com-
ponent. The general data processing pipeline is
shared between the two components to guarantee a
consistent process can be applied to data from dif-
ferent sources. After this, the fine-tuning process
is invoked on the data set to re-train the ranking
model. This process is also responsible for prepar-
ing models to handle the extraction of important
linguistic attributes, which will later be used in

44

the construction of the database (e.g., tokenization
for full-text searching and semantic embedding for
similarity measurement) and fine-tuning of word
embeddings. The online component leverages the
models from the modelling component to digest
the incoming job data set, which is mostly unla-
belled. Along with the ranking results, the jobs
are enriched with the aforementioned linguistic at-
tributes before finally being saved to the database.
Regarded as important principles in the design of
any system, the scalability and modularity are ex-
amined upon each component to be integrated.

The modelling component is built with Ten-
sorflow, where a scheduling system arranges the
fine-tuning work in a distributed manner. Mean-
while, the storage engine is built on top of Elas-
ticSearch, making it possible to handle the diges-
tion of approximately 100, 000 job postings com-
ing monthly, as well as to support future extension.

Since the database is prepared in the back-
end engine, PostAc® provides two dedicated view
flows for the needs of both PhD students and staff
members (e.g., careers advisors and curriculum
designers). PhD students can use the Exploration
view flow to search, compare, and investigate the
millions of jobs available on the system. Their
behaviors can be analyzed as implicit feedback
to further enhance the training data set, and thus
contribute to optimization of the modelling com-
ponent. Staff members from universities and aca-
demic institutions will be given access to the Ana-
lytics view, allowing them to improve their under-
standing of the potential job market for PhD grad-
uates, and high degree education policy making.

4 System Features

In addition to our major objective of revealing
those jobs most likely to require PhD skills, in
practice we needed to provide users with similar
job postings to assist them in comparing how the
recommended ones can fit better. These two tar-
gets lead to the two main modules in our system,
namely PhDness ranking model and job similar-
ity system. Acknowledging the nature that jobs of
high requirements are hard to satisfy and likely to
be reposted, we also elaborate in building a prun-
ing system to cope with it.

4.1 Ranking Model

The ranking model predicts the PhDness for given
job postings (Figure 3). This problem can be

Job
Description

1

Complementary
Attributes

1

Job
Description

2

Complementary
Attributes

2

Figure 3: Ranking Model Architecture

treated as a regression task, where each job is eval-
uated with a numeric PhDness score. Instead, as
one of targets in this project is to study what re-
quirements make a job more PhD related, we com-
pose the problem as a ranking task. That is, given
any two job postings, the model will learn to judge
the one with higher PhDness.

The backbone network for learning the repre-
sentation of a job posting is modified from the
FastText model (Joulin et al., 2017). We incorpo-
rate the following input features:

The job description provides key knowledge to
PhDness, and we process it the same as the Fast-
Text model. Given the input description text of
W words, w = [w1, w2, . . . , wW], a weight
matrix A is a lookup table over the whole vo-
cabulary that maps the individual word tokens to
their latent space representation (see Mikolov et al.
(2013)). During the seeding phase, we use a pre-
trained word embedding fine-tuned from Glove
(Pennington et al., 2014) to populate A and then
do not change it during the training of the rank-
ing model.1

The word representations are then averaged to
form the text-level representation:

Ew(xi) =
Axi
W

(1)

where xi refers to the job posting xi, i ∈
{1, 2, . . . , I}.

1The job description can contain many rare or domain-
specific words. Even though we have a very large volume of
job postings as the training corpus, it may still be insufficient
to learn the representation of those words.

45

We also add the bag of N -grams as additional
features to capture some single word-group level
knowledge, as this aspect might be blurred in
the text-level representation. First, let the bag of
N -grams be Nk = {wk, wk+1, . . . , wk+N−1}.
Then, similar to word representations (1), the N -
gram representations are also averaged:

ENk =

∑
A{Nk}
N

.

The job posting comes with other complemen-
tary job attributes, denoted as a1, a2, . . . , aA,
also providing useful knowledge to the job’s PhD-
ness (e.g., MinimumSalary or Employer), al-
though they are not always presented as the job
description. The one-hot encoding fe is applied
and the transformed attributes are normalized and
appended to the text representation to form the fi-
nal input feature, using the concatenation function
fc:

E(x) = fc(E
w, {ENk}, fe(a1, a2, . . . , aA)).

(2)
Now with the input features, the ranking task

is defined similarly to the ordinal regression set-
ting (Joachims, 2006). Given any two input job
postings xi and xj that are comparable, i 6= j,
i and j ∈ {1, 2, . . . , I}, yi 6= yj , the target value
(i.e., PhDness ranking) is yi = sign(yi − yj). We
apply the hinge loss here as our focus is to learn
the comparative rank, and the model then is to
minimize, using the final input feature (2):

` =
∑

i,j,yi 6=yj

max(0, 1−yif2(E(xi)−E(xj)+ b))

where b is the bias term and f2 is a two-layer neu-
ral network. The second layer has a linear acti-
vation function as the sign is for the hinge loss
to learn.

We evaluate the ranking model by using the K-
fold cross validation (K = 5 specifically) on
the human annotated training data. Two evalua-
tion measures are used to justify the performance
from different perspectives: First, the normalized
discounted cumulative gain (NDCG) at t (Järvelin
and Kekäläinen, 2002) is a widely used measure-
ment for ranking quality in information retrieval
measures the usefulness of the top t rated items.
We adopt it with t to be 15% of the total num-
ber of testing examples. Second, the normalized

Kendall’s τ distance (Kendall, 1938) is calculated
to measure the overall ranking quality by looking
at the number of discordant pairs.

Our fine-tuned model is able to achieve 0.89
for the NDCG at t score and 0.13 for the normal-
ized Kendall’s τ distance, showing evidence that
the model can both find the most PhD intensive
job postings overall and also perform well enough
in comparing the PhDness among any randomly
chosen pair of job postings.

As for the inference stage, first the model is
used to predict a grid of comparative scores for all
pairs of candidate job postings. The final predic-
tion of the PhDness score for a given posting is the
average of its relative scores against the other post-
ings.

4.2 Similarity System
In addition to the PhDness score prediction from
the ranking model, the platform also recognizes
similar job postings to help users to perform
comparisons. Analogously to the ranking model
discussed above, we also incorporate both the
text features and complementary attribute fea-
tures here. However, an unsupervised approach is
adopted due to the following considerations: first,
the similarity system should not be bounded by the
annotation set and thus generalize easily to all job
postings; and second, the speed.

Specifically, the term frequency × inverse doc-
ument frequency (TF×IDF) features are extracted
from the job description text and other textual
attributes (e.g., Employer). Numerical attributes
(e.g., Salary) are categorized and attached to the
feature list with a small normalization factor. The
final similarity scoring is calculated using the Eu-
clidean distance.

4.3 Pruning System
The preliminary research reveals a problem that
some jobs are re-posted for a few times during the
period until being fulfilled. One of the key mod-
ules in PostAc® is its pruning system that removes
those duplicated postings. The module adopts a
heuristic approach to avoid laborious annotation
by hand.

For any two job postings from the same em-
ployer published within 4 to 16 weeks, a duplica-
tion score is calculated for checking. Here we first
have the difference in the publish date d as one in-
put. A similarity score s is also evaluated based on
the aforementioned similarity system. Similarly to

46

Xia et al. (2010), the duplication score d′ is de-
fined as

d′ =
s

αd
.

The publish date difference in the denominator
(with the normalizer α) acts as a factor that pe-
nalizes when two job postings are too far away
from each other. Later, the postings whose dupli-
cation score is larger than a given threshold are
filtered out.

5 Implementation

The PostAc® platform is implemented as a web
tool, with the back-end natural language process-
ing systems responsible for ranking, similarity
measurement, and pruning built on Python. The
front-end website for storing and managing data
and users is built using the PHP programming lan-
guage. This separation enables the interface to be
usable from lightweight environment and also sup-
port large amount of users. At the back-end side,
two major optimizations are applied:

Ranking Model: Although by the nature of a
pairwise ranking model the prediction takesO(I2)
time complexity, it is worth noting that the predic-
tion of each individual posting is performed inde-
pendently of other postings. The fine-tuned rank-
ing model is serialized and replicated for a few
copies. The platform now runs a few prediction
process in parallel and this can also easily scale up
to future extensions.

Similarity System: The output TF×IDF fea-
ture matrix can still have a fair number of di-
mensions even with a pruned vocabulary. Finding
the nearest neighbors in this big set can be time-
consuming. We saved the extracted feature matrix
on a KD-tree data structure (Bentley, 1975) and
this is progressively maintained as new data comes
into the system. Once the KD-tree is up to date,
the nearest neighbor search is performed right af-
ter with the results being saved. This incurs a rea-
sonably large cost up front but once made avail-
able, it greatly reduces the processing time for the
front-end service. The separation of two compo-
nents makes it possible to perform the process at
the back-end side and push the results to the front-
end, without interfering it in most of the time.

With regard to the front-end side, as aforemen-
tioned, the PostAc® platform contains two major
usage ows: Exploration View for PhD graduates
to look at individual job advertisements and Ana-
lytics View for policy makers and supervisors who

are interested in demand for graduates in different
industry sectors.

5.1 Exploration View

Individual users seeking PhD-shaped jobs can ac-
cess the exploration view flow via a search box.
The users can enter a few keywords related to the
fields of research they are interested in, or words
that relate to their existing skill set. The system
ranks all jobs based on the combined score from
both the keyword matching and the PhDness score
predicted by the ranking model.

The search results (Figure 1) are displayed as
a list of job titles that can be further refined by
adding more filters. A user can click on a job
posting to navigate to the page with more detailed
information. In this page, complementary job at-
tributes are provided along with top-ranked similar
jobs from the similarity system. Users’ navigation
and click-through behaviors are recorded as feed-
back to complement the seeding training data and
fine-tune the ranking system in the future.

5.2 Analytics View

One of the main aims of the PostAc® platform is
to improve PhD graduate awareness of the demand
for their research skills. Aggregated data can also
help universities and policy makers to target policy
interventions and education efforts appropriately.
The Analytics View is designed to help users by
showing a range of visualisations of the data set
characteristics as well as the key factors our rank-
ing system has been able to discover from the data.

The Time Series Graph visualizes the seasonal
changes in the demand for jobs in various in-
dustries, reflecting the industry and market level
changes, month by month, over a year.

The Distribution Graph (Figure 4) visualizes
how the PhD-shaped jobs are distributed among
different areas. Users from government agen-
cies can use these graphs to support regional pol-
icy making.

The Skill Set Graph visualizes the commonly
requested skill sets and abilities for jobs requiring
PhD level skills.

6 Conclusion

In this paper, we have presented PostAc®, an
evolving platform that makes high level research
jobs in the Australian economy more visible. The
platform is based on evaluating a human experts’

47

Figure 4: Distribution of PhD Jobs in the Healthcare
Sector by a Region: urban Australian areas tend to call
for more PhD graduates for healthcare jobs.

hand-annotated data set and its results give em-
pirical evidence of the underlying ranking model
being scalable and effective. Currently, the on-
line platform enables a visual-interactive search,
exploration, and visualisation of the findings from
our machine learning model. This platform will
help boost the awareness of the value of PhD level
skills and better match PhD graduates to great jobs
outside academia.

Acknowledgments

This research partnership of the ANU and
Data61/CSIRO was supported by the ANU Dis-
covery Translation Fund 2.0, Australian Govern-
ment Department of Industry, Innovation and Sci-
ence (DIIS), On Prime program, and data provided
by Burning Glass International Inc. We gratefully
acknowledge the funding from the Data61/CSIRO
for the first author’s PhD studies.

References
Pat Bazeley, Lynn Kemp, Kate Stevens, Christine As-

mar, Carol Grbich, Herb Marsh, and Ragbir Bhathal.
1996. Waiting in the Wings: A Study of Early Career
Academic Researchers in Australia. Canberra, Aus-
tralia: Australian Government Publishing Service.

Jon Louis Bentley. 1975. Multidimensional binary
search trees used for associative searching. Com-
munications of the ACM, 18(9):509–517.

Edgar Dale. 1930. The training of Ph.D.’s. The Jour-
nal of Higher Education, 1(4):198–202.

Kalervo Järvelin and Jaana Kekäläinen. 2002. Cumu-
lated gain-based evaluation of IR techniques. ACM
Transactions on Information Systems, 20(4):422–
446.

Thorsten Joachims. 2006. Training linear SVMs in lin-
ear time. In Proceedings of the 12th ACM SIGKDD
International Conference on Knowledge Discovery
and Data Mining, KDD ’06, pages 217–226. New
York, NY, USA: Association for Computing Ma-
chinery.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2017. Bag of tricks for efficient
text classification. In Proceedings of the 15th Con-
ference of the European Chapter of the Association
for Computational Linguistics: Volume 2, Short Pa-
pers, pages 427–431. Valencia, Spain: Association
for Computational Linguistics.

Maurice G. Kendall. 1938. A new measure of rank cor-
relation. Biometrika, 30(1/2):81–93.

John McGagh, Helene Marsh, Mark Western, Pe-
ter Thomas, Andrew Hastings, Milla Mihailova,
and Matt Wenham. 2016. Securing Australias Fu-
ture: Review of Australia’s Research Training Sys-
tem. Melbourne, Australia: Australian Council of
Learned Academies.

Inger Mewburn, Will J. Grant, Hanna Suominen, and
Stephanie Kizimchuk. 2018. A machine learning
analysis of the non-academic employment opportu-
nities for Ph.D. graduates in Australia. Higher Edu-
cation Policy, pages 1–15.

Inger Mewburn, William Grant, Hanna Suominen, and
Stephanie Kizimchuk. 2016. What do non academic
employers want? A critical examination of ’PhD
shaped’ job advertisements for doctoral employa-
bility. Society for Research into Higher Educa-
tion (SRHE) Annual International Conference 2016,
pages 1–3.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed repre-
sentations of words and phrases and their compo-
sitionality. In Proceedings of the 26th International
Conference on Neural Information Processing Sys-
tems — Volume 2, NIPS’13, pages 3111–3119. Lake
Tahoe, NV, USA: Curran Associates Inc.

Jeffrey Pennington, Richard Socher, and Christopher
Manning. 2014. Glove: Global vectors for word
representation. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing (EMNLP), pages 1532–1543. Doha,
Qatar: Association for Computational Linguistics.

Chaolun Xia, Xiaohong Jiang, Sen Liu, Zhaobo Luo,
and Zhang Yu. 2010. Dynamic item-based recom-
mendation algorithm with time decay. In 2010 Sixth
International Conference on Natural Computation,
volume 1, pages 242–247. Piscataway, NJ, USA: In-
stitute of Electrical and Electronics Engineers.

48

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 49–57
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

An adaptable task-oriented dialog system for stand-alone embedded
devices

Long Duong, Vu Cong Duy Hoang, Tuyen Quang Pham, Yu-Heng Hong,
Vladislavs Dovgalecs, Guy Bashkansky, Jason Black,
Andrew Bleeker, Serge Le Huitouze, Mark Johnson

Oracle Digital Assistant
first.last@oracle.com

Abstract

This paper describes a spoken-language end-
to-end task-oriented dialogue system for small
embedded devices such as home appliances.
While the current system implements a smart
alarm clock with advanced calendar schedul-
ing functionality, the system is designed to
make it easy to port to other application do-
mains (e.g., the dialogue component factors
out domain-specific execution from domain-
general actions such as requesting and updat-
ing slot values). The system does not require
internet connectivity because all components,
including speech recognition, natural language
understanding, dialogue management, execu-
tion and text-to-speech, run locally on the em-
bedded device (our demo uses a Raspberry Pi).
This simplifies deployment, minimizes server
costs and most importantly, eliminates user
privacy risks. The demo video in alarm do-
main is here youtu.be/N3IBMGocvHU.

1 Introduction

Communicating directly using voice is a more nat-
ural way to interact with computer and household
appliances. People already interact with smart ap-
pliances such as microwaves and alarm clocks us-
ing voice control. However, these devices need
to connect to cloud services to process user re-
quests. We focus on building entire task-oriented
dialog applications on cheap edge devices such as
the Raspberry Pi 1 which operate independently
of any internet connection. This approach: a) en-
sures user privacy, b) abolishes server costs, and
c) eliminates network connection latency. Special-
ized neural network chips and generic embedded
CPU devices are becoming significantly cheaper,
making voice interfaces price-competitive with
display-based controllers. Our vision is that in the
next few years, AI-powered devices will be in ap-

1https://www.raspberrypi.org/

pliances throughout everyone’s home. This paper
describes an end-to-end smart alarm clock demo
run offline on a small device as a proof of concept
for our vision. The approach proposed in this pa-
per is general and easily adapted to different lan-
guages and domains.

We describe how we meet the challenges of im-
plementing a complete speech-based task-oriented
dialogue system on a small embedded device with
low memory and computational power. Our de-
sign makes no assumption on the availability of
peripherals such as a display screen or buttons for
user responses. Just as in many cloud-based di-
alogue systems, our system is a pipeline of stan-
dard components, including a wake word detec-
tor, automatic speech recognition (ASR), natu-
ral language understanding (NLU), dialogue man-
ager (includes dialogue state tracker and dialogue
policy, and execution), natural language gener-
ator (NLG) and text-to-speech (TTS). Figure 1
shows the overall organisation of these compo-
nents. ASR converts spoken user requests to text,
which is then fed to NLU components consisting
of a Named Entity Recogniser (NER) and a Se-
mantic Parser. The NLU output is a logical form
(LF1) which encodes the current user request. The
Dialogue State Tracker (DST) integrates LF1 with
the previous dialogue states and dialog acts to pro-
duce an updated dialogue state (LF2). While LF1
only represents a single dialogue turn, LF2 rep-
resents the entire dialogue prior to this point in
time. The domain-specific Execution component
executes LF2, and the results of Execution are re-
turned to Dialog Policy component and also saved
to Context Stack which contains all intermedi-
ate results. The Dialogue Policy uses the execu-
tion results and LF2 to produce a dialogue act re-
sponse (LF3), which is also recorded in the Con-
text Stack. LF3 is used to generate output to the
user which is converted to speech using a Text-To-

49

Speech (TTS).
Given the hardware constraints of embedded

devices, we decided to use rule-based approaches
where possible, and to reserve classifier-based and
deep learning approaches for components such as
the NER and the Semantic Parser, where linguis-
tic variation and construction would be difficult to
capture with hand-written rules. We use a rule-
based Dialogue Manager and a template-based
NLG for this reason. To make it easier to adapt
the system to new domains and languages, the
domain-specific code is concentrated in the ASR,
NER, Semantic Parser, Execution and NLG com-
ponents. The system is implemented in C++11 to
simplify deployment on embedded devices.

2 Logical Forms Design

Information is exchanged between components
using representations that we call Logical Forms
(LFs). A variety of logical forms have been
proposed in the literature, such as lambda.DCS
and the lambda calculus (Zettlemoyer and Collins,
2005). Intent plus slots representations are stan-
dard in many dialog systems, but they cannot ex-
press complicated scenarios involving condition-
als, nested structures, multi-intents and quantifier
scope.

Our LFs are JSON objects2 that we call Topic-
Action Attribute-Value Logical Forms (TAVLFs).
These are attribute-value structures (Johnson,
1988) whose organisation is inspired motivated by
CUED standard dialog acts (Young, 2007).

At the top level, TAVLFs have a bipartite struc-
ture consisting of topic and action attributes. The
topic identifies the primary entities under discus-
sion, while the action specifies what the user re-
quests the system to do with these entities. For
example, the request Move my work out alarm to-
morrow 1 hour earlier is translated to TAVLF:

1 {"topic": { "name": "work out"},
2 "action": { "edit": ‘
3 {"offset_direction": "

earlier",
4 "offset_time": "1 hour"}}}

Here the topic attribute selects calendar entries
that satisfy ”name”:”workout”. The action attribute
specifies what the system should do to the Topic
entities; in this case apply the edit action with ar-
guments offset time and offset direction.

2www.json.org

TAVLFs can express complicated use cases
such as multi-intent requests, nested finds, condi-
tional requests, as well as quantifiers and superla-
tives. The bipartite separation into Topic and Ac-
tion makes it easier to handle follow-up requests,
since it is likely that the next utterance will involve
the previous topic. We explain how we handle
follow-up utterances in more detail in Section 5.
Thus we demonstrate that embedded systems, de-
spite limitations in both memory and computa-
tional power, can handle complicated utterances.

3 Wake Word Detection and Automatic
Speech Recognition

We use similar technology for both Wake Word
detection and ASR. After a wake word is de-
tected, the ASR is activated to convert the follow-
ing speech into text. The user needs to wake the
system for each utterance, except for cases where
the system requests a response from user; e.g., no
wake work is required when system asks for ad-
ditional information. Porting an ASR system to a
small embedded device is challenging. After eval-
uating a variety of approaches we decided to use
a DNN-based acoustic model together with a fast
HMM-based language model decoder. This per-
mits us to easily customise the ASR vocabulary for
a new domain. We developed a customised ver-
sion of Kaldi (Povey et al., 2011) which achieves
real time factor of 0.23 even on a small embedded
device. The ASR also provides a confidence score
based on the HMM posterior probability, which
the Dialog Manager uses to detect likely cases of
ASR failure.

4 Natural Language Understanding

The Natural Language Understanding (NLU)
component translates each utterance into its corre-
sponding logical form (LF1). There are two steps
to this process: Named Entity Recognition (NER)
and seq2seq based Semantic Parsing. First, the
user utterance is NER-tagged and delexicalised
(i.e., named entities are replaced with their named
entity types). The delexicalized utterance forms
the input to the seq2seq semantic parser, which
produces delexicalized logical form. This logical
form is relexicalized (i.e., the named entity types
are replaced with the original named entities) to
produce the output logical form (LF1). Figure 2
shows the NLU pipeline. We use a CRF tagger
based on CRFSuite (Okazaki, 2007) for NER, and

50

ASR NER Semantic
Parser

Dialog
State
Tracker

LF1
prev. dialog state(s) and
prev. dialog act (s)

new dialog state (LF2) Dialog
Policy Execution

LF2

Context
Stack

result(s)

UI Generator

dialog act (LF3)

 Update with LF3

Entity
ResolutionTTS

NLU

NLG

Wake
word

Figure 1: End-to-end embedded dialogue system architecture.

User make my work out alarm 1 hour earlier
NER make my <NAME>work out</NAME>alarm <TIME SPAN>1 hour</TIME SPAN>earlier
Delex make my <NAME>#0 alarm <TIME SPAN>#0 earlier

Seq2seq {”action”:{”edit”:{”offset direction”:”earlier”,”offset time”:”<TIME SPAN>#0”}},
”topic”:{”name”:”<NAME>#0”}}

Relex (LF1) {”action”:{”edit”:{”offset direction”:”earlier”,”offset time”:”1hour”}},
”topic”:{”name”:”work out”}}

Figure 2: The NLU pipeline that maps utterances to Logical Forms (LF1).

employ a deep learning seq2seq model for Seman-
tic Parsing.

4.1 Semantic Parser

Our Semantic Parser is based on the dual-RNN
sequence-to-sequence architecture with attention
originally proposed for neural machine transla-
tion (Bahdanau et al., 2014). We use it to gener-
ate Logical Forms as in Dong and Lapata (2016).
The seq2seq model also generates a log loss con-
fidence score, which the Dialog Policy Manager
uses to detect likely Semantic Parser errors (see
section 5).

It is challenging to fit a seq2seq model into
a small embedded device. We solve this prob-
lem by extensive hyper-parameter tuning using
the successive halving process proposed in Hyper-
band (Li et al., 2016). This approach enables us to
explore a large number of hyper-parameter config-
urations quickly. We randomly generate around a
thousand different configurations, which vary the
source and target cell architectures (e.g. LSTM,
GRU), number of layers, learning rates, drop out
rate and mini batch size. We measure memory us-
age and latency as well as accuracy on the devel-
opment set. We select the hyper-parameter con-

figuration with the highest dev set accuracy that
satisfies our memory constraints and has the ac-
ceptable latency (usually 100 ms/utterance). Mod-
els are trained using Tensorflow on a GPU cluster.
Trained models are quantized and exported to our
C++ runtime.

One of the challenges in building a semantic
parser is obtaining suitable training data. We adapt
and extend the crowd-based “overnight” approach
of Wang et al. (2015) by adding an additional val-
idation task, where other crowd workers validate
the paraphrases from the paraphrase task. We run
the validation task in real-time so we can provide
on-line bonuses or penalties, which dramatically
reduces spam and improves paraphrasing quality.

5 Dialogue Management

Dialogue management is central to any task-
oriented dialog system. It is responsible for Di-
alogue State Tracking, executing the task (Exe-
cution), and determining how to interact with the
user (Dialogue Policy).

5.1 Dialogue State Tracking

The Dialogue State Tracking (DST) component
combines LF1 with information from the dialogue

51

is_follow_up

LF1 (semantic representation by NLU)

- Reset dialogue states
- set LF2 = LF1

No

is_request_entity
- Lookup attributes
- Resolve any ambiguity
- Update the attribute’s values

Yes

is_self_correction Yes

is_update_attribute - Update the attribute’s values
Yes

is_confirmation - Add the confirmation signalsYes

Unknown intent
(for fallback policy)

Yes

No

No

No

No

LF2

LF2

LF2

LF2

LF2

- Look up attributes if missing
- Resolve any ambiguity
- Update the attribute’s values
- Add correction signals

LF2

Figure 3: Logics for rule-based DST.

context (previous dialogue states and acts) to com-
pute a Logical Form representation LF2 of the en-
tire dialogue so far. We adopted a rule-based ap-
proach for the DST component because it: a) is
easy to implement, b) requires no data, c) is ex-
tremely fast at run time, and d) provides an easy
way to incorporate domain-specific information.

The high-level organisation of our rule-based
DST is shown in Figure 3 (Appendix A.1). First,
the DST distinguishes between follow-up and root
(or non-follow-up) utterances by inspecting the
Semantic Parser output LF1. If the utterance is
a root utterance, the DST sets LF2 to be LF1
and resets the current dialogue state context to
start a new conversation. The DST distinguishes
four different kinds of follow-up utterances by in-
specting LF1: is request entity, is self correction,
is update attributes, and is confirmation. Sec-
tion A.1 presents an example of how the DST
functions in alarm clock domain.

5.2 Execution and Dialogue Policy

In our system, execution and dialogue policy work
closely together. The Dialogue Policy component
takes LF2 as input and passes it to the Execution
component. The Execution component is respon-
sible for actually executing user requests; in our
system it translates them into SQL queries and ex-
ecutes against a database, producing a set of ex-
ecution results. The Execution component inter-

acts with Named Entity Resolution if any named
entity string in LF2 is not exactly matched in the
database for retrieval. For example, the named
entity ”7 pm” must match the time 19:00 in the
database.

Our system consists of a largely application-
independent Dialogue Policy component and an
application-specific Execution component. Exe-
cution is typically domain specific because it re-
quires specific knowledge about the application.
The Dialogue Policy component uses the execu-
tion results to generate the system response, which
is encoded as a LF3. The Dialogue Policy com-
ponent is associated with a set of types that en-
code the different kinds of information that the
Execution component can return. For instance,
if the execution is successful, the Dialog Policy
needs to inform the user of the Execution results.
But if there are execution errors (e.g., because the
request is lacking essential information) the Di-
alogue Policy component may request additional
information or clarification. Our Dialog Policy
component uses 8 domain-independent execution
return types (see our table 1 in Appendix A for
more detail). For each type, the dialogue act (LF3)
is constructed accordingly. By separating the Dia-
logue Policy and Execution components we make
it easier to port our system to new applications.

We use the NLU and ASR confidence scores to
trigger fall-back dialog policies that vary based on
the kind of error we believe has occurred. For ex-
ample, the system might ask user to speak more
clearly if ASR confidence score is low, or to ex-
press the request differently if NLU score is low.
We set the thresholds for each component using
development data. The Dialog Policy component
is also update the Context Stack, which stores all
the information from LF2, the execution results,
and the dialog act for current dialog turn.

6 Other components

6.1 UI Generator

Our modular design includes a User Interface (UI)
component, which is responsible for the user in-
terface. The UI depends on the device hardware,
e.g., touch screen, buttons etc. Because our cur-
rent system uses speech input and output, the UI
component directly passes the dialog act (LF3) to
the NLG component.

52

Dialog Act Template 1 Template 2 ...

{inform:{count:0,when date:X}} There aren’t any alarm for {X} no alarm for X
{inform:{count:C,when date:X}} There are {C} alarms for {X} ...
{request:{confirm:{}}} Are you sure? Can you confirm?

Figure 4: Example NLG templates for alarm clock domain. Our templates are delexicalized; C, X, Y are variables
which will be replaced with real values. Multiple variants are provided for each schematic LF to increase the
diversity of the generated output.

6.2 Natural Language Generator
We use a template-based NLG, which translates
dialog acts (LF3) produced by the Dialog Policy
component into text that the TTS system can pro-
nounce. Figure 4 shows some example templates.
We use a hash function for efficient template re-
trieval. If multiple templates are found, we prefer
the best match. For example, the dialog act in-
form:{count:0,when date:tomorrow} matches the
first two templates in Figure 4, so the first one
is selected because the value of count attribute
matches exactly.

6.3 Text to Speech
We need a TTS engine that is lightweight and fast
enough to run on embedded devices. Open source
TTS systems based on deep learning technology,
such as Tacotron2 (Shen et al., 2017) and Deep-
Voice3 (Ping et al., 2017), produce high quality
output but very slow on embedded devices. Other
open source TTS that use HMM-based synthetic
voices, such as MaryTTS (Charfuelan and Steiner,
2013) or Mimic 3, are fast but either of low quality
or are difficult to port to embedded devices. We
decided to use a commercial embedded TTS solu-
tion targeted at embedded devices.

7 Case Study: Alarm Clock Showcase

We built an alarm clock application to showcase
our system. The application supports features such
as create, delete, cancel, edit and snooze alarm,
with attributes such as date, time, day and name.
It also provides more advanced features such as
conditionals, negation and multi-intent requests.
It handles a variety of dialog use cases, such as
request for confirmation, request for additional in-
formation, provide suggestions and inform about
invalid values.

The alarm bot is deployed on a Raspberry Pi
3+ with Cortex-A53 CPU at 1.4GHz clock rate

3https://mimic.mycroft.ai/

and 1GB Ram, which currently costs $35 not in-
cluding microphone and speaker. The NER and
Semantic Parser is trained on ≈11k paraphrases
of more than 1k Logical Forms, which we col-
lected using our extension of the “overnight” pro-
cess. The exact match accuracy on development
set which is randomly sampled from training set is
85%. Hyper-parameter tuning using HyperBand
searched 400 configurations to find the highest ac-
curacy model with a maximum latency of 100ms
on the target device. The Semantic Parser model
size is 2.5 MB, while the NER model size is 0.4
MB; these consume 15.6 MB and 0.4 MB RAM
at run time respectively. The ASR acoustic model
size is 7.9 MB and SLM takes 47MB on disk. End
to end examples with intermediate results can be
found in Appendix A.3

8 Conclusion and Future Work

We presented a full end-to-end task-oriented dia-
log system that can be deployed on a cheap em-
bedded device. The proposed framework is suf-
ficiently general for rapid adaptation to new do-
mains and languages. We demonstrate the capabil-
ities of our system with an alarm clock application
that can understand complicated user requests and
handle complex dialog use cases. In future work
we plan to improve the robustness of the whole
pipeline by using pretrained embeddings for se-
mantic parser, and investigate combining the NER,
Semantic Parser and DST into a single deep learn-
ing model.

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. CoRR.

Marcela Charfuelan and Ingmar Steiner. 2013. Expres-
sive speech synthesis in MARY TTS using audio-
book data and EmotionML. In Interspeech, pages
1564–1568, Lyon, France.

53

Li Dong and Mirella Lapata. 2016. Language to logical
form with neural attention. In ACL, pages 33–43.

Mark Johnson. 1988. Attribute Value Logic and The
Theory of Grammar. Number 16 in CSLI Lecture
Notes Series. Chicago University Press, Chicago.

Lisha Li, Kevin G. Jamieson, Giulia DeSalvo, Afshin
Rostamizadeh, and Ameet Talwalkar. 2016. Ef-
ficient hyperparameter optimization and infinitely
many armed bandits. CoRR.

Naoaki Okazaki. 2007. Crfsuite: a fast implementation
of conditional random fields (crfs).

Wei Ping, Kainan Peng, Andrew Gibiansky, et al. 2017.
Deep voice 3: 2000-speaker neural text-to-speech.
CoRR.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, et al.
2011. The kaldi speech recognition toolkit. In IEEE
2011 Workshop on Automatic Speech Recognition
and Understanding.

Jonathan Shen, Ruoming Pang, Ron J. Weiss, et al.
2017. Natural TTS synthesis by conditioning
wavenet on mel spectrogram predictions. CoRR,
abs/1712.05884.

Yushi Wang, Jonathan Berant, and Percy Liang. 2015.
Building a semantic parser overnight. In ACL, pages
1332–1342, Beijing, China.

S. Young. 2007. Cued standard dialogue acts. Techni-
cal report, Cambridge University Engineering Dept.

Luke S. Zettlemoyer and Michael Collins. 2005.
Learning to map sentences to logical form: Struc-
tured classification with probabilistic categorial
grammars. In Proceedings of the Twenty-First Con-
ference on Uncertainty in Artificial Intelligence,
pages 658–666.

54

A Appendices

A.1 Dialog state tracking examples
After recognizing an utterance as a follow-up, we
further classify the utterance into the following
categories:

Request Entity is for utterances which provide
a value, but do not specify the attribute or slot the
provided value fills. The dialog state tracker de-
cides which attribute the value belong to based on
an ontology learned from semantic parser training
data. For example.
1. User: Wake me up tomorrow
2. System: what time?
3. User: 8 am

This utterance is classified as request entity be-
cause it does not specify which attribute or slot
the entity “8 am” fills. The corresponding logical
form (LF1) for that utterance is:

1 {"action":{"follow_up":{"entity":
"8 am"}}}

Self Correction is for utterances where the user
corrects values they have previously supplied. For
example:
1. User: Wake me up tomorrow at 8 am.
2. System: Done, you alarm at 8am tomorrow

has been set.
3. User: Sorry make it 9 am please

The last utterance will be recognised as a self
correction by the Semantic Parser. We execute this
by rolling back the database execution, modifying
the required value (i.e. from 8 am to 9 am) and
executing the new logical form LF2. The corre-
sponding logical form (LF1) is:

1 {"action":{"follow_up":{"entity":
"9 am","self_correction":true}
}}

And LF2 is:

1 {"action":{"create":{"when_day":"
tomorrow","when_time":"9 am","
self_correction":"true"}}}

Update Attribute is for utterances where the se-
mantic parser can identify which attribute the user
is referring to. For example,
1. User: create an alarm for tomorrow at 10 am.
2. System: Done, your alarm has been created.

3. User: call that alarm “meeting with Julie”.
The semantic parser can extract the attribute

(i.e. name in this example) and associated value
(i.e. meeting with Julie) from the last utterance.
Updating an attribute is a standard operation in
dialog state tracking. The corresponding logical
form (LF1) is:

1 {"action":{"follow_up":{"
attribute":{"name":"meeting
with Julie"}}}}

Confirmation is for utterances that semantic
parser recognizes as a confirmation. The last ut-
terance in the following dialog is an example of a
confirmation:
1. User: Delete my alarm for tomorrow morning
2. System: You have 2 alarms for tomorrow, do

you want to delete those?
3. User: Yes, do it.

The corresponding logical form (LF1) is

1 {"action":{"follow_up":{"
confirmation":"yes"}}}

A.2 Execution return types
See table 1.

A.3 End-to-end examples

1 User: hey alarm clock, wake me up
tomorrow

2 LF1 = LF2 : {"action":{"create":
{"when_day":"tomorrow"}}}

3 Execution: {"execution_results":[
{"action":"create","error_code
":1,"error_attributes":["
when_time"],"results":[]}]}

4 LF3: {"policy":[{"request":{"
when_time":{}}}]}

5 NLG: When would you like it to
ring?

6 -------------------
7 User: 6 am please
8 LF1: {"action":{"follow_up":{"

entity":"6 am"}}}
9 LF2: {"action":{"create":{"

when_day":"tomorrow","
when_time":"6 am"}}}

10 Execution: {"execution_results":[
{"action":"create","error_code
":0,"error_attributes":[],"

55

Return Types Description

Execution success Execution finishes successfully.

Expect zero got more
Execution expects no entity but got more. For example, create
database entries that already exist.

Expect one got more
Execution expects exactly one entity but got more. For example,
edit alarm by name but there are two alarms having the same
name.

Expect at least one
got zero

The value is not found. For example, query alarms by name but
there aren’t any alarms matching that name

Invalid values The value is invalid. For example, create an alarm in the past.

Missing attributes
Missing attributes for execution. For example, create an alarm
without specifying time.

Yes/no confirmation
Execution pauses to wait for confirmation from user for critical
actions such as purchase, delete etc.

Execution fail
Execution fail for unknown reasons. This is useful for fallback
policy.

Table 1: Execution return types.

results":[{"id":"1","when_date
":"2019-04-11","when_time":"06
:00"}]}]}

11 LF3: {"policy":[{"inform":{"
action":"create","when_date":"
2019-04-11","when_time":"06:00
"}}]}

12 NLG: Your alarm will go off at 06
:00 tomorrow.

LF1 and LF2 in line 2 above are the same be-
cause this is the start of a dialog, so the DST just
passes through the LF1. The execution (line 3) re-
turns error code = 1 (missing attribute). The user
provides the missing information (line 7) and exe-
cution is successful (error code = 0 in line 10).

The following is a more complicated dialog
with negation and self correction.

1 User: hey alarm clock, could you
create alarms called feed the
dog for every weekdays except
Friday at 8 am

2 LF1 = LF2 : {"action":{"create":
{"interval":"1w","name":"feed
the dog","when_day":["weekdays
","˜friday"],"when_time":"8 am
"}}}

3 Execution: {"execution_results":[
{"action":"create","error_code
":0,"error_attributes":[],"
results":[{"id":"2","interval"

:"1w","name":"feed the dog","
when_day":"monday,tuesday,
wednesday,thursday","when_time
":"08:00"}]}]}

4 LF3: {"policy":[{"inform":{"
action":"create","interval":"1
w","name":"feed the dog","
when_day":"monday,tuesday,
wednesday,thursday","when_time
":"08:00"}}]}

5 NLG: Your weekly alarm called
feed the dog will ring every
monday, tuesday, wednesday and
thursday at 08:00.

6 -------------------
7 User: hey alarm clock, sorry i

meant 9 am
8 LF1: {"action":{"follow_up":{"

entity":"9 am","
self_correction":true}}}

9 LF2: {"action":{"create":{"
interval":"1w","name":"feed
the dog","when_day":["weekdays
","˜friday"],"when_time":"9 am
","self_correction":"true"}}}

10 Execution: {"execution_results":[
{"action":"edit","error_code":
0,"error_attributes":[],"
results":[{"id":"2","interval"
:"1w","name":"feed the dog","
when_day":"monday,tuesday,

56

wednesday,thursday","when_time
":"08:00","when_time_new":"09:
00"}]}]}

11 LF3: {"policy":[{"inform":{"
action":"edit","interval":"1w"
,"name":"feed the dog","
when_day":"monday,tuesday,
wednesday,thursday","when_time
":"08:00","when_time_new":"09:
00"}}]}

12 NLG: Your recurring monday,
tuesday,wednesday and thursday
alarm called feed the dog has
been moved from 08:00 to 09:0

0

57

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 58–63
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

AlpacaTag: An Active Learning-based Crowd Annotation
Framework for Sequence Tagging

Bill Yuchen Lin†∗ Dong-Ho Lee†∗ Frank F. Xu‡ Ouyu Lan† and Xiang Ren†
{yuchen.lin,dongho.lee,olan,xiangren}@usc.edu, frankxu@cmu.edu

†Computer Science Department ‡Language Technologies Institute
University of Southern California Carnegie Mellon University

Abstract

We introduce an open-source web-based data
annotation framework (AlpacaTag) for se-
quence tagging tasks such as named-entity
recognition (NER). The distinctive advantages
of AlpacaTag are three-fold. 1) Active in-
telligent recommendation: dynamically sug-
gesting annotations and sampling the most in-
formative unlabeled instances with a back-end
active learned model; 2) Automatic crowd
consolidation: enhancing real-time inter-
annotator agreement by merging inconsistent
labels from multiple annotators; 3) Real-time
model deployment: users can deploy their
models in downstream systems while new an-
notations are being made. AlpacaTag is
a comprehensive solution for sequence label-
ing tasks, ranging from rapid tagging with
recommendations powered by active learning
and auto-consolidation of crowd annotations
to real-time model deployment.

1 Introduction

Sequence tagging is a major type of tasks in natu-
ral language processing (NLP), including named-
entity recognition (detecting and typing entity
names), keyword extraction (e.g. extracting as-
pect terms in reviews or essential terms in queries),
chunking (extracting phrases), and word segmen-
tation (identifying word boundary in languages
like Chinese). State-of-the-art supervised ap-
proaches to sequence tagging are highly depen-
dent on numerous annotations. New annota-
tions are usually necessary for a new domain or
task, even though transfer learning techniques (Lin
and Lu, 2018) can reduce the amount of them
by reusing data of other related tasks. How-
ever, manually annotating sequences can be time-
consuming, expensive, and thus hard to scale.

∗Both authors contributed equally.

Backend Model

Consolidation & Incremental Training

Matching
Frequent NPs
+ Dictionary

Crowd Annotators

A batch of raw sentences

Recommendations

Crowd Annotations

Unlabeled Instances

Instance Sampling via
Active Learning

Real-time Deployment API

Complicated
Downstream
Systems

AlpacaTag

Figure 1: Overview of the AlpacaTag framework.

Therefore, it is still an important research ques-
tion that how we can develop a better annotation
framework to largely reduces human efforts.

Existing open-source sequence annotation tools
(Stenetorp et al., 2012; Druskat et al., 2014a;
de Castilho et al., 2016; Yang et al., 2018a) mainly
focus on enhancing the friendliness of user inter-
faces (UI) such as data management, fast tagging
with shortcut keys, supporting more platforms,
and multi-annotator analysis. We argue that there
are still three important yet underexplored direc-
tions of improvements: 1) active intelligent rec-
ommendation, 2) automatic crowd consolidation,
3) real-time model deployment. Therefore, we
propose a novel web-based annotation tool named
AlpacaTag1 to address these three problems.

Active intelligent recommendation (§3) aims
to reduce human efforts at both instance-level and
corpus-level by learning a back-end sequence tag-
ging model incrementally with incoming human
annotations. At the instance-level, AlpacaTag
applies the model predictions on current unlabeled
sentences as tagging suggestions. Apart from that,

1The source code is publicly available at http://
inklab.usc.edu/AlpacaTag/.

58

we also greedily match frequent noun phrases and
a dictionary of already annotated spans as recom-
mendations. Annotators can easily confirm or de-
cline such recommendations with our specialized
UI. At the corpus-level, we use active learning al-
gorithms (Settles, 2009) for selecting next batches
of instances to annotate based on the model. The
goal is to select the most informative instances for
human to tag and thus to achieve a more cost-
effective way of using human efforts.

Automatic crowd consolidation (§4) of the an-
notations from multiple annotators is an underex-
plored topic in developing crowd-sourcing annota-
tion frameworks. As a crowdsourcing framework,
AlpacaTag collects annotations from multiple
(non-expert) contributors with lower cost and a
higher speed. However, annotators usually have
different confidences, preferences, and biases in
annotating, which leads to possibly high inter-
annotator disagreement. It is shown very challeng-
ing to train models with such noisy crowd annota-
tions (Nguyen et al., 2017; Yang et al., 2018b). We
argue that consolidating crowd labels during an-
notating can lead annotators to achieve real-time
consensus, and thus decrease disagreement of an-
notations instead of exhausting post-processing.

Real-time model deployment (§5) is also a de-
sired feature for users. We sometimes need to
deploy a state-of-the-art sequence tagging model
while the crowdsourcing is still ongoing, such that
users can facilitate the developing of their tagging-
required systems with our APIs.

To the best of our knowledge, there is no ex-
isting annotation framework enjoying such three
features. AlpacaTag is the first unified frame-
work to address these problems, while inheriting
the advantages of existing tools. It thus provides
a more comprehensive solution to crowdsourcing
annotations for sequence tagging tasks.

In this paper, we first present the high-level
structure and design of the proposed AlpacaTag
framework. Three key features are then introduced
in detail: active intelligent recommendation (§3),
automatic crowd consolidation (§4), and real-time
model deployment (§5). Experiments (§6) are con-
ducted for showing the effectiveness of the pro-
posed three features. Comparisons with related
works are discussed in §7. Section §8 shows con-
clusion and future directions.

2 Overview of AlpacaTag

As shown in Figure 1, AlpacaTag has an ac-
tively learned back-end model (top-left) in addi-
tion to a front-end web-UI (bottom). Thus, we
have two separate servers: a back-end model
server and a front-end annotation server. The
model server is built with PyTorch and supports
a set of APIs for communications between the two
servers and model deployment. The annotation
server is built on Django in Python, which in-
teracts with administrators and annotators.

To start annotating for a domain of interest, ad-
mins should login and create a new project. Then,
they need to further import their raw corpus (with
CSV or JSON format), and assign the tag space
with associated colors and shortcut keys. Admins
can further set the batch size to sample instances
and to update back-end models. Annotators can
login and annotate (actively sampled) unlabeled
instances with tagging suggestions. We further
present our three key features in the next sections.

3 Active Intelligent Recommendation

This section first introduces the back-end model
(§3.1) and then presents how we use the back-
end model for both instance-level recommenda-
tions (tagging suggestions, §3.2) as well as corpus-
level recommendations (active sampling, §3.3).

3.1 Back-end Model: BLSTM-CRF
The core component of the proposed AlpacaTag
framework is the back-end sequence tagging
model, which is learned with an incremental
active learning scheme. We use the state-of-
the-art sequence tagging model as our back-end
model (Lample et al., 2016; Lin et al., 2017;
Liu et al., 2018), which is based on bidirectional
LSTM networks with a CRF layer (BLSTM-
CRF). It can capture character-level patterns, and
encode token sequences with pre-trained word em-
beddings, as well as using CRF layers to capture
structural dependencies in tagging. In this section,
we assume the model is fixed as we are talking
about how to use it for infer recommendations.
How to update it by consolidating crowd annota-
tions is illustrated in the Section §4.

3.2 Tagging Suggestions (Instance-level Rec.)
Apart from the inference results from the back-
end model on the sentences, we also include two
other kinds of tagging suggestions mentioned in

59

(a) the sentence and annotations are at the upper
section; tagging suggestions are shown as
underlined spans in the lower section.

(b) after click on a suggested span, a floating
window will show up near for confirming the types
(suggested type is bounded with red line).

(c) after click a suggested type or press a shortcut
key (e.g. ‘p’), confirmed annotations will show up
in the upper annotation section.

Figure 2: The workflow for annotators to confirm a
given tagging suggestion (“Hillary Clinton” as PER).

Fig. 1: (frequent) noun phrases and the dictionary
of already tagged spans. Specifically, after admins
upload raw corpora, AlpacaTag runs a phrase
mining algorithm (Shang et al., 2018) to gather
a list of frequent noun phrases, which are more
likely to be entities. Admins can also optionally
enable the framework to consider all noun phrases
by chunking as span candidates. These sugges-
tions are not typed. Additionally, we also maintain
a dictionary mapping from already tagged spans in
previous sentences to their majority tagged types.
Frequent noun phrases and dictionary entries are
matched by the greedy forward maximum match-
ing algorithm. Therefore, the final tagging sugges-
tions are merged from three sources with the fol-

lowing priority (ordered by their precision): dic-
tionary matches > back-end model inferences >
(frequent) noun phrases, while the coverage of the
suggestions are in the opposite order.

Figure 2 illustrates how AlpacaTag presents
the tagging suggestions for the sentence “Donald
Trump had a dinner with Hillary Clinton in the
white house.”. The two suggestions are shown
in the bottom section as underscored spans “Don-
ald Trump” and “Hilary Clinton” (Fig. 2a). When
annotators want to confirm “Hilary Clinton” as a
true annotation, they first click the span and then
click the right type in the appearing float window
(Fig. 2b). They can also press the customized
shortcut key for fast tagging. Note that the PER
button is underscored in Fig. 2b, meaning that it
is a recommended type for annotators to choose.
Fig. 2c shows that after confirming, it is added into
final annotations. We want to emphasize that our
designed UI well solves the problem of confirming
and declining suggestions. The float windows re-
duce mouse movement time very much and let an-
notators easily confirm or change types by clicking
or pressing shortcuts to correct suggested types.

What if annotators want to tag spans not recom-
mended? Normally annotating in AlpacaTag is
as friendly as other tools: annotators can simply
select the spans they want to tag in the upper sec-
tion and click or press the associated type (Fig. 3).
We implement this UI design based on an open-
source Django framework named doccano2.

1. select a span

3. get a tag2. click button or press shortcut key

Figure 3: Annotating a span without recommendations.

3.3 Active Sampling (Corpus-level Rec.)

Tagging suggestions are at the instance level,
while what instances we should ask annotators
to label is also very important to save human
efforts. Thus, the research question here is
how to actively sample a set of the most infor-
mative instances from the whole unlabeled sen-
tences, which is named active learning. The
measure of informativeness is usually specific

2http://doccano.herokuapp.com/

60

to an existing model, which means what in-
stances (if labeled correctly) can improve the
model performance. A typical example of ac-
tive learning is called Least Confidence (Culotta
and McCallum, 2005), which applies the model
on all the unlabeled sentences and treats the in-
ference confidence as the negative of informa-
tiveness (1 − maxy1,...,yn P [y1, . . . , yn| {xij}]).
For AlpacaTag, we apply an improved version
named Maximum Normalized Log-Probability
(MNLP) (Shen et al., 2018), which eliminates the
effect of length of sequences by averaging:

max
y1,...,yn

1

n

n∑

i=1

logP [yi|y1, . . . , yn−1, {xij}]

Simply put, we manage to utilize the current
back-end model for measuring the informative-
ness of unlabeled sentences and then sample the
optimal next batch for annotators to label.

4 Automatic Crowd Consolidation

As a crowd-sourcing annotation framework,
AlpacaTag aims to reduce inter-annotator dis-
agreement while keeping their individual strengths
in labeling specific kinds of instances. We achieve
this by applying annotator-specific back-end mod-
els (“personal models”) and consolidate them
into a shared back-end model named “consensus
model”. Personal models are used for personal-
ized active sampling, such that annotators will la-
bel the regions of data space that are most impor-
tant to be labeled by them respectively.

Assume there are K annotators, we refer them
as {A1, . . . , AK}. For each annotator Ai, we refer
the corresponding sentences and annotations pro-
cessed by it to be xi = {xi,j}lij=1 and yAi

i ∈ Y li .
The target of consolidation is to generate predic-
tions for the test data x, while the resulting labels
are referred as ŷ. Note that annotators may an-
notate different portions of the data and sentences
can have inconsistent crowd labels.

As shown in Fig. 4, we model the behav-
ior of every annotator by constructing annota-
tor representation matrices Ck from the network
parameters of personal back-end models. The
personal models share the same BLSTM lay-
ers for encoding sentences and avoiding over-
parameterizing. They are incrementally updated
every batch, which usually consists of 50 ∼ 100
sentences sampled actively by the algorithms men-
tioned in §3.3. We further merge the crowd repre-

Crowd Annotations
ConsolidationT

ag
gi
ng
Su
gg
es
ti
on
s

Personal Models

Consensus Model

A
ctive

Sam
pling

sentence

BLSTM

Linear

tags scores

CRF

tag sequence

Annotator
Representation

Incremental Training

Figure 4: Reducing inter-annotator disagreement by
training personal models for personalized active sam-
pling and constructing consensus models.

sentation Ck into a representation matrix C, and
thus construct a consensus model by using C to
generate tag scores in the BLSTM-CRF architec-
ture, which is improved from the approach pro-
posed by Nguyen et al. (2017).

In summary, AlpacaTag periodically updates
the back-end consensus model by consolidat-
ing crowd annotations for annotated sentences
through merging personal models. The updated
back-end model continues to offer suggestions in
future instances for all the annotators, and thus
the consensus can be further solidified with rec-
ommendation confirmations.

5 Real-time Model Deployment

Waiting for a model to be trained with ready hu-
man annotations can be a huge bottleneck for de-
veloping complicated pipeline systems in infor-
mation extraction. Instead, users may want a se-
quence tagging model that can be constantly up-
dated, even when the annotation process is still un-
dergoing. AlpacaTag naturally enjoys this fea-
ture since we maintain a back-end tagging model
with incremental active learning techniques.

Thus, we provide a suite of APIs for interacting
with the back-end consensus model server. They
can work for both communication with the annota-
tion server and real-time deployment of the back-
end model. One can obtain inference results for
their developing complicated systems by querying
such APIs for downstream applications.

6 Experiments

To investigate the performance of our imple-
mented back-end model with incremental active
learning and consolidation, we conduct a prelim-

61

 0

 10

 20

 30

 40

 50

 60

 70

 80

 0 100 200 300 400 500 600 700 800 900 1000

F
1

-s
co

re
 (

%
)

Number of Instances

w/o active sampling
w/ active sampling

Figure 5: Effectiveness of incremental updating with
and without active sampling.

inary experiment on the CoNLL2003 dataset. We
set iteration step size as 100 with the default order
for single-user annotation, and incrementally up-
date the back-end model for 10 iterations. Then,
we apply our implementation for active sampling
the optimal batches of samples to annotate dynam-
ically. All results are tested on the official test set.

As shown in Fig. 5, the performance with active
learning is indeed improved by a large margin over
vanilla training effectively. We also find that with
active sampling, using annotations of about 35%
training data can achieve the performance of using
100%, confirming the reported results of previous
studies (Siddhant and Lipton, 2018).

For consolidating multiple annotations, we test
our implementation with the real-world crowd-
sourced data collected by Rodrigues et al. (2013)
using Amazon Mechanical Turk (AMT). Our
methods outperform existing approaches includ-
ing MVT-SLM (Wang et al., 2018) and Crowd-
X (Nguyen et al., 2017) (see Tab. 1).

7 Related Works

Many sequence annotation tools have been de-
veloped (Ogren, 2006; Bontcheva et al., 2013;
Chen and Styler, 2013; Druskat et al., 2014b)
for basic annotation features including data man-
agement, shortcut key annotation, and multi-
annotation presentation and analysis. However,

Methods Precision(%) Recall(%) F1(%)

MVT-SLM 88.88(±0.25) 65.04(±0.80) 75.10(±0.44)
Crowd-Add 89.74(±0.10) 64.50(±1.48) 75.03(±1.02)
Crowd-Cat 89.72(±0.47) 63.55(±1.20) 74.39(±0.98)

Ours 88.77(±0.25) 72.79(±0.04) 79.99(±0.08)

Gold 92.12(±0.31) 91.73(±0.09) 91.92(±0.21)

Table 1: Comparisons of consolidation methods.

few of them enjoys the above-introduced three fea-
tures of AlpacaTag. It is true that a few existing
tools also support tagging suggestions (instance-
level recommendations) as follows:
• BRAT (Stenetorp et al., 2012) and
GATE (Bontcheva et al., 2013) can offer
suggestions with a fixed tagging model like
CoreNLP (Manning et al., 2014). However,
it is hardly helpful when users need to
annotate sentences with customized label set
specific to their interested domains, which is
the most common motivation for people to
use an annotation framework.
• YEDDA (Yang et al., 2018a) simply generates

suggestions by exact matching against a con-
tinuously updated lexicon of already anno-
tated spans. In comparison, this is a subset
of AlpacaTag’s recommendations. Note
that YEDDA cannot suggest any unseen spans.
• WebAnno (Yimam et al., 2013) integrates a

learning component for suggestions, which
is based on hand-crafted features and
generic online learning framework (MIRA).
Nonetheless, the back-end model is too far
away from the state-of-the-art methods for
sequence tagging and hard to customize for
consolidation and real-time deployment.

AlpacaTag’s tagging suggestions are more
comprehensive since they are from state-of-the-
art BLSTM-CRF architecture, annotation dictio-
nary, and frequent noun phrase mining. An unique
advantage is that it also supports active learn-
ing to sample instances that are most worth la-
beling to reduce human efforts. In addition,
AlpacaTag further attempts to reduce inter-
annotator disagreement during annotating by au-
tomatically consolidating personal models to con-
sensus models, which pushes further than just pre-
senting inter-annotator agreement without doing
anything helpful.

While recent papers have shown the power
of deep active learning with simulations (Sid-
dhant and Lipton, 2018), a practical annota-
tion framework with active learning is missing.
AlpacaTag is not only an annotation framework
but also a practical environment for evaluating dif-
ferent active learning methods.

8 Conclusion and Future Directions

To sum up, we propose an open-source web-based
annotation framework AlpacaTag that provides

62

users with more advanced features for reducing
human efforts in annotating, while keeping the
existing basic annotation functions like shortcut
keys. Incremental active learning of back-end
models with crowd consolidation facilities intel-
ligent recommendations and reduce disagreement.

Future directions include supporting annotation
of other tasks, such as relation extraction and event
extraction. We also plan to design a real-time con-
sole for showing the status of back-end models
based on TensorBoard, such that admins can bet-
ter track the quality of deployed models and early
stop annotating to save human efforts.

References
Kalina Bontcheva, Hamish Cunningham, Ian Roberts,

Angus Roberts, Valentin Tablan, Niraj Aswani, and
Genevieve Gorrell. 2013. Gate teamware: a web-
based, collaborative text annotation framework. In
Proc. of LREC.

Richard Eckart de Castilho, Éva Mújdricza-Maydt,
Seid Muhie Yimam, Silvana Hartmann, Iryna
Gurevych, Anette Frank, and Christian Biemann.
2016. A web-based tool for the integrated annota-
tion of semantic and syntactic structures. In Proc. of
LT4DH@COLING.

Wei-Te Chen and Will Styler. 2013. Anafora: a web-
based general purpose annotation tool. In Proc. of
NAACL-HLT.

Aron Culotta and Andrew McCallum. 2005. Con-
fidence estimation for information extraction. In
Proc. of AAAI.

Stephan Druskat, Lennart Bierkandt, Volker Gast,
Christoph Rzymski, and Florian Zipser. 2014a.
Atomic: an open-source software platform for
multi-level corpus annotation. In KONVENS.

Stephan Druskat, Lennart Bierkandt, Volker Gast,
Christoph Rzymski, and Florian Zipser. 2014b.
Atomic: An open-source software platform for
multi-level corpus annotation.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proc. of NAACL-HLT.

Bill Y. Lin, Frank F. Xu, Zhiyi Luo, and Kenny Q. Zhu.
2017. Multi-channel bilstm-crf model for emerg-
ing named entity recognition in social media. In
NUT@EMNLP.

Bill Yuchen Lin and Wei Lu. 2018. Neural adapta-
tion layers for cross-domain named entity recogni-
tion. In Proc. of EMNLP.

Liyuan Liu, Jingbo Shang, Frank F. Xu, Xiang Ren,
Huan Gui, Jian Peng, and Jiawei Han. 2018. Em-
power sequence labeling with task-aware neural lan-
guage model. In Proc. of AAAI.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The stanford corenlp natural language
processing toolkit. In Proc. of ACL.

An Thanh Nguyen, Byron C. Wallace, Junyi Jessy Li,
Ani Nenkova, and Matthew Lease. 2017. Aggregat-
ing and predicting sequence labels from crowd an-
notations. Proc. of ACL.

Philip V Ogren. 2006. Knowtator: a protégé plug-
in for annotated corpus construction. In Proc. of
NAACL-HLT.

Filipe Rodrigues, Francisco C. Pereira, and Bernardete
Ribeiro. 2013. Sequence labeling with multiple an-
notators. Machine Learning.

Burr Settles. 2009. Active learning literature survey.
Technical report, University of Wisconsin-Madison
Department of Computer Sciences.

Jingbo Shang, Jialu Liu, Meng Jiang, Xiang Ren,
Clare R. Voss, and Jiawei Han. 2018. Automated
phrase mining from massive text corpora. Proc. of
TKDE.

Yanyao Shen, Hyokun Yun, Zachary C Lipton, Yakov
Kronrod, and Animashree Anandkumar. 2018.
Deep active learning for named entity recognition.
In Proc. of ICLR.

Aditya Siddhant and Zachary Chase Lipton. 2018.
Deep bayesian active learning for natural language
processing: Results of a large-scale empirical study.
In Proc. of EMNLP.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. brat: a web-based tool for NLP-assisted
text annotation. In Proc. of EACL.

Xuan Wang, Yu Zhang, Xiang Ren, Yuhao Zhang,
Marinka Zitnik, Jingbo Shang, Curtis P. Langlotz,
and Jiawei Han. 2018. Cross-type biomedical
named entity recognition with deep multi-task learn-
ing. Bioinformatics.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018a. Yedda: A lightweight collaborative text span
annotation tool. In Proc. of ACL.

YaoSheng Yang, Meishan Zhang, Wenliang Chen, Wei
Zhang, Haofen Wang, and Min Zhang. 2018b. Ad-
versarial learning for chinese ner from crowd anno-
tations. In Proc. of AAAI.

Seid Muhie Yimam, Iryna Gurevych, Richard Eckart
de Castilho, and Christian Biemann. 2013. We-
banno: A flexible, web-based and visually supported
system for distributed annotations. In Proc. of ACL.

63

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 64–69
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

ConvLab: Multi-Domain End-to-End Dialog System Platform

Sungjin Lee† Qi Zhu‡ Ryuichi Takanobu‡ Zheng Zhang‡ Yaoqin Zhang‡ Xiang Li‡
Jinchao Li† Baolin Peng† Xiujun Li† Minlie Huang‡ Jianfeng Gao†

†Microsoft Research, USA ‡Tsinghua University, China
‡{zhu-q18,gxly15,z-zhang15,zhangyq17}@mails.tsinghua.edu.cn

†{sule,jincli,xiul,jfgao}@microsoft.com ‡aihuang@tsinghua.edu.cn

Abstract

We present ConvLab, an open-source multi-
domain end-to-end dialog system platform,
aiming to enable researchers to quickly set
up experiments with reusable components and
compare a large set of different approaches,
ranging from conventional pipeline systems to
end-to-end neural models, in common envi-
ronments. ConvLab offers a set of fully an-
notated datasets and the associated pre-trained
reference models. As a showcase, we extend
the MultiWOZ dataset with user dialog act an-
notations to train all component models and
demonstrate how ConvLab makes it easy and
effortless to conduct complicated experiments
in multi-domain end-to-end dialog settings.

1 Introduction

Despite decades of research on dialog and increas-
ingly large amounts of (annotated) dialog datasets,
it is still challenging for any team who is new
to the area to quickly develop a reasonable base-
line system for task-oriented dialog due to the lack
of a well-structured, easy-to-use open-source sys-
tem that allows researchers to build and evaluate
dialog bots. ConvLab is aimed to fill the gap.
ConvLab is an open-source multi-domain end-to-
end dialog system that allows researchers to au-
tomatically train dialog models, build and evalu-
ate task-completion dialog bots. Such open-source
systems have been instrumental in many AI re-
search breakthroughs. For example, among many,
Moses (Koehn, 2007), HTK (Young et al., 2002)
and CoreNLP (Manning et al., 2014) have been
widely used to facilitate subsequent research in
machine translation, speech recognition and nat-
ural language processing, respectively.

ConvLab consists of a rich set of modeling tools
and runtime engines for building task-oriented
bots of different types, and an end-to-end evalua-
tion platform. There are roughly two architectures

of dialog systems (Gao et al., 2019): (1) a mod-
ular architecture (the top layer in Figure 2), con-
sisting of natural language understanding (NLU),
dialog state tracker (DST), dialog policy (POL)
and natural language generation (NLG) compo-
nents; and (2) a fully end-to-end neural architec-
ture (the bottom layer in Figure 2) to minimize la-
borious hand-coding and error propagation down
the pipeline. There also have emerged some mod-
els in-between (Wen et al., 2016; Mrkšić et al.,
2016). Due to the wide range of approaches
and different metrics used in prior studies, it is
been impractical to perform a rigorous compara-
tive study under the same condition. ConvLab is
the first dialog research platform that covers a full
range of trainable statistical models with fully an-
notated datasets, differing from previous toolkits
whose focus is largely concentrated on the sys-
tem policy component while other components are
mostly limited to pre-fixed baseline models (Ultes,
2017; Miller et al., 2017; Li et al., 2018).

There is also an increasing interest in build-
ing bots that seamlessly intertwine multiple sub-
domains to accomplish high-level user goals
(Peng et al., 2017; Budzianowski et al., 2018).
The development of multi-domain dialog system
adds additional complexities to both data collec-
tion and annotation, and the models for dialog sys-
tem components. For the former, Budzianowski
et al. (2018) collected the MultiWOZ dataset, a
dialog corpus with dialogs ranging over multiple
domains for the trip information setting, whereas
there is no open-platform yet that is designed to
handle multi-domain, multi-intent phenomena. To
foster multi-domain dialog research, ConvLab fea-
tures the MultiWOZ task and offers a complete set
of reference models ranging from individual com-
ponents to end-to-end models that are trained on
the MultiWOZ data with additional annotation for
user dialog acts which is missing from the original

64

Figure 1: Overall design of ConvLab.

MultiWOZ dataset. Furthermore, ConvLab will
be the standard platform for the multi-domain end-
to-end task-completion dialog track in DSTC81.

Finally, to support end-to-end evaluation, Con-
vLab offers two complementary modules: Ama-
zon Mechanical Turk integration for human eval-
uation and simulated users for automated eval-
uation. For user simulation, ConvLab provides
both rule-based simulators and data-driven sim-
ulators. As data-driven user simulation recently
gains more traction, ConvLab makes another con-
tribution as a research platform for advancing user
simulation technologies.

The summary of the unique contributions of
ConvLab is:

• To the best of our knowledge, ConvLab is
the first open-source multi-domain end-to-
end dialog system that covers a full range
of trainable statistical models with associated
annotated datasets.

• ConvLab provides a rich set of tools and
recipes to develop dialog systems of differ-
ent types, enabling researchers to compare
widely different approaches under the same
condition.

• ConvLab provides end-to-end evaluation via
both human and simulators.

• We are organizing DSTC8 and releasing
ConvLab to the public.

2 ConvLab

This section details the design of ConvLab and its
flexibility to support a wide range of experiments.

2.1 Overall Design

At a high level, to support flexible architectures
for multi-domain dialog, ConvLab embraces the

1https://sites.google.com/dstc.
community/dstc8/home

Agents-Environments-Bodies (AEB) design (il-
lustrated in Figure 1) with the following seman-
tics (Wah Loon Keng, 2017):

Agent an instance of dialog agent.

Environment an instance of user simulator or hu-
man evaluation component.

Body an incarnation of an agent in the environ-
ment – each body stores data that is specific
to the associated agent and environment (in-
dicated by the edges in Figure 1): states, ac-
tions, rewards, done flags.

With the AEB design, besides the usual sin-
gle agent and single environment setting, a va-
riety of advanced research experiments, such as
multi-agent learning, multi-task learning and role-
play, can be conducted without requiring special-
ized code for each case.

Multi-agent learning A centralized agent maps
the joint observation of all domains to a
joint action. A major drawback of this
approach is its exponential growth in the
observation-action space with the number of
domains. One can address this intractabil-
ity by factoring the centralized spaces into
multi-agent systems (including hierarchical
reinforcement learning agents). For exam-
ple, in Figure 1, the centralized agent Travel
can be decomposed into two separate domain
agents Restaurant and Hotel.

Multi-task learning An agent can have multiple
bodies in different environments for the sake
of transfer learning. For example, any agent
in Figure 1 can have its bodies not only in
the corresponding environment but also in
other environments to learn common knowl-
edge across multiple domains. For example,
in Figure 1, each agent can learn from all
available environments.

Role play Recently, there has been increased in-
terest in leveraging self-play as an alterna-
tive way of training reinforcement learning
agents (et al., 2017). Following the same
spirit, for task-completion dialogs, one can
devise a role play – one agent plays the
role of the system while the other agent the
user. Such a role play setting can be readily
achieved by having two agents talk to each
other though a round-robin environment.

65

To perform systematic comparisons of agents
and environments, and to automate hyper-
parameter search, ConvLab makes use of SLM
Lab (Wah Loon Keng, 2017) and Ray2 for the ex-
periment component in Figure 1 which provides
multi-level control layers, i.e. Session, Trial and
Experiment, and produces evaluation reports for
each layer.

Session Each session initializes the agents and en-
vironments and then runs for a pre-defined
number of episodes.

Trial Each trial holds a fixed set of parameter val-
ues and runs multiple sessions with random
seeds. The trial then analyzes the sessions
and takes the average.

Experiment An experiment is a study where the
hyper-parameters are treated as input vari-
ables, and the outcome is measured by task-
specific metrics such as success rate and av-
erage reward. Search is then automatically
conducted to find the hyper-parameters that
yield best performance.

ConvLab also helps avoid specifying com-
plicated command line parameters and writing
scripts by enabling users to control all relevant
functionality via JSON configuration files. A con-
figuration file specifies the model and its parame-
ters for each component of the agent and environ-
ment for a given experiment. Thanks to the flex-
ible configuration layer, researchers can build an
array of different agents (Section 2.2) and environ-
ments (Section 2.3) with only slight modifications
in the configuration file. Some example configu-
ration files are presented in Section 4.

2.2 Dialog Agent Configuration

Figure 2: A dialog system configuration view.

In Figure 2, each layer represents a different
way of constructing a dialog system. The top

2https://github.com/ray-project/ray

layer, for example, corresponds to the conven-
tional pipeline architecture consisting of NLU,
DST, POL and NLG. Recently, researchers have
introduced some models that merge some of the
typical components such as word-level dialog state
tracking, word-level dialog policy and end-to-end
models, resulting in various possible combinations
for building a dialog system as shown from the
second layer in Figure 2. However, comparison
among these possibilities in an end-to-end set-
ting has been largely overlooked, partly due to the
burden of implementing all comparative systems.
With ConvLab, researchers can now focus on any
particular component in Figure 2 while testing the
algorithm in an end-to-end setting by simply cre-
ating a configuration file with a specification of
other components.

2.3 Environment Configuration

Figure 3: An environment configuration view.

As shown in Figure 3, there are also many dif-
ferent ways of combining components to build an
environment. For example, the top layer corre-
sponds to a user simulator operating at the dialog
act level which is the typical setting of prior works
focusing on developing reinforcement learning
methods for dialog policy optimization. As with
dialog agent, there are recent attempts on end-to-
end approaches to avoid requiring expensive an-
notation (Kreyssig et al., 2018). For human eval-
uation, ConvLab also provides an integration of
crowd source platform such as Amazon Mechani-
cal Turk3 as shown in the bottom layer.

2.4 Reference Models

This section describes a set of reference models
for each component that are available in the initial
release. As we will keep adding new state-of-the-
art models, the set of reference models available in
ConvLab will be extended.

3ConvLab makes use of ParlAI’s MTurk library (http:
//parl.ai/static/docs/mturk.html).

66

Natural Language Understanding For natu-
ral language understanding, ConvLab provides
three reference models: Semantic Tuple Classi-
fier (STC) (Mairesse et al., 2009), OneNet (Kim
et al., 2017) and Multi-intent LU (MILU). STC
can handle multi-domain, multi-intent dialog acts
but cannot detect out-of-vocabulary (OOV) values.
While OneNet can capture OOVs, it cannot handle
multi-intent dialog acts. Thus, ConvLab offers a
new MILU model which extends OneNet to pro-
cess multi-intent dialog acts. For more details on
MILU, please refer to the ConvLab site.

Dialog State Tracking The dialog state tracker
is responsible for updating the belief state. Con-
vLab provides a rule-based tracker similar to the
baselines in DSTCs (Williams et al., 2013) that are
adapted to handle multi-domain interactions.

Word-level Dialog State Tracking Word-level
DSTs directly take system and user natural lan-
guage as inputs and update dialog state. ConvLab
imports MDBT (Ramadan et al., 2018) model
which jointly identifies the domain and tracks the
belief states by utilizing the semantic similarity
between dialog utterances and ontology terms.

System Policy For system policy, ConvLab pro-
vides three classes of implementations: hand-
crafted policy, supervised learning policy and re-
inforcement learning policy. For reinforcement
learning, ConvLab supports a set of popular al-
gorithms: DQN (Mnih et al., 2013) and its vari-
ants, REINFORCE (Williams, 1992), PPO (Schul-
man et al., 2017) and its self-imitation variant (Oh
et al., 2018) . For multi-domain dialog, ConvLab
initially offers centralized policies where the pol-
icy maps the joint observation of all domains to
a joint action and will feature decentralized multi-
agent approaches as well as hierarchical reinforce-
ment learning approaches (Peng et al., 2017).

Natural Language Generation ConvLab
provides a template-based model and SC-
LSTM (Wen et al., 2015) for natural language
generation. Each model is able to take the
multi-domain, multi-intent dialog acts as input.

Word-level Policy Following Wen et al. (2016),
word-level policy directly maps a context to re-
sponse. ConvLab imports the baseline imple-
mentation released for the benchmarking pur-

pose by Budzianowski et al. (2018)4. The
baseline model extends a sequence-to-sequence
model (Sutskever et al., 2014) with a dialog state
encoding and a database query result encoding as
additional features to the decoder.

User Policy For user policy, ConvLab provides
an agenda-based (Schatzmann et al., 2007) user
model and data-driven approaches such as HUS
and its variational variants (Gur et al., 2018). Sim-
ilar to the system side, each model works at the
dialog act level, and can be pipelined with NLU
and NLG modules to construct a whole user sim-
ulator.

End-to-end Model ConvLab makes avail-
able two end-to-end dialog system models:
Mem2Seq (Madotto et al., 2018) and Sequic-
ity (Lei et al., 2018). To support multi-domain
intents, Sequicity resets the belief span when the
model predicts a topic shift between domains.

3 Domains

The initial release of ConvLab offers two domains
of differing complexity: MultiWOZ and Movie.

MultiWOZ The main task of the MultiWOZ
domain is to help a tourist in a various situa-
tions involving multiple sub-domains such as
requesting basic information about attractions
and booking a hotel room. Specifically, there are
7 sub-domains - Attraction, Hospital,
Police, Hotel, Restaurant, Taxi,
Train. The annotated data consists of 10,438
dialogs. The average number of turns are 8.93
and 15.39 for single and multi-domain dialogs,
respectively. ConvLab features additional annota-
tions for user dialog acts and pre-trained reference
models for all dialog system components and user
simulators. Furthermore, ConvLab provides a
set of end-to-end neural dialog models that are
trained on the data.

Movie ConvLab imports the Movie domain
from Microsoft Dialog Challenge (Li et al., 2018),
encouraging researchers to continue working on
the movie ticket booking task with enhanced tools.
The annotated dataset consists of 2,890 dialogs,
with approximately 7.5 turns per dialog on aver-
age. ConvLab offers a complete reference set of

4https://github.com/budzianowski/
multiwoz

67

models trained on the data for both agent and user
simulator.

We plan to add more domains such as the Taxi
and Restaurant domains from Microsoft Dia-
log Challenge.

4 Demo

To demonstrate a glimpse of some working sys-
tems, this section presents two end-to-end experi-
ments: 1) a comparison between NLU with rule-
based DST and word-level DST; 2) a comparison
between rule-based policy with NLG and word-
level policy.

Experiment 1 Word-level DSTs often have
shown higher performance than typical DSTs that
take input from NLU (Ramadan et al., 2018;
Mrkšić et al., 2016), but none of prior works con-
firmed the performance improvement in an end-to-
end setting. Thanks to the flexible configuration
interface and pre-trained reference models, with
ConvLab, one can easily set up end-to-end experi-
ments by simply modifying a few lines in the con-
fig files as listed in Table 1. While the overall ac-
curacies of the rule-based DST and the word-level
DST are 90.2% and 89.7%, respectively, the end-
to-end task success rates are 69.05% and 16.67%.
This clearly shows the gap between component-
level performance and end-to-end performance. A
detailed analysis on this is left for future work.

Experiment 2 Though word-level policy ob-
tains an increasing traction, most studies only
report corpus-based metrics such as BLEU and
pseudo-success rate (i.e. success means all re-
quested attributes are answered). This makes it
hard to compare such approaches with conven-
tional policies that are typically evaluated with
task success metrics. Due to the space limitations,
we omit the experimental config which is largely
the same as the config listed on the left column in
Table 1 except that the policy and nlg sections
under the agent section are now replaced with
a corresponding word policy section. While
the reported pseudo-success rate on test data is
60.96%, the success rate with a user simulator is
16.16%. This is also much lower than 69.05%,
the performance of its counterpart with rule-based
policy and NLG. Thus, there is huge room for im-
provement of the word-level policy in end-to-end
settings.

NLU and rule-based DST Word-level DST
{"multiwoz": {

"agent": [{
"name": "DialogAgent",
"nlu": {
"name": "OneNet"

},
"dst": {
"name": "RuleDST"
},
"policy": {
"name": "ExternalPolicy",
"algorithm": {
"name": "RulePolicy"

}
},
"nlg": {
"name": "TemplateNLG",
"is_user": false
}

}],
"env": [{
"name": "multiwoz",
"nlu": {
"name": "OneNet"
},
"policy": {
"name": "UserPolicyAgenda"
},
"nlg": {
"name": "TemplateNLG",
"is_user": true
}
"max_t": 40,
"max_tick": 20000,

}],
"body": {
"product": "outer",
"num": 1

}}}

{"multiwoz": {
"agent": [{
"name": "DialogAgent",
"word-dst": {
"name": "MDBT"

},
"policy": {
"name": "ExternalPolicy",
"algorithm": {
"name": "RulePolicy"
}

},
"nlg": {
"name": "TemplateNLG",
"is_user": false

}
}],
"env": [{
"name": "multiwoz",
"nlu": {
"name": "OneNet"

},
"policy": {
"name": "UserPolicyAgenda"

},
"nlg": {
"name": "TemplateNLG",
"is_user": true

}
"max_t": 40,
"max_tick": 20000,
}],
"body": {
"product": "outer",
"num": 1

}}}

Table 1: Example configs for comparing a system using
word-level DST (right) with one using NLU and rule-
based DST (left).

5 Code and Resources

The ConvLab platform is publicly available from
http://convlab.github.io. Datasets and
other resources such as tutorials and documenta-
tions can be found in the site.

6 Conclusion

We presented ConvLab, an open-source multi-
domain end-to-end dialog system platform, that
enables researchers to quickly set up experiments
and compare different approaches without much
effort. We will keep extending ConvLab by adding
new state-of-the-art models going forward. The
multi-domain end-to-end task completion dialog
track in DSTC8 will employ ConvLab as the chal-
lenge platform, giving rise to a reference use case.

References
Silver et al. 2017. Mastering the game of go without

human knowledge. Nature, 550(7676):354.

Paweł Budzianowski, Tsung-Hsien Wen, Bo-Hsiang
Tseng, Iñigo Casanueva, Stefan Ultes, Osman Ra-
madan, and Milica Gašić. 2018. Multiwoz-a
large-scale multi-domain wizard-of-oz dataset for

68

task-oriented dialogue modelling. arXiv preprint
arXiv:1810.00278.

Jianfeng Gao, Michel Galley, and Lihong Li. 2019.
Neural approaches to conversational ai. Founda-
tions and Trends R© in Information Retrieval, 13(2-
3):127–298.

Izzeddin Gur, Dilek Hakkani-Tur, Gokhan Tur, and
Pararth Shah. 2018. User modeling for task oriented
dialogues. arXiv preprint arXiv:1811.04369.

Young-Bum Kim, Sungjin Lee, and Karl Stratos. 2017.
Onenet: Joint domain, intent, slot prediction for spo-
ken language understanding. In ASRU, pages 547–
553. IEEE.

Philipp et al. Koehn. 2007. Moses: Open source toolkit
for statistical machine translation. In ACL, pages
177–180.

Florian Kreyssig, Inigo Casanueva, Pawel
Budzianowski, and Milica Gasic. 2018. Neural
user simulation for corpus-based policy optimisa-
tion for spoken dialogue systems. arXiv preprint
arXiv:1805.06966.

Wenqiang Lei, Xisen Jin, Min-Yen Kan, Zhaochun
Ren, Xiangnan He, and Dawei Yin. 2018. Sequic-
ity: Simplifying task-oriented dialogue systems with
single sequence-to-sequence architectures. In ACL,
pages 1437–1447.

Xiujun Li, Sarah Panda, Jingjing Liu, and Jianfeng
Gao. 2018. Microsoft dialogue challenge: Building
end-to-end task-completion dialogue systems. arXiv
preprint arXiv:1807.11125.

Andrea Madotto, Chien-Sheng Wu, and Pascale Fung.
2018. Mem2seq: Effectively incorporating knowl-
edge bases into end-to-end task-oriented dialog sys-
tems. arXiv preprint arXiv:1804.08217.

François Mairesse, Milica Gasic, Filip Jurcicek, Simon
Keizer, Blaise Thomson, Kai Yu, and Steve Young.
2009. Spoken language understanding from un-
aligned data using discriminative classification mod-
els. In ICASPP, pages 4749–4752. IEEE.

Christopher Manning, Mihai Surdeanu, John Bauer,
Jenny Finkel, Steven Bethard, and David McClosky.
2014. The stanford corenlp natural language pro-
cessing toolkit. In ACL, pages 55–60.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh, and Ja-
son Weston. 2017. Parlai: A dialog research soft-
ware platform. arXiv preprint arXiv:1705.06476.

Volodymyr Mnih, Koray Kavukcuoglu, David Sil-
ver, Alex Graves, Ioannis Antonoglou, Daan Wier-
stra, and Martin Riedmiller. 2013. Playing atari
with deep reinforcement learning. arXiv preprint
arXiv:1312.5602.

Nikola Mrkšić, Diarmuid O Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2016.
Neural belief tracker: Data-driven dialogue state
tracking. arXiv preprint arXiv:1606.03777.

Junhyuk Oh, Yijie Guo, Satinder Singh, and Honglak
Lee. 2018. Self-imitation learning. arXiv preprint
arXiv:1806.05635.

Baolin Peng, Xiujun Li, Lihong Li, Jianfeng Gao,
Asli Celikyilmaz, Sungjin Lee, and Kam-Fai Wong.
2017. Composite task-completion dialogue policy
learning via hierarchical deep reinforcement learn-
ing. arXiv preprint arXiv:1704.03084.

Osman Ramadan, Paweł Budzianowski, and Mil-
ica Gašić. 2018. Large-scale multi-domain belief
tracking with knowledge sharing. arXiv preprint
arXiv:1807.06517.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In NAACL, pages 149–152.

John Schulman, Filip Wolski, Prafulla Dhariwal,
Alec Radford, and Oleg Klimov. 2017. Proxi-
mal policy optimization algorithms. arXiv preprint
arXiv:1707.06347.

Ilya Sutskever, Oriol Vinyals, and Quoc V Le. 2014.
Sequence to sequence learning with neural net-
works. In NIPS, pages 3104–3112.

Stefan et al. Ultes. 2017. Pydial: A multi-domain
statistical dialogue system toolkit. ACL, System
Demonstrations, pages 73–78.

Laura Graesser Wah Loon Keng. 2017. Slm-lab.
https://github.com/kengz/SLM-Lab.

Tsung-Hsien Wen, Milica Gasic, Nikola Mrkšić, Pei-
Hao Su, David Vandyke, and Steve Young. 2015.
Semantically conditioned lstm-based natural lan-
guage generation for spoken dialogue systems. In
EMNLP, pages 1711–1721.

Tsung-Hsien Wen, David Vandyke, Nikola Mrksic,
Milica Gasic, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2016. A network-
based end-to-end trainable task-oriented dialogue
system. arXiv preprint arXiv:1604.04562.

Jason Williams, Antoine Raux, Deepak Ramachan-
dran, and Alan Black. 2013. The dialog state track-
ing challenge. In SIGDIAL, pages 404–413.

Ronald J Williams. 1992. Simple statistical gradient-
following algorithms for connectionist reinforce-
ment learning. Machine learning, 8(3-4):229–256.

Steve Young, Gunnar Evermann, Mark Gales, Thomas
Hain, Dan Kershaw, Xunying Liu, Gareth Moore,
Julian Odell, Dave Ollason, Dan Povey, et al. 2002.
The htk book. Cambridge university engineering
department, 3:175.

69

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 70–74
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Demonstration of a Neural Machine Translation System with Online
Learning for Translators

Miguel Domingo1, Mercedes Garcı́a-Martı́nez2, Amando Estela2, Laurent
Bié2, Alexandre Helle2, Álvaro Peris1, Francisco Casacuberta1, and Manuel

Herranz2

1PRHLT Research Center - Universitat Politècnica de València
{midobal, lvapeab, fcn}@prhlt.upv.es

2Pangeanic / B.I Europa - PangeaMT Technologies Division
{m.garcia, a.helle, a.estela, l.bie, m.herranz}@pangeanic.com

Abstract

We introduce a demonstration of our system,
which implements online learning for neural
machine translation in a production environ-
ment. These techniques allow the system to
continuously learn from the corrections pro-
vided by the translators. We implemented an
end-to-end platform integrating our machine
translation servers to one of the most com-
mon user interfaces for professional transla-
tors: SDL Trados Studio. Our objective was to
save post-editing effort as the machine is con-
tinuously learning from human choices and
adapting the models to a specific domain or
user style.

1 Introduction

Productivity is crucial in the translation industry.
Nowadays, translation companies must be more
competitive than ever and meet fast commercial
demands. Thus, they need to produce high quality
translations in shorter periods of time. Machine
translation (MT) can help them to achieve this
goal: instead of a linguist thinking out or “creat-
ing” translations from scratch, “humanizing” auto-
matic translations has become a common process
in the industry. This is known as post-editing (PE)
and it has been shown to be effective in many cases
(Arenas, 2008; Hu and Cadwell, 2016). As MT
systems are continuously improving their capabil-
ities (e.g. Hassan et al., 2018; Wu et al., 2016),
this workflow has become of major relevance in
the translation industry. Nonetheless, MT technol-
ogy is still far from perfect (Dale, 2016; Koehn
and Knowles, 2017), and there is still room for im-
provement.

Inherently to the PE process, new bilingual data
is continuously generated (the post-edited sam-
ples). This data is typically used for the creation of
domain-specific corpora, useful for adapting sys-
tems from a broader domain into a specific do-

main, client or style. The online learning (OL)
paradigm aims to perform this adaptation during
the PE process: each time the user validates a
post-edited translation, the system is updated as
this data is taken into account. Therefore, when
the next translation is produced, the system will
consider the previous post-editions. It is assumed
that better translations (or translations more suited
to the human post-editor preferences) will be pro-
duced.

The OL paradigm has quickly attracted the at-
tention of researchers and industry. The Cas-
MaCat (Alabau et al., 2013) and MateCat (Fed-
erico et al., 2014) projects—where phrase-based
statistical MT systems were adapted incremen-
tally from the user post-edits—achieved many ad-
vances in this direction. More recently, OL tech-
niques were also applied to neural machine trans-
lation (NMT) systems (Peris et al., 2017; Turchi
et al., 2017; Kothur et al., 2018; Wuebker et al.,
2018; Peris and Casacuberta, 2018).

In this paper, we introduce a demo system of
our in-house OL framework, in which we inte-
grated our translation servers with the translators
user-friendly interface SDL Trados Studio.

The rest of this document is structured as fol-
lows: Section 2 introduces the online learning
paradigm. Next, in Section 3, we describe in detail
our in-house architecture in which this paradigm is
implemented. Finally, Section 4 summarizes the
demo system.

2 Adapting a NMT system via online
learning

We are interested in benefiting from the post-edits
generated by the user during the PE process. To
that end, we update the system on-the-fly, i.e, as
soon as a sentence has been validated by the post-
editor. Right after the user confirms a post-edit,

70

we update the models of our NMT system, using
the source sentence and the post-edit as a training
pair. This adaptation can be done following gradi-
ent descent, the regular training method for neural
networks.

3 Architecture

Our in-house architecture of the OL framework is
composed of three main modules: the MT engine,
the user interface and the translation server which
links both.

Moreover, we added a logging option to keep
user tracking information as keystrokes, time and
mouse movements. Fig. 1 illustrates this architec-
ture.

Figure 1: Architecture of our in-house OL framework.
Red arrows represent how the correction made by the
user arrives to the Machine Translation engine to be re-
trained. Blue arrows represent how machine translation
is delivered to the user.

The translation process consists of delivering
machine translations to the user interface and the
training process retrains the MT engine with the
feedback provided by the user. Both processes
are performed through client-server communica-
tion. Next, we describe each module in detail.

3.1 Machine Translation Engine

The core of the MT engine is composed by the
models generating translations, which can be re-
trained when required. Each translation project
has its own model, whose architecture is set ac-
cording to the project’s need. All models are
neural-based and are trained using OpenNMT-py
(Klein et al., 2017).

Each MT model has its own configuration file,
which contains personalized translation and OL
options, such as tokenization, subword segmenta-
tion, learning rate, etc.

3.2 Translation Server

A translation server communicates with the MT
models in order to generate translations and adapt
the systems based on the user’s post editions. This
server is based on OpenNMT-py’s REST server
and uses the HTTP protocol to define the messages
in order to serve user’s requests. The code of our
translation server is open and available1. We cre-
ated a branch in OpenNMT-py that features this
server and is compatible with all its different mod-
els.

The communication between the user interface
and the MT engine is performed by means of GET
and POST requests. The server waits for transla-
tion requests. When received, these requests are
sent to the machine translation engine in a JSON
format. When a machine translation segment is
corrected by the user, the correction is sent to the
translation engine.

3.3 User Interface

In the translation industry, the most common user
interface for translators is SDL Trados Studio2.
Fig. 2 shows the user interface. The user gets the
machine translation outputs automatically when
the target part of the segment in the interface is
clicked. Then, the user post-edits the segment and,
when the translation is corrected, confirms it.

SDL allows the development of plugins for Tra-
dos Studio to enhance and extend the tool. More-
over, it has a large developer community3 helping
the software with add-ons and apps. We incorpo-
rated our adaptive framework as a Trados Studio
plugin, that connected the user interface with Tra-
dos Studio with our translation server. As the user
confirms a post-edit, the reviewed segment is sent
back to the MT engine to be retrained with this
new information.

In order to set up this plugin, the user fills the
credentials with a username, password and URL
pointing to the server (see Fig. 3 top left box).
Also, the user fills the required languages and
clicks in the “use machine translation” option (see
Fig. 3 top right box). Finally, all the options

1https://github.com/midobal/
OpenNMT-py/tree/OnlineLearning

2https://www.sdl.com/
es/software-and-services/
translation-software/sdl-trados-studio/

3https://community.sdl.com/
developers-more/developers/
language-developers

71

Figure 2: User Interface from Trados Studio SDL.

have to be enabled in the translation provider plu-
gin (see Fig. 3 bottom box) in the Trados Studio
project settings.

Figure 3: Machine translation plugin configuration.

3.4 Logging

In order to measure the productivity and effective-
ness of OL during the PE process, we integrated
tools to log the time, keystrokes and mouse move-
ments involved in post-editing a given file. To

achieve this, we incorporated the Qualitivity4 plu-
gin for Trados. This plugin generates an XML log-
ging file, which contains all the keystrokes time
information per segment. An example of this log-
ging is shown in Figure 4.

With all this log information, we can measure
the effort required to post-edit a file using MT
with OL. Preliminary experiments in simulated
and real environments with professional transla-
tors (Domingo et al., 2019), reported significant
improvements of the quality of the translations
generated by the MT systems (up to 5.3 points
according to hTER, and 7.8 points according to
hBLEU), and a significant reduction of the PE
time (up to 7.5 second per sentence).

4 Summary

We have introduced a demonstration of
Pangeanic’s translation framework, which in-
corporates on-the-fly system adaptation via online
learning. This paradigm allows human translators
/post-editors to produce more human-quality text,
that is, be more productive—a fundamental issue
in the translation industry—since the system is
continuously learning from the user post-edits,
avoiding repetition of the same errors. We have
integrated our MT servers into the SDL Trados
Studio user interface which is one of the most
used in the translation industry. This system aims
to improve human translators’ work by saving

4https://community.sdl.com/
product-groups/translationproductivity/
w/customer-experience/2251.qualitivity

72

Figure 4: Example of Qualitivity’s logging file.

time and effort.

Acknowledgments

The research leading to these results has received
funding from the Spanish Centre for Technolog-
ical and Industrial Development (Centro para el
Desarrollo Tecnológico Industrial) (CDTI) and
the European Union through Programa Oper-
ativo de Crecimiento Inteligente (Project IDI-
20170964). We gratefully acknowledge the sup-
port of NVIDIA Corporation with the donation of
a GPU used for part of this research.

References
Vicent Alabau, Ragnar Bonk, Christian Buck, Michael

Carl, Francisco Casacuberta, Mercedes Garcı́a-
Martı́nez, Jesús González-Rubio, Philipp Koehn,
Luis A. Leiva, Bartolomé Mesa-Lao, Daniel Ortiz-
Martı́nez, Hervé Saint-Amand, Germán Sanchis-
Trilles, and Chara Tsoukala. 2013. CASMACAT:
An open source workbench for advanced computer
aided translation. The Prague Bulletin of Mathemat-
ical Linguistics, 100:101–112.

Ana Guerberof Arenas. 2008. Productivity and quality
in the post-editing of outputs from translation mem-
ories and machine translation. Localisation Focus,
7(1):11–21.

Robert Dale. 2016. How to make money in the trans-
lation business. Natural Language Engineering,
22(2):321–325.

Miguel Domingo, Mercedes Garcı́a-Martı́nez, Álvaro
Peris, Alexandre Helle, Amando Estela, Laurent
Bié, Francisco Casacuberta, and Manuel Herranz.
2019. Incremental adaptation of NMT for profes-
sional post-editors: A user study. In Proceedings
of the Machine Translation Summit. Under publica-
tion.

Marcello Federico, Nicola Bertoldi, Mauro Cettolo,
Matteo Negri, Marco Turchi, Marco Trombetti,

Alessandro Cattelan, Antonio Farina, Domenico
Lupinetti, Andrea Martines, Alberto Massidda, Hol-
ger Schwenk, Loı̈c Barrault, Frederic Blain, Philipp
Koehn, Christian Buck, and Ulrich Germann. 2014.
The matecat tool. In Proceedings of the 25th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 129–132.

Hany Hassan, Anthony Aue, Chang Chen, Vishal
Chowdhary, Jonathan Clark, Christian Feder-
mann, Xuedong Huang, Marcin Junczys-Dowmunt,
William Lewis, Mu Li, et al. 2018. Achieving hu-
man parity on automatic chinese to english news
translation.

Ke Hu and Patrick Cadwell. 2016. A comparative
study of post-editing guidelines. In Proceedings of
the 19th Annual Conference of the European Asso-
ciation for Machine Translation, pages 34206–353.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M. Rush. 2017. Open-
NMT: Open-source toolkit for neural machine trans-
lation. In Proceedings of the Association for the
Computational Linguistics, pages 67–72.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39.

Sachith Sri Ram Kothur, Rebecca Knowles, and
Philipp Koehn. 2018. Document-level adaptation
for neural machine translation. In Proceedings of
the 2nd Workshop on Neural Machine Translation
and Generation, pages 64–73.

Álvaro Peris and Francisco Casacuberta. 2018. Online
learning for effort reduction in interactive neural ma-
chine translation. Accepted in Computer Speech &
Language.

Álvaro Peris, Luis Cebrián, and Francisco Casacuberta.
2017. Online learning for neural machine transla-
tion post-editing. arXiv:1706.03196.

Marco Turchi, Matteo Negri, M Amin Farajian, and
Marcello Federico. 2017. Continuous learning from

73

human post-edits for neural machine translation.
The Prague Bulletin of Mathematical Linguistics,
108(1):233–244.

Y. Wu, M. Schuster, Z. Chen, Q. V. Le, M. Norouzi,
W. Macherey, M. Krikun, Y. Cao, Q. Gao,
K. Macherey, J. Klingner, A. Shah, M. Johnson,
X. Liu, Ł. Kaiser, S. Gouws, Y. Kato, T. Kudo,
H. Kazawa, K. Stevens, G. Kurian, N. Patil,
W. Wang, C. Young, J. Smith, J. Riesa, A. Rudnick,
O. Vinyals, G. Corrado, M. Hughes, and J. Dean.
2016. Google’s neural machine translation system:
Bridging the gap between human and machine trans-
lation. arXiv:1609.08144.

Joern Wuebker, Patrick Simianer, and John DeNero.
2018. Compact personalized models for neural ma-
chine translation. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 881–886.

74

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 75–80
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

FASTDial: Abstracting Dialogue Policies for Fast Development of Task
Oriented Agents

Serra Sinem Tekiroğlu and Bernardo Magnini and Marco Guerini
Fondazione Bruno Kessler, Via Sommarive 18, Povo, Trento, Italy

tekiroglu@fbk.eu, magnini@fbk.eu, guerini@fbk.eu

Abstract

We present a novel abstraction framework
called FASTDial for designing task oriented
dialogue agents, built on top of the OpenDial
toolkit. This framework is meant to facilitate
prototyping and development of dialogue sys-
tems from scratch also by non tech savvy, es-
pecially when limited training data is avail-
able. To this end, we use a generic and simple
frame-slots data-structure with pre-defined di-
alogue policies that allows for fast design and
implementation at the price of some flexibility
reduction. Moreover, it allows for minimizing
programming effort and domain expert train-
ing time, by hiding away many implementa-
tion details.

1 Introduction

In recent years, there has been an increasing de-
mand for a new generation of conversational sys-
tems that are able to naturally interact and assist
humans in a number of scenarios, including - but
not limited to - virtual coaches, personal assistants
and automatic help desks. However, when dealing
with applications or commercial scenarios, tech-
nological complexity should be abstracted away
since domain knowledge is often held by non tech
savvy. Moreover, systems should be ‘transparent’
to easily allow for modification or scaling when
needed, such as error fixing or new intents/object-
s/requirements integration.

To this end, several solutions have appeared on
the market. On one side, there are open source
tools/frameworks, such as OpenDial (Lison and
Kennington, 2016), PyDial (Ultes et al., 2017) and
DeepPavlov (Burtsev et al., 2018) that are very
flexible and allow many integrations. While these
tools are designed with the target of computer sci-
entists in mind, they would still need domain ex-
pertise to design proper dialogues. On the other
side of the spectrum, several commercial tools

aim at hiding dialogue implementation complex-
ity, for example by using intuitive graphical inter-
faces to help also non technical experts build their
own dialogues. This comes to the price of loosing
some flexibility, integration capabilities, and con-
trol over the system.

However, constructing flexible multi-intent di-
alogue agents while keeping the implementation
complexity minimal is not a trivial task both on
commercial and open source tools. Considering
that there are several domains requiring such di-
alogue systems (e.g. banking, e-commerce etc.),
we aim at providing a framework that is easy to
use but at the same time is still as flexible as pos-
sible.

To this end, we tried to merge the best of
both worlds (commercial and open source tools)
by designing and implementing a generalization
architecture on top of OpenDial. OpenDial is
a Java-based, domain-independent framework for
developing probabilistic rule-based dialogue sys-
tems. While keeping the rule-based approach of
OpenDial, our architecture, named FASTDial, ab-
stracts away dialogue policies in a generic dia-
logue model that drastically reduces design effort
and code complexity. This generic dialogue model
starts with an intent recognition phase that is user
initiative. Once the intent is recognized the inter-
action is converted to system initiative for filling
the required slots. Still, the user is given an ac-
tive part by allowing universal interruptions such
as calling help or canceling the task (Jurafsky and
Martin, 2017). In our view, most task oriented do-
mains can be easily adapted to this schema. This
allows for speeding up the prototyping of com-
plex multi-intent dialogue scenarios. It allows
easy integration of new languages and new intents,
by prioritizing efficiency and extensibility to fa-
cilitate developing dialogue systems from scratch
and with limited training data available. Scalabil-

75

ity can be quickly obtained also by non-experts
since the technical implementation of the dialogue
flow is abstracted away. Therefore, instead of fo-
cusing on a graphical interface approach, we ab-
stracted the dialogue policy in order to make dia-
logue building simpler:

• non-experts can easily be trained to write dia-
logues - or better - to provide the information
needed to automatically establish a dialogue.

• new intents can be quickly added.

• dialogues can be quickly and easily ported to
new languages.

• by using API interface to separate dialogue
from actual data we can increase the modu-
larity in the applications.

However, generalizing the dialogue flow into
certain logical patterns brings along the restric-
tion in the dialogue policy flexibility such that the
agent can only handle informable slot types and a
single slot per turn.

The remainder of the paper is structured as fol-
low: Section 2 presents the architecture of our sys-
tem with its main components, while Section 3
presents our running example in the banking sce-
nario. Finally, in Section 4 and 5 we evaluate our
approach and discuss future developments.

2 Architecture

In the FASTDial architecture1, the main conversa-
tional ability of the agent is encoded in a gener-
alized dialogue policy mechanism that is fed with
a frame-slots data-structure (FSDS). By abstract-
ing the policy away, we manage a systematic way
to load new intents (tasks/goals) to the agent rep-
resented only as slots, data types, api calls, and
pre-defined system utterances to produce relevant
dialogues with the user.

In this scenario, each intent relevant to a given
domain (e.g. ’make a money transfer’, ’check ac-
count balance’, ’block credit card’) is represented
by one FSDS data structure. After recognizing
the user intent, the agent loads the corresponding
FSDS from an external resource (i.e. json files)
and interactively fills the slots by asking related
questions to the user, making sure that all the con-
straints associated with each slot are fulfilled. By

1FASTDial code can be downloaded at the following link:
https://github.com/serrasinem/FASTDial

design, the agent performs single-intent at a time
and after each execution, the user can request a
new intent. An intent can be categorized as ei-
ther a query intent or an action intent. Regarding
the banking domain, requesting information on the
Account Balance is a query intent, while making a
Money Transfer is categorized as an action intent.

The architecture has been designed to be handy
especially in the application scenarios where many
user intents must be implemented in a very short
time and the training dialogue data is really scarce.
The main framework is designed as a module on
top of OpenDial toolkit. The architecture of the
dialogue agent consists of 5 components; namely,
Dialogue Manager, Integration Interface, Natural
Language Understanding, Natural Language Gen-
eration, and Intent Manager.

2.1 Dialogue Manager Module

The dialogue manager is responsible of the inter-
module communication and controlling the dia-
logue flow through dialogue states. In FASTDial,
once the user intent is identified, the dialogue is
led by the system. With respect to the slot order
in the FSDS of the intent, the system asks the slot
filling questions and processes the respective user
utterance to retrieve the slot values. After the slot
value is extracted, the DM module sends it to the
API module for validation. If the value is valid, the
DM module either activates the next slot state or
finalizes the dialogue if all the mandatory slots are
filled. If the value is not valid, the DM reformu-
lates the machine utterance with the corresponding
validation error and asks the slot filling question
again. In Figure 1, we give an example dialogue
demonstrating the aforementioned DM function-
ing.

Although FASTDial is designed to be system
initiative during slot filling, slots can be expressed
by the user at the intent utterance state, which is
the initial stage of the conversation, (e.g. “I would
like to transfer AMOUNT euros to NAME”). For
this reason all slots described in the FSDS are also
searched in the intent utterance. Consequently, as
well as detecting the Money Transfer intent in the
example above, the system would capture the val-
ues for the transfer destination and the amount
slots. The system validates the detected values and
if no error occurs the system skips the correspond-
ing slot filling questions, i.e. SKIPPED TURN in
Figure 1.

76

Figure 1: Example of dialogue with FASTDial in a multi-intent banking scenario. On the left: Upper section is
intent recognition (user initiative). Once the intent has been recognized the system takes the lead and ask one slot
at a time (lower section). On the right: a complex sub-dialogue due to validation errors for the amount slot.

FASTDial reduces the dialogue management
complexity and provides a set of predefined dia-
logue policies, which most dialogue scenarios can
be fitted into. However, the reduction of the dia-
logue flow complexity brings some restrictions to
the flexibility of the dialogue management. We
provide a list of restrictions and their alternatives
in FASTDial dialogue flow as follows:

• system initiative dialogue flow: once the user
intent is identified, the system tries to fill all
necessary slots and in case of an unexpected
user utterance, it changes the state to either re-
peating the question or finalizing the dialogue.
This would prevent the system answering the
mid-dialogue user questions, i.e. requestable
slots (Henderson et al., 2013). As an exam-
ple, in the Money Transfer intent, the user may
ask about her account balance before specifying
the amount of money she wants to send. The
DM cannot change the intent to Account Bal-
ance query in this scenario.

• one slot per turn: a slot turn can only be for
a single slot value. Multiple information must
be asked in different questions as different slots.
For instance, in a food ordering scenario, food
type and number of orders should be defined as
different slot turns. Still, both slots can be iden-
tified in the intent sentence if specified by the
user.

2.2 Integration Interface

The dialogue agent can be used as an external tool
to any application through its web service inter-
face. Similar to the dialogue bAbI tasks (Bordes

et al., 2016), the interface creates either a ma-
chine response or a functional call to its client.
The responses of these functional calls, in a “vari-
able:value format”, are directed to the NLG mod-
ule to transform the response values into suit-
able natural text shown to the user. In addition,
for demo purposes, the framework has a simple
Telegram application that requires a knowledge
base implementation as a backend. Unlike the
web service interface, Telegram app only produces
machine utterances and connects to the backend
knowledge base when necessary.

2.3 Natural Language Understanding

The task of the Natural Language Understanding
component is twofold: first to recognize the user
intent and then fill the corresponding FSDS that
has been loaded by the Intent Module and active
at the moment. While understanding the intent
type is implemented as a model interface, the slot
recognition task is handled by each slot type sepa-
rately. The intent identification model is generated
during the initialization of the agent, by retrieving
the intent keys from all registered intents.

Each slot type has its own slot filling method
and the type-specific slot constraints are employed
to match the values from the user utterance. There-
fore, the agent can employ different NLU ap-
proaches for different data types. Similar to the
strategy in OpenDial, while a simple regular ex-
pression model is applied to retrieve numbers, a
more complex deep learning recognition model
can be applied to other slots. This approach al-
lows integrating new slot filling models, such as
Named Entity Recognition models (Louvan and

77

Magnini, 2018) or RNN (Mesnil et al., 2015), eas-
ily by overloading the matching function in the ab-
stract class of the slot object.

2.4 Natural Language Generation

The machine utterances shown to the user
throughout the dialogue are supplied by the Nat-
ural Language Generation module whose main re-
sponsibility is to select the correct machine re-
sponse to lead the dialogue to successfully fulfill
a user intent. In the startup of the agent, the NLG
model is generated by using the intent descrip-
tions retrieved from all the registered FSDSs and
language-specific generic texts. API responses are
also integrated into machine utterances whenever
necessary. The machine utterances include the
user greetings, the slot filling questions, confirma-
tion requests, the output of the user intent execu-
tions, error messages (i.e. erroneous slot values,
incomprehensible user utterances, and translation
of the API responses with error codes).

2.5 Intent Manager

Intent Manager loads the intent frame (i.e. FSDS)
on-the-fly when the user intent is detected by
the NLU module. All possible FSDS, including
their metadata and slot descriptions, are registered
when the agent starts up. The intent frame descrip-
tions reside in the FSDS Knowledge Base (KB),
currently a simple folder containing json files of
all registered intents. A new intent can be reg-
istered to the dialogue agent by adding it to the
FSDS KB folder after the following properties are
defined:

• name: defines the name of the intent.

• keys: defines the keywords that are necessary
for understanding the user intent. It is a comma
separated list of regular expressions. In addi-
tion, a more complex NLU function, such as any
defined slot filling model, can be assigned to be
called in this variable.

• confirmation: a boolean value determines if the
execution of the intent requires a confirmation
from the user. For instance, certain actions such
as payments or, more generally, the tasks that re-
quire the user’s complete awareness of the con-
sequences should be finalized after the user’s
confirmation.

• confirmation question : if a confirmation is re-
quired for the execution of the intent, the confir-
mation question must be saved in this parameter.

• execution call: the final execution APICall. API
formalism should be agreed upon with the mid-
dleware.

• success & error messages: the messages to be
shown to the user when the execution of the in-
tent is successful and when the execution of the
intent is failed.

• slots: the ’ordered’ list of slot objects that need
to be filled to execute the intent.

A slot object can be in the type of String,
List of Strings, Date, Time, Currency, Numeric,
and Confirmation. Although we provide a pre-
implemented list of possible slot types, the slot
implementation has been designed as an abstract
object that can be extended easily into new types
of slots depending on the specific requirements of
a new domain. For instance, a Named Entity slot
that holds any given named entity can be imple-
mented by employing a deep NER model. A slot
object can be added to the slot list of an intent by
defining the following variables.

• slot name: should be unique for intent.

• slot type: holds a slot type.

• constraint: type dependent. It determines the
slot filling conditions necessary for the NLU.

• question: It holds the question to be asked to the
user to fill the slot value.

• validation api: Each slot should be verified af-
ter receiving the value from the user in order to
continue to the next slot, unless specified with
the key ”NoValidate”. This variable holds the
validation api function name to call after filling
the slot value.

• error message: The error machine utterances
and the error codes are defined in a list of “er-
ror code:utterance” format.

• mandatory: This variable is a boolean value de-
termining if the slot must be filled in order to
execute the user intent.

• regex: We can define a list of regular expres-
sions for extracting a slot value. Each regex

78

should contain “{slot}” string, which is the filler
for the expected slot value, e.g. “my {slot}
card”. While “keys” parameter predefines a set
of slot values to be exactly matched, “regex” pa-
rameter defines a set of patterns to extract the
unknown slot values from the user utterance.

• dependency: The possible values that a slot can
take sometimes depend on a previous slot. In
this condition, dependency variable is required
to hold a slot name which is defined prior to the
current slot.

3 Banking Domain

Considering the data scarcity, Banking dialogues
could be one of the hardest datasets to retrieve due
to security requirements. Not only the real user
interaction dialogues, but also the KB structure
or the logical structure of a banking action would
not completely and easily been shared. In this
scenario, training a model with the actual bank-
ing data or dialogue samples would not be possi-
ble. Keeping these requirements and limitations
in mind, we generated FSDSs for various banking
tasks, such as Money Transfer, Account History
Search, Account Balance query, Card Limit query,
Canceling a Transfer, and Blocking a Card, from
scratch with the help of a domain expert. In this
domain, intent types and almost all slot values de-
tected in the user utterances are validated through
API calls and the dialogue flow can change ac-
cordingly. In Listing 1, we provide the json ob-
ject of a sample FSDS registered to accomplish a
Money Transfer. It is worthwhile to mention that
to give the ability of establishing dialogues for the
Money Transfer intent, all required information re-
sides in this single json object. Additionally, in Ta-
ble 1, we show a simple Account Balance dialogue
with the required API interaction.
{”name” : ” T r a n s f e r ” ,
” keys ” : ”make .∗ t r a n s f e r , send .∗money . . . ” ,
” c o n f i r m a t i o n ” : t r u e ,
” c o n f i r m a t i o n q u e s t i o n ” : ”Do you c o n f i r m

s e n d i n g {Amount} t o {ToAccount} ?” ,
” e x e c u t i o n c a l l ” : ” e x e c u t e t r a n s f e r ” ,
” s l o t s ” : [
{” s l o t n a m e ” : ” ToAccount ” ,

” s l o t t y p e ” : ” S t r i n g L i s t ” ,
” c o n s t r a i n t ” : ” k e y s :

r e c i p i e n t l i s t ” ,
” q u e s t i o n ” : ”What i s t h e name of

t h e r e c i p i e n t ?” ,
” v a l i d a t i o n a p i ” : ”

c h e c k r e c i p i e n t ” ,
” e r r o r m e s s a g e ” : {” v a l e r r ” : ”

There i s no saved r e c i p i e n t

w i th t h e name you p r o v i d e d .
P l e a s e e n t e r one o f t h e
o p t i o n s among : ”} ,

” mandatory ” : t r u e ,
” r e g e x ” : ”money t o { s l o t }”} ,

{” s l o t n a m e ” : ”Amount” ,
” s l o t t y p e ” : ” Cur rency ” ,
” c o n s t r a i n t ” : ” e ” ,
” dependency ” : ” FromAccount ” ,
” q u e s t i o n ” : ”How much money would

you l i k e t o t r a n s f e r ?” ,
” v a l i d a t i o n a p i ” : ”

c h e c k f u n d s l i m i t ” ,
” e r r o r m e s s a g e ” : {” v a l e r r ” : ” The

amount c a n n o t be p r o c e s s e d ,
p l e a s e s p e c i f y a v a l i d
amount . ” , ” f u n d e r r ” : ” S o r r y ,

you do n o t have enough
f u n d s i n your a c c o u n t . Would

you l i k e t o change t h e
amount ?” , ” l i m i t e r r ” : ” S o r r y ,

t h e amount you s p e c i f i e d i s
above your t r a n s f e r l i m i t .

Would you l i k e t o change t h e
amount ?”} ,

” mandatory ” : t r u e } ,
{” s l o t n a m e ” : ” NoteConf i rm ” ,

” s l o t t y p e ” : ” C o n f i r m a t i o n ” ,
” c o n s t r a i n t ” : ” yes , ok , s u r e ,

c o r r e c t , r i g h t , p o s i t i v e ; no ,
n o t now , n o t t o d a y , n e g a t i v e ;
a c t i o n : s k i p N e x t ” ,

” q u e s t i o n ” : ”Do you want t o add a
n o t e t o your t r a n s f e r ?” ,

” v a l i d a t i o n a p i ” : ” N o V a l i d a t e ” ,
” e r r o r m e s s a g e ” : {” v a l e r r ” : ” I

couldn ’ t u n d e r s t a n d your
r e q u e s t . Could you p l e a s e
c o n f i r m or r e j e c t a dd ing a
n o t e ?”} ,

” mandatory ” : t r u e } ,
{” s l o t n a m e ” : ” Note ” ,

” s l o t t y p e ” : ” S t r i n g ” ,
” c o n s t r a i n t ” : ”” ,
” q u e s t i o n ” : ” P l e a s e t y p e your

n o t e . ” ,
” v a l i d a t i o n a p i ” : ” s a v e P o s t ” ,
” e r r o r m e s s a g e ” : {” v a l e r r ” : ”

There i s a problem wi th your
r e q u e s t . Your n o t e c o u l d

n o t be saved . ” } ,
” mandatory ” : f a l s e }] ,

” s u c c e s s m e s s a g e ” : ”OK, your t r a n s f e r i s
done . Can I h e l p you wi th a n y t h i n g
e l s e ?” ,

” e r r o r m e s s a g e ” : ” Your t r a n s f e r c a n n o t be
e x e c u t e d . {Er ro rMessage } Can I h e l p
you wi th a n y t h i n g e l s e ?”}
Listing 1: json FSDS for Money Transfer

4 System Evaluation

Since one of our main claims is that our abstrac-
tion framework can drastically reduce dialogue de-
sign and code complexity - as compared to Open-
Dial - we set up a comparison task. In this task
we re-implemented three of the intent of the bank-

79

B: Hello, how can I help you with ?
U: I would like to check my account balance.
AC : MESSAGE: ACCOUNT LIST, INTENT: AC-

COUNTBALANCE

AR: [CHECKING, SAVINGS]
B: You have Checking, Savings accounts.

Which one would you like to query?
U: savings, please
AC : INFO TYPE: CHECK ACCOUNT, MES-

SAGE: SAVINGS

AR: STATE: INFO CHECK SUCCESS

AC : MESSAGE: EXECUTE INTENT

AR: MESSAGE: {AMOUNT:100, CURRENCY-
TYPE:e }, STATE: EXECUTE SUCCESS

B: The current balance on your Savings ac-
count is 100 e . Can I help you with any-
thing else?

Table 1: An excerpt of an Account Balance dialogue
generated from its FSDS toghether with the API calls.
B is Bot, U is User, AC is API call, AR is API response.

ing scenario into the native OpenDial representa-
tion. The code reduction was of two orders of
magnitude (on average from 2000 lines of XML
code to 80 lines of json format FSDS description).
Note that for this comparison we relied on a de-
veloper, so we excluded the time needed to learn
the tool, that for OpenDial is expected to be much
higher. As a second task, we ported the language-
specific generic NLU/NLG definitions and orig-
inal 9 Banking Domain intents to two new lan-
guages (Italian and Hungarian): on average setting
up a completely functional dialogue agent with all
9 intents required from 3 to 4 hours. In this case
we did not use a programmer but a native speaker
per language with good knowledge of English.

5 Conclusion and Future Work

We presented FASTDial, a dialogue policy ab-
straction framework built on top of OpenDial that
allows for fast prototyping and significant code
complexity reduction in building conversational
agents. We are planning to expand our framework
with new features (e.g. new data types, multiple
slots per turn), and also to build a version that
allows for user driven dialogues. This new ver-
sion would require some changes in the underly-
ing logic. Moreover we are planning to integrate
some available models for NLU and NLG into our
FSDS structure to replace simple regular expres-

sion matching and template filling.

Acknowledgement

This work has been partially supported by the
Conversational Banking Front-end EIT-Digital
project (ID. 18039).

References
Antoine Bordes, Y-Lan Boureau, and Jason Weston.

2016. Learning end-to-end goal-oriented dialog.
arXiv preprint arXiv:1605.07683.

Mikhail Burtsev, Alexander Seliverstov, Rafael
Airapetyan, Mikhail Arkhipov, Dilyara Baymurz-
ina, Nickolay Bushkov, Olga Gureenkova, Taras
Khakhulin, Yuri Kuratov, Denis Kuznetsov, Alexey
Litinsky, Varvara Logacheva, Alexey Lymar,
Valentin Malykh, Maxim Petrov, Vadim Polulyakh,
Leonid Pugachev, Alexey Sorokin, Maria Vikhreva,
and Marat Zaynutdinov. 2018. Deeppavlov:
Open-source library for dialogue systems. In
Proceedings of ACL 2018, System Demonstrations,
pages 122–127. Association for Computational
Linguistics.

Matthew Henderson, Blaise Thomson, and Jason
Williams. 2013. Dialog state tracking challenge
2&3.

Daniel Jurafsky and James H Martin. 2017. Dialog sys-
tems and chatbots. Speech and language processing.

P. Lison and C. Kennington. 2016. Opendial: A
toolkit for developing spoken dialogue systems with
probabilistic rules. In Proceedings of the 54th An-
nual Meeting of the Association for Computational
Linguistics (Demonstrations), pages 67–72, Berlin,
Germany. Association for Computational Linguis-
tics.

Samuel Louvan and Bernardo Magnini. 2018. Explor-
ing named entity recognition as an auxiliary task for
slot filling in conversational language understand-
ing. In Proceedings of the 2018 EMNLP Workshop
SCAI: The 2nd International Workshop on Search-
Oriented Conversational AI, pages 74–80.

Grégoire Mesnil, Yann Dauphin, Kaisheng Yao,
Yoshua Bengio, Li Deng, Dilek Hakkani-Tur, Xi-
aodong He, Larry Heck, Gokhan Tur, Dong Yu, et al.
2015. Using recurrent neural networks for slot fill-
ing in spoken language understanding. IEEE/ACM
Transactions on Audio, Speech, and Language Pro-
cessing, 23(3):530–539.

Stefan Ultes, Lina M Rojas Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Inigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
Wen, Milica Gasic, et al. 2017. Pydial: A multi-
domain statistical dialogue system toolkit. Proceed-
ings of ACL 2017, System Demonstrations, pages
73–78.

80

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 81–86
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

A Neural, Interactive-predictive System
for Multimodal Sequence to Sequence Tasks

Álvaro Peris and Francisco Casacuberta
Pattern Recognition and Human Language Technology Research Center

Universitat Politcnica de Valncia, Valncia, Spain
{lvapeab, fcn}@prhlt.upv.es

Abstract

We present a demonstration of a neural
interactive-predictive system for tackling mul-
timodal sequence to sequence tasks. The sys-
tem generates text predictions to different se-
quence to sequence tasks: machine translation,
image and video captioning. These predictions
are revised by a human agent, who introduces
corrections in the form of characters. The sys-
tem reacts to each correction, providing alter-
native hypotheses, compelling with the feed-
back provided by the user. The final objective
is to reduce the human effort required during
this correction process.

This system is implemented following a
client–server architecture. For accessing the
system, we developed a website, which com-
municates with the neural model, hosted in
a local server. From this website, the dif-
ferent tasks can be tackled following the
interactive-predictive framework. We open-
source all the code developed for building
this system. The demonstration in hosted
in http://casmacat.prhlt.upv.es/
interactive-seq2seq.

1 Introduction

The sequence to sequence problem involves the
transduction of an input sequence x into an out-
put sequence ŷ (Graves, 2012). In the last years,
many tasks have been tackled under this perspec-
tive using neural networks with extraordinary re-
sults: neural machine translation (NMT; Sutskever
et al., 2014; Bahdanau et al., 2015), speech recog-
nition and translation (Chan et al., 2016; Niehues
et al., 2018), image and video captioning (Xu
et al., 2015; Yao et al., 2015), among others.

These systems are usually based on the sta-
tistical formalization of pattern recognition (e.g.
Bishop, 2006). Following this probabilistic frame-
work, the objective is to find most likely output se-

quence ŷ, given an input sequence x, according to
a model Θ:

ŷ = arg max
y

p(y | x;Θ) (1)

In the last years, Θ has been frequently im-
plemented as a deep neural network, trained in
an end-to-end way. These neural systems have
consistently outperformed other alternatives in the
aforementioned problems. However and despite
these impressive advances, the systems are not
perfect, and still make errors (Koehn and Knowles,
2017).

In several scenarios, and especially in machine
translation, fully-automatic systems are usually
used for providing initial predictions to the input
objects. These predictions are later revised by a
human expert, who corrects the errors made by
the system. This is known as post-editing and, in
some scenarios, it increases the productivity with
respect to performing the task from scratch (Al-
abau et al., 2016; Arenas, 2008; Hu and Cadwell,
2016).

1.1 Interactive-predictive pattern recognition

As an alternative to the static, decoupled post-
editing, other strategies have been proposed, aim-
ing to improve the productivity of the correction
phase. Among them, the interactive-predictive
pattern recognition (Foster et al., 1997) results par-
ticularly interesting. Under this framework, the
static correction stage shifts to an iterative human-
computer collaboration process.

The user interacts with the system by means of
a feedback signal f . The system suggests then an
alternative hypothesis ỹ, compatible with the feed-
back. The inclusion of the feedback into the gen-
eral pattern recognition rewrites Eq. (1) introduc-

81

Client (website)

Feedback (f)
y1, y2

Python Server

y1, y2, y3, y4, ..., yI
Alternative hypothesis

User
Encoder
Decoder

Constrained
Search

(Θ)

HTTP server

Object (x)
PHP

(ỹ)

Figure 1: System architecture. The client, a website, presents the user several input objects (images, videos or
texts) and a prediction. The user then introduces a feedback signal, for correcting this prediction. After being
introduced, the feedback signal is sent to the server—together with the input object—for generating an alternative
hypothesis, which takes into account the user corrections.

ing a restriction on the search space:

ỹ = arg max
y compatible with f

p(y | x, f ;Θ) (2)

The most paradigmatic application of the
interactive-predictive pattern recognition frame-
work is machine translation. The addition of in-
teractive protocols to foster productivity of trans-
lation environments have been studied for long
time, for phrase-based models (Alabau et al.,
2013, 2016; Barrachina et al., 2009; Federico
et al., 2014; Green et al., 2014) and also for
NMT systems (Knowles and Koehn, 2016; Peris
et al., 2017; Peris and Casacuberta, 2019; Wue-
bker et al., 2016).

The system we are presenting in this work is an
extended version of Peris and Casacuberta (2019),
who presented a NMT system that accepted a pre-
fix feedback: the user corrected the first wrong
character of the sentence. Hence, the system re-
acted to the feedback by providing an alternative
suffix. This protocol can be implemented as a con-
strained beam search. Moreover, the system can
be retrained incrementally, as soon as a corrected
sample is validated, following an online learning
scenario.

We generalize this interactive-predictive NMT
system to cope with alternative input modalities,
namely images and videos. The system can be ac-
cessed following a client–server interface. We de-
veloped a client website, that access to our servers,
in which the interactive-predictive systems are de-
ployed. A live demo of the system can be ac-
cessed in: http://casmacat.prhlt.upv.
es/interactive-seq2seq.

In the following sections, we describe the main
architecture, features and usage of our interactive-
predictive system. We also describe the frontend
of our demonstration website and present an ex-
ample of interactive session.

2 System description

The core of our system is a neural sequence to se-
quence model, developed with NMT-Keras (Peris
and Casacuberta, 2018). This library is built
upon Keras (Chollet et al., 2015) and works for
the Theano (Theano Development Team, 2016)
and Tensorflow (Abadi et al., 2016) backends.
The system is deployed as a Python-based HTTP
server that waits for requests. The user inter-
actions are introduced through a (client) HTML
website. The website is hosted on a Nginx server
that manages the interactions using Javascript and
communicates with the Python server, using the
PHP curl tool. All code is open-source and pub-
licly available1,2.

NMT-Keras extends the (already extensive)
Keras functionalities, providing a flexible, easy
to use framework upon which build neural mod-
els. Among the features brought by NMT-Keras,
some of them are particularly useful for sequence-
to-sequence tasks: extended recurrent neural net-
works, with embedded attention mechanisms and
conditional LSTM/GRU units (Sennrich et al.,
2017), multi-head attention layers, positional en-
codings and position-wise feed-forward networks
for building Transformer models (Vaswani et al.,

1Python server source code: https://github.com/
lvapeab/interactive-keras-captioning.

2HTML server source code: https://github.com/
lvapeab/inmt_demo_web.

82

Input object

Editable area:
System hypotheses

User feedback

Incremental adaptation Hypothesis acceptationGenerate initial
hypothesis

Figure 2: Frontend of the client website. As the button “Transcript!” is clicked, an initial hypothesis for the
input object—in this case, an image—appears in the right area. The user then introduces corrections of this text.
The system reacts to each translation, producing alternative hypotheses, always compliant with the user feedback.
Once a correct caption of the image is reached, the user clicks in the “Accept translation” button, validating the
hypothesis.

2017) and a modular handler for processing differ-
ent data modalities, including text, images, videos
or categorical labels.

Within this framework, we built our neural
systems, which are leveraged via our interactive
client–server application. The neural systems are
deployed in a server, waiting for requests. When
the client ask for a prediction, they react, generate
the prediction and deliver it back to the client.

2.1 Usage of the interactive system

Our interactive-predictive system works as fol-
lows: initially, an input object is presented to the
user in the client website. The user requests an
automatic prediction of it. Next, the client com-
municates the server via PHP. The server queries
the neural system, which produces an initial hy-
pothesis applying Eq. (1). The hypothesis is then
sent back to the client website.

Next, the interactive-predictive process starts:
the user searches in this hypothesis the first er-

ror, and introduces a correction with the key-
board (writing one or more characters). When the
user stops typing the correction, the system reacts,
sending to the server a request containing the in-
put object and the user feedback (the sequence of
characters that conform the correct prefix). Then,
the neural model implements Eq. (2) and produces
an alternative hypothesis, such that it completes
the correct prefix. This is implemented as a con-
strained beam search, as described in Peris et al.
(2017); Peris and Casacuberta (2019). This itera-
tion of the process is illustrated in Fig. 1.

This protocol is repeated until the user finds
satisfactory the hypothesis given by the system.
Then, it is validated. As soon as the sentence
is validated, the system can be incrementally up-
dated with this sample, following an online learn-
ing setup (Peris and Casacuberta, 2019). Hence,
in future interactions, the system will be progres-
sively updated, tailoring to a given domain or to
the user preferences. These adaptive systems have

83

0 System A group of football players in red uniforms.

1 User A fgroup of football players in red uniforms.
System A f ootball player in a red uniform is holding a football.

2 User A football player in a red uniform is wholding a football.
System A football player in a red uniform is wearing a football.

3 User A football player in a red uniform is wearing a h football.
System A football player in a red uniform is wearing a helmet.

4 User A football player in a red uniform is wearing a helmet.

Figure 3: Interactive-predictive session for correcting the caption generated in Fig. 2. At each iteration, the user
introduces a character correction (boxed). The system modifies its hypothesis, taking into account this feedback:
keeping the correct prefix (green) and generating a compatible suffix.

shown to be effective for reducing the human ef-
fort spent in the process (Karimova et al., 2018).

3 System showcase

To show the interactive-predictive protocol de-
scribed in the previous sections, we developed a
website which hosts a demonstration of the sys-
tem. Our demonstration system handles three
different problems, regarding three different data
modalities: text-to-text (NMT), image-to-text (im-
age captioning) and video-to-text (video caption-
ing). For tackling these tasks, we use a similar
model: a neural encoder–decoder, based on re-
current neural networks with attention (Bahdanau
et al., 2015; Xu et al., 2015; Yao et al., 2015). Our
framework has also support for Transformer-like
architectures (Vaswani et al., 2017).

The NMT task regards the translation of texts
from a medical domain. The system is similar
to the one used by Peris and Casacuberta (2019),
and was trained on the UFAL corpus (Bojar et al.,
2017). The image and video captioning systems
were trained on the Flickr8k (Hodosh et al., 2010)
and MSVD (Chen and Dolan, 2011) datasets, re-
spectively. The images were encoded using an
Inception convolutional neural network (Szegedy
et al., 2016) trained on the ILSVRC dataset (Rus-
sakovsky et al., 2015). The decoder receives
the representation previous to the fully-connected
work. In the case of the video captioning sys-
tem, we applied a 3D convolutional neural net-
work (Tran et al., 2015), for obtaining time-aware
features.

Finally, as aforementioned in previous sections,
the systems can be retrained after the validation
of each sample. In our demonstration, the systems

are updated via gradient descent, but using a learn-
ing rate of 0, which prevents a degradation of the
model due to accidental misuse.

3.1 Example: image captioning

We show and analyze an image captioning exam-
ple. The NMT and video captioning tasks are sim-
ilar. Fig. 2 shows the demo website, for the image
captioning task. In the left part of the screen, the
input object is shown, in this case, an image. As
the user clicks in the “Transcript!” button, the sys-
tem generates a caption of the image, displaying it
in an editable area on the right part of the screen.
The user can then introduce the desired corrections
to this hypothesis. As a correction is introduced,
the system reacts, providing an alternative caption,
but always considering the feedback given by the
user.

As can be seen in Fig. 2, the caption generated
by the system has some errors. Fig. 3 an shows the
interactive-predictive captioning session, for ob-
taining a correct sample. With three interactions,
the system was able to obtain a correct caption for
the image.

It is particularly interesting to observe that the
system correctly accounts for the singular/plural
concordance of the clause in red uniform(s), de-
pending on the subject (A football player/A group
of football players).

4 Conclusions and future work

We presented a demonstration of a interactive-
predictive neural system for multimodal sequence
to sequence tasks. We described its client–server
architecture and developed a website for ease the
usage of the system.

84

As future work, we would like to improve the
frontend of our website. Inspecting the attributes
of black-box neural models is a relevant research
topic, and it is under active development (e.g.
Zeiler and Fergus, 2014; Ancona et al., 2017). Vi-
sualizing these relevant attributes would help to
understand the model predictions and behavior.

Moreover, a more sophisticated frontend would
allow to implement interesting features, such as
mapping the attention weights through the input
sequence or the implementation of more complex
interaction protocols, such as touch-based interac-
tion (Marie and Max, 2015) or segment-based in-
teraction (Peris et al., 2017). We intend to offer
the different functionalities of the toolkit as REST
services, for improving the reusability of the code.
It is also planned to release the library in a Docker
container in order to ease the deployment of future
applications.

Acknowledgments

We acknowledge the anonymous reviewers for
their helpful suggestions. The research lead-
ing to these results has received funding from
the Generalitat Valenciana under grant PROME-
TEOII/2014/030 and from TIN2015-70924-C2-1-
R. We also acknowledge NVIDIA Corporation for
the donation of GPUs used in this work.

References
Martı́n Abadi, Paul Barham, Jianmin Chen, Zhifeng

Chen, Andy Davis, Jeffrey Dean, Matthieu Devin,
Sanjay Ghemawat, Geoffrey Irving, Michael Is-
ard, et al. 2016. Tensorflow: A system for large-
scale machine learning. In Proceedings of the 12th
USENIX Symposium on Operating Systems Design
and Implementation, volume 16, pages 265–283.

Vicent Alabau, Ragnar Bonk, Christian Buck, Michael
Carl, Francisco Casacuberta, Mercedes Garcı́a-
Martı́nez, Jesús González-Rubio, Philipp Koehn,
Luis A. Leiva, Bartolomé Mesa-Lao, Daniel Ortiz-
Martı́nez, Hervé Saint-Amand, Germán Sanchis-
Trilles, and Chara Tsoukala. 2013. CASMACAT:
An open source workbench for advanced computer
aided translation. The Prague Bulletin of Mathemat-
ical Linguistics, 100:101–112.

Vicent Alabau, Michael Carl, Francisco Casacuberta,
Mercedes Garca-Martnez, Jess Gonzlez-Rubio, Bar-
tolom Mesa-Lao, Daniel Ortiz-Martnez, Moritz
Schaeffer, and Germn Sanchis-Trilles. 2016. New
Directions in Empirical Translation Process Re-
search, New Frontiers in Translation Studies, chap-
ter Learning Advanced Post-editing.

Marco Ancona, Enea Ceolini, Cengiz Öztireli, and
Markus Gross. 2017. Towards better understanding
of gradient-based attribution methods for deep neu-
ral networks. arXiv:1711.06104.

Ana Guerberof Arenas. 2008. Productivity and quality
in the post-editing of outputs from translation mem-
ories and machine translation. Localisation Focus,
7(1):11–21.

Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-
gio. 2015. Neural machine translation by jointly
learning to align and translate. arXiv:1409.0473.

Sergio Barrachina, Oliver Bender, Francisco Casacu-
berta, Jorge Civera, Elsa Cubel, Shahram Khadivi,
Antonio Lagarda, Hermann Ney, Jesús Tomás, En-
rique Vidal, and Juan-Miguel Vilar. 2009. Statistical
approaches to computer-assisted translation. Com-
putational Linguistics, 35(1):3–28.

Christopher M. Bishop. 2006. Pattern Recognition and
Machine Learning (Information Science and Statis-
tics). Springer.

Ondej Bojar, Barry Haddow, David Mareek , Roman
Sudarikov, Aleš Tamchyna, and Duan Vari. 2017.
Report on building translation systems for public
health domain (deliverable D1.1). Technical Report
H2020-ICT-2014-1-644402, Health in my Language
(HimL).

William Chan, Navdeep Jaitly, Quoc Le, and Oriol
Vinyals. 2016. Listen, attend and spell: A neural
network for large vocabulary conversational speech
recognition. In Proceedings of the IEEE Interna-
tional Conference on Acoustics, Speech and Signal
Processing, pages 4960–4964.

David L Chen and William B Dolan. 2011. Collect-
ing highly parallel data for paraphrase evaluation. In
Proceedings of the 49th Annual Meeting of the As-
sociation for Computational Linguistics, pages 190–
200.

François Chollet et al. 2015. Keras. https://
github.com/keras-team/keras. GitHub
repository.

Marcello Federico, Nicola Bertoldi, Mauro Cettolo,
Matteo Negri, Marco Turchi, Marco Trombetti,
Alessandro Cattelan, Antonio Farina, Domenico
Lupinetti, Andrea Martines, Alberto Massidda, Hol-
ger Schwenk, Loı̈c Barrault, Frederic Blain, Philipp
Koehn, Christian Buck, and Ulrich Germann. 2014.
The matecat tool. In Proceedings of the 25th Inter-
national Conference on Computational Linguistics:
System Demonstrations, pages 129–132.

George Foster, Pierre Isabelle, and Pierre Plamon-
don. 1997. Target-text mediated interactive machine
translation. Machine Translation, 12:175–194.

Alex Graves. 2012. Sequence transduction with recur-
rent neural networks. arXiv:1211.3711.

85

Spence Green, Jason Chuang, Jeffrey Heer, and
Christopher D. Manning. 2014. Predictive transla-
tion memory: A mixed-initiative system for human
language translation. In Proceedings of the Annual
Association for Computing Machinery Symposium
on User Interface Software and Technology, pages
177–187.

Micah Hodosh, Peter Young, Cyrus Rashtchian, and
Julia Hockenmaier. 2010. Cross-caption corefer-
ence resolution for automatic image understanding.
In Proceedings of the Fourteenth Conference on
Computational Natural Language Learning, pages
162–171.

Ke Hu and Patrick Cadwell. 2016. A comparative
study of post-editing guidelines. In Proceedings of
the 19th Annual Conference of the European Asso-
ciation for Machine Translation, pages 34206–353.

Sariya Karimova, Patrick Simianer, and Stefan Riezler.
2018. A user-study on online adaptation of neural
machine translation to human post-edits. Machine
Translation, 32(4):309–324.

Rebecca Knowles and Philipp Koehn. 2016. Neural
interactive translation prediction. In Proceedings
of the Association for Machine Translation in the
Americas, pages 107–120.

Philipp Koehn and Rebecca Knowles. 2017. Six chal-
lenges for neural machine translation. In Pro-
ceedings of the First Workshop on Neural Machine
Translation, pages 28–39.

Benjamin Marie and Aurélien Max. 2015. Touch-
based pre-post-editing of machine translation out-
put. In Proceedings of the Conference on Empiri-
cal Methods in Natural Language Processing, pages
1040–1045.

Jan Niehues, Ngoc-Quan Pham, Thanh-Le Ha,
Matthias Sperber, and Alex Waibel. 2018. Low-
latency neural speech translation. In Proceedings
of the 19th Annual Conference of the International
Speech Communication Association, pages 1293–
1297.

Álvaro Peris and Francisco Casacuberta. 2018. NMT-
Keras: a very flexible toolkit with a focus on interac-
tive NMT and online learning. The Prague Bulletin
of Mathematical Linguistics, 111:113–124.

Álvaro Peris and Francisco Casacuberta. 2019. Online
learning for effort reduction in interactive neural ma-
chine translation. Computer Speech & Language,
58:98–126.

Álvaro Peris, Miguel Domingo, and Francisco Casacu-
berta. 2017. Interactive neural machine translation.
Computer Speech & Language, 45:201–220.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause,
Sanjeev Satheesh, Sean Ma, Zhiheng Huang, Andrej
Karpathy, Aditya Khosla, Michael Bernstein, et al.

2015. Imagenet large scale visual recognition chal-
lenge. International Journal of Computer Vision,
115(3):211–252.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, Antonio Valerio
Miceli Barone, Jozef Mokry, and Maria Nadejde.
2017. Nematus: a toolkit for neural machine trans-
lation. In Proceedings of the Software Demonstra-
tions at the 15th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 65–68.

Ilya Sutskever, Oriol Vinyals, and Quoc V. Le. 2014.
Sequence to sequence learning with neural net-
works. In Proceedings of the Advances in Neural
Information Processing Systems, volume 27, pages
3104–3112.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethinking
the inception architecture for computer vision. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, pages 2818–2826.

Theano Development Team. 2016. Theano: A Python
framework for fast computation of mathematical ex-
pressions. arXiv:1605.02688.

Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo
Torresani, and Manohar Paluri. 2015. Learning
spatiotemporal features with 3d convolutional net-
works. In Proceedings of the IEEE international
conference on computer vision, pages 4489–4497.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Joern Wuebker, Spence Green, John DeNero, Sasa
Hasan, and Minh-Thang Luong. 2016. Models and
inference for prefix-constrained machine translation.
In Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics, volume 1,
pages 66–75.

Kelvin Xu, Jimmy Ba, Ryan Kiros, Kyunghyun Cho,
Aaron Courville, Ruslan Salakhutdinov, Richard
Zemel, and Yoshua Bengio. 2015. Show, attend and
tell: Neural image caption generation with visual at-
tention. In Proceedings of the International Confer-
ence on Machine Learning, pages 2048–2057.

Li Yao, Atousa Torabi, Kyunghyun Cho, Nicolas Bal-
las, Christopher Pal, Hugo Larochelle, and Aaron
Courville. 2015. Describing videos by exploiting
temporal structure. In Proceedings of the Interna-
tional Conference on Computer Vision, pages 4507–
4515.

Matthew D Zeiler and Rob Fergus. 2014. Visualizing
and understanding convolutional networks. In Pro-
ceedings of the European Conference on Computer
Vision, pages 818–833.

86

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 87–92
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

NeuralClassifier: An Open-source Neural Hierarchical Multi-label Text
Classification Toolkit

Liqun Liu∗, Funan Mu∗, Pengyu Li, Xin Mu, Jing Tang,
Xingsheng Ai, Ran Fu, Lifeng Wang, Xing Zhou
Advertising and Marketing Services, Tencent Inc.

{liqunliu, marvinmu, perrypyli, anmarsmu, jamesjtang,
felixai, ranfu, fandywang, leostarzhou}@tencent.com

Abstract

In this paper, we introduce NeuralClassifier,
a toolkit for neural hierarchical multi-label text
classification. NeuralClassifier is designed
for quick implementation of neural models
for hierarchical multi-label classification task,
which is more challenging and common in
real-world scenarios. A salient feature is that
NeuralClassifier currently provides a variety
of text encoders, such as FastText, TextCNN,
TextRNN, RCNN, VDCNN, DPCNN, DRNN,
AttentiveConvNet and Transformer encoder,
etc. It also supports other text classification
scenarios, including binary-class and multi-
class classification. Built on PyTorch1, the
core operations are calculated in batch, mak-
ing the toolkit efficient with the acceleration
of GPU. Experiments show that models built
in our toolkit achieve comparable performance
with reported results in the literature.

1 Introduction

Text classification is an important task in Natu-
ral Language Processing with many applications,
such as web search, information retrieval, rank-
ing and document classification (Deerwester et al.,
1990; Pang et al., 2008). As a result of the great
success of deep neural networks, a series of clas-
sification models based on neural networks that
achieve very good performance in practice have
been proposed (Kim, 2014; Lai et al., 2015; Joulin
et al., 2016; Conneau et al., 2016; Liu et al., 2016;
Johnson and Zhang, 2017; Vaswani et al., 2017;
Yin and Schütze, 2017; Wang, 2018; Qiao et al.,
2018; Guo et al., 2019).

The problem of Hierarchical Multi-label Classi-
fication (HMC) is a branch of classification prob-
lem. It is a more challenging classification prob-
lem in real-world scenarios. Unlike traditional flat

∗Equal contribution
1https://pytorch.org/

Figure 1: Configuration file segment.

and single-label text classification, it aims at con-
sidering the interrelationships among labels and
classifying the text document into multiple labels,
which are organized into a hierarchical structure
of tree or DAG (Directed Acyclic Graph). Regu-
larizing the deep architecture with the dependency
among labels adopted by the existing solutions
(Gopal and Yang, 2013; Peng et al., 2018) is more
naturally for solving hierarchical multi-label text
classification problem, especially for large scale
datasets. It has a wide variety of real-world ap-
plications such as question answering (Qu et al.,
2012), online advertising (Agrawal et al., 2013),
and scientific literature organization (Peng et al.,
2016).

There exist several open-source statistical hier-
archical or multi-label text classification toolkits,
such as scikit-multilearn2, sklearn-hierarchical-
classification3, which provide users with various
hierarchical or multi-label classification modules
based on scikit-learn’s interfaces and conventions.
On the other hand, there is limited choice for
neural hierarchical multi-label text classification
toolkits. Although many researchers have released
their codes along with their hierarchical or multi-

2https://github.com/scikit-multilearn/scikit-multilearn
3https://github.com/globality-corp/sklearn-hierarchical-

classification

87

Toolkits Neural Multi-label Hierarchical Feature Richness Model Richness
scikit-multilearn × X × × X

sklearn-hierarchical-classification × X X × X
HDLTex X × X × ×

HR-DGCNN X X X × ×
NeuralClassifier X X X X X

Table 1: Toolkit Comparison.

Figure 2: An illustration of evaluation outputs. “level
1” to “4” are the results of each level in hierarchical
classification. Evaluation metrics are macro and micro.

label text classification papers (Kowsari et al.,
2017; Peng et al., 2018), but the implementations
are mostly focused on specific model structures
and specific tasks, which greatly limit their exten-
sions for other similar tasks.

In this paper, we introduce an open-source
toolkit, NeuralClassifier4, a neural hierarchical
multi-label text classification toolkit based on
PyTorch. It is designed for solving the hier-
archical multi-label text classification problem
with effective and efficient neural models. It
provides a variety of models and features, users
can utilize a comfortable configuration file with
neural feature design and utilization. We take the
layerwise implementation, which includes input
layer, embedding layer, encoder layer and output
layer. To our best knowledge, our work is the first
neural hierarchical multi-label text classification
toolkit with rich models. For the details, we give
a summary comparison with existing toolkits in
Table 1. NeuralClassifier is:

• Rich in models and features: An important
feature of our work is that, compared with existing
toolkits, NeuralClassifier reimplements a very
large number of the state-of-the-art text encoders,
including FastText (Joulin et al., 2016), TextCNN

4Code is available at https://github.com/
liqunhit/NeuralClassifier

(Kim, 2014), TextRNN (Liu et al., 2016), RCNN
(Lai et al., 2015) , VDCNN (Conneau et al.,
2016), DPCNN (Johnson and Zhang, 2017)
, AttentiveConvNet (Yin and Schütze, 2017),
DRNN (Wang, 2018), Transformer encoder
(Vaswani et al., 2017), Star-Transformer encoder
(Guo et al., 2019). Meanwhile, NeuralClassifier
involves a variety of useful features or widgets,
i.e., word-based and char-based input, optimizers,
loss functions, embedding methods and attention
mechanisms, etc. All those above can be config-
ured through a configuration file. Figure 1 shows
a segment of configuration file. Note that users
can configure different text encoders and features
through the configuration file, and can easily
modify the source code to achieve more advanced
developments.

• Suitable for almost all text classification
tasks: NeuralClassifier is designed for hierarchi-
cal and multi-label classification, which naturally
also supports binary-class and multi-class clas-
sification, so it can be considered a universal
toolkit for text classification tasks. Especially
in hierarchical multi-label classification task, the
taxonomy can be organized in the form of a tree
or DAG, and instances are multi-labeled during
training and testing. It also provides a complete
evaluation mechanism. An illustration with results
is shown in Figure 2. Users can choose their task
types only through a comfortable configuration
file without any code work.

• Effective and efficient: We conduct the ex-
periments based on a variety of models and fea-
tures provided by NeuralClassifier. Experiments
show models built in our toolkit output compara-
ble performance with reported results in the lit-
erature. Furthermore, NeuralClassifier is imple-
mented using batch calculation that can be accel-
erated using GPU. Our experiments demonstrate
that NeuralClassifier is an effective and efficient
toolkit.

The rest of this paper is organized as follows:
Section 2 describes the detail of architecture of

88

Figure 3: Architecture of NeuralClassifier. There are four layers: an input layer, an embedding layer, an encoder
layer and output layer.

NeuralClassifier. The experimental evaluations
and results are discussed in Section 3. Finally,
Section 4 concludes this paper.

2 NeuralClassifier Architecture

The framework of NeuralClassifier is shown in
Figure 3. It is composed of four layers: input
layer, embedding layer, encoder layer and output
layer. At the first layer (input layer), the input
word sequence will be organized and processed as
words, characters, or corresponding n-grams. For
FastText, custom features such as keywords and
topics are also supported. The embedding of in-
put data will be generated at the embedding layer,
subsequently be encoded at encoder layer. On
top of the system, the different loss functions are
constructed in the output layer to serve the differ-
ent real-world tasks, i.e., binary-class, multi-class,
multi-label and hierarchical multi-label classifica-
tion. The user can deploy it through a comfortable
configuration file without any code work. Note
that a salient feature is that users can easily utilize
and integrate any widgets in the NeuralClassifier
to construct their own structure to satisfy any re-
quirements.

The following will describe the pertinent details
of the four layers and the user interface.

2.1 Layer Units

• Input Layer. The input text sequence will be
processed at input layer. Input text sequence in
the form of token (word) can be processed into

Figure 4: An example of input data. Multiple levels of
hierarchy are separated with ’--’.

words and characters, along with their n-grams.
Custom feature inputs such as keywords and top-
ics are also supported when the text encoder is
FastText. All the above can be flexibly configured
by the users. Besides, reading input data can be
accelerated with multiple processes. See Figure 4
for an example of input data.

• Embedding Layer. Various embeddings are
processed at this layer. There are four embedding
types can be chosen, which are random embed-
ding, pre-trained embedding, region embedding
and position embedding. Embedding can be ini-
tialized randomly or from a pre-trained embedding
input. Region embedding (Qiao et al., 2018) is a
supervised enhanced word embedding method that
the representation of a word or char has two parts,
the embedding of the word itself, and a weight-
ing matrix to interact with the local context, re-
ferred to as local context unit. Position embedding
(Vaswani et al., 2017) is an embedding method
that considers position information in the input se-
quence.

89

• Encoder Layer. We reimplement a very large
number of state-of-the-art text encoders at en-
coder layer, including FastText, TextCNN, Tex-
tRNN, RCNN, VDCNN, DPCNN, DRNN, Trans-
former encoder, Star-Transformer encoder and At-
tentiveConvNet. Each encoder has its own hyper-
parameters that can be configured by users.
• Output Layer. This layer determines the spe-
cific classification tasks, including binary-class,
multi-class, multi-label and hierarchical-class.
For the single-label (binary-class and multi-class)
classification task, we provide three candidate loss
functions, which are SoftmaxCrossEntopy,
BCLoss and SoftmaxFocalLoss (Lin
et al., 2017). For the hierarchical multi-
label classification task, we use BCELoss or
SigmodFocalLoss as the loss function for
multi-label classification and add a recursive
regularization (Gopal and Yang, 2013; Peng et al.,
2018) for hierarchical classification. Using this
regularization framework, we can incorporate
the hierarchical dependencies between the class-
labels into the regularization structure of the
parameters thereby encouraging classes nearby in
the hierarchy to share similar model parameters.
In addition, such a regularization approach is more
suitable for large-scale hierarchical multi-label
classification task. Users can easily use above
functions through the configuration file.

2.2 User Interface

NeuralClassifier provides abundant configura-
tion interfaces, including the common settings,
input settings, training settings and network
structure settings. Through the configuration file,
users can construct most state-of-the-art neural
hierarchical multi-label text classification models.
JSON is used as the configuration file format.

The configuration file has four major parts:

• Common settings include the type of classifi-
cation tasks, which are single-labeled and multi-
labeled, whether it is hierarchical (task info),
which running device to use (device), the spec-
ified model (model name), directories of input
and output data (data), how many subprocesses
to use for data loading (num worker), etc.
• Input settings include various configura-
tions about input data, such as maximum input
sequence length (max token len), mini-
mum input token count (min token count),
dictionary size (max token dict size),

pre-trained embeddings of input data
(token pretrained file), etc.
• Training settings include the batch
size (batch size), type of loss function
(loss type), optimizer (optimizer type),
learning rate (learning rate), number of
epochs (num epochs), which GPUs to use
(visible device list), etc.
• Network structure settings specify which text
encoders to use, such as TextCNN, TextRNN,
RCNN, Transformer, etc. For each text encoder,
there are corresponding hyperparameters that can
be configured. Take TextCNN as an example,
users can configure the size and number of
convolution kernels and the number of tops in
the pooling (kernel sizes, num kernels,
top k max pooling).

2.3 Extension
Users can write their own custom modules on all
those layers, and self-defined modules can be inte-
grated into the toolkit easily. For example, if a user
wants to implement a new classifier model, he/she
only needs to implement the part at encoder layer.
All the other network structures can be used and
controlled through the configuration file.

3 Evaluation

In this section, we conduct several experiments to
evaluate the performance of NeuralClassifier us-
ing datasets from two public benchmarks, namely,
RCV1 (Lewis et al., 2004) and Yelp5. The exper-
iments consist of three parts: (1) Results of using
rich models and features in Section 3.1; (2) influ-
ence of hierarchical information in Section 3.2; (3)
speed with batch size in Section 3.3.

3.1 Results of using rich models and features
We use the ability of various models and features
provided by our toolkit to illustrate the perfor-
mance of NeuralClassifier on hierarchical multi-
label text classification problem. Concretely, we
select a best model through coarse-grained exper-
iments on each of the two benchmarks and fix it,
and then fine-tune the features and hyperparam-
eters, such as model structures, input represen-
tations, activation functions, optimizers, learning
rate, etc. The best performance models6 are as

5https://www.yelp.com/dataset/challenge
6Note that the released settings are preliminary attempt so

far, we will continue to update the optimization of parameter
selection.

90

Models RCV1 Yelp
Micro-F1 Micro-F1

HR-DGCNN (Peng et al., 2018) 0.7610 –
HMCN (Wehrmann et al., 2018) 0.8080 0.6640

Our best models 0.8099 0.6704

Table 2: Results on the two benchmarks.

Encoders
RCV1 Yelp

Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextCNN 0.7608 0.4649 0.6179 0.3851
TextRNN 0.7883 0.4972 0.6704 0.4059

RCNN 0.8099 0.5332 0.6569 0.3951
FastText 0.6887 0.2701 0.5386 0.1817
DRNN 0.7601 0.4523 0.6174 0.3835

DPCNN 0.7439 0.4141 0.5671 0.2393
VDCNN 0.7263 0.3860 0.6079 0.3427

AttentiveConvNet 0.7533 0.4373 0.6367 0.4040
Region embedding 0.7780 0.4888 0.6601 0.4514

Transformer 0.7603 0.4274 0.6533 0.4121
Star-Transformer 0.7668 0.4840 0.6293 0.3977

Table 3: Results of different text encoders.

follows: (1) RCNN with two-layers Bi-GRU and
one-layer CNN for RCV1 dataset (input = word,
optimizer = Adam, learning rate = 0.008); (2) Tex-
tRNN with one-layer Bi-GRU for Yelp dataset (in-
put = word, optimizer = Adam, learning rate =
0.008). Table 2 shows the results of the best mod-
els on the two benchmarks. The best models can
achieve comparable results with the state-of-the-
art HMC models. The results shows the effective-
ness of our implementation, and usability of a va-
riety of models and features. Table 3 shows per-
formances of different text encoders. In particular,
we can use different combinations of strategies to
guide the setup of model for better performance in
the real applications.

3.2 Influence of hierarchical information

Hierarchical classification problems can also be
solving by flat methods, which regard the hier-
archical classification as a flat classification, re-
gardless of the hierarchical relationship between
labels. As mentioned before, our toolkit is config-
urable, we can easily set different loss functions by
configuration. In this section, we discuss the in-
fluence of hierarchical information. Table 4 shows
the results of setting the HMC loss function (Hier-
archical) and the traditional multi-label loss func-
tion (Flat). As can been seen from the results, hi-
erarchical information can greatly improve perfor-
mance. It also demonstrates the effectiveness of

Encoders
Hierarchical Flat

Micro-F1 Macro-F1 Micro-F1 Macro-F1

TextCNN 0.7608 0.4649 0.7367 0.4224
TextRNN 0.7883 0.4972 0.7546 0.4505

RCNN 0.8099 0.5332 0.7955 0.5123
FastText 0.6887 0.2701 0.6865 0.2816
DRNN 0.7601 0.4523 0.7506 0.4450

DPCNN 0.7439 0.4141 0.7423 0.4261
VDCNN 0.7263 0.3860 0.7110 0.3593

AttentiveConvNet 0.7533 0.4373 0.7511 0.4286
Region embedding 0.7780 0.4888 0.7640 0.4617

Transformer 0.7603 0.4274 0.7602 0.4339
Star-Transformer 0.7668 0.4840 0.7618 0.4745

Table 4: Results of hierarchical and flat classification
on RCV1.

Figure 5: Results of speed with batch size.

our implementation.

3.3 Speed with Batch Size

As NeuralClassifier is implemented on bathed
calculation, it can be greatly accelerated through
parallel computing through GPU. We test the sys-
tem speed on training process on RCV1 using a
Nvidia Tesla P40 GPU. As shown in Figure 5,
the training speed can be significantly accelerated
through a large batch size, demonstrating the effi-
ciency of our implementation.

4 Conclusion

This paper presents NeuralClassifier, an open-
source neural hierarchical multi-label text classi-
fication toolkit. NeuralClassifier provides a large
variety of text encoders and features. Users can
design their models for different text classifica-
tion tasks easily through the configuration file. We
conduct a series of experiments and the results
show that models built on NeuralClassifier can
achieve state-of-the-art results with an efficient
running speed.

91

References
Rahul Agrawal, Archit Gupta, Yashoteja Prabhu, and

Manik Varma. 2013. Multi-label learning with
millions of labels: Recommending advertiser bid
phrases for web pages. In Proceedings of the 22nd
International Conference on World Wide Web, pages
13–24.

Alexis Conneau, Holger Schwenk, Loı̈c Barrault,
and Yann Lecun. 2016. Very deep convolutional
networks for text classification. arXiv preprint
arXiv:1606.01781.

Scott Deerwester, Susan T Dumais, George W Fur-
nas, Thomas K Landauer, and Richard Harshman.
1990. Indexing by latent semantic analysis. Jour-
nal of the American Society for Information Science,
41(6):391–407.

Siddharth Gopal and Yiming Yang. 2013. Recursive
regularization for large-scale classification with hi-
erarchical and graphical dependencies. In Proceed-
ings of the 19th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining,
pages 257–265.

Qipeng Guo, Xipeng Qiu, Pengfei Liu, Yunfan Shao,
Xiangyang Xue, and Zheng Zhang. 2019. Star-
transformer. arXiv preprint arXiv:1902.09113.

Rie Johnson and Tong Zhang. 2017. Deep pyramid
convolutional neural networks for text categoriza-
tion. In Proceedings of the 55th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 562–570.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Yoon Kim. 2014. Convolutional neural net-
works for sentence classification. arXiv preprint
arXiv:1408.5882.

Kamran Kowsari, Donald E Brown, Mojtaba Hei-
darysafa, Kiana Jafari Meimandi, Matthew S Ger-
ber, and Laura E Barnes. 2017. Hdltex: Hierarchi-
cal deep learning for text classification. In 2017 16th
IEEE International Conference on Machine Learn-
ing and Applications (ICMLA), pages 364–371.

Siwei Lai, Liheng Xu, Kang Liu, and Jun Zhao. 2015.
Recurrent convolutional neural networks for text
classification. In 29th AAAI Conference on Artificial
Intelligence.

David D Lewis, Yiming Yang, Tony G Rose, and Fan
Li. 2004. Rcv1: A new benchmark collection for
text categorization research. Journal of Machine
Learning Research, 5:361–397.

Tsung-Yi Lin, Priya Goyal, Ross Girshick, Kaiming
He, and Piotr Dollár. 2017. Focal loss for dense
object detection. In Proceedings of the IEEE In-
ternational Conference on Computer Vision, pages
2980–2988.

Pengfei Liu, Xipeng Qiu, and Xuanjing Huang.
2016. Recurrent neural network for text classi-
fication with multi-task learning. arXiv preprint
arXiv:1605.05101.

Bo Pang, Lillian Lee, et al. 2008. Opinion mining and
sentiment analysis. Foundations and Trends R© in In-
formation Retrieval, 2(1–2):1–135.

Hao Peng, Jianxin Li, Yu He, Yaopeng Liu, Mengjiao
Bao, Lihong Wang, Yangqiu Song, and Qiang Yang.
2018. Large-scale hierarchical text classification
with recursively regularized deep graph-cnn. In Pro-
ceedings of the 2018 World Wide Web Conference on
World Wide Web, pages 1063–1072.

Shengwen Peng, Ronghui You, Hongning Wang,
Chengxiang Zhai, Hiroshi Mamitsuka, and Shan-
feng Zhu. 2016. Deepmesh: deep semantic repre-
sentation for improving large-scale mesh indexing.
Bioinformatics, 32(12):i70–i79.

Chao Qiao, Bo Huang, Guocheng Niu, Daren Li, Dax-
iang Dong, Wei He, Dianhai Yu, and Hua Wu. 2018.
A new method of region embedding for text classi-
fication. In International Conference on Learning
Representations.

Bo Qu, Gao Cong, Cuiping Li, Aixin Sun, and Hong
Chen. 2012. An evaluation of classification mod-
els for question topic categorization. Journal of the
American Society for Information Science and Tech-
nology, 63(5):889–903.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In Advances in Neural Information Pro-
cessing Systems, pages 5998–6008.

Baoxin Wang. 2018. Disconnected recurrent neural
networks for text categorization. In Proceedings of
the 56th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 2311–2320.

Jonatas Wehrmann, Ricardo Cerri, and Rodrigo Bar-
ros. 2018. Hierarchical multi-label classification
networks. In International Conference on Machine
Learning, pages 5225–5234.

Wenpeng Yin and Hinrich Schütze. 2017. Attentive
convolution. arXiv preprint arXiv:1710.00519.

92

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 93–98
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

ADVISER: A Dialog System Framework for Education & Research

Daniel Ortega, Dirk Väth, Gianna Weber, Lindsey Vanderlyn,
Maximilian Schmidt, Moritz Völkel, Zorica Karacevic and Ngoc Thang Vu*

Institute for Natural Language Processing (IMS), University of Stuttgart
thangvu@ims.uni-stuttgart.de

Abstract

In this paper, we present ADVISER1 - an open
source dialog system framework for education
and research purposes. This system supports
multi-domain task-oriented conversations in
two languages. It additionally provides a flex-
ible architecture in which modules can be ar-
bitrarily combined or exchanged - allowing for
easy switching between rules-based and neural
network based implementations. Furthermore,
ADVISER offers a transparent, user-friendly
framework designed for interdisciplinary col-
laboration: from a flexible back end, allowing
easy integration of new features, to an intu-
itive graphical user interface supporting non-
technical users.

1 Introduction

Dialog systems can be open-ended, e.g. small
talk systems (Weizenbaum, 1966), or designed for
a specific task, such as booking flights or find-
ing restaurants (Bobrow et al., 1977; Wen et al.,
2017). In this paper, we focus on task-oriented di-
alog systems, although our framework allows easy
integration of non-task dialog systems (Vinyals
and Le, 2015) and their combination (Yu et al.,
2017). Task-oriented dialog systems are gener-
ally comprised of sequential modules addressing
the varying subtasks required to facilitate a nat-
ural language dialog (Williams et al., 2016). A
standard architecture implements this with a natu-
ral language understanding (NLU) unit which is
responsible for parsing the user input (De Mori
et al., 2008), a belief state tracker (BST) mod-
ule (Mrkšić et al., 2017) that holds the state of
the dialog, a policy module (Williams and Young,
2007) which determines the system’s next action,

1Website: https://www.ims.uni-stuttgart.
de/forschung/ressourcen/werkzeuge/
adviser.html

* All authors contributed equally.

and a natural language generation (NLG) mod-
ule which transforms the system act into natural
language. Recently, there has been increasing in-
terest in multi-domain, task-oriented dialog sys-
tems because of their ability to help users achieve
more complex goals, which may not be cleanly di-
vided into single-domain objectives (Mrkšić et al.,
2015; Ultes et al., 2017). This increased freedom
for users, however, requires increasingly sophis-
ticated system architectures to effectively handle
cross-domain actions or transitions between active
domains.

During the last years, several toolkits (Bo-
hus and Rudnicky, 2009; Skantze and Moubayed,
2012; Baumann and Schlangen, 2012; Lison and
Kennington, 2016; Ultes et al., 2017; Miller et al.,
2017) have been introduced to accelerate the de-
velopment and testing process of goal-oriented di-
alog systems, for both single-domain and multi-
domain systems. Almost all of them have been de-
veloped for fast prototyping, where new domains
can be developed by swapping in new implemen-
tations for each module following the toolkit’s ar-
chitecture. However, generating natural and effec-
tive dialogs requires linguistic knowledge to be in-
tegrated throughout the system design, and most
of these toolkits are primarily designed for techni-
cal users, which can limit the ease of collaboration
with linguists and may thus affect the quality of
the system’s output.

To address these shortcomings, we propose a
multilingual multi-domain dialog system with two
parallel goals: 1) to provide a highly flexible re-
search framework not only for technique oriented
developers but also for non-technical oriented de-
velopers such as linguists and 2) to provide an in-
terdisciplinary educational tool.

93

2 Related Work

During the last decade, several toolkits have been
developed to facilitate the rapid implementation of
goal-oriented dialog systems. RavenClaw (Bohus
and Rudnicky, 2009) aimed to separate domain-
specific aspects from domain-independent conver-
sational skills, letting developers focus solely on
describing the dialog task control logic. However,
the most recent techniques like a statistical BST
or a reinforcement learning (RL)-based policy are
not compatible.

Our approach is inline with InproTK (Baumann
and Schlangen, 2012), where high-level modules
(such as NLU and dialog manager) communicate
by networks created via configuration files. In
ADVISER, there is no distinction between high or
low-level modules, but they are similarly designed
separately and our DialogSystem class defines the
pipeline interaction between them, allowing them
to easily be replaced with newer versions.

OpenDial (Lison and Kennington, 2016) relies
on probabilistic rules and easily integrates exter-
nal modules. We were inspired by this work to
make the rules-based dialog systems fully domain-
independent in ADVISER by storing the NLU
rules and NLG templates in external files.

PyDial (Ultes et al., 2017), a multi-domain dia-
log toolkit, follows the classic approach for modu-
lar dialog systems. Although PyDial offers rules-
based and statistical implementations for the mod-
ules, the overall structure is rather difficult to ma-
nipulate, if the pipeline needs to be modified.

3 Framework Design

Our goal with this system is to provide both a
highly modular research platform and an interdis-
ciplinary educational tool.

Use Cases To accomplish this, we address the
needs of the following three user groups: 1) tech-
nical users such as machine learning researchers
2) non-technical researchers such as linguists and
3) multidisciplinary students.

Design Criteria The main objectives of the
framework are threefold: 1) to maximise the ease
for technical developers when exploring new ar-
chitectures or extending system functionality with
new techniques, e.g. machine learning. 2) To
minimise the workload on code bases for non-
technical users (e.g. linguists) allowing them to

focus on their main goals, e.g. exploring the dia-
log flow for new domains, or languages or inves-
tigating human language variations when interact-
ing with a dialog system. 3) To provide an en-
gaging way for multidisciplinary students to learn
how dialog systems work.

From this, our framework is designed to opti-
mise the following criteria:

Modularity: For each module in a classic dia-
log system pipeline (NLU, BST, dialog policy and
NLG), we provide a handcrafted baseline module,
additionally we provide a machine learning based
implementation for the BST and policy (see sec-
tion 4.2). These can be used to quickly assem-
ble a working dialog system or as implementation
guidelines for custom modules. Additionally, be-
cause all modules inherit from the same abstract
class, technical users can also easily write their
own implementations or combinations of modules.

Flexibility: In contrast to a more static dia-
log system pipeline, we propose a graph structure
where the user is in control of the modules and
their order. This level of control allows users to
realise anything from pipelines to end-to-end sys-
tems. Even branching scenarios are possible as
demonstrated by our meta policy which combines
multiple parallel subgraphs into a single dialog.

Transparency: Inputs to and outputs from each
module are captured by automatically generated
XML interface descriptions, providing a transpar-
ent view of data flow through the dialog system.

User-friendly at different levels: technical users
have the full flexibility to explore and extend the
back end; non-technical users can use our defined
modules for building systems; students from dif-
ferent disciplines could easily learn the concepts
and explore human machine interaction.

4 Modules

4.1 Graphical User Interface

Graphical user interfaces (GUIs) allow users to ac-
cess a system in an easy, clear and appealing fash-
ion. Thus, in addition to a console, ADVISER pro-
vides two separate graphical interfaces: a GUI to
chat with the dialog system and a gamelike inter-
face for study purposes.

Chat interface Our GUI is implemented as a
module, which is called by the dialog system once
at the beginning and once at the end of each turn.
In the first turn, the GUI is initialised and loaded.

94

At the beginning of each turn, it blocks the pro-
cessing pipeline until the user has entered a mes-
sage. The message is displayed inside the GUI and
then passed to succeeding modules, e.g. the NLU
module. At the end of the turn, the module takes
the output of the NLG and displays it inside the
GUI.

Gamelike interface for study purposes Hand-
crafted NLU modules are often based on regular
expressions (regexes), which aim to find patterns
inside a user utterance in order to identify pos-
sible user acts. The module’s developers try to
cover as many user act realisations (UARs) as pos-
sible. However, due to the versatile nature of hu-
man language, many regexes are needed to yield a
high coverage. In ADVISER, we provide an inter-
face which supports collaboration between com-
puter scientists and linguists to yield a higher qual-
ity of the NLU module. To motivate both sides,
we frame this challenge as a game - the CrossTick
game - in which computer scientists try to achieve
high regex coverage and linguists try to write un-
covered UARs. First, the user has to select the
domain for which UARs are written and the NLU
module that should be evaluated. After a UAR is
created, it is analysed by the specified module and
the user is informed via a tick (X) or a cross (×)
whether the user acts were detected correctly. The
user can save and load files in JSON format.

4.2 Components of Dialog Systems
Input Up to now, only text is supported but our
tool could be easily extendable to other modalities
such as speech and vision. Currently text can ei-
ther be entered through the console or our GUI.

NLU We implemented a domain-independent
rules-based NLU that loads regexes from a JSON
file. The regexes are split into three categories -
general acts (e.g. Hello, RequestAlternatives and
Affirm), domain-specific inform acts and domain-
specific request acts. We supported both, English
and German rules. The NLU module receives
the user input as string and checks it across all
regexes, creating a list of possible user acts. If no
act is found, then it is assumed that the NLU was
not capable of understanding and the user act is
interpreted as a BadAct. We additionally resolve
some ambiguities using the belief state, i.e. the
dialog history. If a non-contextualised Affirm or
Deny act is found, the system attempts to use the
dialog history to contextualise it.

BST The belief state tracker maintains a repre-
sentation of the current dialog state. The rules-
based BST receives a list of user acts from the
NLU that are decoded and stored with probabili-
ties in the belief state. The BST also detects the
presence of discourse acts, e.g. Hello, Repeat, In-
form and Request. Moreover, it stores informa-
tion from the system history including the last re-
quested slot and last entity offered.

Our machine learning based belief state tracker
is trained to predict the belief state directly from
text without the need for an NLU. To track the
constraints and requests issued by the user, we
feed system actions and user input turn-wise into
a recurrent network and concatenate the resulting
hidden states of both inputs before predicting the
final belief state (Jagfeld and Vu, 2017).

Policy The rules-based policy aims to provide
users with a single entity matching the constraints
they have specified. After each turn, the policy
verifies that the user has not ended the dialog. It
then reads the current belief state and generates a
suitable query for the database. If there are multi-
ple results, the next system act will request more
information from the user to disambiguate. Other-
wise, the system is able to make an offer – directly
informing the user about a specific entity – or to
give more details about a current offer.

Our machine learning policy is trained using
deep RL. Similar to the Deep Q-learning algo-
rithm (Mnih et al., 2013), an action-value func-
tion is approximated by a neural network which
outputs a value for each possible system action
given the vectorised representation of a turn’s be-
lief state as input. The neural network is con-
structed following the duelling architecture (Wang
et al., 2016), consisting of two separate calculation
streams. Each stream has its own layers, where
one stream calculates the value function and the
other an advantage function so that their combina-
tion in a special final layer yields the action-value
function again. Additionally, an updated copy of
this network is used to evaluate the agent’s actions
while the original up-to-date network is accessed
to choose the agent’s greedy actions (Van Hasselt
et al., 2016). For the agent’s efficient off-policy
batch-training, we make use of prioritised experi-
ence replay (Schaul et al., 2015) by assigning ex-
perienced dialog turns a sampling probability pro-
portional to errors in the action-value estimates.

95

NLG In the natural language generation mod-
ule, the semantic representation of the system
act is transformed into natural language. In the
handcrafted NLG module, each possible system
act is mapped to exactly one utterance. To re-
duce the potentially large number of mappings,
templates are used which allow multiple map-
pings from system acts to their respective utter-
ance at once. By specifying placeholders for a
system acts slots and/or values, the utterance can
be formulated independent of the actual realisa-
tions (e.g. inform(name={X}, ects={Y})→ The

course {X} is worth {Y} ECTS.). During the
dialog, the system iterates through the templates
and chooses the first one for which the system act
fits the template’s signature. For each domain we
present here, we created both German and English
templates.

User Simulator To support automatic evalua-
tion and enable RL, we implemented a user sim-
ulator to provide user actions at the intention
level. For this purpose, we integrated the Agenda-
based (Schatzmann et al., 2007) user simulator
into our framework. The task of the system is to
fulfil the user’s goal within the course of the di-
alog. For this purpose, we populated our agendas
with actions requesting information and informing
about the constraints based on the specified goal.
For the design of a user simulator, we additionally
considered that its objective was not only to fulfil
the user’s goal but also to support the RL policy in
the learning process. Therefore, it was not suffi-
cient to answer the system’s request and fulfil the
user’s goal, but also to force the system to answer
with suitable actions. In the context of RL, we
achieved this by delaying a dialog turn if the sys-
tem’s answer was not an expected action or com-
pletely nonsense, because it reduces the reward the
policy receives for the ongoing dialog. In addition,
several parameters influence the user simulator’s
behaviour. Those are manually crafted and cho-
sen with a suitable probability wherever variation
to the user makes sense.

Meta Policy In a multi-domain dialog system,
intelligently switching between or combining in-
dividual domains is necessary to provide the user
a unified experience. However, the best way to ac-
complish this remains unclear. In our system, we
propose an architecture where all domains are al-
lowed to run in parallel and the resulting output

is processed by a Meta Policy. The meta policy
is responsible for tracking which domains are ac-
tive and, if necessary, combining their output. In
the case where a user utterance cannot be directly
handled in the context of a single domain, the meta
policy is also responsible for rewriting it into one
or more single-domain utterances. If this happens,
rather than outputting something for that turn or
asking for user input, the system steps through an
additional turn, using the rewritten utterance as the
new user input. In this way the meta policy is able
to intelligently coordinate switching or combining
domains, preserving as much information as pos-
sible to make as informed of a decision as possible.
This architecture can be seen in figure 1.

IN OUTMETAPOLICY

Polic��

Polic��NLU�

��T�

��T�

����i���

Yes

Yes

n�

Figure 1: Multi-domain system architecture, showing
how information is passed between each module and
the final system output is coordinated by the meta pol-
icy.

5 Proof-of-Concept Showcases

In order to feedback on the quality, functionality,
and usefulness of the ADVISER system, we con-
ducted two experiments: we first investigated user
experiences with a student support dialog system
and second explored the effectiveness of using a
game within a multidisciplinary practical course.

5.1 Student Support Dialog System

Multilingual and multi-domain As a real-
world use case, we implemented a dialog system,
using our ADVISER framework, to help students
navigate through the course and module selection
at the Institute for Natural Language Processing
(IMS) at the University of Stuttgart. This task
consists of three domains for asking information
about lecturers, for locating courses, and for col-
lecting information about modules. Students can
freely switch between or combine the domains in
order to find the information they need. Addition-
ally because of the students’ backgrounds, our sys-
tem supports NLU and NLG in both, English and
German.

96

Evaluation and Results We evaluated our dia-
log policies automatically on two domains: the
new domain - IMS modules and the benchmark
domain - Cambridge restaurants (Ultes et al.,
2017). Table 1 shows the performance of the sup-
ported policies tested against the user simulator.
Each result was obtained by averaging across ten
different random seeds with 500 test dialogs each.

Agent CamRestaurants IMS modules
Suc. Turns Suc. Turns

RL 97.5% 5.03 91.6% 5.25
HDC 100% 4.75 99.8% 7.0

Table 1: Percentage of successful dialogs and average
dialog length for Cambridge restaurants and IMS mod-
ules domains evaluated with a RL policy and a hand-
crafted policy (HDC).

To gain a better understanding of how AD-
VISER works under real-world conditions, we
asked 13 volunteers to conduct a series of five con-
versations with the system. Participants were re-
quired to chat with ADVISER via text input in
English to find modules offered by the IMS. For
each dialog, participants were given a list of goals,
detailing constraints to inform the system about
and to request from the system. These included
information such as responsible lecturer, the term
within which the module was offered, and whether
the module was related to a particular discipline,
e.g. linguistics and statistics.

After each dialog, participants were asked to
rate their chat with ADVISER, considering the
quality of the respective dialog in terms of natu-
ralness and coherence as well as how successful
ADVISER was in processing the information pro-
vided by the user and how comfortable it was to
use. Overall, participants rated the quality of dia-
log with the RL policy a 4.3 similar to the results
obtained from dialogs using the rules-based policy
(4.48 points on average) on a scale from 1 (very
bad) to 7 (very good), confirming the functionality
of the system. Considering the system’s success
in processing the user information correctly, on a
scale from 1 (very bad) to 5 (very good), partici-
pants again found ADVISER to be slightly above
average. This result applies to both dialogs which
were generated using the rules-based policy (3.52
on average) and those using the RL policy (3.52
point average). 61.5 % of the participants reported
that they would use ADVISER for their own pur-

poses. Moreover, asking participants to rate the
comfort of using the system on a scale from 1
(very bad) to 5 (very good), an average comfort
level was 3.69, indicating that most users felt com-
fortable with the system.

5.2 Multidisciplinary Practical Course

To test ADVISER as a tool for study purposes, we
evaluated the CrossTick game, where linguistics
and computer science students work to develop
and gain a better understanding of the NLU in a
dialog system.

CrossTick game Given a user act, linguistics
students/researchers work to find as many UARs
as possible which are not recognised by the sys-
tem. On the other side, computer science stu-
dents/researchers minimise the system errors by
developing either new rules or machine learning
models to handle more natural language variations
of the user inputs.

Evaluation In order to test the efficiency and the
user’s opinion about the game, the same 13 par-
ticipants from the previous evaluation were given
10 tasks. Per task, users were asked to take the
linguist’s perspective, and given intent, slots, and
values to generate natural language for. In this
case intent corresponds to the type of sentence
(e.g. Inform/Request), slot to the type of informa-
tion a user is giving/requesting and value describes
the actual information given. If participants suc-
ceeded in creating natural language variations that
were not covered by the system’s NLU, they saw a
cross mark (×) next to their input, and points were
added to their score. Otherwise, they obtained a
check mark (X), worth 0 points. Although users
could reach an infinite number of points per task,
they were encouraged to be more productive and
creative by telling them to beat the high score an-
other user previously scored.

During the survey, 84.6% of the participants
stated that the game was effective for educational
purposes. Further, on a scale from 1 (completely
useless) to 5 (very useful) the CrossTick Game
received on average 3.69 points, suggesting that
most users learned the NLU module’s functional-
ity. Overall, participants enjoyed using the game.
Some participants especially liked the challenge
to beat the high score, while others enjoyed that
they were rewarded with points for uncovered sen-
tences.

97

6 Conclusions

In this paper, we presented ADVISER - an open
source dialog system which supports multilingual,
multi-domain human-machine task-oriented con-
versations. It supports modules which can eas-
ily be interchanged between rules-based and ma-
chine learning implementations –including deep
learning and RL. Our preliminary human study
shows that with our toolkit one can easily build a
useful dialog system. Furthermore, the CrossTick
game offers an appealing interface for education
purposes for different study disciplines.

Acknowledgments

We would like to thank all the voluntary students
at the University of Stuttgart for their participation
in the evaluation. This work was funded by the
Carl Zeiss Foundation.

References
Timo Baumann and David Schlangen. 2012. The in-

protk 2012 release. In NAACL-HLT Workshop on
Future Directions and Needs in the Spoken Dialog
Community: Tools and Data.

Daniel G. Bobrow, Ronald M. Kaplan, Martin Kay,
Donald A. Norman, Henry Thompson, and Terry
Winograd. 1977. GUS: a Frame-Driven Dialog Sys-
tem. Artificial Intelligence, 8.

Dan Bohus and Alexander I. Rudnicky. 2009. The
ravenclaw dialog management framework: Archi-
tecture and systems. Comput. Speech Lang.

Renato De Mori, Frédéric Bechet, Dilek Hakkani-Tur,
Michael McTear, Giuseppe Riccardi, and Gokhan
Tur. 2008. Spoken language understanding. IEEE
Signal Processing Magazine.

Glorianna Jagfeld and Ngoc Thang Vu. 2017. Encod-
ing word confusion networks with recurrent neural
networks for dialog state tracking. In Proceedings of
the Workshop on Speech-Centric Natural Language
Processing.

Pierre Lison and Casey Kennington. 2016. Opendial:
A toolkit for developing spoken dialogue systems
with probabilistic rules. In Proceedings of ACL.

Alexander Miller, Will Feng, Dhruv Batra, Antoine
Bordes, Adam Fisch, Jiasen Lu, Devi Parikh, and
Jason Weston. 2017. Parlai: A dialog research soft-
ware platform. In Proceedings of EMNLP.

Volodymyr Mnih, Koray Kavukcuoglu, David Silver,
Alex Graves, Ioannis Antonoglou, Daan Wierstra,
and Martin Riedmiller. 2013. Playing atari with
deep reinforcement learning. In NIPS Deep Learn-
ing Workshop.

Nikola Mrkšić, Diarmuid Ó Séaghdha, Blaise Thom-
son, Milica Gasic, Pei-Hao Su, David Vandyke,
Tsung-Hsien Wen, and Steve Young. 2015. Multi-
domain dialog state tracking using recurrent neural
networks. In Proceedings of ACL.

Nikola Mrkšić, Diarmuid O Séaghdha, Tsung-Hsien
Wen, Blaise Thomson, and Steve Young. 2017.
Neural belief tracker: Data-driven dialogue state
tracking. In Proceedings of ACL.

Jost Schatzmann, Blaise Thomson, Karl Weilhammer,
Hui Ye, and Steve Young. 2007. Agenda-based user
simulation for bootstrapping a pomdp dialogue sys-
tem. In Proceedings of NAACL.

Tom Schaul, John Quan, Ioannis Antonoglou, and
David Silver. 2015. Prioritized experience replay.
In Proceedings of ICLR.

Gabriel Skantze and Samer Al Moubayed. 2012. Iristk:
a statechart-based toolkit for multi-party face-to-
face interaction. In ICMI.

Stefan Ultes, Lina M. Rojas Barahona, Pei-Hao Su,
David Vandyke, Dongho Kim, Iñigo Casanueva,
Paweł Budzianowski, Nikola Mrkšić, Tsung-Hsien
Wen, Milica Gasic, and Steve Young. 2017. Py-
Dial: A Multi-domain Statistical Dialogue System
Toolkit. In Proceedings of ACL.

Hado Van Hasselt, Arthur Guez, and David Silver.
2016. Deep reinforcement learning with double q-
learning. In Proceedings of AAAI.

Oriol Vinyals and Quoc Le. 2015. A neural conversa-
tional model. In Proceedings of ICML.

Ziyu Wang, Tom Schaul, Matteo Hessel, Hado
Van Hasselt, Marc Lanctot, and Nando De Freitas.
2016. Dueling network architectures for deep rein-
forcement learning. In Proceedings of ICML.

Joseph Weizenbaum. 1966. ELIZA: A Computer Pro-
gram for the Study of Natural Language Commu-
nication Between Man and Machine. Communica-
tions of the ACM, 9(1).

Tsung-Hsien Wen, David Vandyke, Nikola Mrkšić,
Milica Gašić, Lina M Rojas-Barahona, Pei-Hao Su,
Stefan Ultes, and Steve Young. 2017. A network-
based end-to-end trainable task-oriented dialogue
system. In Proceedings of EACL.

Jason Williams, Antoine Raux, and Matthew Hender-
son. 2016. The dialog state tracking challenge se-
ries: A review. Dialogue & Discourse.

Jason Williams and Steve Young. 2007. Partially ob-
servable markov decision processes for spoken dia-
log systems. Computer Speech & Language.

Zhou Yu, Alexander Rudnicky, and Alan Black. 2017.
Learning conversational systems that interleave task
and non-task content. In Proceedings of IJCAI.

98

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 99–104
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

KCAT: A Knowledge-Constraint Typing Annotation Tool

Sheng Lin1, Luye Zheng1, Bo Chen1, Siliang Tang1∗, Yueting Zhuang1,
Fei Wu1, Zhigang Chen2, Guoping Hu2 & Xiang Ren3

1Zhejiang University
2iFLYTEK Research, 3University of Southern California,
{shenglin, antlar, chenbo123}@zju.edu.cn,
{siliang, yzhuang, wufei}@zju.edu.cn,

{zgchen, gphu}@iflytek.com,
xiangren@usc.edu

Abstract

Fine-grained Entity Typing is a tough task
which suffers from noise samples extracted
from distant supervision. Thousands of man-
ually annotated samples can achieve greater
performance than millions of samples gen-
erated by the previous distant supervision
method. Whereas, it’s hard for human be-
ings to differentiate and memorize thousands
of types, thus making large-scale human la-
beling hardly possible. In this paper, we in-
troduce a Knowledge-Constraint Typing An-
notation Tool (KCAT1), which is efficient for
fine-grained entity typing annotation. KCAT
reduces the size of candidate types to an ac-
ceptable range for human beings through en-
tity linking and provides a Multi-step Typ-
ing scheme to revise the entity linking result.
Moreover, KCAT provides an efficient Anno-
tator Client to accelerate the annotation pro-
cess and a comprehensive Manager Module to
analyse crowdsourcing annotations. Experi-
ment shows that KCAT can significantly im-
prove annotation efficiency, the time consump-
tion increases slowly as the size of type set ex-
pands.

1 Introduction

Recent years Natural Language Processing com-
munity has seen a surge of interests in fine-grained
entity typing (FET) as it serves as an impor-
tant cornerstone of several nature language pro-
cessing tasks including relation extraction (Mintz
et al., 2009), entity linking (Raiman and Raiman,
2018), and knowledge base completion (Dong
et al., 2014). Given an entity mention (i.e. a se-
quence of token spans representing an entity) in
the corpus, FET aims at uncovering its context-
dependent type. Table 1 includes Fine-grained

∗Corresponding Author.
1Code is available at https://github.com/donnyslin/KCAT

Entity Typing datasets in recent years, the target
types often form a type hierarchy.

The difficulty of FET and FET Annotation both
increase rapidly with the growth of type hierar-
chy’s depth. Previous research work mainly fo-
cus on generating train corpus with distant super-
vision (Ling and Weld, 2012; Gillick et al., 2014;
Ren et al., 2016a; Choi et al., 2018). In spite of its
efficiency, distant supervision brings the problem
of noisy labels, for example, {Other, brand} are
noisy labels for ‘Kobe’ in “Kobe scored 60 points
in the final game.”. According to (Choi et al.,
2018), 6000 manually labeled samples achieved
greater performance than millions of samples gen-
erated by distant supervision. (Onoe and Durrett,
2019) observed that noisy samples may even cause
damage to the performance of FET model. (Ren
et al., 2016b; Onoe and Durrett, 2019) proposed
label noise reduction methods, which are pretty
complicated and hard to migrate.

Thus the annotation corpus for FET is important
and necessary. However, it is not easy to annotate
a corpus for FET since it’s hard for human beings
to differentiate and memorize thousands of types.

To solve this extremely hard annotation task,
we use Entity Linking (EL) to constrain the can-
didate types of the entity mention. Entity Link-
ing, which tries to link entity mention to a unique
entity in a specific knowledge base (i.e. Yago
or Freebase), has been studied for years. The
state-of-the-art EL system yields 0.93 F1 score in
Conll2003(Sang and Buchholz, 2000), while the
F1 scores of FET vary from 0.40 (Onoe and Dur-
rett, 2019) to 0.79 (Abhishek et al., 2017) on dif-
ferent datasets. With the help of EL, the candi-
date types of a mention can be greatly reduced as
shown in the Table 1. Based on this observation,
we develop a Knowledge-Constraint Typing An-
notation Tool (KCAT). KCAT uses an external en-
tity linking tool to constrain the candidate types of

99

Dataset Depth #Types #KC Types Ratio.%

BBN 2 47 2.1 4.3%
FIGER 2 110 2.3 2.1%
TAC 2018 14 7309 8.5 0.1%

Table 1: Size of Candidate Types before and after
Knowledge-Constraint on Different Datasets, and the
ratio of the latter to the former

mentions. Because errors made by Entity Linking
are inevitable, we provide an EL revision exten-
sion in KCAT which can also help the annotation
of Entity Linking. The extension uses the coarse-
grained type of mention to constrain the candidate
entities of mention, which greatly saves the time
of revising EL result. The details of the anno-
tation interaction are described in section 3. Be-
sides using the Knowledge Constraint technology
to make the annotation of FET easier, KCAT pro-
vides other 4 functions to further improve the an-
notation efficiency: Hierarchical Structure Visual-
ization, Annotation Hint, Annotation Modification
and Annotation Export. In brief, KCAT has the ad-
vantages as follows:

• Knowledge-Constraint: it visualizes candidate
types hierarchically, which is extracted from
Knowledge Base and reduced by entity linking.
• Efficient: it supports multiple shortcuts to im-

prove annotation efficiency; entity description
of the wiki and type description to help distin-
guish candidate types.
• Portable: it is only required to replace a few

json files to complete the migration of different
datasets.
• Comprehensive: it supports crowdsourcing re-

sults comparison and integration.

The rest of the paper is organized as: Section 2
briefly describes recent research in FET. Section 3
introduces the overview of our framework. Sec-
tion 4 describes the architecture of KCAT and its
detail functions. Section 5 analyses the efficiency
comparison and annotation quality in different an-
notation mode. Finally, Section 6 concludes this
paper.

2 Related Works

Named Entity Recognition (NER) has been stud-
ied for several decades, which classifies coarse-
grained types (e.g. person, location). In order
to reduce the cost of obtaining fine-grained typ-
ing corpus, distant supervision has been widely

used in FET (Ling and Weld, 2012; Gillick et al.,
2014; Ren et al., 2016a; Choi et al., 2018). In-
evitably, distant supervision brings the unique
challenge of noisy labels in FET which seriously
slows down the research process in this field.
Many researchers focus on noise reduction of la-
bel(Ren et al., 2016b,a; Onoe and Durrett, 2019).
The costliness of annotated corpus and the prob-
lem of noisy labels greatly hurt the usability of
FET technique. Previous entity typing annotation
tools (Stenetorp et al., 2012; Yang et al., 2018) fo-
cus on the coarse-grained types and is hard to mi-
grate to fine-grained types. A specific and care-
fully designed annotation tool is urgently needed
for FET. To the best of our knowledge, KCAT
is the first Fine-grained Entity Typing Annotation
tool.

Entity

Mention

Fine-grained

Typing
Coarse-grained

Typing
Linking

Annotated

Mention

Linking

Yes No

Yes No

Figure 1: The framework of KCAT

3 Overview

This section overviews the proposed framework as
shown in Figure 1. KCAT leverages Type Hierar-
chy from Knowledge Base, and reduces the size
of candidate types to a small range through Entity
Linking. Furthermore, KCAT proposes a Multi-
step Typing scheme because the result from En-
tity Linking may be incorrect. As shown in Fig-
ure 1, given an entity mention, KCTA links it to
entity in Knowledge Base by EL model. Fine-
grained type can be directly labeled if this result
from model is correct, otherwise KCTA provides
entity linking revision by coarse-grained type con-
straint to filter out candidates entities with incon-
sistent types and finally labels fine-grained type.
The details will be described following.

3.1 Type Hierarchy and Knowledge Base
Given a set of types T = {t1, ..., tN}, these types
usually form a Directed Acyclic Graph (DAG)
or more commonly a tree. Each entity e in
Knowledge Base K has only several types, Te =
{t1, ..., tM} ⊂ T . In general, the size |Te| is far

100

less than the size |T |. As shown in Table 1, the
average size |Te| maintains in a small range as |T |
expands. Therefore, EL, as a Knowledge Con-
straint method, helps to reduce the candidate size
significantly.

3.2 Entity Linking
Given a set of entity mentionsM = {m1, ...,mT }
in corpus D, Entity Linking aims to link each
mention mt to its corresponding gold entity e∗i
in K. Such process is usually divided into two
steps: Candidate generation first collects a set of
possible candidate entities Ei = {e1i , ..., e

|Ei|
i } for

mi; Candidate ranking is then applied to rank all
candidates. The linking system selects the top
ranked candidate as the predicted entity êi. Given
a mention in text, our system firstly links it to
K by state-of-the-art Entity Linking system (Le
and Titov, 2018), which yields 0.93 F1 score on
Conll 2003 dataset. As shown in Figure 2, Kobe
is an entity mention which can be linked to “Kobe
Bean Bryant” in K, whose types only contain per-
son and its descendant, we only need to type on
the subtree. Whereas, after EL there are still 7%
wrong linked mentions which need to be manually
revised. Hence, for each mention, we provide the
candidate entities with top 20 ranked score from
EL system as the revision choices. In current EL
systems, ground truth entity coverage can reach
0.98 (Ganea and Hofmann, 2017) which ensuring
the recall of revision choices.

Knowledge

Base

Kobe Scored 60 points in the final game.

Linking

Task Specific Hierarchy

Person

Athlete

Player

Annotated Types

Person

Athlete

Player

Other

Brand

Figure 2: The Process of Knowledge Constraint by En-
tity Linking

Even though, the revision progress can be tough
as The context may be ambiguous for manually
linking mentions. Distinguishing different enti-
ties can be time-consuming and difficult for an
amateurish annotator. To accelerate the revision
progress, KCAT uses multi-step typing to reduce
the number of candidate entities.

3.3 Multi-step Typing
Entity Linking and Entity Typing are mutually
improved: a) EL helps to reduce the size of can-

Grobbelaar now plays for English second division leaders Plymouth

Argyle after years in the top flight with Liverpool and Southampton.

Entities Candidate Types

Liverpool Location

Liverpool F.C. Organization

Liverpool L.F.C. Organization

Liverpool Metro-

politan Cathedral

GPE

…

Entities Candidate Types

Liverpool F.C. Club

Liverpool L.F.C. Association

…

Entity Selected Type

Liverpool F.C. Club

Candidate Entities Type Hierarchy

Location Organization

Organization

Organization

Select Organization

GPE

Club

Select Club

Club Association

Unseen

To be selected

Selected

Wrong Types

Figure 3: Interaction between Typing and Linking

didate types of ET; b) ET helps to filter out ir-
relevant candidate entities of EL with inconsis-
tent types. Based on this observation, we propose
a Multi-step Typing scheme. Figure 3 demon-
strates the interaction between entity typing and
linking. The left part shows the candidate entities
in every step and the right part shows the candi-
date types constrained by candidates entities. The
red words“Liverpool” is an entity mention “Liv-
erpool”, EL mistakenly links football Club “Liv-
erpool F.C.” to “Liverpool City”. It’s tough for
human to label the mention as Club without pro-
fessional knowledge, but it’s easy to label it as
Organization. In our scheme, the user firstly se-
lects the coarse-grained type Organization, and
observes that the candidate entities which contain
Organization. Gold entity, “Liverpool F.C.”, and
Club can be easily picked out. Through hierarchy
type selection, the user focus on a few candidate
entities, which can prompt user to do deeper type
selection.

4 KCAT

KCAT is developed based on standard Python GUI
library Tkinter, hence it only needs Python instal-
lation as prerequisite. It provides user-friendly in-
terfaces for annotators. KCAT contains two main
modules: Annotator Client and Manager Mod-
ule.

• Annotator Client: With the help of Knowledge
Constraint, KCAT makes the impossible anno-
tation of FET possible. An Annotation Client
is designed to further accelerate the annotation

101

Workspace

Annotation Hint

Entity Linking

Hierarchy

Structure

Visualization

Figure 4: A Screenshot of KCAT (different parts are seperated by bold red line)

process. It provides 4 practical functions to re-
duce annotation time: a) Hierarchical Struc-
ture Visualization, b) Annotation Hint, c)
Annotation Modification, d) Annotation Ex-
port.
• Manager Module: KCAT also provides a

Manager Module to analyse the annotation re-
sults.

We will introduce these two modules in following
sections respectively.

4.1 Annotator Client

Figure 4 shows the interface of Annotator Client.
The interface consists of 5 parts. The toolbar con-
tains some basic functions for Annotation Modi-
fication and Annotation Export. The main area
in the upper left is the text in annotating, in which
mentions are colored by red and types are colored
by blue. The upper right area shows the Hier-
archical Structure Visualization and the bottom
left area shows the Annotation Hint which helps
annotators to know more about the type and entity
information. The children window titled as “entity
linking” in the bottom right shows the candidate
entities ranked by entity linking system.
a) Hierarchical Structure Visualization

On most entity typing datasets, types can be
formed by hierarchical structure, hence Directed
Acyclic Graph (DAG) is a good view to repre-
sent this structure. By this hierarchical structure,
KCAT supports up-down searching without scan-
ning irrelevant types in other subgraph.
b) Annotation Hint

Annotator may not memorize all the definitions
of types and descriptions of entities. Therefore,
prompting type definitions and entity descriptions
will contribute to the labeling process. KCAT pro-
vides the definition of type extracted from Word-
Net(Fellbaum, 2012) and the first paragraph of
Wikipedia page related to entity to help the anno-
tator further acquainted with the type and entity.
c) Annotation Modification

Sometimes users need to revise the annotation
when they make mistakes. KCAT provides several
efficient modification actions to revise these incor-
rect annotations.

Action Undo and Redo: annotators can cancel
their previous actions or redo their canceled ac-
tions to return to any previous states by press the
shortcut key Ctrl+z and Ctrl+y respectively.

Label Modify and Reset: if an entity mention
receives an incorrect type, annotator only needs to
put the cursor inside the span and restart labeling.
In addition, annotator can reset the annotations by
shortcut key Ctrl+r.
d) Annotation Export

KCAT provides the “Export” function, which
exports the annotated text as standard format
(ended with txt) or json format so that it’s easy to
be processed by users.

4.2 Manager Module

The Manager Module aims to evaluate the quality
of annotated files, analyzes the detailed disagree-
ments of different annotators and integrates all an-
notation results from multiple annotators.

102

Multiple Annotators Comparison
The annotations from multiple annotators are

inconsistent, in order to evaluate the quality of
annotations, KCAT provides a Multiple Annota-
tor Comparison interface to generate the accuracy
matrix to measure consistency among multiple an-
notators, which is illustrated in Figure 5.

Figure 5: Multiple Annotator Analysis

Rare Hendrix song draft sells for almost $ 17,000 .

LONDON 1996-08-22

A rare early handwritten draft of a song by U.S. guitar legend Jimi Hendrix was

sold for almost $ 17,000 on Thursday at an auction of some of the late musician 's

favourite possessions .

A Florida restaurant paid 10,925 pounds ($ 16,935) for the draft of " Ai n't no

telling " , which Hendrix penned on a piece of London hotel stationery in late

1966 .

At the end of a January 1967 concert in the English city of Nottingham he threw

the sheet of paper into the audience , where it was retrieved by a fan .

Buyers also snapped up 16 other items that were put up for auction by Hendrix 's

former girlfriend Kathy Etchingham , who lived with him from 1966 to 1969 .

They included a black lacquer and mother of pearl inlaid box used by Hendrix to

store his drugs , which an anonymous Australian purchaser bought for 5,060

pounds ($ 7,845) .

Red : correct annotation Yellow : not specific

Blue : over specific Green : different path

File1 : Annotator1.txt

File2 : Annotator2.txt

Figure 6: Error Analysis

Error Analysis
There are three common error patterns in entity

typing task: (a) Over Specific; mislabeling parent
type as child type (i.e., annotated as athlete while
the ground truth type is person). (b)Not Specific;
in contrary to former (a). (c)Incorrect Path; label-
ing the wrong child type (i.e., entity is annotated
as athlete while the ground truth type is artist and
they are both child type of person). KCAT pro-
vides an interface to generate the error analysis re-
port in “.tex” format, as shown in Figure 6, differ-
ent errors are rendered in different colors.
Annotations Integration

The Annotations Integration interface provides
a method to integrate all annotation results from
crowdsourcing annotations to generate final labels
by voting.

5 Experiment

In order to verify the efficiency of KCAT, we con-
duct a mock annotation experiment. 100 sen-
tences are extracted from the English dataset of
Conll 2003 (Sang and Buchholz, 2000) as the cor-
pus to be annotated. The entity mention spans in

these sentences have been annotated. Type hier-
archy is extracted from following three datasets:
(1) Conll 2003; (2) BBN(Ren et al., 2016a); (3)
FIGER(Ling and Weld, 2012); and YAGO Knowl-
edge Base(Heng et al., 2018). The mappings be-
tween entity and its related types are provided by
these datasets. We have chosen two annotation
modes: (a) without pre-linking, directly through
top-down search or flatten search; (b) filtering
out types that are inconsistent with entity types
through entity linking.
Annotation Efficiency. In Table 2, we compare
the labeling time in aforementioned two modes
and calculate the percentage of time saved with
Entity Linking on different type set. It can be ob-
served that with the number of types increases,
time consumption increases slowly with entity
linking, while without entity linking, time con-
sumption increases exponentially. The percent-
age of time saved also increases as the number of
types expands on different datasets. When there
are thousands of types in Knowledge Base, such as
YAGO Knowledge Base(Heng et al., 2018), which
contains 7309 types, it’s impossible for human to
annotate.

Type Set #types depth Time

w/ EL w/o EL Rel%

Conll 5 1 5 6 6.3%
BBN 47 2 8 17 52.9%
FIGER 112 2 10 30 66.7%
YAGO 7309 14 13 - -

Table 2: Time Consumption (minute) of Annotating
60 Sentences on Different Datasets

Annotation Quality. Pairwise accuracy is used to
measure the consistence between arbitrary two an-
notators. For multiple annotators, we can generate
a heat map, each element of the heat map repre-
sents pairwise accuracy, darker color means higher
accuracy. In Figure 7, the User 1, 2, and 3 adopt
the mode (b), and the User 4, 5 and 6 adopts the
mode (a), and it can be observed that the labeling
quality of 1, 2, and 3 is significantly better than 4,
5, 6 as the former have higher consistency.

6 Conclusion

In this paper, we propose an efficient Knowledge
Constraint Fine-grained Entity Typing Annotation
Tool, which further improves entity typing process
through entity linking together with some practical
functions.

103

Figure 7: A Comparison of Multiple Annotators in Ac-
curacy

7 Acknowledgement

This work has been supported in part by NSFC
(No.61751209, U1611461), Zhejiang University-
iFLYTEK Joint Research Center, Chinese Knowl-
edge Center of Engineering Science and Technol-
ogy (CKCEST), Engineering Research Center of
Digital Library, Ministry of Education. Xiang
Ren’s research has been supported in part by Na-
tional Science Foundation SMA 18-29268.

References
Abhishek Abhishek, Ashish Anand, and Amit Awekar.

2017. Fine-grained entity type classification by
jointly learning representations and label embed-
dings. In Proceedings of the 15th Conference of the
European Chapter of the Association for Computa-
tional Linguistics: Volume 1, Long Papers, pages
797–807, Valencia, Spain. Association for Compu-
tational Linguistics.

Eunsol Choi, Omer Levy, Yejin Choi, and Luke Zettle-
moyer. 2018. Ultra-fine entity typing. arXiv
preprint arXiv:1807.04905.

Xin Dong, Evgeniy Gabrilovich, Geremy Heitz, Wilko
Horn, Ni Lao, Kevin Murphy, Thomas Strohmann,
Shaohua Sun, and Wei Zhang. 2014. Knowledge
vault: A web-scale approach to probabilistic knowl-
edge fusion. In Proceedings of the 20th ACM
SIGKDD international conference on Knowledge
discovery and data mining, pages 601–610. ACM.

Christiane Fellbaum. 2012. Wordnet. The Encyclope-
dia of Applied Linguistics.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. arXiv preprint arXiv:1704.04920.

Dan Gillick, Nevena Lazic, Kuzman Ganchev, Jesse
Kirchner, and David Huynh. 2014. Context-
dependent fine-grained entity type tagging. arXiv
preprint arXiv:1412.1820.

Ji Heng, Sil Avirup, Trang Dang Hoa, J. Goldschen
Alan, Duncan Jason, Getman Jeremy, Nothman
Joel, Onyshkevych Boyan, Soboroff Ian, and
Strassel Stephanie. 2018. Tac kbp2018 entity
discovery and linking for 7,309 entity types.
http://nlp.cs.rpi.edu/kbp/2018/
EDL2018TaskSpec_V2.0.pdf.

Phong Le and Ivan Titov. 2018. Improving entity link-
ing by modeling latent relations between mentions.
arXiv preprint arXiv:1804.10637.

Xiao Ling and Daniel S Weld. 2012. Fine-grained en-
tity recognition. In Twenty-Sixth AAAI Conference
on Artificial Intelligence.

Mike Mintz, Steven Bills, Rion Snow, and Dan Juraf-
sky. 2009. Distant supervision for relation extrac-
tion without labeled data. In Proceedings of the
Joint Conference of the 47th Annual Meeting of the
ACL and the 4th International Joint Conference on
Natural Language Processing of the AFNLP: Vol-
ume 2-Volume 2, pages 1003–1011. Association for
Computational Linguistics.

Yasumasa Onoe and Greg Durrett. 2019. Learning to
Denoise Distantly-Labeled Data for Entity Typing.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies.

Jonathan Raphael Raiman and Olivier Michel Raiman.
2018. Deeptype: multilingual entity linking by neu-
ral type system evolution. In Thirty-Second AAAI
Conference on Artificial Intelligence.

Xiang Ren, Wenqi He, Meng Qu, Lifu Huang, Heng
Ji, and Jiawei Han. 2016a. Afet: Automatic fine-
grained entity typing by hierarchical partial-label
embedding. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Pro-
cessing, pages 1369–1378.

Xiang Ren, Wenqi He, Meng Qu, Clare R Voss, Heng
Ji, and Jiawei Han. 2016b. Label noise reduction in
entity typing by heterogeneous partial-label embed-
ding. In Proceedings of the 22nd ACM SIGKDD in-
ternational conference on Knowledge discovery and
data mining, pages 1825–1834. ACM.

Erik F Sang and Sabine Buchholz. 2000. Introduc-
tion to the conll-2000 shared task: Chunking. arXiv
preprint cs/0009008.

Pontus Stenetorp, Sampo Pyysalo, Goran Topić,
Tomoko Ohta, Sophia Ananiadou, and Jun’ichi Tsu-
jii. 2012. Brat: a web-based tool for nlp-assisted
text annotation. In Proceedings of the Demonstra-
tions at the 13th Conference of the European Chap-
ter of the Association for Computational Linguistics,
pages 102–107. Association for Computational Lin-
guistics.

Jie Yang, Yue Zhang, Linwei Li, and Xingxuan Li.
2018. Yedda: A lightweight collaborative text span
annotation tool.

104

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 105–110
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

An Environment for Relational Annotation of Political Debates

André Blessing1, Nico Blokker2, Sebastian Haunss2,
Jonas Kuhn1, Gabriella Lapesa1, and Sebastian Padó1

1IMS, University of Stuttgart, Germany
2SOCIUM, University of Bremen, Germany

Abstract

This paper describes the MARDY corpus an-
notation environment developed for a collab-
oration between political science and com-
putational linguistics. The tool realizes the
complete workflow necessary for annotating a
large newspaper text collection with rich in-
formation about claims (demands) raised by
politicians and other actors, including claim
and actor spans, relations, and polarities. In ad-
dition to the annotation GUI, the tool supports
the identification of relevant documents, text
pre-processing, user management, integration
of external knowledge bases, annotation com-
parison and merging, statistical analysis, and
the incorporation of machine learning models
as “pseudo-annotators”.

1 Introduction

Scalable text analysis techniques can open corpora
to new questions in computational social sciences
and digital humanities. This goal can be greatly fa-
cilitated with an environment for cross-disciplinary
corpus access that supports the design and refine-
ment of analysis categories and models – equally
well at the conceptual and the natural language pro-
cessing (NLP) level. It thus also invites a mixed-
methods approach (Kuhn, to appear) towards more
far-reaching research questions – combining the
strengths of scalable computational models and the
expert view on contextualized text instances.

This paper describes the MARDY tool, an inter-
active annotation environment for political claims
analysis in computational political science (see
Padó et al. (2019) for a task analysis and initial
modeling results). The term claim is operational-
ized as a textual span containing a demand, pro-
posal, criticism, or a decision made by actors ac-
tive in the respective field (Koopmans and Statham,
1999). For example, a commentator may put for-
ward the claim that the voting age be lowered to

Figure 1: Annotation for the text span: ”The Left Party
demands that vacant flats be secured for refugees.”
which includes claim category 205 (forced occupancy),
the actor Linkspartei (Left Party), and positive polarity.

16; a political party may propose that a government
help (or deter) refugees. Figure 1 shows a typical
example of a claim from a German domestic poli-
tics debate on immigration: A sentence is identified
as containing a claim, the claim is categorized ac-
cording to an annotation scheme, and assigned an
actor, a polarity, and a date.

Political Science Background. Understanding
the structure and evolution of political debates is
central to understanding democratic decision mak-
ing (Haunss and Hofmann, 2015). Therefore, an
important research strand in political science aims
at modeling and analyzing the exact mechanisms
of political discourse, such as the formation of dis-
course coalitions out of actors (Hajer, 1993).

Discourse network analysis (Leifeld, 2016)
builds on top of claims analysis (Koopmans and
Statham, 1999), representing debates as graphs and
analyzing their structure and dynamics. Actors and
claims are represented as the two classes of nodes
in a bipartite affiliation network. In Figure 2, actors
are circles, claims are squares, and they are linked
by edges that indicate support (green) or opposition
(orange). A discourse coalition is the projection
of the affiliation network on the actor side (dotted
edges), while the projection on the concept side
yields argumentative clusters. Affiliation networks
open up a systematic view on conjectured discur-

105

af�liation networkactors claims

actor network

(discourse coalition)

concept network

(argumentative cluster)

c1

c2

c3

c5

c4

a1

a2

a3

a5

a4

Figure 2: Actor, affiliation, and concept networks

sive patterns, e.g. regarding the stability/variability
of coalition configurations in response to external
events. To warrant a sufficiently focused analysis
of discursive patterns, it is common to restrict at-
tention to the debate in a given topical issue field.
In the issue field of internal security policy, e.g., a
recurring pattern could be hypothesized as follows:
whenever a terrorist network is on the news, claims
are made that police should receive more funding.

Annotating debates in corpora. To establish an
empirical basis for research into the dynamics of
political discourse, a systematic annotation method-
ology (coding, in the social science terminology)
needs to be defined. The overarching goal is to
identify and label claims brought forward by spe-
cific actors in a corpus covering public discourse, of
the news coverage thereof, from a predefined time
span. Within this scope, it is important to come
as close as possible to discovering and annotating
all claims made during the researched period. The
granularity of distinct claim types adopted in the
analysis has to be carefully chosen to ensure that
different formulations of the same claim (claims
with the same substance) are aggregated, while re-
lated claims have to be differentiated when this is
relevant for the evolution of discourse dynamics. A
debate-independent inventory of claim categories
is hence impossible, and the development of a so-
called codebook specifying annotation guidelines
for relevant claim types is a crucial part of every
issue-specific study (typically going through a cy-
cle of revisions before freezing the claim types).

Manual vs. automatic annotation. To ensure
reliability in the face of complex statements and
of ambiguities only resolvable with world knowl-
edge, annotation for political claims analysis has
traditionally proceeded almost exclusively manu-
ally. There is however considerable potential for
computer-aided annotation approaches that may in-
crease the speed and consistency of annotations.
This contribution demonstrates a technical architec-

Annotation

Knowledge Base Updating

Merging and Analysis

Document Selection

Corpus
Document

for
Annotation

Annotated
Document

1

Annotated
Document

2
Gold

Standard

CodebookPerson
Database

Figure 3: Workflow for Political Claims Annotation

ture supporting researchers from political science
in the full cycle of corpus selection, codebook de-
velopment, (parallel) annotation, annotation adju-
dication and consistency checking. Although vari-
ous tools for annotation-related subtasks in corpus
linguistics and NLP development exist, the spe-
cific interleaving of the various workflow steps in
corpus-based social science and digital humanities
calls for an integrated architecture.

The MARDY tool we present is a general en-
vironment for annotating of articles for political
claims analysis. It extends ideas and components
from earlier computational social science and dig-
ital humanities projects.1 In a usability study on
German newspaper texts (see Section 4), users re-
ported improved guidance over traditional anno-
tation procedures, and the integration of Machine
Learning (ML) predictions as (pseudo-)annotators
provides a unified interface for experiments with
manual and automatic annotation.

2 Annotation Workflow Requirements

Figure 3 shows a typical annotation workflow that
applies to political claims analysis as well as to
related annotation tasks (see Section 5). The four
dashed boxes with labels in italics show the major
tasks involved, each of which comes with a number
of desiderata.

Document Selection. We assume that annotation
is performed on the basis of a potentially large over-
all corpus where full annotation of all documents is
not feasible or desired. Thus, the first task is the se-
lection of relevant documents for annotation. This
is essentially an information retrieval task, where
keyword-based approaches face the typical prob-

1Specifically, e-Identity (Blessing et al., 2015) and CRETA
(Blessing et al., 2017).

106

lem of resulting in either high recall–low precision
scenarios (too few keywords) or low recall–high
precision scenarios (too many keywords).

Annotation. Since projects typically involve sev-
eral annotators, the environment should not just
support annotation proper, but also user adminis-
tration (user management, task assignment).

Assuming that we annotate relations between
actors and their claims, the annotation links mark-
ables to external knowledge bases, specifically the
actors to a database of persons and other relevant
entities (parties, companies, geopolitical entities
etc.) and the claims to an ontology of claim cat-
egories (the codebook). The environment should
support the integration of external knowledge bases
for this purpose as seamlessly as possible.

Merging and Evaluation. Following best prac-
tice in both political science and NLP, we carry out
double annotation of the relevant documents. These
independent annotations need to be combined into
a gold standard and merged by an expert adjudica-
tor where they diverge. Our merging system also
allows the integration of automatic generated anno-
tations, which is particularly useful to counteract
oversights, thus improving recall (see Section 4).

Knowledge Base Update. To support an evolu-
tionary process of the analytical categories, both
the actor and the claims knowledge bases (KBs)
must be modifiable. The actor KB is initial-
ized with resources like Wikidata (Vrandečić and
Krötzsch, 2014), but allows for manual extension
to cover references to less known people. Similarly,
some claims categories typically need to be refined
or coarsened in the initial phase of annotating a new
topic of debate. The dynamic nature of the KBs
make it necessary for the environment to provide
functionality for data and error analysis and for
versioning of KBs and data.

Comparison to other annotation environments.
In the NLP community, BRAT2 and WebAnno3 are
the most prominent tools for web-based annotation.
Both tools focus on annotation of linguistic items
(tagging, named entities). They are not designed for
the annotation of complete document collections,
nor do they provide interfaces to integrate complex
and dynamic codebooks. The same holds if we
consider more general frameworks like UIMA4 or

2https://brat.nlplab.org/
3https://webanno.github.io/webanno/
4https://uima.apache.org/index.html

Figure 4: Technical structure of environment

GATE5: they cannot be used directly for complex
annotation tasks, but need to be adapted (as we did
for UIMA, cf. Section 3).

Established tools for qualitative data analysis
(QDA) in political science are MAXQDA, NVivo
and Atlas.ti (Friese, 2019; Rädiker and Kuckartz,
2019). These applications allow researchers to
comfortably annotate a wide variety of textual data.
However, their unit of analysis is always the text
and not the annotated text segment. As a result,
they do not retain the relational aspects of anno-
tations: A text segment in which actor A makes
claim X and actor B makes claim Y becomes indis-
tinguishable from an annotation in which B claims
X and A claims Y. Another tool, the discourse net-
work analyzer (DNA) by Leifeld (2009), was de-
veloped specifically for the purpose of Discourse
Network Analysis and solves this issue by focusing
on the concept/actor relation as the unit of analysis.
However, this application offers only very basic
support for multiple annotators and does not en-
able parallel annotation of text. All annotations are
always visible to the entire team, and there is no
functionality to compare and merge annotations.

3 Design and Implementation

Figure 4 shows the technical structure and the
frameworks used for the environment which we
have developed to realize the workflow and desider-
ata from Section 2. The web page https:
//mardy-spp.github.io/ contains a demo
video, information concerning demo access, as well
as a docker image for the annotation environment.

Document Preprocessing and Selection. Our
environment builds on existing pipelines and web
services using UIMA as data exchange formalism.

5https://gate.ac.uk/

107

The input documents (in this case newspaper arti-
cles provided by the publisher) are encoded in a
proprietary XML format. We developed a reader
which parses and transforms the source articles
into the UIMA representation defined by our type
systems. That involves three tasks: i) identifying
all relevant textual parts of the articles (e.g., em-
bedded image captions have to be removed); ii)
extracting meta data (e.g., date, author, title); iii)
transforming format information (e.g., headings,
footnotes). Afterwards, the text is passed through
a generic pre-processing pipeline which calls sev-
eral CLARIN webservices, namely tokenization
and sentence boundary detection6, POS tagging7,
and named entity recognition8. The analyzed doc-
uments are stored in an UIMA repository and an
Elastic stack (https://www.elastic.co/).

Selecting a good sample has an high impact on
the annotation process. MARDY starts off by using
the Elastic stack’s built-in keyword-based search
to select relevant documents. This approach is
complemented by a document classifier which can
be trained as soon as some documents have been
confirmed for annotation and some others rejected.

Annotation Frontend. Our core system is based
on a client-server architecture. The Java server
component interacts with the Elastic stack and the
UIMA repository to store and retrieve annotated
documents. The front-end is implemented with
AngularJS (https://angularjs.org/).

The GUI for article view and anno-
tation is implemented in Annotatorjs
(http://annotatorjs.org/), a frame-
work which enables text span annotation. Once
the annotator has selected the relevant textual
span, an input widget (Figure 5) displays claim
categories (as defined by the annotation schema) as
well as a suggestion list of potential actors, dates,
and polarity (see below for details). This reduces
annotation in most cases to selection among a
small number of options and is crucial to increase
annotation speed. Annotations are stored in a
JSON-based format which is integrated by our
back-end into the UIMA standoff format.

The tool supports user management for article
assignment, as well as for checking the progress

6http://hdl.handle.net/11858/
00-247C-0000-0007-3736-B

7http://hdl.handle.net/11858/
00-247C-0000-0022-D906-1

8http://hdl.handle.net/11858/
00-247C-0000-0022-DDA1-3

Figure 5: Annotation interface

of the annotation (documents are displayed as in
progress, still awaiting annotation, or finished).

Merging. Figure 6 shows the view which enables
experts to merge annotations into the gold standard.
The experts decide for each row (same background
color) if the detected text snippet is a claim and, if it
is, then it is copied to the right column which shows
the gold annotations. Each gold annotation can be
further modified to adjust categories, actors and po-
larity of the claim. Usually, the annotations listed
on the left are by human annotators, which are
identified by IDs shown in square brackets ([7] in
Figure 6). MARDY allows the users to integrate the
predictions of a machine learning classifier which
are then displayed in the merging view, marked
as [AI] and with a lighter background color. Fig-
ure 6 illustrates an evaluation scenario for the [AI]
pseudo-annotator. In the first row, [AI] has spotted
a claim that the manual annotator had missed; more-
over, it has identified the correct macro-category
(700): the expert just needs to approve the claim
and assign a finer-grained category. The [AI] an-
notator is, however, not perfect: the claim in the
second row has been correctly identified only by the
human annotator. In the third row, [AI] produced
a false positive, probably because the candidate
sentence contains the keyword Lösung (solution),
which is a strong lexical cue for claims. In this case,
though, only the need for a solution is stated, with
no proposed action, leading the expert to reject the
annotation.

Evaluation and Codebook Update. MARDY
offers the possibility to evaluate annotation perfor-
mance, thus providing valuable feedback to both
annotators and specialists. The evaluation view re-
ports performance (TP, FP, FN, precision, recall,
and F1) aggregated per annotator and per category.
The former is useful for training purposes, the lat-
ter particularly informative for the incremental re-

108

Figure 6: Left: user annotation or AI predictions; Right: approved annotations

finement of the codebook in the light of corpus
evidence: categories that are often confounded are
either ill-defined, or they stand in a systematic re-
lationship (equivalence, subsumption, negation).
Both cases may indicate the need for a redefini-
tion of such categories. Versioning of data and
codebook is available to later reconstruct how the
annotation schema evolved during the project.

Actor Annotation and Update. In order to in-
crease the speed and consistency of actor annota-
tion, MARDY presents a set of plausible actors.
This is achieved by attempting to link each named
entity of type person or organization to a Wikidata
entry. These entries provide canonical names (An-
gela Merkel) from which we derive variants (A.
Merkel, Frau Merkel). We also exploit encyclo-
pedic information to identify phrases that likely
refer to these actors (e.g., Kanzlerin (chancellor),
CDU-Vorsitzende (CDU chairwoman)). Given that
Wikidata does not provide exhaustive coverage, the
actor KB is extended whenever an annotator identi-
fies an unknown actor.

4 Usability Study

In this section, we show how MARDY has been
employed in a political science study targeting one
of the major topics of German politics of 2015:
the domestic debate on (im)migration policy. So
far, we annotated 423 newspaper articles from TAZ
(http://www.taz.de/), with a total of 982
claims (Padó et al., 2019).

The first step is document selection. The whole
TAZ corpus contains more than 140.000 articles
for the year 2015. The keyword-based search was
used with a high recall objective in mind and re-
sulted in 3112 articles. From the 423 annotated
documents from this sample, approximately 58%
was found to be off-topic. In the future, the second
ML-based selection stage (cf. Section 3) should

improve precision and thus reduce annotator load
(fewer irrelevant articles to go through).

For annotation, each article was assigned to
two annotators. 20 articles were used for anno-
tator training and therefore assigned to all anno-
tators. Note that the order in which the articles
were shown to the annotators was randomized and
thus not chronological. Multiple annotators could
work simultaneously on the same article, while be-
ing monitored and compared by the researchers
in real time. These features simplify and improve
instructions and supervision, thus being more time-
efficient than traditional approaches. Additionally,
the fact that actor and claim categories are pre-
sented directly to annotators in the tool without
laborious switching between applications led to a
quicker and more comfortable annotation experi-
ence. Particularly helpful for high recall was the in-
tegration of ML-based pseudo-annotators: the
identification of claims is a hard task for human
coders, so that even the merging of several inde-
pendent human annotations does not guarantee full
coverage. We found that relatively simple neural
sequence classifiers were already good enough to
substantially boost the recall during the merging
phase (Padó et al., 2019).

After several training rounds, we proceeded to
a first evaluation. The quality of the human an-
notations was assessed in comparison to the gold
standard. We computed annotation reliability for
two parts of the annotation: claim detection and
claim classification. For claim detection, we use
Cohen’s Kappa: For each sentence we compare
whether the two annotators classified the sentence
as part of a claim or not. We obtained a Kappa
value of 0.58. Since claim classification is a multi-
label task, Kappa cannot be used. We therefore
computed Macro-F1 for all nine categories, obtain-
ing an average F1 score of 63.5%.

109

Figure 7: Actor Linkage: Distribution of categories.

Our annotation workflow greatly benefited from
integration with the claim category and actor
KBs. Indeed, the codebook was subject to many
changes throughout the annotation process, as ex-
pected: Several iterations of reading articles and
applying annotations were needed before conver-
gence on a final version. Regarding the actor KB,
Figure 7 illustrates the distribution of the actor cate-
gories annotated in the TAZ documents. The green
portion are those person names that occur directly
in Wikidata (roughly one third). Another third
is composed of roles and titles (Kanzlerin (chan-
cellor)) and mixed mentions (Kanzlerin Merkel),
which may or may not be covered in Wikidata. The
last third (light blue) are person names lacking com-
pletely in Wikidata. This underscores the need to
easily and seamlessly extend the actor KB.

5 Outlook

We introduced an annotation environment whose
features have been shaped by the goal of annotating
German political debates to support discourse net-
work analysis. Our tool is, however, highly flexible.
First of all, its use is not restricted to German and
it can be linked to any NLP pipeline. Moreover, it
is not restricted to a specific document type: it can
be employed, for example, for annotation targeting
fewer layers (e.g., just claims and polarity, like in
forum discussions). Finally, the framework can
be (and has been, in the CRETA project (Blessing
et al., 2017)) adapted to a broader range of text anal-
ysis contexts: e.g., it can be employed in literary
studies to identify textual spans associated to char-
acters, or having specific stylistic features. Finally,
from a NLP perspective, our tool is a straightfor-
ward evaluation platform for classification models.

Acknowledgments

We acknowledge funding by Deutsche Forschungs-
gemeinschaft (DFG) through MARDY (Modeling
Argumentation Dynamics) within SPP RATIO and

by Bundesministerium für Bildung und Forschung
(BMBF) through the Center for Reflected Text An-
alytics (CRETA).

References
André Blessing, Nora Echelmeyer, Markus John, and

Nils Reiter. 2017. An end-to-end environment for re-
search question-driven entity extraction and network
analysis. In Proc. of LaTeCH, pages 57–67.

André Blessing, Fritz Kliche, Ulrich Heid, Cathleen
Kantner, and Jonas Kuhn. 2015. Computerlinguis-
tische Werkzeuge zur Erschließung und Exploration
großer Textsammlungen aus der Perspektive fach-
spezifischer Theorien. In C. Baum and T. Stäcker,
editors, Grenzen und Möglichkeiten der Digital Hu-
manities (= Sonderband der ZfdG 1).

Susanne Friese. 2019. Qualitative data analysis with
ATLAS. SAGE Publications Limited.

Maarten A Hajer. 1993. Discourse Coalitions and the
Institutionalization of Practice: The Case of Acid
Rain in Britain. In The Argumentative Turn in Pol-
icy Analysis and Planning, pages 43–76. Duke Uni-
versity Press.

Sebastian Haunss and Jeanette Hofmann. 2015. Entste-
hung von Politikfeldern – Bedingungen einer
Anomalie. dms – der moderne staat, 8(1):29–49.

Ruud Koopmans and Paul Statham. 1999. Polit-
ical Claims Analysis: Integrating Protest Event
And Political Discourse Approaches. Mobilization,
4(2):203–221.

Jonas Kuhn. to appear. Computational text analysis
within the humanities: How to combine working
practices from the contributing fields? Language
Resources and Evaluation.

Philip Leifeld. 2009. Die Untersuchung von
Diskursnetzwerken mit dem Discourse Network An-
alyzer (DNA). In Politiknetzwerke. Modelle, Anwen-
dungen und Visualisierungen, pages 391–404. VS
Verlag für Sozialwissenschaften, Opladen.

Philip Leifeld. 2016. Discourse Network Analysis:
Policy Debates as Dynamic Networks. In The Ox-
ford Handbook of Political Networks. Oxford Uni-
versity Press.

Sebastian Padó, André Blessing, Nico Blokker, Erenay
Dayanik, Sebastian Haunss, and Jonas Kuhn. 2019.
Who sides with whom? towards computational con-
struction of discourse networks for political debates.
In Proceedings of ACL, Florence, Italy.

Stefan Rädiker and Udo Kuckartz. 2019. Analyse qual-
itativer Daten mit MAXQDA: Text, Audio und Video.
VS Verlag.

Denny Vrandečić and Markus Krötzsch. 2014. Wiki-
data: A free collaborative knowledgebase. Commun.
ACM, 57(10):78–85.

110

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 111–116
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

GLTR: Statistical Detection and Visualization of Generated Text

Sebastian Gehrmann
Harvard SEAS

gehrmann@seas.harvard.edu

Hendrik Strobelt
IBM Research

MIT-IBM Watson AI lab
hendrik.strobelt@ibm.com

Alexander M. Rush
Harvard SEAS

srush@seas.harvard.edu

Abstract

The rapid improvement of language models
has raised the specter of abuse of text gen-
eration systems. This progress motivates the
development of simple methods for detecting
generated text that can be used by and ex-
plained to non-experts. We develop GLTR, a
tool to support humans in detecting whether a
text was generated by a model. GLTR applies
a suite of baseline statistical methods that can
detect generation artifacts across common
sampling schemes. In a human-subjects study,
we show that the annotation scheme provided
by GLTR improves the human detection-rate
of fake text from 54% to 72% without any
prior training. GLTR is open-source and
publicly deployed, and has already been
widely used to detect generated outputs.

1 Introduction

The success of pretrained language models for nat-
ural language understanding (McCann et al., 2017;
Devlin et al., 2018; Peters et al., 2018) has led to a
race to train unprecedentedly large language mod-
els (Radford et al., 2019). These large language
models have the potential to generate textual out-
put that is indistinguishable from human-written
text to a non-expert reader. That means that the ad-
vances in the development of large language mod-
els also lower the barrier for abuse.

Instances of malicious autonomously generated
text at scale are rare but often high-profile, for in-
stance when a simple generation system was used
to create fake comments in opposition to net neu-
trality (Grimaldi, 2018). Other scenarios include
the possibility of generating false articles (Wang,
2017) or misleading reviews (Fornaciari and Poe-
sio, 2014). Forensic techniques will be necessary
to detect this automatically generated text. These
techniques should be accurate, but also easy to
convey to non-experts and require little setup cost.

Figure 1: The top-k overlay within GLTR. It is easy
to distinguish sampled from written text. The real text
is from the Wikipedia page of The Great British Bake
Off, the fake from GPT-2 large with temperature 0.7.

In this work, we argue that simple statistical de-
tection methods for generated/fake text can be ap-
plied within a visual tool to assist in detection. The
underlying assumption is that systems over gener-
ate from a limited subset of the true distribution of
natural language, for which they have high confi-
dence. In a white-box setting where we have ac-
cess to the system distribution, this property can be
detected by computing the model density of gener-
ated output and comparing it to human-generated
text. We further hypothesize that these methods
generalize to black-box scenarios, as long as the
fake text follows a similar sampling assumption
and is generated by a large language model.

We develop a visual tool, GLTR, that highlights
text passages based on these metrics, as shown
in Figure 11. We conduct experiments to empir-
ically test these metrics on a set of widely-used
language models and show that real text uses a
wider subset of the distribution under a model.
This is noticeable especially when the model
distribution is low-entropy and concentrates most

1Our tool is available at http://gltr.io.
The code is provided at https://github.com/
HendrikStrobelt/detecting-fake-text

111

(a) statistics

(b) config

(c) tokens (d) details about ‘chuck’

Figure 2: User interface for GLTR. On the top, we show three graphs with global information (a). Below the
graphs, users can switch between two different annotations and customize the top-k thresholds (b). On the bottom,
each token is shown with the associated annotation as heatmap (c). The tooltip (d) highlights information about
the current prediction when hovering over the word “chuck”.

probability in a few words. We demonstrate in
a human-subjects study that without the tool,
subjects can differentiate between human- and
model-generated text only 54% of the time. With
our tool, subjects were able to detect fake text
with an accuracy of over 72% without any prior
training. By presenting this information visually,
we also hope the tool teaches users to notice the
artefacts of text generation systems.

2 Method

Consider the generation detection task as decid-
ing whether a sequence of words X̂1:N have been
written by a human or generated from a model. We
do not have supervision for this task, and instead,
want to use distributional properties of the under-
lying language. In the white-box case, we are also
given full access to the language model distribu-
tion, p(Xi |X1:i−1), that was used in generation.
In the general case, we assume access to a different
learned model of the same form. This approach
can be contextualized in the evaluation framework
proposed by Hashimoto et al. (2019) who find that
human-written and generated text can be discrim-
inated based on the model likelihood if the human
acceptability is high.

The underlying assumption of our methods
is that to generate natural looking text, most
systems sample from the head of the distribu-
tion, e.g., through max sampling (Gu et al.,
2017), k-max sampling (Fan et al., 2018), beam
search (Chorowski and Jaitly, 2016; Shao et al.,

2017), temperature-modulated sampling (Dagan
and Engelson, 1995), or even implicitly with
rule-based templated approaches. These tech-
niques are biased, but seem to be necessary for
fluent output and are widely used. We there-
fore propose three simple tests, using a detec-
tion model, to assess whether text is generated in
this way: (Test 1) the probability of the word,
e.g. pdet(Xi = X̂i|X1:i−1), (Test 2) the absolute
rank of a word, e.g. rank in pdet(Xi|X1:i−1), and
(Test 3) the entropy of the predicted distribution,
e.g. −∑

w pdet(Xi = w|X1:i−1) log pdet(Xi =
w|X1:i−1). The first two test whether a generated
word is sampled from the top of the distribution
and the last tests whether the previously generated
context is well-known to the detection system such
that it is (overly) sure of its next prediction.

3 GLTR: Visualizing Outliers

We apply these tests within our tool GLTR (pro-
nounced Glitter) – a Giant Language model Test
Room. GLTR aims to both teach users what to be
aware of when assessing whether a text is real, and
to assist them in performing forensic analyses. It
works on a per-instance basis for any textual input.

The backend supports multiple detection mod-
els. Our publicly deployed version uses
both BERT (Devlin et al., 2018) and GPT-2
117M (Radford et al., 2019). Since GPT-2 117M
is a standard left-to-right language model, we
compute pdet(Xi | X1...i−1) at each position i in
a text X . BERT is trained to predict a masked

112

(a)

(b)

(c)

(e)

(d)

Figure 3: On the left, we analyze a generated sample (a-c) with GLTR that is generated from a non-public GPT-2
model. The first sentence (a) is the prompt given to the model. We can observe that the generated text (b) is mostly
highlighted in green and yellow, which strongly hints at a generated text. The histograms (c) show additional hints
at the automatic generation. On the right, we show samples from a real NYT article (d) and a scientific abstract
(e). Compared to the ”unicorn” example, the fraction of red and purple words is much higher.

token, given a bidirectional context. Thus, we it-
eratively mask out each correct token X̂i and use
a context of 30 words to each side as input to esti-
mate pdet(Xi|Xi−30...i−1, Xi+1...Xi+30)

2.
The central feature of the tool is the overlay

function, shown in Figure 2c, which can render ar-
bitrarily chosen top-k buckets (Test-2) as an anno-
tation over the text. By default, a word that ranks
within the top 10 is highlighted in green, top 100
in yellow, top 1,000 in red, and the rest in pur-
ple. GLTR also supports an overlay for Test-1 that
highlights the probability of the chosen word in
relation to the one that was assigned the highest
probability. Since the two overlays provide evi-
dence from two separate sources, their combina-
tion helps to form an informed assessment.

The top of the interface (Figure 2a), shows one
graph for each of the three tests. The first one
shows the distribution over the top-k buckets, the
second the distribution over the values from the
second overlay, and the third the distribution over
the entropy values. For a more detailed analysis,
hovering over a word (Figure 2d) shows a tooltip
with the top 5 predictions, their probabilities, and
the rank and probability of the following word.

The backend of GLTR is implemented in Py-
Torch and is designed to ensure extensibility. New
detection models can be added by registering

2While BERT can handle inputs of length 512, we ob-
served only minor differences between using the full and
shortened contexts.

themselves with the API and providing a model
and a tokenizer. This setup will allow the front-
end of the tool to continue to be used as improved
language models are released.

Case Study We demonstrate the functionality
of GLTR by analyzing three samples from dif-
ferent sources, shown in Figure 3. The interface
shows the results of detection analysis with GPT-2
117M. The first example is generated from GPT-2
1.5B. Here the example is conditioned on a seed
text.3 The analysis shows that not a single to-
ken in the generated text is highlighted in pur-
ple and very few in red. Most words are green
or yellow, indicating high rank. Additionally, the
second histogram shows a high fraction of high-
probability choices. A final indicator is the regu-
larity in the third histogram with a high fraction of
low-entropy predictions and an almost linear in-
crease in the frequency of high-entropy words.

In contrast, we show two human-written sam-
ples; one from a New York Times article and a
scientific abstract (Figure 3d+e). There is a signif-
icantly higher fraction of red and purple (e.g. non-
obvious) predictions compared to the generated
example. The difference is also observable in the
histograms where the fraction of low-probability
words is higher and low-entropy contexts smaller.

3In a shocking finding, scientist discovered a herd of uni-
corns living in a remote, previously unexplored valley, in the
Andes Mountains. Even more surprising to the researchers
was the fact that the unicorns spoke perfect English

113

Feature AUC

Bag of Words 0.63 ±0.11

(Test 1 - GPT-2) Average Probability 0.71 ±0.25
(Test 2 - GPT-2) Top-K Buckets 0.87 ±0.07

(Test 1 - BERT) Average Probability 0.70 ±0.27
(Test 2 - BERT) Top-K Buckets 0.85 ±0.09

Table 1: Cross-validated results of fake-text discrimi-
nators. Distributional information yield a higher infor-
mativeness than word-features in a logistic regression.

4 Empirical Validation

We validate the detection features by comparing
50 articles for each of 3 generated and 3 human
data sources. The first two sources are documents
sampled from GPT-2 1.5B (Radford et al., 2019).
We use a random subset of their released exam-
ples that were generated (1) with a temperature
of 0.7 and (2) truncated to the top 40 predictions.
As alternative source of generated text, we take
articles that were generated by the autonomous
Washington Post Heliograf system, which covers
local sports results and gubernatorial races. As
human-written sources, we choose random para-
graphs from the bAbI task children book corpus
(CBT) (Hill et al., 2015), New York Times arti-
cles (NYT), and scientific abstracts from the jour-
nals nature and science (SA). To minimize overlap
with the training set, we constrained the samples
to publication dates past or close to the release of
the GPT-2 models.

Our first model uses the average probability of
each word in a document as single feature (Test 1)
and the second one the distribution over four buck-
ets (highlight colors in GLTR) of absolute ranks of
predictions (Test 2). As a baseline we consider a
logistic regression over a bag-of-words represen-
tation of each document. We cross-validate the re-
sults by training on each combination of four of
the sources (two real/fake) and testing on the re-
maining two.

Results As Table 1 illustrates, the GLTR fea-
tures lead to better separation than word-features,
both with and without access to the true generat-
ing model. The classifier that uses ranking infor-
mation learns that real text samples from the tail
of the distribution more frequently. The odds ra-
tio for a word outside the top 100 predictions is

0 10 20 30 40 50
Percentage

Heliograf

GPT-2 (temp=0.7)

GPT-2 (top 40)

Childbook

NYT

Nature Abstracts

top 1
top 5
top 100
> top 100

Figure 4: Distribution over the rankings of words in
the predicted distributions from GPT-2. The real text
in the bottom three examples has a consistently higher
fraction of words from the tail of the distribution.

0 2 4
Entropy

0

100

200

300

400

500

R
an

k

NYT

0 2 4
Entropy

0

100

200

300

400

500

GPT-2 (temp 0.7)

Figure 5: A kernel density estimate of the contextual
entropy (Test 3) versus the next-word rank (Test 2) for
NYT and GPT-2. Human-written text (NYT) is more
likely to have high-rank words, even in low-entropy
contexts.

5.32, while the odds ratio for being the top 1 pre-
diction is 0.09. Figure 4 presents the distribution
of rankings under GPT-2 and further corroborates
this finding. Real texts use words outside of the
top 100 predictions 2.41 times as frequently un-
der GPT-2 (1.67 for BERT) as generated text, even
compared to sampling with a lower temperature.

To get a better sense of how low-rank words en-
ter into natural text, we look at the probability of
each word compared to its relative rank. We hy-
pothesize that human authors use low-rank words,
even when the entropy is low, a property that sam-
pling methods for generated text avoid. We com-
pare the relationship of the entropy and rank of
the next word by computing a Gaussian Kernel-
density estimate over their distributions. As shown
in Figure 5, human text uses high-rank words more
frequently, regardless of the estimated entropy.

5 Human-Subjects Study

To evaluate the efficacy of the GLTR tool, we con-
ducted a human-subjects study on 35 volunteer
students in a college-level NLP class. Our goal
was to both have students be able to tell generated

114

text from real, but also to see which parts raised
the suspicion of the students. In two rounds, stu-
dents were first shown five texts without overlay
and then five texts with overlay and were asked to
assess which texts were real within 90 seconds. In
between the rounds, we presented a brief tutorial
on the overlay and showed the example in Fig-
ure 1 but did not disclose any information about
the study. For each participant and round, we pre-
sented two texts generated from GPT-2 with 0.7
temperature, one from Heliograf, and two from
NYT.4 We alleviated bias from the text selection
by randomly assigning texts to either of the two
rounds between students.

Results The results demonstrate the ease of use
of the overlay. Without the interface, the par-
ticipants achieved an accuracy of 54.2%, barely
above random chance. While only 40% of texts
were real, they trusted 56.0% of texts, Heliograf
at a higher rate than GPT-2 (68.6% vs. 51.4%,
p < 0.01). The difficulty of the task without over-
lay was rated at 3.89 on a 5-point Likert scale,
further supporting the need for assistive systems.
With the interface, the performance improved to
72.3%. The average treatment effect shows an im-
provement of 18.1% with p < 0.001, even af-
ter controlling for whether a participant is a na-
tive speaker and how difficult they rated the task.
42.1% of the participants stated that the interface
helped them be more accurate, and 37.1% found
that it helped them to identify fakes faster.

Qualitative Findings The tool caused students
to think about the properties of the fake text.
While humans would vary expressions in real
texts, models rarely generate synonyms or refer-
ring expressions for entities, which does not fol-
low the theory of centering in discourse analy-
sis (Grosz et al., 1995). An example of this is
shown in the text in Figure 3b in which the model
keeps generating the name Pérez and never refers
to him as he. Another observation was that sam-
ples from Heliograf exhibit high parallelism in
sentence structure. Since previous work has found
that neural language models learn long linguistic
structures as well, we imagine that sentence struc-
ture analysis can further be used for forensic anal-
ysis. We hope that automatic analysis and visual-
ization like GLTR will help students better under-

4We randomly sampled one paragraph of text and resam-
pled NYT if it was covering recent, well-known events.

stand the generation artifacts in current systems.

6 Related Work

While statistical detection methods have been
applied in the past, the increase in language
model power upends past assumptions in this area.
Lavergne et al. (2008) introduce prediction en-
tropy as an indicator of fake text. However, their
findings are the opposite of ours (low entropy
for generated text), a change which is indicative
of language model improvements. Similar work
finds that texts differ in perplexity under a lan-
guage model (Beresneva, 2016), frequency of rare
bigrams (Grechnikov et al., 2009), and n-gram fre-
quencies (Badaskar et al., 2008). Similar methods
that detect machine translation (Arase and Zhou,
2013). Hovy (2016) finds that a logistic regres-
sion model can detect generated product reviews
at a higher rate than human judges, indicating that
humans struggle with this task. Finally, we distin-
guish this task from detecting misinformation in
text (e.g. Shu et al., 2017). We aim to understand
the statistical signature and not the content of text.

7 Discussion and Conclusion

We show how detection models can be applied to
analyze whether a text is automatically generated
using only simple statistical properties. We apply
the insights from the analysis to build GLTR, a
tool that assists human readers and improves their
ability to detect fake texts.

Impact GLTR aims to educate and raise aware-
ness about generated text. To explain GLTR to
non-NLP experts, we included a blog post on the
web page with examples and an explanation of
GLTR. Within the first month, GLTR had 30,000
page views for the demo and 21,000 for the blog.
Numerous news websites and policy researchers
reached out to discuss the ethical implications of
language generation. The feedback from these dis-
cussions and in-person presentations helped us to
refine our publicly released examples and explore
the limits of our detection methods.

Future Work A core assumption of GLTR is
that systems use biased sampling for generating
text. One can imagine adversarial schemes that
aim to fool our overlay; however, forcibly sam-
pling from the tail decreases the coherence of a
text which may make it harder to fool human read-
ers. Another potential limitation are samples con-

115

ditioned on a hidden seed text. A conditional dis-
tribution will look different, even if we have access
to the model. Our preliminary qualitative investi-
gations with GLTR show a relatively short-range
memory on this seed, but it is crucial to conduct
more in-depth evaluations on the influence of con-
ditions in future work. The findings further mo-
tivate future work on how to use our methods as
part of autonomous classifiers to assist moderators
on social media or review platforms.

Acknowledgments

AMR gratefully acknowledges the support of NSF
1845664 and a Google research award.

References
Yuki Arase and Ming Zhou. 2013. Machine translation

detection from monolingual web-text. In Proceed-
ings of the 51st Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 1597–1607.

Sameer Badaskar, Sachin Agarwal, and Shilpa Arora.
2008. Identifying real or fake articles: Towards
better language modeling. In Proceedings of the
Third International Joint Conference on Natural
Language Processing: Volume-II.

Daria Beresneva. 2016. Computer-generated text de-
tection using machine learning: A systematic re-
view. In International Conference on Applications
of Natural Language to Information Systems, pages
421–426. Springer.

Jan Chorowski and Navdeep Jaitly. 2016. Towards
better decoding and language model integration
in sequence to sequence models. arXiv preprint
arXiv:1612.02695.

Ido Dagan and Sean P Engelson. 1995. Selective sam-
pling in natural language learning. In Proceed-
ings of the IJCAI Workshop on New Approaches to
Learning for Natural Language Processing, pages
41–48.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

Angela Fan, Mike Lewis, and Yann Dauphin. 2018.
Hierarchical neural story generation. In Proceed-
ings of the 56th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), volume 1, pages 889–898.

Tommaso Fornaciari and Massimo Poesio. 2014. Iden-
tifying fake amazon reviews as learning from
crowds. In Proceedings of the 14th Conference of
the European Chapter of the Association for Com-
putational Linguistics, pages 279–287.

EA Grechnikov, GG Gusev, AA Kustarev, and A
Raigorodsky. 2009. Detection of artificial texts.
RCDL2009 Proceedings. Petrozavodsk, pages 306–
308.

James V. Grimaldi. 2018. U.s. investigating fake com-
ments on net neutrality. The Wall Street Journal.

Barbara J Grosz, Scott Weinstein, and Aravind K Joshi.
1995. Centering: A framework for modeling the lo-
cal coherence of discourse. Computational linguis-
tics, 21(2):203–225.

Jiatao Gu, Kyunghyun Cho, and Victor OK Li. 2017.
Trainable greedy decoding for neural machine trans-
lation. arXiv preprint arXiv:1702.02429.

Tatsunori B Hashimoto, Hugh Zhang, and Percy Liang.
2019. Unifying human and statistical evaluation
for natural language generation. arXiv preprint
arXiv:1904.02792.

Felix Hill, Antoine Bordes, Sumit Chopra, and Jason
Weston. 2015. The goldilocks principle: Reading
children’s books with explicit memory representa-
tions. arXiv preprint arXiv:1511.02301.

Dirk Hovy. 2016. The enemy in your own camp:
How well can we detect statistically-generated fake
reviews–an adversarial study. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 2: Short Papers), vol-
ume 2, pages 351–356.

Thomas Lavergne, Tanguy Urvoy, and François Yvon.
2008. Detecting fake content with relative entropy
scoring. PAN, 8:27–31.

Bryan McCann, James Bradbury, Caiming Xiong, and
Richard Socher. 2017. Learned in translation: Con-
textualized word vectors. In Advances in Neural In-
formation Processing Systems, pages 6294–6305.

Matthew E Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. arXiv preprint arXiv:1802.05365.

Alec Radford, Jeff Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2019. Language
models are unsupervised multitask learners.

Louis Shao, Stephan Gouws, Denny Britz, Anna
Goldie, Brian Strope, and Ray Kurzweil. 2017.
Generating high-quality and informative conversa-
tion responses with sequence-to-sequence models.
arXiv preprint arXiv:1701.03185.

Kai Shu, Amy Sliva, Suhang Wang, Jiliang Tang, and
Huan Liu. 2017. Fake news detection on social me-
dia: A data mining perspective. ACM SIGKDD Ex-
plorations Newsletter, 19(1):22–36.

William Yang Wang. 2017. ” liar, liar pants on fire”:
A new benchmark dataset for fake news detection.
arXiv preprint arXiv:1705.00648.

116

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 117–122
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

OpenKiwi: An Open Source Framework for Quality Estimation
Fábio Kepler

Unbabel
Jonay Trénous

Unbabel
Marcos Treviso∗

Instituto de Telecomunicações

Miguel Vera
Unbabel

André F. T. Martins
Unbabel

{kepler, sony, miguel.vera, andre.martins}@unbabel.com
marcosvtreviso@gmail.com

Abstract

We introduce OpenKiwi, a PyTorch-based
open source framework for translation qual-
ity estimation. OpenKiwi supports training
and testing of word-level and sentence-level
quality estimation systems, implementing the
winning systems of the WMT 2015–18 qual-
ity estimation campaigns. We benchmark
OpenKiwi on two datasets from WMT 2018
(English-German SMT and NMT), yielding
state-of-the-art performance on the word-level
tasks and near state-of-the-art in the sentence-
level tasks.

1 Introduction

Quality estimation (QE) provides the missing
link between machine and human translation: its
goal is to evaluate a translation system’s quality
without access to reference translations (Specia
et al., 2018b). Among its potential usages are: in-
forming an end user about the reliability of auto-
matically translated content; deciding if a transla-
tion is ready for publishing or if it requires human
post-editing; and highlighting the words that need
to be post-edited.

While there has been tremendous progress in
QE in the last years (Martins et al., 2016, 2017;
Kim et al., 2017; Wang et al., 2018), the ability of
researchers to reproduce state-of-the-art systems
has been hampered by the fact that these are either
based on complex ensemble systems, complicated
architectures, or require not well-documented pre-
training and fine-tuning of some components. Ex-
isting open-source frameworks such as WCE-LIG
(Servan et al., 2015), QuEST++ (Specia et al.,
2015), Marmot (Logacheva et al., 2016), or Deep-
Quest (Ive et al., 2018), while helpful, are cur-
rently behind the recent best systems in WMT
QE shared tasks. To address the shortcoming

∗ Work done during an internship at Unbabel in 2018.

above, this paper presents OpenKiwi,1 a new open
source framework for QE that implements the best
QE systems from WMT 2015–18 shared tasks,
making it easy to combine and modify their key
components, while experimenting under the same
framework.

The main features of OpenKiwi are:

• Implementation of four QE systems: QUETCH
(Kreutzer et al., 2015), NUQE (Martins et al.,
2016, 2017), Predictor-Estimator (Kim et al.,
2017; Wang et al., 2018), and a stacked ensem-
ble with a linear system (Martins et al., 2016,
2017);

• Easy to use API: can be imported as a package
in other projects or run from the command line;

• Implementation in Python using PyTorch as the
deep learning framework;

• Ability to train new QE models on new data;

• Ability to run pre-trained QE models on data
from the WMT 2018 campaign;

• Easy to track and reproduce experiments
via YAML configuration files and (optionally)
MLflow;

• Open-source license (Affero GPL).

This project is hosted at https://github.
com/Unbabel/OpenKiwi. We welcome and
encourage contributions from the research com-
munity.2

2 Quality Estimation

The goal of word-level QE (Figure 1) is to as-
sign quality labels (OK or BAD) to each machine-
translated word, as well as to gaps between words

1https://unbabel.github.io/OpenKiwi.
2See https://unbabel.github.io/

OpenKiwi/contributing.html for instructions
for contributors.

117

Figure 1: Example from the WMT 2018 word-level QE training set. Shown are the English source sentence
(top), the German machine translated text (bottom), and its manual post-edition (middle). We show also the three
types of word-level quality tags: MT (or target) tags account for words that are replaced or deleted, gap tags
account for words that need to be inserted, and source tags indicate what are the source words that were omitted or
mistranslated. For this example, the HTER sentence-level score (number of edit operations to produce PE from MT
normalized by the length of PE) is 8/12 = 66.7%, corresponding to 4 insertions, 1 deletion, and 3 replacements
out of 12 reference words.

(to account for context that needs to be inserted),
and source words (to denote words in the origi-
nal sentence that have been mistranslated or omit-
ted in the target). In the last years, the most ac-
curate systems that have been developed for this
task combine linear and neural models (Kreutzer
et al., 2015; Martins et al., 2016), use automatic
post-editing as an intermediate step (Martins et al.,
2017), or develop specialized neural architectures
(Kim et al., 2017; Wang et al., 2018).

Sentence-level QE, on the other hand, aims to
predict the quality of the whole translated sen-
tence, for example based on the time it takes for
a human to post-edit it, or on how many edit oper-
ations are required to fix it, in terms of HTER (Hu-
man Translation Error Rate) (Specia et al., 2018b).
The most successful approaches to sentence-level
QE to date are based on conversions from word-
level predictions (Martins et al., 2017) or joint
training with multi-task learning (Kim et al., 2017;
Wang et al., 2018).

3 Implemented Systems

OpenKiwi implements four popular systems that
have been proposed in the last years, which we
now describe briefly.

QUETCH. The “QUality Estimation from
scraTCH” system (Kreutzer et al., 2015) is de-
signed as a multilayer perceptron with one hidden
layer, non-linear tanh activation functions and a
lookup-table layer mapping words to continuous
dense vectors. For each position in the MT, a
window of fixed size surrounding that position,

as well as a windowed representation of aligned
words from the source text, are concatenated as
model input.3 The output layer scores OK/BAD

probabilities for each word with a softmax
activation. The model is trained independently
to predict source tags, gap tags, and target tags.
QUETCH is a very simple model and does not
rely on any kind of external auxiliary data for
training, only the shared task datasets.

NuQE. OpenKiwi also implements the NeUral
Quality Estimation system proposed by Martins
et al. (2016). Its architecture consists of a lookup
layer containing embeddings for target words and
their source-aligned words, in the same fashion
as QUETCH. These embeddings are concatenated
and fed into two consecutive sets of two feed-
forward layers and a bi-directional GRU layer.
The output contains a softmax layer that produces
the final OK/BAD decisions. Like QUETCH, train-
ing is also carried independently for source tags,
gap tags, and target tags. NuQE is also a blackbox
system, meaning it is trained with the shared task
data only (i.e., no auxiliary parallel or roundtrip
data).

Predictor-Estimator. Our implementation fol-
lows closely the architecture proposed by Kim
et al. (2017), which consists of two modules:

• a predictor, which is trained to predict each to-
ken of the target sentence given the source and

3The alignments are provided by the shared task orga-
nizers, which are computed with fast align (Dyer et al.,
2013).

118

the left and right context of the target sentence;

• an estimator, which takes features produced by
the predictor and uses them to classify each
word as OK or BAD.

Our predictor uses a bidirectional LSTM to en-
code the source, and two unidirectional LSTMs
processing the target in left-to-right (LSTM-L2R)
and right-to-left (LSTM-R2L) order. For each tar-
get token ti, the representations of its left and right
context are concatenated and used as query to an
attention module before a final softmax layer. It
is trained on the large parallel corpora provided as
additional data by the WMT shared task organiz-
ers. The estimator takes as input a sequence of
features: for each target token ti, the final layer
before the softmax (before processing ti), and the
concatenation of the i-th hidden state of LSTM-
L2R and LSTM-R2L (after processing ti). In ad-
dition, we train this system with a multi-task ar-
chitecture that allows us to predict sentence-level
HTER scores. Overall, this system is capable to
predict sentence-level scores and all word-level la-
bels (for MT words, gaps, and source words)—the
source word labels are produced by training a pre-
dictor in the reverse direction.

Stacked Ensemble. The systems above can be
ensembled by using a stacked architecture with a
feature-based linear system, as described by Mar-
tins et al. (2017). The features are the ones de-
scribed there, including lexical and part-of-speech
tags from words, their contexts, and their aligned
words and contexts, as well as syntactic features
and features provided by a language model (as
provided by the shared task organizers). This sys-
tem is only used to produce word-level labels for
MT words.

4 Design, Implementation and Usage

OpenKiwi is designed and implemented in a way
that allows new models to be easily added and run,
without requiring much concern about input data
processing and output generation and evaluation.
That means the focus can be almost exclusively
put in adding or changing a torch.nn.Module
based class. If new flags or options are required,
all that is needed is to add them to the CLI parsing
module.

Design. As a general architecture example, the
training pipeline follows these steps:

• Each input data, like source text and MT text,
is defined as a Field, which holds information
about how data should be tokenized, how the
inner vocabulary is built, how the mapping to
IDs is done, and how a list of samples is padded
into a tensor;

• A Dataset holds a set of input and out-
put fields, and builds minibatches of samples,
each containing their respective input and out-
put data;

• A training loop iterates over epochs and steps,
calling the model with each minibatch, com-
puting the loss, backpropagating, evaluating on
the validation set, and saving snapshots as re-
quested;

• By default, the best model is kept and predic-
tions on the validation set are saved as probabil-
ities.

The flow rarely needs to be changed for the QE
task, so all that is needed for quick experimenta-
tion is changing configuration parameters (check
the Usage part below) or the model class.

Implementation. OpenKiwi supports Python
3.5 and later. Since reproducibility is important,
it uses Poetry4 for deterministic dependency man-
agement. To decrease the risk of introducing
breaking changes with new code, a set of tests
are also implemented and currently provide a code
coverage close to 80%.

OpenKiwi offers support for tracking experi-
ments with MLflow,5 which allows comparing dif-
ferent runs and searching for specific metrics and
parameters.

Usage. Training an OpenKiwi model is as sim-
ple as running the following command:

$ python kiwi train --config
config.yml↪→

where config.yml is a configuration file with
training and model options.

OpenKiwi can also be installed as a
Python package by running pip install
openkiwi. In this case, the above command can
be switched by

$ kiwi train --config config.yml

4https://poetry.eustace.io/
5https://mlflow.org/

119

Figure 2: Interactive visualization of the system output. Words tagged as BAD as shown in red, and BAD gaps
are denoted as red underscores (“ ”). The Jupyter Notebook producing this output is available at https://
github.com/Unbabel/OpenKiwi/blob/master/demo/KiwiViz.ipynb.

If used inside another Python project, OpenKiwi
can be easily used like the following:

import kiwi

config = 'config.yml'
run_info = kiwi.train(config)

After training, predicting on new data can be
performed by simply calling

model = kiwi.load_model(
run_info.model_path

)
source = [

'the Sharpen tool sharpens '
'areas in an image .'

]
target = [

'der Schärfen-Werkezug '
'Bereiche in einem Bild '
'schärfer erscheint .'

]
examples = [{

'source': source,
'target': target

}]
out = model.predict(examples)

Figure 2 shows an example of QE predictions
using the framework.

5 Benchmark Experiments

Datasets. To benchmark OpenKiwi, we use the
following datasets from the WMT 2018 quality es-
timation shared task, all English-German (En-De):

• Two quality estimation datasets of sentence
triplets, each consisting of a source sentence

(SRC), its machine translation (MT) and a hu-
man post-edition (PE) of the machine transla-
tion: a larger dataset of 26,273 training and
1,000 development triplets, where the MT is
generated by a phrase-based statistical machine
translation (SMT); and a smaller dataset of
13,442 training and 1,000 development triplets,
where the MT is generated by a neural ma-
chine translation system (NMT). The data also
contains word-level quality labels and sentence-
level scores that are obtained from the post-
editions using TERCOM (Snover et al., 2006).

• A corpus of 526,368 artificially generated sen-
tence triplets, obtained by first cross-entropy fil-
tering a much larger monolingual corpus for in-
domain sentences, then using round-trip trans-
lation and a final stratified sampling step.

• A parallel dataset of 3,396,364 in-domain sen-
tences used for pre-training of the predictor-
estimator model.

Systems. In addition to the models that are part
of OpenKiwi, in the experiments below, we also
use Automatic Post-Editing (APE) adapted for QE
(APE-QE). APE-QE has been used by Martins
et al. (2017) as an intermediate step for qual-
ity estimation, where an APE system is trained
on the human post-edits and its outputs are used
as pseudo-post-editions to generate word-level
quality labels and sentence-level scores in the
same way that the original labels were created.
Since OpenKiwi’s focus is not on implementing
a sequence-to-sequence model, we used an exter-
nal software, OpenNMT-py (Klein et al., 2017), to
train two separate translation models:

• SRC → PE: trained first on the in-domain cor-
pus provided, then fine-tuned on the shared task
data.

120

Model
En-De SMT En-De NMT

MT gaps source r ρ MT gaps source r ρ

QUETCH 39.90 17.10 36.10 48.32 51.31 29.18 13.26 28.91 42.84 49.59
NUQE 50.04 35.53 42.08 59.62 60.89 32.49 15.01 30.19 43.41 50.87
PRED-EST 57.29 43.68 33.02 70.95 74.49 39.25 21.54 29.52 50.18 55.66
APE-QE 55.12 47.04 51.11 58.01 60.58 37.60 21.78 34.46 35.23 38.88

ENSEMBLED 61.33 53.05 51.11 72.89 76.37 43.04 24.74 34.46 52.34 56.98
STACKED 62.40 – – – – 43.88 – – – –

Table 1: Benchmarking of the different models implemented in OpenKiwi on the WMT 2018 development set,
along with an ensembled system (ENSEMBLED) that averages the predictions of the NUQE, APE-QE, and PRED-
EST systems, as well as a stacked architecture (STACKED) which stacks their predictions into a linear feature-based
model, as described by Martins et al. (2017). For each system, we report the five official scores used in WMT
2018: word-level Fmult

1 for MT, gaps, and source tokens, and sentence-level Pearson’s r and Spearman’s ρ rank
correlations.

Model
En-De SMT En-De NMT

MT gaps source r ρ MT gaps source r ρ

deepQUEST 42.98 28.24 33.97 48.72 50.97 30.31 11.93 28.59 38.08 48.00
UNQE – – – 70.00 72.44 – – – 51.29 60.52
QE Brain 62.46 49.99 – 73.97 75.43 43.61 – – 50.12 60.49

OpenKiwi 62.70 52.14 48.88 71.08 72.70 44.77 22.89 36.53 46.72 58.51

Table 2: Final results on the WMT 2018 test set. The first three systems are the official WMT18-QE winners
(underlined): deepQUEST is the open source system developed by Ive et al. (2018), UNQE is the unpublished
system from Jiangxi Normal University, described by Specia et al. (2018a), and QE Brain is the system from
Alibaba described by Wang et al. (2018). Reported numbers for the OpenKiwi system correspond to best models
in the development set: the STACKED model for prediction of MT tags, and the ENSEMBLED model for the rest.

• MT → PE: trained on the concatenation of the
corpus of artificially created sentence triplets
and the shared task data oversampled by a factor
of 20.

These predictions are then combined in the ensem-
ble and stacked systems as explained below.

Experiments. We show benchmark numbers on
the two English-German WMT 2018 datasets. In
Table 1, we compare different configurations of
OpenKiwi on the development datasets. For the
single systems, we can see that the predictor-
estimator has the best performance, except for pre-
dicting the source and the gap word-level tags,
where APE-QE is superior. Overall, ensembled
versions of these systems perform the best, with a
stacked architecture being very effective for pre-
dicting word-level MT labels, confirming the find-
ings of Martins et al. (2017).

Finally, in Table 2, we report numbers on
the official test set. We compare OpenKiwi

against the best systems in WMT 2018 (Specia
et al., 2018a) and another existing open-source
tool, deepQuest (Ive et al., 2018). Overall,
OpenKiwi outperforms deepQuest for all word-
level and sentence-level tasks, and attains the best
results for all the word-level tasks.

6 Conclusions

We presented OpenKiwi, a new open source
framework for QE. OpenKiwi is implemented in
PyTorch and supports training of word-level and
sentence-level QE systems on new data. It out-
performs other open source toolkits on both word-
level and sentence-level, and yields new state-of-
the-art word-level QE results.

Since its release, OpenKiwi was adopted as the
baseline system for the WMT 2019 QE shared
task6, Moreover, all the winning systems of the
word-, sentence- and document-level tasks of the

6More specifically, the NuQE model: http://www.
statmt.org/wmt19/qe-task.html

121

WMT 2019 QE shared task7 (Kepler et al., 2019)
used OpenKiwi as their building foundation.

Acknowledgments

The authors would like to thank Eduardo Fierro,
Thomas Reynaud, and the Unbabel AI and Engi-
neering teams for their invaluable contributions to
OpenKiwi.

They would also like to thank the support pro-
vided by the European Union in the context of the
PT2020 projects 027767 and 038510.

References
Chris Dyer, Victor Chahuneau, and Noah A Smith.

2013. A simple, fast, and effective reparameteriza-
tion of IBM model 2. In Proceedings of the 2013
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, pages 644–648.

Julia Ive, Frédéric Blain, and Lucia Specia. 2018.
DeepQuest: a framework for neural-based Quality
Estimation. In International Conference on Compu-
tational Linguistics (COLING).

Fábio Kepler, Jonay Trénous, Marcos Treviso, Miguel
Vera, António Góis, M. Amin Farajian, António V.
Lopes, and André F. T. Martins. 2019. Unbabel’s
Participation in the WMT19 Translation Quality Es-
timation Shared Task. In Conference on Machine
Translation (WMT).

Hyun Kim, Jong-Hyeok Lee, and Seung-Hoon Na.
2017. Predictor-Estimator using Multilevel Task
Learning with Stack Propagation for Neural Quality
Estimation. In Conference on Machine Translation
(WMT).

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. Opennmt:
Open-source toolkit for neural machine translation.
arXiv preprint arXiv:1701.02810.

Julia Kreutzer, Shigehiko Schamoni, and Stefan Rie-
zler. 2015. QUality Estimation from ScraTCH
(QUETCH): Deep Learning for Word-level Trans-
lation Quality Estimation. In Workshop on Machine
Translation (WMT).

Varvara Logacheva, Chris Hokamp, and Lucia Specia.
2016. Marmot: A toolkit for translation quality esti-
mation at the word level. In LREC.

André F. T. Martins, Ramon Astudillo, Chris Hokamp,
and Fábio Kepler. 2016. Unbabel’s Participation in
the WMT16 Word-Level Translation Quality Esti-
mation Shared Task. In Conference on Machine
Translation (WMT).
7http://www.statmt.org/wmt19/

qe-results.html

André F. T. Martins, Marcin Junczys-Dowmunt, Fabio
Kepler, Ramon Astudillo, Chris Hokamp, and Ro-
man Grundkiewicz. 2017. Pushing the limits of
translation quality estimation. Transactions of the
Association for Computational Linguistics (to ap-
pear).

Christophe Servan, Ngoc-Tien Le, Ngoc Quang Luong,
Benjamin Lecouteux, and Laurent Besacier. 2015.
An Open Source Toolkit for Word-level Confidence
Estimation in Machine Translation. In The 12th In-
ternational Workshop on Spoken Language Transla-
tion (IWSLT’15), Da Nang, Vietnam.

Matthew Snover, Bonnie Dorr, Richard Schwartz, Lin-
nea Micciulla, and John Makhoul. 2006. A study of
translation edit rate with targeted human annotation.
In Proceedings of association for machine transla-
tion in the Americas, volume 200.

Lucia Specia, Frédéric Blain, Varvara Logacheva,
Ramón Astudillo, and André F. T. Martins. 2018a.
Findings of the wmt 2018 shared task on quality es-
timation. In Proceedings of the Third Conference
on Machine Translation, Volume 2: Shared Task Pa-
pers, pages 702–722, Belgium, Brussels. Associa-
tion for Computational Linguistics.

Lucia Specia, Gustavo Paetzold, and Carolina Scarton.
2015. Multi-level translation quality prediction with
quest++. In ACL-IJCNLP 2015 System Demonstra-
tions, pages 115–120, Beijing, China.

Lucia Specia, Carolina Scarton, and Gustavo Henrique
Paetzold. 2018b. Quality estimation for machine
translation. Synthesis Lectures on Human Language
Technologies, 11(1):1–162.

Jiayi Wang, Kai Fan, Bo Li, Fengming Zhou, Boxing
Chen, Yangbin Shi, and Luo Si. 2018. Alibaba Sub-
mission for WMT18 Quality Estimation Task. In
Conference on Machine Translation (WMT).

122

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 123–128
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Microsoft ICECAPS: An Open-Source Toolkit for Conversation Modeling

Vighnesh Leonardo Shiv, Chris Quirk, Anshuman Suri, Xiang Gao,
Khuram Shahid, Nithya Govindarajan, Yizhe Zhang, Jianfeng Gao,

Michel Galley, Chris Brockett, Tulasi Menon, Bill Dolan
Microsoft Corporation

{vishiv, chrisq, ansuri, xiag, khurams,
nigovind, yizzhang, jfgao, mgalley,

chrisbkt, tulasim, billdol}@microsoft.com

Abstract
The Intelligent Conversation Engine: Code
and Pre-trained Systems (Microsoft ICECAPS)
is an upcoming open-source natural language
processing repository. ICECAPS wraps Tensor-
Flow functionality in a modular component-
based architecture, presenting an intuitive
and flexible paradigm for constructing so-
phisticated learning setups. Capabilities in-
clude multitask learning between models with
shared parameters, upgraded language model
decoding features, a range of built-in archi-
tectures, and a user-friendly data process-
ing pipeline. The system is targeted to-
ward conversational tasks, exploring diverse
response generation, coherence, and knowl-
edge grounding. ICECAPS also provides pre-
trained conversational models that can be ei-
ther used directly or loaded for fine-tuning
or bootstrapping other models; these models
power an online demo of our framework.

1 Introduction

Neural conversational systems have seen great im-
provements over the past several years, with cur-
rent models able to generate surprisingly coherent
dialogs (Gao et al., 2019a). Business applications,
games, and potentially other settings can bene-
fit from intelligent conversational agents, inviting
users to interact intuitively with complex systems.

Although a range of open-source tools is avail-
able to train neural network models for natural lan-
guage processing (Vaswani et al., 2018; Gardner
et al., 2018; Klein et al., 2017), only a few em-
phasize multi-turn conversational settings (Miller
et al., 2017; Burtsev et al., 2018). Conversations
present distinct challenges. They generally consist
of many turns, and agents need to contextualize re-
sponses in these multi-turn contexts. Agents may
also need to contextualize their responses in other
cues, such as style, intent, and external knowledge,
while retaining a conversational flow.

We present ICECAPS1, a conversation model-
ing toolkit developed to bring together these de-
sirable characteristics. ICECAPS is built on top
of TensorFlow functionality wrapped in a user-
friendly paradigm. Users can build agents with in-
duced personalities, capable of generating diverse
responses, grounding those responses in external
knowledge, and avoiding particular phrases. Our
toolkit’s foundation is an extensible framework
based on composable model structures, supporting
complex configurations with component chaining
and multi-task training schedules. We also pro-
vide large pre-trained conversational systems to
support fast exploration.

2 Architecture

ICECAPS is designed for modularity, flexibility,
and ease of use. Modules are built on top of Ten-
sorFlow Estimators, making them easy for devel-
opers to use and extend flexibly. ICECAPS sup-
ports arbitrary architectures of modules chained
together within versatile multi-task configurations.

2.1 Component chaining

Sequence-to-sequence models can be abstracted
as chains of sequence encoders and sequence de-
coders. Our library implements various encoders
and decoders, which can be chained together to
form a single, end-to-end functional model. This
chaining paradigm allows users to flexibly com-
bine components and create topologies including
multiple models with shared components. Chain-
ing also allows users to bootstrap new models
from components of previously trained models.

2.2 Multi-task learning

Multi-task learning is a powerful training
paradigm that promotes robust feature represen-

1https://github.com/microsoft/icecaps

123

Figure 1: An example of a basic multi-task configu-
ration. Two encoder-decoder chains share a common
decoder, alternately trained on separate datasets.

tations (Gao et al., 2019b; Liu et al., 2019). By
unifying a conversational sequence-to-sequence
model and an autoencoder with a shared decoder,
multi-task learning can personalize the conver-
sational model (Luan et al., 2017). Multi-task
learning has potentially many other powerful
applications for inducing biases in conversational
systems. ICECAPS allows users to build arrays of
models with arbitrary sharing of components, and
place them in a multi-task learning environment.
Users can construct arbitrary multi-task training
schedules, assigning different tasks or balances
among tasks per training step.

3 Built-in modules and configurations

ICECAPS provides several built-in modules and
configurations. Most standard NLP architectures
are available, including transformers (Vaswani
et al., 2017), LSTM-based seq2seq models
(Sutskever et al., 2014) with attention (Bahdanau
et al., 2015; Luong et al., 2015), n-gram convo-
lutional language models, and deep convolutional
networks for baseline image grounding. Where
applicable, these are implemented as chains of
simpler components as per our design philosophy.
We also provide features that target conversational
scenarios, from individual chainable components
to custom multi-task learning presets.

3.1 Personality grounding

Inspired by recent work on modeling personality
differences in conversational systems (Li et al.,
2016b), ICECAPS provides implementations of
personality-grounded seq2seq and transformer de-

No I don’t

I’m not interested in
the game

When will you?

When?

I’d love to play it

Yes I do.

[Context] Anyone want
to start this game?

Figure 2: Illustration of latent space under SpaceFu-
sion. The distance between predicted response vectors
and contexts represents relevance; the angle between
them represents intent. Figure from (Gao et al., 2019b).

coders. This architecture consists of additional
personality embeddings, which are provided to the
decoder alongside token embeddings at each time-
step of decoding. Grounding generated responses
helps condition outputs based on a given person-
ality embedding: for the same query, the system
learns to generate responses in different styles, all
while preserving the underlying context.

3.2 SpaceFusion

SpaceFusion (Gao et al., 2019b) is a learning
paradigm that aligns latent spaces learned by dif-
ferent models trained over different datasets. Of
particular interest is its application to neural con-
versation modelling, where SpaceFusion can opti-
mize the relevance and diversity of generated re-
sponses jointly. ICECAPS implements a SpaceFu-
sion preset that extends its multi-task capabilities.
SpaceFusion constructs a multi-task environment
of two seq2seq models with a shared decoder, as
in (Luan et al., 2017). It distinguishes itself by
modifying the multi-task objective function with
several regularization terms. These extra terms
encourage responses for the same context to be
placed nearby in latent space and aligning seman-
tically related responses along straight lines in la-
tent space. This induces a structure in the latent
space such that distance and direction from a pre-
dicted response vector roughly correspond to rele-
vance and diversity, respectively, as in Figure 2.

3.3 Knowledge grounding

A critical task in building intelligent conversa-
tional agents is grounding their responses in an
external knowledge base. This allows agents to

124

provide informed responses with context about the
real world, without needing comprehensive paired
conversational data to embody that information.
We provide an extension of stochastic answer net-
works (Liu et al., 2018), a machine reading com-
prehension system, that acts as a full knowledge-
grounded conversation model (Qin et al., 2019),
hybridizing machine reading comprehension with
a response generation model. At a high level, this
model consists of two deep biLSTMs in paral-
lel that encode conversational context and knowl-
edge, respectively. The information from these en-
coders is then combined using cross-attention, the
output of which forms the basis of a memory cell
that powers a response generator.

4 Decoding features

ICECAPS provides a custom beam search decoder
that extends TensorFlow’s native beam search de-
coder by introducing several useful features.

4.1 Diverse generation with MMI re-ranking

Generative language systems are notorious for
generating bland, uninteresting samples. Al-
though generated hypotheses generally have high
scores on metrics used to approximate context and
relevance of generated texts (e.g. perplexity and
BLEU), these metrics fail to measure diversity, a
highly desirable trait for responses generated by
conversational systems.

To alleviate this, we provide an implementation
of the maximum mutual information (MMI) scor-
ing function (Li et al., 2016a). We extend and
modify the TensorFlow TrainingHelper and Ba-
sicDecoder classes for our implementation. MMI
employs a separately trained model that learns to
predict queries from given responses: the inverse
map of the conversational model. Using the MMI
model, for a given set of hypotheses, we calcu-
late the log-probability of a given query per hy-
pothesis: P (query|hypothesis). This approxi-
mates response diversity, as frequent and repet-
itive hypotheses would be associated with many
possible queries, thus generating a lower probabil-
ity for any specific query. This score is weighted
and used to re-rank hypotheses, pushing blander
responses below context-unique responses.

4.2 Token filtering

Models trained on real-world data may utter un-
desirable words or phrases. Users may want the

agent to avoid profanities or other offensive lan-
guage. Likewise, the system should avoid obvious
ungrammatical outputs, such as broken abbrevia-
tions or nonsensical punctuation marks.

ICECAPS supports several filters, including a
general censor-list and a start-token censor-list.
The general censor-list contains a list of tokens
to disable during response generation; probabili-
ties associated with these tokens are clamped to
zero. The start-token censor-list is similar, but
only masks the response’s first token. We also sup-
port infrequency filters; users may restrict the de-
coder from generating responses with rare words.

4.3 Modified beam search decoding
The standard beam-search implementation in Ten-
sorFlow works by iteratively generating tokens,
generating a constant number of hypotheses at the
end of the decoding phase. ICECAPS implements a
modified beam search decoder with a different cri-
terion for exploring complete hypotheses. Rather
than considering a completion of every hypothe-
sis, this decoder only considers a complete ver-
sion of a hypothesis if the END token is one of
the top k options for the next token. This version
of beam-search decoding may result more more or
less than k final hypotheses, depending on how of-
ten the decoder produced an END token.2 This
form of decoding can sometimes produce cleaner
hypotheses than the standard beam-search imple-
mentation, perhaps because END is only allowed
when the model score is high. This helps increase
the quality of generated sequences, as they tend to
have improved grammatical coherence, though the
number of returned outputs is often less than k.

4.4 Repetition penalty
The ICECAPS custom decoder also includes a rep-
etition penalty, used in the scoring function em-
ployed during the beam search phase. This penalty
helps avoid the well-known problem of decoders
generating repetitive responses and getting stuck
in loops. The repetition penalty is calculated as:

log

(
min

(
1,

uniq(s)

d(A× ‖s‖)e

))
(1)

for a given response s, where A is the repetition
allowance and uniq(s) is the number of unique
tokens in s.

2If no responses are generated by the last time-step, we
return all hypotheses generated in the last time-step, ensuring
that the decoder always produces at least one response.

125

Figure 3: The five-phase pattern underlying ICECAPS
training configurations. Hyperparameters are extracted
into a dictionary from a file, which are used to initialize
the model architecture. Data files initialize DataSource
objects, which feed the training loop. The user can en-
gage with the system once trained.

5 Building systems

ICECAPS is designed to make building complex
dialogue systems intuitive for the end user.

5.1 Text data processing
TensorFlow estimators expect to read data from
TFRecord binary files for efficient processing. We
provide a script TEXT DATA PROCESSING.PY for
converting text data into TFRecords, equipped
with several useful preprocessing transformations.
Our script can sort data within local windows
so that batches fed during training have minimal
padding inefficiency. These batches can be shuf-
fled amongst each other to mitigate any biases in-
duced by sorting. We provide token preprocessing
through byte pair encoding (Sennrich et al., 2016),
which builds a token set at a level of abstraction
between characters and words. This often allows
for faster training and improved generalization.
Another feature focused on conversational scenar-
ios is fixed-length context extraction. Conversa-
tional data often contains large, potentially un-
wieldy multi-turn contexts; we can limit our data
samples to a desired context length. We also pro-
vide an option for annotating datasets with topic
grounding information, by analyzing the data for
unique tokens to use as topic markers.

5.2 Training configurations
ICECAPS training configurations follow a basic
five-phase pattern. We include example training
scripts that users may use as templates.

Loading hyperparameters. We supply hyper-
parameters to the model architecture via .PARAMS

files. These files follow a simple, readable format:
each line pairs the name of a hyperparameter with
its supplied value, separated by a colon. Every
ICECAPS estimator is equipped with a set of ex-
pected hyperparameters, and their associated de-
fault values when those hyperparameters are not
provided. Users can view these hyperparameters
through a static API call. In systems with multiple
modules, users can add prefixes to hyperparame-
ters to properly assign them to the right modules.

Building model architecture. Architectures are
built by composing modules, chaining them and
placing them in EstimatorGroups as appropriate.
They are initialized with the loaded dictionaries of
hyperparameters.

Connecting data sources. We now connect
TFRecord files to our architecture via an in-
put pipeline. We provide a high-level wrap-
per around TensorFlow’s native Dataset-based
pipelining. Users initialize DataSource objects
with TFRecord files and produce input pipelines
from those files. Our DataSource class also
provides methods for combining multiple input
pipelines from DataSource objects, either by ran-
domly interleaving them or by combining them in
parallel to feed multi-task configurations.

Training the system. The system is now ready
to train: a single call to the training function with
the desired number of batches or epochs is suf-
ficient. However, users can construct more elab-
orate training schedules, consisting of sequences
of training function calls with different arguments.
This is particularly useful in multi-task scenarios,
where we may want to train the system with dif-
ferent balances across tasks in different steps. For
instance, one could first pre-train a single task,
then shift to multi-task learning evenly distributed
across two tasks.

The user can now engage with the trained sys-
tem. Users can run their system on an evaluation
set, collecting appropriate metrics and decoded re-
sponses. They can also interact with the system
directly. ICECAPS provides a command-line inter-
active session for users to have conversations with
their agents and directly observe their responses.
Response generation is powered by the custom de-
coder described in Section 4. While the command-
line session is useful for quick testing, for conve-

126

nience we also provide a simple GUI-based inter-
active session in which users can load their trained
models. The GUI makes it easy to view multiple
turns of conversation history alongside a top-k list
of generated responses with associated scores.

6 Pre-trained models

ICECAPS comes packaged with pre-trained sys-
tems for conversation modeling based on the fea-
tures described in Section 3. Users can either em-
ploy these systems to load conversational agents
for immediate use or to bootstrap the training pro-
cess for new configurations.

The largest-scale pre-trained system we cur-
rently offer is a deep Transformer-based architec-
ture trained on real-world conversational data. Our
model employs 12 layers with layer normalization,
a modified initialization scheme that accounts for
model depth, and byte pair encodings (Sennrich
et al., 2016) for the tokenizer. We trained this
system on a large corpus of conversations scraped
from Reddit. The data was extracted from Red-
dit comment chains spanning from 2005 till 2017.
The dataset consists of hundreds of millions of
paired instances of contexts and responses with
billions of tokens. Our model uses a vocabulary
size of 50,257, and was trained on eight Nvidia
V100 machines with NVLink.

We provide a set of trained personality embed-
dings for implementing diverse personality chat-
bots. These embeddings were learned through
multi-task learning between paired conversation
data and unpaired utterances categorized by
speaker. These embeddings define a personality
space; users may use the provided embeddings for
their applications or train new personality embed-
dings within this space.

We also provide a demo of a conversational
agent that combines a number of key features dis-
cussed in this paper. This agent is powered by an
LSTM-based seq2seq model built on the Space-
Fusion paradigm. Our agent demonstrates the
improvements to conversational response genera-
tion made possible by a combination of multi-task
learning and our improved beam search decoder.

7 Related toolkits

Several NLP-oriented toolkits have been open-
sourced. Tensor2Tensor (Vaswani et al., 2018),
maintained by Google Brain, extends TensorFlow
with an array of state-of-the-art baseline deep

learning models. It places a strong emphasis on
sequence modeling baselines. AllenNLP (Gard-
ner et al., 2018) is a PyTorch library developed by
AI2 for natural language processing tasks, notable
for an open-source release of ELMo (Peters et al.,
2018). OpenNMT (Klein et al., 2017) is a pop-
ular neural machine translation toolkit originally
developed for LuaTorch that now has implemen-
tations in PyTorch and TensorFlow. MarianNMT
(Junczys-Dowmunt et al., 2018) is another frame-
work for neural machine translation developed be-
tween the Adam Mickiewicz University in Pozna
and the University of Edinburgh. It is built in C++
and designed for fast training in multi-GPU sys-
tems. Texar (Hu et al., 2018) is a text generation
toolkit affiliated with Carnegie Mellon University,
featuring a similar emphasis on modularity to ICE-
CAPS. It includes reinforcement learning capabil-
ities alongside its sequence modelling tools.

A few other toolkits have a dialog emphasis.
DeepPavlov (Burtsev et al., 2018) is a deep learn-
ing library with a focus on task-oriented dialogue.
It provides demos and pre-trained models for tasks
such as question answering and sentiment classi-
fication. Affiliated with DeepPavlov is the Con-
vAI2 challenge (Dinan et al., 2019), a general
dialogue competition featuring a synthetic per-
sonalized conversational dataset. ParlAI (Miller
et al., 2017) is a library centered around task-
oriented dialogue, compiling a number of popular
datasets for NLP tasks as well as pre-trained mod-
els for knowledge-grounded dialog agents trained
on crowd-sourced data.

8 Conclusion

Microsoft ICECAPS is a new open-source NLP li-
brary focused on building intelligent conversation
agents that can communicate naturally with hu-
mans. Our release contributes key conversation
modeling features to the open-source community,
including personalization, knowledge grounding,
diverse response modeling and generation, and
more generally a multi-task architecture for in-
ducing biases in conversational agents. Built for
modularity and ease of use, ICECAPS allows users
to extend our conversational technologies in novel
ways for their agents. We provide the community
with a number of pre-trained conversational sys-
tems trained on real-world data. Planned future
directions for ICECAPS include multi-modality
grounding and semantic parsing.

127

References
D. Bahdanau, K. Cho, and Y. Bengio. 2015. Neu-

ral machine translation by jointly learning to align
and translate. In 3rd International Conference on
Learning Representations, ICLR 2015, San Diego,
CA, USA, May 7-9, 2015, Conference Track Pro-
ceedings.

M. Burtsev, A. Seliverstov, R. Airapetyan,
M. Arkhipov, D. Baymurzina, N. Bushkov,
O. Gureenkova, T. Khakhulin, Y. Kuratov,
D. Kuznetsov, A. Litinsky, V. Logacheva, A. Lymar,
V. Malykh, M. Petrov, V. Polulyakh, L. Pugachev,
A. Sorokin, M. Vikhreva, and M. Zaynutdinov.
2018. DeepPavlov: Open-source library for dia-
logue systems. In Proceedings of the 56th Annual
Meeting of the Association for Computational
Linguistics-System Demonstrations.

E. Dinan, V. Logacheva, V. Malykh, A. Miller, K. Shus-
ter, J. Urbanek, D. Kiela, A. Szlam, I. Serban,
R. Lowe, S. Prabhumoye, A. W. Black, A. Rudnicky,
J. Williams, J. Pineau, M. Burtsev, and J. Weston.
2019. The second conversational intelligence chal-
lenge (convai2).

J. Gao, M. Galley, and L. Li. 2019a. Neural approaches
to conversational AI. Foundations and Trends R© in
Information Retrieval.

X. Gao, S. Lee, Y. Zhang, C. Brockett, M. Galley,
J. Gao, and B. Dolan. 2019b. Jointly optimizing di-
versity and relevance in neural response generation.
In NAACL-HLT 2019.

M. Gardner, J. Grus, M. Neumann, O. Tafjord,
P. Dasigi, N. F. Liu, M. Peters, M. Schmitz, and L. S.
Zettlemoyer. 2018. Allennlp: A deep semantic nat-
ural language processing platform. In Proceedings
of Workshop for NLP Open Source Software.

Z. Hu, H. Shi, Z. Yang, B. Tan, T. Zhao, J. He,
W. Wang, L. Qin, D. Wang, et al. 2018. Texar: A
modularized, versatile, and extensible toolkit for text
generation. arXiv preprint arXiv:1809.00794.

M. Junczys-Dowmunt, R. Grundkiewicz, T. Dwojak,
H. Hoang, K. Heafield, T. Neckermann, F. Seide,
U. Germann, A. Fikri Aji, N. Bogoychev, A. F. T.
Martins, and A. Birch. 2018. Marian: Fast neural
machine translation in C++. In Proceedings of ACL
2018 System Demonstrations.

G. Klein, Y. Kim, Y. Deng, J. Senellart, and A. M.
Rush. 2017. OpenNMT: Open-source toolkit for
neural machine translation. In Proc. ACL.

J. Li, M. Galley, C. Brockett, J. Gao, and B. Dolan.
2016a. A diversity-promoting objective function for
neural conversation models. In Proceedings of the
2016 Conference of NAACL-HLT.

J. Li, M. Galley, C. Brockett, G. P. Spithourakis, J. Gao,
and B. Dolan. 2016b. A persona-based neural con-
versation model. In Proceedings of the 54th Annual
Meeting of ACL.

X. Liu, P. He, W. Chen, and J. Gao. 2019. Multi-task
deep neural networks for natural language under-
standing. arXiv preprint arXiv:1901.11504.

X. Liu, Y. Shen, K. Duh, and J. Gao. 2018. Stochastic
answer networks for machine reading comprehen-
sion. In Proceedings of the 56th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers).

Y. Luan, C. Brockett, B. Dolan, J. Gao, and M. Gal-
ley. 2017. Multi-task learning for speaker-role adap-
tation in neural conversation models. In Proceed-
ings of the The 8th International Joint Conference
on Natural Language Processing.

T. Luong, H. Pham, and C. D. Manning. 2015. Effec-
tive approaches to attention-based neural machine
translation. In Proceedings of the 2015 Conference
on Empirical Methods in Natural Language Pro-
cessing, EMNLP 2015, Lisbon, Portugal, September
17-21, 2015.

A. H. Miller, W. Feng, A. Fisch, J. Lu, D. Batra, A. Bor-
des, D. Parikh, and J. Weston. 2017. ParlAI: A di-
alog research software platform. In Proceedings of
the 2017 EMNLP System Demonstration.

M. E. Peters, M. Neumann, M. Iyyer, M. Gardner,
C. Clark, K. Lee, and L. Zettlemoyer. 2018. Deep
contextualized word representations. In Proc. of
NAACL.

L. Qin, M. Galley, C. Brockett, X. Liu, X. Gao,
B. Dolan, Y. Choi, and J. Gao. 2019. Contentful
neural conversation with on-demand machine read-
ing. In ACL 2019.

R. Sennrich, B. Haddow, and A. Birch. 2016. Neu-
ral machine translation of rare words with subword
units. In Proceedings of the 54th Annual Meeting of
ACL (Volume 1: Long Papers).

I. Sutskever, O. Vinyals, and Q. V. Le. 2014. Sequence
to sequence learning with neural networks. In Ad-
vances in Neural Information Processing Systems
27. Curran Associates, Inc.

A. Vaswani, S. Bengio, E. Brevdo, F. Chollet, A. N.
Gomez, S. Gouws, L. Jones, Ł. Kaiser, N. Kalch-
brenner, N. Parmar, R. Sepassi, N. Shazeer, and
J. Uszkoreit. 2018. Tensor2tensor for neural ma-
chine translation. CoRR, abs/1803.07416.

A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit,
L. Jones, A. N. Gomez, Ł. Kaiser, and I. Polosukhin.
2017. Attention is all you need. In Advances in
NIPS 30. Curran Associates, Inc.

128

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 129–134
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

PERSPECTROSCOPE: A Window to the World of Diverse Perspectives

Sihao Chen, Daniel Khashabi, Chris Callison-Burch, Dan Roth
University of Pennsylvania

{sihaoc,danielkh,ccb,danroth}@cis.upenn.edu

Abstract

This work presents PERSPECTROSCOPE, a
web-based system which lets users query a
discussion-worthy natural language claim, and
extract and visualize various perspectives in
support or against the claim, along with evi-
dence supporting each perspective. The sys-
tem thus lets users explore various perspec-
tives that could touch upon aspects of the is-
sue at hand. The system is built as a combi-
nation of retrieval engines and learned textual-
entailment-like classifiers built using a few re-
cent developments in natural language under-
standing. To make the system more adap-
tive, expand its coverage, and improve its deci-
sions over time, our platform employs various
mechanisms to get corrections from the users.

PERSPECTROSCOPE is available at github.
com/CogComp/perspectroscope.1

1 Introduction

One key consequence of the information revolu-
tion is a significant increase and a contamination
of our information supply. The practice of fact-
checking won’t suffice to eliminate the biases in
text data we observe, as the degree of factuality
alone does not determine whether biases exist in
the spectrum of opinions visible to us. To better
understand controversial issues, one needs to view
them from a diverse yet comprehensive set of per-
spectives.

Understanding most nontrivial claims requires
insights from various perspectives. Today, we
make use of search engines or recommendation
systems to retrieve information relevant to a claim,
but this process carries multiple forms of bias. In
particular, they are optimized relative to the claim
(query) presented, and the popularity of the rele-
vant documents returned, rather than with respect

1A brief demo of the system: https://www.
youtube.com/watch?v=MXBTR1Sp3Bs.

to the diversity of the perspectives presented in
them or whether they are supported by evidence.

While it might be impractical to show an ex-
haustive spectrum of views with respect to a claim,
cherry-picking a small but diverse set of perspec-
tives could be a tangible step towards addressing
the limitations of the current systems. Inherently
this objective requires the understanding of the re-
lations between each perspective and claim, as
well as the nuance in semantic meaning between
perspectives under the context of the claim.

This work presents a demo for the task of
substantiated perspective discovery (Chen et al.,
2019). Our system receives a claim and it
is expected to present a diverse set of well-
corroborated perspectives that take a stance with
respect to the claim. Each perspective should be
substantiated by evidence paragraphs which sum-
marize pertinent results and facts.

A typical output of the system is shown in Fig-
ure 3. The input to the system is a claim: So-
cial media (like facebook or twitter) have had very
positive effects in our life style. There is no sin-
gle, best way to respond to the claim, but rather
there are many valid responses that form a spec-
trum of perspectives, each with a stance relative to
this claim and, ideally, with evidence supporting
it.

To support the input claim, one could refer to
the observation that interactions between individ-
uals has become easier through the social media.
Or one can refer to the success they have brought
to those in need of reaching out to masses (e.g.,
business individuals). On the contrary, one could
oppose the given claim by pointing out its nega-
tive impacts on productivity and the increase in
cyber-bullying. Each of these arguments, which
we refer to as a perspective throughout the paper,
is an opinion, possibly conditional, in support of a
given claim or against it. A perspective thus con-

129

Figure 1: Given a claim as the input, our system is expected to discover various perspectives and their stance with
respect to the claim. Each claim also comes with the relevant evidence that substantiates the given perspective.

stitutes a particular attitude towards a given claim.
Additionally, each of these perspective has to be
well-supported by evidence found in paragraphs
that summarize findings and substantiations of dif-
ferent sources.

Overall, PERSPECTROSCOPE provides an inter-
face to help individuals by providing a small but
diverse set of perspectives. Our system is built
upon a few recent developments in the field. In ad-
dition, our system is designed to be able to utilize
feedback from the users of the system to improve
its predictions. The rest of this paper is dedicated
to delineating the details of PERSPECTROSCOPE.

2 PERSPECTROSCOPE

2.1 Core Design Structure

A high-level picture of the work is shown in Fig-
ure 2. Our system uses a mix of retrieval engines
and learned classifiers to ensure both quality and
efficiency. The retrieval systems extract candi-
dates (perspectives or evidence paragraphs) which
are later evaluated by carefully designed classi-
fiers.

2.2 Learned Classifiers

In building PERSPECTROSCOPE we borrow the
definitions and dataset provided by Chen et al.
(2019). The provided dataset, PERSPECTRUM, is
a crowdsourced collection of claims, perspectives
and evidence extracted from online debate web-
sites as well as other web content. We follow the
same steps as Chen et al. (2019) to create classi-
fiers for the following tasks:

C1: Relevant Perspective Extraction. This
classifier is expected to return the collection of
perspectives with respect to a given claim.

C2: Perspective Stance Classification. Given
a claim, this classifier is expected to score a col-
lection of perspectives with the degree to which it
supports or opposes the given claim.

C3: Perspective Equivalence. This classifier is
expected to decide whether two given perspectives
are equivalent or not, in the context a given claim.

C4: Extraction of Supporting Evidence. This
classifier decides whether a given document lends
enough evidence for a given perspective to a claim.

In training the classifiers for each of the tasks,

130

Figure 2: Overview of the system structure: given a query to the system, it extracts candidates from its internal
knowledge

we use BERT (Devlin et al., 2019) and we follow
the same steps described in Chen et al. (2019).

2.3 Candidate Retrieval

We use a retrieval (IR) system2 to generate per-
spective and evidence candidates for the learned
classifiers. We take 10k perspective sentences and
8k evidence paragraphs from Chen et al. (2019)
and index them respectively in two independent
retrieval engines. For each input claim, we query
the claim and retrieve top-30 perspective candi-
dates from the retrieval engine. Upon user request,
we query the claim concatenated with a perspec-
tive candidate to retrieve top-20 evidence candi-
dates from the pool of 8k evidence paragraphs.

To support a broader range of topics not covered
by PERSPECTRUM, we use Wikipedia to retrieve
extra candidate perspectives/evidence. Given an
input claim from the user, we issue a query to the
Google Custom Search API 3 and retrieve top 10
relevant Wikipedia pages. We clean up each page
using newspaper3k4 and use the first sentence of
the paragraphs within each document as candidate
perspectives, and the rest sentences in each para-
graph as candidate evidence.

2.4 Minimal Perspective Discovery

The overall decision making is outlined in Algo-
rithm 1. As mentioned earlier, the whole process
is a pipeline starting with candidate generation via
retrieval engines, and followed by scoring with the
learned classifiers. The final step is to select a min-

2www.elastic.co
3https://cse.google.com/cse/
4github.com/codelucas/newspaper

imal set of perspectives with the DBSCAN clus-
tering algorithm (Ester et al., 1996).

Algorithm 1: Minimal Perspective Extraction
Input: claim c.
Output: perspectives, their stances & evidence.
P̂ ←IR(c) // candidate perspectives
P = {}
foreach p ∈ P̂ do

// perspective relevance
if C1(c, p) > T1 and abs(C2(c, p)) > T2 then

e← C2(c, p)

Ê ←IR(c, p) // candidate evidence
E = {}
foreach e ∈ Ê do

// evidence verification
if C4(c, p, e) > T4 then

E ← E ∪ {e}.
end

end
P ← P ∪ {(p, s, E)}.

end
end
P ← /* minimal perspectives after

clustering with DBSCAN on the
equivalence scores between any
perspective pairs via C3. */

The parameters of this algorithm (e.g., the
thresholds T1, T2, ...) are tuned manually on a
held-out set.

2.5 Utilizing user feedback
User feedback/logs are valuable sources of infor-
mation for many successful applications. In this
work, we collect two forms of feedback signals
from users. We record all queries of claims issued
to the system. In addition, the users have the op-
tion to tell us whether a given perspective is a good
or bad one (based on the quality of its relevance,
stance or evidence prediction). It is important to

131

Figure 3: A demonstration of the system features. The grey and blue/red color bars (under each perspective)
show the relevance and stance predictions, respectively. Upon user request, the system provides a paragraph of
supporting evidence for each perspective. Users have the option to provide feedback to each perspective via the
thumbs-up or thumbs-down button.

note that we are not collecting any personal infor-
mation in the process.

The user annotations can provide extra supervi-
sion signals for task C1-C4 with a broader topical
coverage. These annotations can in turn be used in
the classifier training and iteratively improve our
prediction results with increasing number of users.

3 Related Work

There are few related tools to this work.
args.me is a platform that accepts natural lan-
guage queries and returns links to the pages
that contain relevant topics (Wachsmuth et al.,
2017), which are split into supporting & oppos-
ing categories (screenshot in Figure 4). Similarly,
ArgumentText (Stab et al., 2018a) takes a topic
as input and returns pro/con arguments retrieved
from the web. This work takes the effort one
step further by employing language understanding
techniques.

There is a rich line of work on using Wikipedia
as source for argument mining or to assess the ve-
racity of a claim (Thorne et al., 2018). For in-
stance, FAKTA is a system that extracts relevant
documents from Wikipedia, among other sources,
to predict the factuality of an input claim (Nadeem
et al., 2019).

Beyond published works, there are websites
that employ similar technologies. For instance,
bing.com has recently started a service that pro-
vides two different responses to a given argument
(screenshot in Figure 4). Since there is no pub-
lished work on this system, it is not clear what the
underlying mechanism is.

There exist a number of online debate platforms
that provide similar functionalities as our sys-
tem: kialo.com, procon.org, idebate.org ,
among others. Such websites usually provide a
wide range of debate topics and various argu-
ments in response to each topic. These resources
have been proven useful in a line of works in ar-
gumentation (Hua and Wang, 2017; Stab et al.,
2018b; Wachsmuth et al., 2018), among many oth-
ers. While they provide rich sources of informa-
tion, their content is fairly limited in terms of ei-
ther their topical coverage or data availability for
academic research purposes.

There also exist a few other works in this di-
rection that do not accompany a publicly available
tool or demo. For instance, Hasan and Ng (2014);
Levy et al. (2018) attempt to identify relevant ar-
guments within web text in the context of a given
topic.

132

Figure 4: Related work: args.me an argument retrieval engine using arguments extracted from debate websites;
bing.com search engine showing contrasting views on a debate topic.

133

4 Conclusion and Future Work

We have presented PERSPECTROSCOPE, a pow-
erful interface for exploring different perspec-
tives to discussion-worthy claims. The system is
built with a combination of retrieval engines and
learned classifiers to create a good balance be-
tween speed and quality. Our system is designed
with the mindset of being able to get feedback
from users of the system.

While this work offers a good step towards
a higher quality and flexible interface, there are
many issues and limitations that are not addressed
here and are opportunities for future work. For
instance, the system provided here does not pro-
vide any guarantees in terms of the exhaustiveness
of the perspectives in the world, or levels of ex-
pertise and trustworthiness of the identified evi-
dence. Moreover, any classifier trained on some
annotated data (such as what we used here) could
potentially contain hidden biases that might not be
easy to see. We hope that some of these challenges
and limitations will be addressed in future work.

Acknowledgments

This work was supported in part by a gift from
Google and by Contract HR0011-15-2-0025 with
the US Defense Advanced Research Projects
Agency (DARPA). The views expressed are those
of the authors and do not reflect the official policy
or position of the Department of Defense or the
U.S. Government.

References
S. Chen, D. Khashabi, W. Yin, C. Callison-Burch, and

D. Roth. 2019. Seeing things from a different an-
gle: Discovering diverse perspectives about claims.
In Proceedings of the 2019 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
Volume 1, pages 542–557.

J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova.
2019. Bert: Pre-training of deep bidirectional trans-
formers for language understanding. In Proceed-
ings of the 2019 Conference of the North American
Chapter of the Association for Computational Lin-
guistics: Human Language Technologies, Volume 1,
pages 4171–4186.

M. Ester, H.-P. Kriegel, J. Sander, X. Xu, et al. 1996. A
density-based algorithm for discovering clusters in
large spatial databases with noise. In Proceedings of
1996 Conference on Knowledge Discovery & Data
Mining, pages 226–231.

K. S. Hasan and V. Ng. 2014. Why are you taking this
stance? identifying and classifying reasons in ide-
ological debates. In Proceedings of the 2014 Con-
ference on Empirical Methods in Natural Language
Processing, pages 751–762.

X. Hua and L. Wang. 2017. Understanding and De-
tecting Supporting Arguments of Diverse Types. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics, Volume 2,
pages 203–208.

R. Levy, B. Bogin, S. Gretz, R. Aharonov, and
N. Slonim. 2018. Towards an argumentative content
search engine using weak supervision. In Proceed-
ings of the 27th International Conference on Com-
putational Linguistics, pages 2066–2081.

M. Nadeem, W. Fang, B. Xu, M. Mohtarami, and
J. Glass. 2019. Fakta: An automatic end-to-end fact
checking system. In Proceedings of the 2019 Con-
ference of the North American Chapter of the Asso-
ciation for Computational Linguistics (Demonstra-
tions), pages 78–83.

C. Stab, J. Daxenberger, C. Stahlhut, T. Miller,
B. Schiller, C. Tauchmann, S. Eger, and I. Gurevych.
2018a. Argumentext: Searching for arguments in
heterogeneous sources. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 21–25.

C. Stab, T. Miller, B. Schiller, P. Rai, and I. Gurevych.
2018b. Cross-topic argument mining from hetero-
geneous sources. In Proceedings of the 2018 Con-
ference on Empirical Methods in Natural Language
Processing, pages 3664–3674.

James Thorne, Andreas Vlachos, Christos
Christodoulopoulos, and Arpit Mittal. 2018.
FEVER: a Large-scale Dataset for Fact Extraction
and VERification. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long Papers),
volume 1, pages 809–819.

H. Wachsmuth, M. Potthast, K. Al Khatib, Y. Ajjour,
J. Puschmann, J. Qu, J. Dorsch, V. Morari, J. Beven-
dorff, and B. Stein. 2017. Building an argument
search engine for the web. In Workshop on Argu-
ment Mining.

H. Wachsmuth, S. Syed, and B. Stein. 2018. Re-
trieval of the best counterargument without prior
topic knowledge. In Proceedings of the 56th An-
nual Meeting of the Association for Computational
Linguistics, Volume 1, pages 241–251.

134

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 135–140
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

HEIDL: Learning Linguistic Expressions with Deep Learning
and Human-in-the-Loop

Yiwei Yang1, Eser Kandogan2, Yunyao Li2, Walter S. Lasecki1, Prithviraj Sen2

1Computer Science and Engineering, University of Michigan - Ann Arbor
2IBM Research - Almaden, San Jose, CA

{yanyiwei, wlasecki}@umich.edu, {eser, yunyaoli, senp}@us.ibm.com

Abstract

While the role of humans is increasingly rec-
ognized in machine learning community, rep-
resentation of and interaction with models in
current human-in-the-loop machine learning
(HITL-ML) approaches are too low-level and
far-removed from human’s conceptual models.
We demonstrate HEIDL, a prototype HITL-
ML system that exposes the machine-learned
model through high-level, explainable linguis-
tic expressions formed of predicates represent-
ing semantic structure of text. In HEIDL,
human’s role is elevated from simply eval-
uating model predictions to interpreting and
even updating the model logic directly by en-
abling interaction with rule predicates them-
selves. Raising the currency of interaction
to such semantic levels calls for new interac-
tion paradigms between humans and machines
that result in improved productivity for text
analytics model development process. More-
over, by involving humans in the process, the
human-machine co-created models generalize
better to unseen data as domain experts are
able to instill their expertise by extrapolating
from what has been learned by automated al-
gorithms from few labelled data.

1 Introduction

Machine learning (ML) is an inherently iterative
process where humans, ML experts, play a cen-
tral role. Experts decide which features to include,
hyperparameters to tune, metrics to evaluate, and
whether the desired level of quality has been at-
tained, failing which they iterate all over. Tradi-
tionally, to understand a predictive model one usu-
ally begins by examining the model’s predictions
with little understanding of the inner workings of
the learned, black-box model. More transparent
representations of predictive models, such as first-
order logic (a dialect with human-interpretable se-
mantics), allows understanding the inner work-

ings of the learned model, but traditional tech-
niques (Muggleton, 1996) to learning these are too
brittle for real-world data, as they fail to learn any-
thing unless there exists a logic program that can
perfectly separate the data according to its labels.
Deep learning has been used to successfully learn
rule-based predictive models (Cohen et al., 2017;
Yang et al., 2017; Evans and Grefenstette, 2018)
from data with noisy labels. Besides interpretabil-
ity and explainability, other advantages of learn-
ing a logical model include the promise of im-
proved generalization to unseen data due to the
strong inductive bias provided by the predicates
employed (Evans and Grefenstette, 2018).

Human-in-the-loop machine learning (HITL-
ML) approaches aim to provide humans with the
ability to interact with the model that goes be-
yond simply examining model predictions. Hu-
mans need to be able to interpret, explain, and rea-
son about models throughout the model develop-
ment cycle, especially in domains where labeled
training data is too limited to learn a model that
generalizes well to unseen data, we need to be able
to interpret and examine machine learning mod-
els. The above-mentioned works that utilize deep
learning to learn a logical theory raise new oppor-
tunities and challenges since their precise syntax is
more readily interpretable by humans that allows
for new ways for humans to interact with machine
learned models at levels that go far beyond just in-
specting predictions.

In this demo, we describe a HITL-ML ap-
proach for text analytics that exposes the machine-
learned model through abstract, semantic, explain-
able rules, and allows humans and domain experts
to examine, interact, and even modify the model
logic directly. We present HEIDL (Human-in-the-
loop linguistic Expressions wIth Deep Learning),
a system designed to help domain experts ac-
cess the linguistic expressions or rules learned

135

with deep learning for text analytics, inspect them,
show their inner workings by exposing how they
operate on examples, and even breaking them
apart into their constituent predicates and adding
new ones to create new expressions in the process.
HEIDL enables domain experts to instill their ex-
pertise into a machine-learned model thus result-
ing in a co-created one that has superior general-
ization performance than what is achievable by hu-
mans or machine learning optimization algorithms
alone while incurring a fraction of human labor
thus increasing the productivity of the overall text
analytics model development process.

To evaluate HEIDL’s efficacy, we conducted
a user study where IBM’s data scientists used
HEIDL to improve linguistic expressions for clas-
sifying sentences extracted from real-world, le-
gal contracts. Since contracts may be proprietary,
the initial learned linguistic expressions fed as in-
put to HEIDL were trained on IBM procurement
contracts while the test set consisted of non-IBM
procurement contract sentences. Within 30 min-
utes, each data scientist produced linguistic ex-
pressions with training set precision, recall up-
wards of 75% representing a significant reduction
in model development time since trawling through
> 28, 000 training sentences to construct linguis-
tic expressions from scratch would require multi-
ple weeks of effort. In terms of prediction quality,
while a black-box long short-term memory net-
work trained by replacing tokens with GloVe em-
beddings (Pennington et al., 2014) produces 44%
F1 on held out non-IBM procurement contract
sentences, the linguistic expressions modified by
data scientists via HEIDL produces 55% F1 trans-
lating to a 25% improvement in out-of-domain
generalization performance. We emphasize that
HEIDL is not specific to the task described here
and may be useful for learning linguistic expres-
sions for any classification task. Moreover, the
main ideas embodied in HEIDL may be helpful
for building tools to learn explainable models for
applications beyond classification.

2 Related Work

Human computation integrates human effort into
computational processes to complete tasks that
cannot yet be done by computer. Prior work has
focused on using crowdsourcing to facilitate and
scale human computation. For instance, crowd-
powered systems have been developed to sup-

Figure 1: Overview of our approach

port continuous conversations (Lasecki et al.), edit
rules governing UI behaviors described in natu-
ral language (Lee et al.), support natural language
editing of papers (Bernstein et al.), and create
novel stories (Kim et al.). There is also work on
evaluating task design tradeoffs on crowdsourced
text annotations(Snow et al.) and (Jiang et al.).
Our approach draws on human computation by
leveraging domain experts to create a more gen-
eralizable model even when data is scarce.

Prior work in HITL-ML has focused on elicit-
ing knowledge from people to create more power-
ful models. For example, research has introduced
ways to solicit examples from people for labels to
strengthen the training data, e.g., through active
learning (Settles and Craven) queries that select
the most informative item from an oracle to re-
duce labeling effort. In SEER (Hanafi et al., 2017),
people select few examples for the system to learn
information extraction rules. In AnchorViz (Chen
et al.), people explore semantically related exam-
ples to find feature blinded items. Other work
has focused on interactive clustering where people
guide the model by changing the clusters (Smith
et al.) and providing keywords (Sherkat et al.),
and on eliciting feedback from experts to select
relevant features (Micallef et al.). We also elicit
user input to improve a model, but our approach
presents understandable output, allowing users to
directly modify it by selecting trusted rules.

3 Approach

Fig.1 shows an overview of our approach where
we begin by learning linguistic expressions from
labeled data using deep learning followed by us-
ing our system to explain said expressions to do-
main experts so they can verify and modify these.
We briefly explain how to derive predicates from
semantic linguistic structures, then describe how
deep learning is used to construct linguistic ex-
pressions before describing our system.

3.1 Semantic Linguistic Structure (SLS)
Each SLS refers to the shallow semantic represen-
tations corresponding to each sentence and gen-
erated automatically with natural language pro-

136

Figure 2: UI allows users (1) to get an overview of linguistic expressions (2) filter by precision, recall, and F1, (3)
rank, (4,5) filter by predicates, (6) remove expressions by predicate, (7) examine metrics and (8) examples for each
expression, (9) monitor overall progress as users add and remove expressions to their collection, and (10) provide
a ‘playground’ allowing users to examine and modify expressions.

cessing techniques such as semantic role labeling
and syntactic parsing. It captures “who is doing
what to whom, when, where and how” described
in a sentence as depicted by the following example
(simplified for readability).

John︸ ︷︷ ︸
agent

bought︸ ︷︷ ︸
action

daisy︸ ︷︷ ︸
theme

for Mary︸ ︷︷ ︸
beneficiary

yesterday︸ ︷︷ ︸
context:temporal

.

SLSs may be used as predicates to form linguistic
expressions. For sentence classification, we ex-
tract SLSs using SystemT’s (Krishnamurthy et al.,
2009) semantic role labeler including but not lim-
ited to actions/verbs and various arguments of the
action such as agent (doer of the action), ob-
ject of the action and manner in which it is per-
formed. From these, we construct: 1) predicates
that test properties of the action such as tense, as-
pect, mood, modalclass, voice and polarity, and 2)
predicates generated by looking up the extracted
verb (bases), agents, objects etc. in dictionaries.
For the user study task, we have access to a multi-
tude of hand-crafted dictionaries that contain sur-
face forms for verb (bases), objects, themes etc.
We emphasize that HEIDL is not specific to a par-
ticular set of predicates and can work with any set
of predicates that allow us to learn initial, high
quality linguistic expressions. Just like many other
text analytics applications, and particularly for the
domain of legal contracts, dictionary match predi-
cates offer one way to achieve this.

3.2 Deep Learning Linguistic Expressions
As mentioned in Section 1, recent works use
neural networks to learn a logical theory. Two
powerful and extremely general formulations that
can learn from noisy labeled data virtually any
kind of logic program, including linguistic ex-
pressions for classification, are TensorLog (Co-
hen et al., 2017) and ∂ILP (Evans and Grefen-
stette, 2018). Describing the accompanying learn-
ing algorithms is out of scope for this demo pro-
posal but we describe the weighted rules model
representation to ground our system and better
describe the input to HEIDL. Given predicates
P = {pred1, . . . predm} and binary class labeled
data D = {(x1, y1), . . . (xn, yn)} such that each
label yi ∈ {0, 1} and xi denotes a sentence, the
weighted rules model associates a non-negative
weight with each rule or linguistic expression1:

w1 : `(x)← pred11(x) ∧ . . . pred1k1(x)
...

wN : `(x)← predN1 (x) ∧ . . . predNkN (x)

Intuitively, if sentence x satisfies a linguistic ex-
pression then x inherits the corresponding weight;
the higher the weight the greater the chance of
the sentence being assigned the label, i.e. `(x)

1Weighted rules are also popular in statistical relational
learning (e.g., Markov logic networks (Richardson and
Domingos, 2006)) and for learning closed paths in knowledge
graphs (Yang et al., 2017), the latter being based on Tensor-
Log (Cohen et al., 2017).

137

is true. While learning a model based on logic
provides strong inductive bias that can help reg-
ularize the learned model and better generalize to
unseen data, due to limited labeled data in many
real-world applications (e.g., enterprise settings
where privacy and proprietary ownership restricts
the size of the training set) the risk of overfitting
is not completely eliminated. Moreover, the pres-
ence of weights can hamper explainability since
humans are much better at interpreting logical ex-
pressions. Our goal is to take a weighted rules
model such as described above and modify it to
a fully explainable, more generalizable model that
consists of a set of linguistic expressions follow-
ing simple yet powerful disjunctive semantics, in
other words, sentence x is assigned the label if any
of the expressions hold true for it, which is where
HEIDL comes into the picture.

3.3 User Experience

Unlike classical HITL-ML, our approach allows
people to interact with machine-learned linguistic
expressions and facilitate co-operative model de-
velopment. There are two primary challenges: (1)
present users with a quick overview of learned ex-
pressions; enable them to organize, order, and nav-
igate expressions effectively, (2) help understand
each expression’s semantics and quality through
examples and statistics; deepen understanding by
providing a ‘playground’ to verify and modify ex-
pressions while examining impact (see Fig.2). Be-
low we describe some of the user experience fea-
tures in more detail to address these challenges.

3.3.1 Overview, Rank, Filter
Initially, the system presents all machine-learned
linguistic expressions along with their precision,
recall, and F1 measures (relevant for classification
tasks). Users can rank and filter to organize the ex-
pressions to process them. Ranking allows users to
quickly see the expressions with high performance
on training data and is especially useful when the
list of expressions is large. Filtering allows users
to narrow down to a small set of similar expres-
sions without being overwhelmed. Users can fil-
ter expressions by setting a minimum threshold
on multiple performance measures. Users can
also filter expressions by their constituent predi-
cates. Filtering by predicate is useful when the
users reckon an expression potentially generaliz-
able, and would like to see similar expressions that
share common predicates.

3.3.2 Linguistic Expression Selection
The end goal of the system is to create a col-
lection of trusted linguistic expressions. To do
so, after evaluating an expression, users would
add it to the ‘approved’ or ‘disapproved’ collec-
tion. When an expression is approved, the com-
bined performance of all approved expressions is
recomputed. This helps users to keep track of
their overall progress. To help users assess expres-
sions, HEIDL provides a random sample of up to
4 true positive and 4 false positive matching ex-
ample sentences. Each example is decorated with
annotations highlighting the constituent predicates
that form part of the expression when the cursor
hovers on it (Fig. 2).

While HEIDL shows the performance of each
linguistic expression individually, they may be
misleading as the sentences retrieved by the ex-
pression may be already covered by other expres-
sions that have already been approved. HEIDL
provides a ‘look ahead’ feature to see the potential
‘delta’ effect of adding the expression to the ap-
proved collection so users can see if approving the
expression would be beneficial, in which case they
can take a closer look by reading its associated ex-
amples, or examine it in ‘Playground’ mode.

3.3.3 Playground
HEIDL provides a Playground mode that allows
users to inspect and modify linguistic expressions
by adding or dropping predicates, and examine the
effects. While playing with expressions, users can
also examine the ‘delta’ examples. If a predicate is
dropped, then the expression becomes more gen-
eral, thus retrieving more sentences than it pre-
viously did. Conversely, if a predicate is added
fewer sentences are retrieved and HEIDL shows
examples of the difference. This is beneficial be-
cause it allows users to see the effect of individual
predicates. Adding new predicates is especially
useful if experts have a sense for which predicates
are potentially good. Performance measures and
examples are updated accordingly, helping users
decide whether or not to keep the modification.

4 Salient Results from a User Study

To evaluate HEIDL’s efficacy, we conducted a user
study among IBM data scientists with NLP ex-
pertise and knowledge of legal contracts. We re-
cruited 4 data scientists – a relatively large number
given most teams in industry include only 1-2 data

138

scientists. The task was to label sentences with
Communication which implies some form of com-
munication between the two parties involved in the
contract. The training data consists of 28, 174 sen-
tences extracted from 149 IBM procurement con-
tracts and the held out, test data consists of 1259
sentences extracted from 11 non-IBM procure-
ment contracts. The initial set of 188 weighted
linguistic expressions learned using deep learning
performed at 67% F1 (the harmonic mean of pre-
cision and recall) on the test set. Note that, as
mentioned in Section 3.2, weights can lead to lack
of explainability. Thus the data scientist’s task is
to use HEIDL to generate from this initial set of
linguistic expressions, a smaller set expressed in
pure first-order logic that achieves maximal per-
formance on the out-of-domain test set. For each
data scientist, we initialize HEIDL with the initial
linguistic expressions, the training set sentences,
and the corresponding predicates and dictionaries.
Our baseline is a well established sentence clas-
sification neural network, based on bi-directional
long short-term memory (LSTM). More precisely,
the LSTM replaces the tokens in the input sentence
with their corresponding 300-dimensional GloVe
embedding, computes an intermediate hidden state
which are then max-pooled, fed into a fully con-
nected layer and ReLU activation before passing
it through sigmoid activation to get a probability
of predicting the label. To improve training of the
LSTM, we employed a variety of dropout regular-
izations: variational dropout after the embedding
lookup layer, weight dropout in the LSTM layer,
and dropout in the fully connected layer.

Each user took roughly 30 minutes to build a
model that performed to their satisfaction on the
training set (recall that, data scientists did not have
access to the held out test set) which is far less
effort than what would be required if writing lin-
guistic expressions from scratch (by our estimates,
person-weeks to cover the close 30, 000 sentences
in the training set). Moreover, users selected fewer
expressions compared to deep learning’s weighted
rules (5-8 vs. 188) indicating that HEIDL helps
learn parsimonious models thus aiding explain-
ability. Most importantly, HEIDL improves gen-
eralization. We did a post-hoc analysis, measur-
ing F1 for all combinations of sets of rules learned
by the 4 participants. We report the averages and
standard deviations respectively for teams sizes:
1: .32(SD=.17), 2: .46(SD=.1), 3: .52(SD=.06),

and 4: .55(SD=0), showing that F1 increases with
team size. On average, teams of 3 produced a
F1 of .52 on the test set, as compared to .44 pro-
duced by the LSTM, which lacks explainability.
We can potentially create a model with less hu-
man effort if high expertise exists (i.e., one of our
participants subsumed the others in all combina-
tions), if we can determine expertise beforehand.
We also chose the top-K best rules from the initial
set of linguistic expressions (where K was deter-
mined by optimizing over the training set) which
produced .41 on the test set. These results indi-
cate that using HEIDL, data scientists can instill
their domain expertise into learned linguistic ex-
pressions and achieve superior out-of-domain gen-
eralization than using supervised learning alone
while incurring far less human effort than writing
rules from scratch.

5 Demo Overview

Besides Communication, other useful labels for la-
beling sentences in legal contracts include Term &
Termination (sentences that state contract termi-
nation clauses) and Payment Terms (sentences that
mention payments). The demo will provide an op-
portunity for attendees to use HEIDL to solve such
classification tasks by developing binary classi-
fiers in the form of linguistic expressions. Atten-
dees will be able to access the 28, 000 sentences
extracted from IBM procurement contracts and ex-
plore the initial 188 linguistic expressions learned
using deep learning formed out of 183 predicates
along with their associated dictionaries to get a
feel for what it takes for a data scientist to develop
linguistic expressions for such a challenging real-
world domain. In our experience, the first good
linguistic expressions usually takes a few seconds
of exploration to identify using HEIDL’s ranking
and filtering features. For example, consider the
line: Notices may be transmitted electronically

Clearly, this sentence is referring to exchang-
ing notices between the two parties involved in
the contract and hence communication. Such sen-
tences can be labeled with Communication via
dictionary matching predicates where the dictio-
nary checks for relevant verb (bases) such as such
as ‘notify’ and ‘transmit’. More complex lin-
guistic expressions may require combining mul-
tiple predicates and entering ‘Playground’ mode
or understanding how expressions work through
examples shown by HEIDL. The accompanying

139

video (https://youtu.be/kicfGDMKu-w)
shows HEIDL in action.

6 Conclusion

Our taxonomy contains many more labels rele-
vant to the contracts domain, each requiring de-
velopment of linguistic expressions. Testimonies
from data scientists confirm that for all labeling
tasks, HEIDL was extremely useful. HEIDL is not
specifically designed to work with a specific set
of predicates nor with rules learned solely using
deep learning. As long as the text analytics clas-
sification task provides a set of dictionary match-
ing predicates from which a learner can produce
accurate initial linguistic expressions, HEIDL can
help domain experts instill further domain exper-
tise into them. Even if the domain expert does
not modify the linguistic expressions, tools such
as HEIDL provide a useful control point that al-
lows humans to verify the model before deploying
it which should prove useful in enterprise settings.
HEIDL’s rule-centric interface provides an inter-
esting counter-point to other HITL-ML methods
such as active learning and SEER which are more
example-centric. HEIDL is meant to improve pro-
ductivity of domain experts and while we hope
to perform further evaluations in future (on other
tasks e.g., sentiment labeling), initial results have
yielded promising results.

References

Michael S. Bernstein, Greg Little, Robert C. Miller,
Björn Hartmann, Mark S. Ackerman, David R.
Karger, David Crowell, and Katrina Panovich. Soy-
lent: A word processor with a crowd inside. In
UIST.

Nan-Chen Chen, Jina Suh, Johan Verwey, Gon-
zalo Ramos, Steven Drucker, and Patrice Simard.
Anchorviz: Facilitating classifier error discovery
through interactive semantic data exploration. In
IUI.

William W. Cohen, Fan Yang, and Kathryn Rivard
Mazaitis. 2017. Tensorlog: Deep learning meets
probabilistic dbs. CoRR.

Richard Evans and Edward Grefenstette. 2018. Learn-
ing explanatory rules from noisy data. JAIR.

Maeda F. Hanafi, Azza Abouzied, Laura Chiticariu,
and Yunyao Li. 2017. Synthesizing extraction rules
from user examples with seer. In SIGMOD.

Youxuan Jiang, Catherine Finegan-Dollak, Jonathan K
Kummerfeld, and Walter Lasecki. Effective crowd-
sourcing for a new type of summarization task. In
NAACL.

Joy Kim, Justin Cheng, and Michael S. Bernstein.
Ensemble: Exploring complementary strengths of
leaders and crowds in creative collaboration. In
CSCW.

Rajasekar Krishnamurthy, Yunyao Li, Sriram Ragha-
van, Frederick Reiss, Shivakumar Vaithyanathan,
and Huaiyu Zhu. 2009. SystemT: A System
for Declarative Information Extraction. SIGMOD
Record.

Walter S. Lasecki, Rachel Wesley, Jeffrey Nichols,
Anand Kulkarni, James F. Allen, and Jeffrey P.
Bigham. Chorus: A crowd-powered conversational
assistant. In UIST.

Sang Won Lee, Yujin Zhang, Isabelle Wong, Yiwei
Yang, Stephanie D. O’Keefe, and Walter S. Lasecki.
Sketchexpress: Remixing animations for more ef-
fective crowd-powered prototyping of interactive in-
terfaces. In UIST.

Luana Micallef, Iiris Sundin, Pekka Marttinen,
Muhammad Ammad-ud din, Tomi Peltola, Marta
Soare, Giulio Jacucci, and Samuel Kaski. Interac-
tive elicitation of knowledge on feature relevance
improves predictions in small data sets. In IUI.

Stephen Muggleton. 1996. Learning from positive
data. In Worshop on ILP.

Jeffrey Pennington, Richard Socher, and Christopher D
Manning. 2014. Glove: Global vectors for word
representation. In EMNLP.

Matthew Richardson and Pedro Domingos. 2006.
Markov logic networks. Machine Learning.

Burr Settles and Mark Craven. An analysis of active
learning strategies for sequence labeling tasks. In
EMNLP.

Ehsan Sherkat, Seyednaser Nourashrafeddin, Evange-
los E. Milios, and Rosane Minghim. Interactive
document clustering revisited: A visual analytics ap-
proach. In IUI.

Alison Smith, Varun Kumar, Jordan Boyd-Graber,
Kevin Seppi, and Leah Findlater. Closing the loop:
User-centered design and evaluation of a human-in-
the-loop topic modeling system. In IUI.

Rion Snow, Brendan O’Connor, Daniel Jurafsky, and
Andrew Y. Ng. Cheap and fast—but is it good?:
Evaluating non-expert annotations for natural lan-
guage tasks. In EMNLP.

Fan Yang, Zhilin Yang, and William W. Cohen. 2017.
Differentiable learning of logical rules for knowl-
edge base reasoning. In NIPS.

140

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 141–146
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

My Turn To Read: An Interleaved E-book Reading Tool
for Developing and Struggling Readers

Nitin Madnani Beata Beigman Klebanov
Anastassia Loukina Binod Gyawali John Sabatini

Patrick Lange Michael Flor
Educational Testing Service, Princeton, NJ, USA

{nmadnani,bbeigmanklebanov,aloukina,bgyawali,
jsabatini,plange,mflor}@ets.org

Abstract

Literacy is crucial for functioning in modern
society. It underpins everything from educa-
tional attainment and employment opportuni-
ties to health outcomes. We describe My Turn
To Read, an app that uses interleaved reading
to help developing and struggling readers im-
prove reading skills while reading for meaning
and pleasure. We hypothesize that the longer-
term impact of the app will be to help users
become better, more confident readers with an
increased stamina for extended reading. We
describe the technology and present prelimi-
nary evidence in support of this hypothesis.

1 Introduction

According to the results of the 2017 National As-
sessment of Educational Progress (NAEP)1, 32%
of U.S. 4th graders read below the Basic level.
Most such students lack foundational skills of
oral reading fluency – accuracy, reading rate, and
prosody. Furthermore, more than a million stu-
dents at the Basic level are also relatively slow
readers, have poor prosody, and make more errors
than skilled readers (Sabatini et al., 2018).

The combination of low reading accuracy and
slow reading rate likely take a toll on a young
reader’s engagement and motivation to read.
While there are many interesting fiction and non-
fiction books available to young readers, a slow,
laborious reading process can make the act of
reading feel like work, not pleasure. The problem
is perhaps most acute for children who do not have
adults to read with them. Children who do not ac-
quire text fluency in school are left to their own
devices to try to bootstrap it without the feedback
and motivation usually provided by a knowledge-
able and supportive teacher or caretaker.

1https://www.nationsreportcard.gov/reading_
2017/nation/achievement?grade=4

My Turn To Read (MTTR) is an educational
application designed to help such low-proficiency
readers improve reading skills through sustained
reading with technological support. To make the
critical transition from word-by-word reading to
fluency, readers need to be engaged in the flow
and process of reading for meaning and pleasure,
which cannnot occur if getting through every page
is a struggle. MTTR can be thought of as a vir-
tual reading companion who narrates part of the
story to help enhance engagement and alleviate
frustration during reading, and ultimately to help
improve confidence, fluency, and reading stamina.

In the next section, we describe the idea of inter-
leaved or turn-based reading and its hypothesized
benefits (§2). Next, we describe the MTTR app
itself – its features, components, and any NLP &
Speech technologies (§3). Next, we discuss the
results of trialing MTTR with two summer camps
(§4). We conclude with our future plans for MTTR
for both additional features as well as additional
NLP & Speech technologies (§5).

2 Oral Reading with Turn-Taking

Listening to and engaging in oral reading pervades
daily life – parents reading aloud to children, chil-
dren receiving reading instruction in schools, and
adults choosing audio narration (for books & pod-
casts) as the reading medium that best fits busy
schedules. Oral reading fluency is also an impor-
tant indicator of reading skill (Fuchs et al., 2001).

The main idea behind interleaved book reading
is to allow the user to take turns reading aloud
from a long, challenging, high-interest book with
a virtual partner, realized, in our case, through
an audiobook narration. The text of the book is
split into paragraphs which are then allocated to
alternating narrator and user turns2. During the

2The actual number of paragraphs in each turn may vary.

141

narrator turn, the user listens to the correspond-
ing recording from the audiobook; during the user
turns the user is prompted to read the text of the
user turn aloud. The narrator and user turns do not
overlap – the user continues reading from where
the narrator left off, and vice versa.

We hypothesize that (a) the interest in the story
and the quality of the narration increases enjoy-
ment, and (b) the interleaving of effortful reading
with the more relaxing experience of listening to a
skilled narrator allows regular breaks for the user
to rebuild stamina to continue reading. The com-
bined effect of (a) and (b) is to make the process
sufficiently easygoing and engaging for the user to
continue reading the whole book with the app, thus
gaining reading practice and boosting their skill,
confidence, and enthusiasm as readers.

3 My Turn To Read App

In this section, we describe the current version
of the MTTR application. The application is de-
signed to be cross-platform – it works on the web
as well as on the iOS and Android mobile plat-
forms. It was particularly important to have mo-
bile versions of the application since (a) it provides
more flexibility to the users (i.e., kids can read on a
computer or school tablet during school hours and
continue reading on a different device at home)
and (b) in our preliminary interviews with adult
literacy learners – another target demographic of
the app – a majority said that they used mobile
phones as their only computing device.

Mobile versions of MTTR are built using
Apache Cordova3 – a cross-platform toolkit –
with platform-specific modifications where nec-
essary. The reading and listening components
in all versions are built on top of Readium4, a
robust, standards-compliant, and open-source e-
reader. Figure 1 shows a screenshot of the iOS
version of MTTR.

As users read with MTTR, it logs information
about their interactions. The audio from user turns
is recorded and stored. The app also logs rich
process data which allow reconstructing the time-
line of a user’s interaction with the app, such as
timestamps for the beginning and end of each user
and narrator turn and the answers given to reading
comprehension questions (see §3.2). Other than
the turn audio, no other personally identifying in-

3https://cordova.apache.org
4https://readium.org

Figure 1: A screenshot of the iOS version of My Turn
To Read (MTTR). Start of narrator turn is marked with
the headphones & start of user turn is marked with
speaker icon. Currently the narrator is reading (see sta-
tus bar on top); the user can follow the narrator using
the yellow highlight and also pause, replay, and rewind.

formation is collected and stored by the app. A
separate, secure authentication server stores user-
provided email used for registration. All collected
data is stored in a secure database with strict ac-
cess controls and no public access. The user is
explicitly notified when the recording is about to
start and via a status bar while it is in process.

Next, we describe the salient MTTR features
along with the underlying NLP & Speech tech-
nologies, where appropriate. A video illustrating
most of the user-facing features in action is cur-
rently available at https://www.youtube.com/
watch?v=Efsl1ZMWFkE.

3.1 Read Aloud eBooks

In order to use a book with MTTR, we need to
combine the eBook and the audiobook versions
of the book into a new format such that every
paragraph is assigned a unique ID and the text
is synchronized with the audio in the audiobook.
These are necessary to (a) transition between lis-
tening and reading and (b) highlight text fragments
in the eBook corresponding to the audio being
played during narrator turns (as shown in Figure
1). The default highlighting is at the sentence level

142

Figure 2: Screenshots illustrating reading comprehension questions and “Reading History” from MTTR: the first
screen shows an example question, the second shows a report of the reading activity, and the third shows how
readers can interact with already completed turns.

but we manually split long sentences into shorter
spans based on syntax & narrator pauses and also
make other adjustments to align with sometimes
idiosyncratic narrator prosody. The purpose of the
highlighting is to make it easier for a struggling
reader to follow along during narrator turns, with-
out the highlight moving so often as to be distract-
ing (highlighting each word) or highlighting such
large chunks of text as to defeat the purpose of
closely following the narrator (highlighting com-
plete sentences, no matter how long).

We use the EPUB format5 to create what we call
a “Read Aloud eBook" used by MTTR. To link the
text in the book to the synchronized audio, we use
SMIL (Synchronized Multimedia Integration Lan-
guage), as defined in the EPUB Media Overlays
specification. The complete process for generat-
ing a Read Aloud eBook is as follows:

1. We use lxml6 to extract the plain text from
the original eBook EPUB. We then break up
paragraphs into sentences and create a map-
ping between sentence identifiers and token
indices where sentences start and end.

2. We use forced alignment to align words in the
normalized text of each chapter to the audio-

5http://www.idpf.org/epub
6https://github.com/lxml/lxml

book MP3 file for this chapter. The alignment
is done using the Kaldi ASR toolkit (Povey
et al., 2011) and the LibriSpeech acoustic
models (Panayotov et al., 2015). The result-
ing word-level alignment is used to compute
the beginning and end timestamps for each
sentence. We use Sequitur G2P (Bisani and
Ney, 2008) to phonetically transcribe out-
of-vocabulary words. The transcriptions are
checked manually and added to the lexicon
used for forced alignment.

3. We use ebooklib7 to generate a new EPUB
file with sentences linked to time segments in
the relevant MP3 file using SMIL.

4. We perform the splitting and other manual
adjustments in the generated eBook to cre-
ate subsentential highlighting spans as nec-
essary. We then map any new spans back to
the word-level alignment and regenerate the
Read Aloud eBook with these spans as the
highlighting units, linked via SMIL to audio
timestamps. Subsentential spans can also be
generated automatically (Parlikar and Black,
2012); we plan to use the manual splits to
help improve automated splitting.

7https://github.com/aerkalov/ebooklib

143

3.2 Reading Comprehension Questions

To check that users are paying attention to the
story and to remind them of important story el-
ements, we created approximately one reading
comprehension question (RCQ) for every 100
words of running text. These are surface-level
questions focused on the plot, on relationships be-
tween characters, on important descriptive details;
the answers are usually stated in the text. Users
are asked two questions after every other one of
their turns. All questions are multiple choice with
2-4 options. Figure 2 shows an example.8

We also experimented with automated gen-
eration of RCQs using the semantic-role based
system described in (Flor and Riordan, 2018).
This system generated 1,350 questions for a 228-
sentence excerpt from chapter 2 of Harry Pot-
ter and the Sorcerer’s Stone. After removing all
the questions that required resolution of pronom-
inal or temporal anaphora to be sufficiently clear,
as well as questions that contained incorrect in-
formation or were grammatically ill-formed, we
were left with 280 questions for a closer exami-
nation. These questions were reviewed by an ex-
pert who has previously written RCQs used in the
app. Of these, 75 (27%) were deemed usable as-
is or with a small fix (Q: “Why did Dudley have
a tantrum?" A: “because his knickerbocker glory
didn’t have enough ice cream on top" illustrates
Dudley’s character; Q: “What did Uncle Vernon
shout about once a week?" A: “that Harry needed a
haircut" points at something unusual about Harry).
Out of 280 questions, 150 (53%) were deemed un-
acceptable because they asked about a marginal
detail (Q: “Who started looking for socks?" A:
“Harry"). The remaining 20% of the questions
had various problems such as insufficient speci-
ficity (Q:“Was Harry punished?" A: “no" requires
more precise description of what he was or was not
punished for in the particular instance in question),
easily answerable based on general knowledge
without reading the book (Q: “Who is slithering to
the floor?" A: “the great snake"), awkward phras-
ing (Q: “What did Harry see?" A: “a huge Dud-
ley tantrum coming on"), and too long to be read-
able (Q: “Had Dudley’s gang been chasing him as
usual when, as much to Harry’s surprise as any-
one else’s, there he was sitting on the chimney?",
A: “yes"). These findings suggest that above and

8Figures 1 and 3 are used by permission of the copyright
owner Educational Testing Service.

beyond the known challenges of correctness of in-
formation and of form and non-anaphoricity, the
biggest issue when generating questions based on
a 100-word excerpt from a long story is choosing
what to ask about. For MTTR, we want questions
to also serve as reminders about important plot el-
ements, characterizations, etc., and not just pick
up on any minutiae.

3.3 Reading History

MTTR provides a section called “Reading His-
tory” containing two sub-sections. “Reading Re-
port” allows users to keep track of how much they
have read with MTTR (number of minutes that day
and overall), what percentage of the current chap-
ter (and the book) they have completed, and how
many RCQs they have answered correctly. “Com-
pleted Chapters” allows users to revisit the turns
completed so far: they can listen again to the nar-
rator read its own turns and also listen to their
own recordings of their turns. In fact, it also al-
lows them to listen to the narrator read their turns
since the audiobook contains narration for all para-
graphs. Listening to themselves and then the nar-
rator allows users to locate areas for improvement.
This section also allows users to examine their an-
swers to the questions that have been asked based
on a given turn. Figure 2 shows the “Reading His-
tory” section from the app.

MTTR contains other useful features not de-
scribed here in detail due to space limitations. For
example, it allows users to adjust turn sizes – a re-
ally struggling reader might rely more on the nar-
rator early on but gain the confidence to read aloud
more as the book progresses. MTTR also allows
readers to re-record their turns via “Reading His-
tory” if they catch some errors in their reading or
get inspired by listening to the narrator.

4 Extrinsic Evaluation

In order for any reading app to have an impact on
readers’ skills – something that develops slowly
and gradually – it is necessary for them to actually
use the app consistently over a substantial period
of time, preferably willingly.

We trialed MTTR with two summer camp pro-
grams in the greater NYC area in June–August
2018. One program ran for 6 weeks and included
a reading session with the app for 20-50 minutes
four days a week, with fewer days in the first week
of the camp. The second program ran for a total

144

1.00

1.50

2.00

2.50

3.00

3.50

4.00

Lik
ed

 re
ad

ing

wi
th

 a
pp

Ap
p

di
ffi

cu
lt

to
 u

se

Us
ef

ul
to

lis

te
n

to
 m

ys
elf

W
an

t t
o

us
e

ne
xt

 su
m

m
er

W
ish

 n
ar

ra
to

r

re

ad
 m

or
e

He
lp

ed
 m

e
be

co
m

e

be

tte
r r

ea
de

r

Figure 3: [Top] Children reading with MTTR in sum-
mer camps. [Bottom] Average ratings for MTTR sur-
vey questions from responses provided by 25 child par-
ticipants in summer camp reading sessions. Each ques-
tion was rated on a 4-point scale.

of 8 weeks (different children were enrolled for a
different number of weeks) with a variable read-
ing schedule depending on other camp activities;
each reading session included about half an hour
of reading and half an hour of related games and
activities. All children read Harry Potter and the
Sorcerer’s Stone by J.K. Rowling, with narration
by Jim Dale. Children used MTTR on tablets con-
nected to consumer-grade headsets with built-in
microphones in a fairly laid-back, informal atmo-
sphere; see Figure 3. A total of 36 children aged
8–11 participated in the two trials.

In both camps, children had the option to stop
using the app entirely and engage in another camp
activity. Of course, they could also hold the de-
vice but not actually use the app, or go through
the motions of tapping on buttons but not actually
do any listening or reading. We found that not
only did children use the app when an opportu-
nity was provided (based on the camp program),
they also largely engaged with the app produc-
tively. In total, we logged more than 61 hours of
listening (2,978 narrator turns). Our initial analy-

sis of user turns showed that 1,580 of them were
of reasonable duration to make complete bona-fide
reading of the turn possible (see (Beigman Kle-
banov et al., 2019) for details on estimating rea-
sonable turn durations); based on transcriptions of
these turns, they in fact contained 111 read words
per turn on average. Finally, we also logged 9.5
hours spent answering 2,104 comprehension ques-
tions with 65% questions answered correctly. We
also asked the children to fill out a survey at the
end about their experience with MTTR. Figure 3
shows the the results from the 25 children who
completed the surveys.

The fact that an overwhelming majority of the
children who started reading with MTTR contin-
ued to use it for the duration of their camp en-
rollment and also continued to read aloud is a
promising result. Furthermore, the positive re-
sponses to survey questions – particularly the one
that asked if they believed that MTTR helped them
become better readers – also suggest that MTTR
has the potential to support extended reading and
thus have the hypothesized positive impact.

5 Discussion & Future Work

My Turn To Read is currently in beta and we plan
to release freely-available web9 and mobile (iOS
& Android) versions in August of 2019 with the
public-domain book The Adventures of Pinocchio.
We plan to add more books in subsequent releases.

While the functionality implemented in MTTR
has already yielded promising results, several av-
enues of future work are planned or underway.

We are already working on using automated
speech recognition to track readers’ progress and
provide useful automated feedback when appro-
priate (Loukina et al., 2017). Our plan is to first in-
vestigate a server-based speech processing system
which will receive the readers’ speech over a (se-
cure and encrypted) internet connection10. Based
on our observations of the offline-vs-online usage
and the latency profiles, we may decide that on-
device speech processing is a better alternative.

We are working with users and teachers on de-
termining what specific type of oral-reading-based
feedback would be most useful (Kannan et al.,
2019). Although automated processing of chil-
dren’s speech holds promise for estimating read-

9https://myturntoread.org.
10MTTR stores recordings on-device until an internet con-

nection is available.

145

ing skill, especially if we aggregate measurements
from multiple user turns (Loukina et al., 2018;
Wang et al., 2019), feedback for individual user
turns is likely to be difficult due to substantial be-
havioral and technical noise in recordings, e.g.,
background noise, equipment malfunction, cross-
speaker interference, skipped turns, mumbling,
etc. (Loukina et al., 2018, 2019). Furthermore,
we want to ensure that the feedback does not dis-
courage already struggling readers (e.g., providing
fluency scores may not be the right approach).

We plan to continue our work on automated
question generation which will help shorten the
turn-around time for adding new books.

Finally, we are exploring a use case for MTTR
in classrooms in an ongoing trial with grade 3–5
students in an NJ elementary school. Although the
results haven’t been analyzed quantitatively, pre-
liminary anecdotal evidence shows very positive
reactions from both teachers and students.

Our goal is to help students thrive as fluent, con-
fident, and enthusiastic readers; our hope is to be
able to demonstrate quantitatively that MTTR can
be instrumental in achieving this goal and, even-
tually, reduce the persistently high proportion of
struggling readers in U.S. schools and elsewhere.

6 Acknowledgements

We thank the Astea Solutions team for the app de-
sign and development work; K. Dreier, V. Licer-
alde, J. Bruno, C. Appel, and I. Blood for cre-
ating the comprehension questions and K. Dreier
also for her help with evaluating the automati-
cally generated questions; J. Lentini for help with
the summer camp data collection; Y. Qian and A.
Misra for help with ASR. We also thank the site
administrators and instructors in the two summer
camps for implementing the summer reading pro-
gram with MyTurnToRead.

References

Beata Beigman Klebanov, Anastassia Loukina, Nitin
Madnani, John Sabatini, and Jennifer Lentini. 2019.
Would you? Could you? On a tablet? Analytics of
Children’s eBook reading. In Proceedings of the 9th
International Conference on Learning Analytics &
Knowledge.

Maximilian Bisani and Hermann Ney. 2008. Joint-
Sequence Models for Grapheme-to-Phoneme Con-
version. Speech Communication, 50(5):434 – 451.

Michael Flor and Brian Riordan. 2018. A Semantic
Role-based Approach to Open-Domain Automatic
Question Generation. In Proceedings of the BEA
Workshop, pages 254–263.

Lynn S. Fuchs, Douglas Fuchs, Michelle K. Hosp, and
Joseph R. Jenkins. 2001. Oral Reading Fluency as
an Indicator of Reading Competence: A Theoretical,
Empirical, and Historical Analysis. Scientific Stud-
ies of Reading, 5(3):239–256.

Priya Kannan, Beata Beigman Klebanov, Shiyi Shao,
Colleen Appel, and Rodolfo Long. 2019. Evaluat-
ing Teachers’ Needs for On-going Feedback from a
Technology-based Book Reading Intervention. Pre-
sented at the Annual Meeting of the National Coun-
cil on Measurement in Education.

Anastassia Loukina, Beata Beigman Klebanov, Patrick
Lange, Binod Gyawali, and Yao Qian. 2017. Devel-
oping Speech Processing Technologies for Shared
Book Reading with a Computer. In Proceedings of
the 6th International Workshop on Child Computer
Interaction (WOCCI), pages 46–51.

Anastassia Loukina, Patrick Lange, Yao Qian,
Beata Beigman Klebanov, Nitin Madnani, Abhinav
Misra, and Klaus Zechner. 2019. The Impact of Am-
bient Noise on Measurement of Oral Reading Per-
formance. Presented at the Annual Meeting of the
National Council on Measurement in Education.

Anastassia Loukina, Beata Beigman Klebanov
Nitin Madnani, Abhinav Misra, Georgi Angelov,
and Ognjen Todic. 2018. Evaluating On-device
ASR on Field Recordings from an Interactive
Reading Companion. In Proceedings of IEEE-SLT.

Vassil Panayotov, Guoguo Chen, Daniel Povey, and
Sanjeev Khudanpur. 2015. Librispeech: An ASR
Corpus Based on Public Domain Audio Books.
In Proceedings of the International Conference on
Acoustics, Speech and Signal Processing (ICASSP).

Alok Parlikar and Alan W. Black. 2012. Modeling
Pause-duration for Style-specific Speech Synthesis.
In Proceedings of Interspeech.

Daniel Povey, Arnab Ghoshal, Gilles Boulianne, Lukas
Burget, Ondrej Glembek, ..., and Karel Vesely. 2011.
The Kaldi Speech Recognition Toolkit. In Proceed-
ings of the IEEE Workshop on Automatic Speech
Recognition and Understanding (ASRU).

John Sabatini, Zuowei Wang, and Tenaha O’Reilly.
2018. Relating Reading Comprehension to Oral
Reading Performance in the NAEP Fourth-Grade
Special Study of Oral Reading. Reading Research
Quarterly, 54(2):253–271.

Zuowei Wang, John Sabatini, and Tenaha O’Reilly.
2019. Harry Potter Knows How Well You Read:
Estimating Children’s Reading Ability from Oral
Novel Reading. Presented at the Annual Meeting of
the National Council on Measurement in Education.

146

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 147–152
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

GrapAL: Connecting the Dots in Scientific Literature

Christine Betts♠∗, Joanna Power♥, Waleed Ammar♥
♠Paul G. Allen School of Computer Science & Engineering,

University of Washington, Seattle, WA, USA
♥Allen Institute for Artificial Intelligence, Seattle, WA, USA

chrstn@cs.washington.edu, {joannap,waleeda}@allenai.org

Abstract

We introduce GrapAL (Graph database of
Academic Literature), a versatile tool for
exploring and investigating a knowledge
base of scientific literature that was semi-
automatically constructed using NLP meth-
ods. GrapAL fills many informational needs
expressed by researchers. At the core of Gra-
pAL is a Neo4j graph database with an intu-
itive schema and a simple query language. In
this paper, we describe the basic elements of
GrapAL, how to use it, and several use cases
such as finding experts on a given topic for
peer reviewing, discovering indirect connec-
tions between biomedical entities, and com-
puting citation-based metrics. We open source
the demo code to help other researchers de-
velop applications that build on GrapAL.1

1 Introduction

Researchers rely on scientific literature to perform
a wide variety of tasks such as searching for pa-
pers, assessing applicants for a research position
and keeping track of papers published on topics
of interest. Several software tools are available to
help researchers perform these tasks. For example,
many biomedical researchers use PubMed to find
papers relevant for their studies,2 Google Scholar
allows researchers to verify and curate their user
profiles,3 and Semantic Scholar extracts research
topics, figures, and tables from papers and links
them to external content such as slides, videos and
GitHub repositories.4 However, such tools tend to
only feature the most commonly used functionali-
ties in order to keep the interface simple for users,

*Work done while at the Allen Institute for Artificial In-
telligence.

1https://github.com/allenai/
grapal-website

2https://www.ncbi.nlm.nih.gov/pubmed/
3https://scholar.google.com/
4https://www.semanticscholar.org/

ignoring the long tail of informational needs such
as finding experts on a given topic, identifying po-
tential collaborators, assessing influence between
research areas, and discovering connections be-
tween biological entities.

In this paper, we address these limitations
by introducing a tool that provides a flexible
and efficient way to query the Semantic Scholar
knowledge base, a semi-automatically constructed
knowledge base of scientific literature (Ammar
et al., 2018). In addition to bridging the gap
between available tools and informational needs
of researchers, GrapAL demonstrates how semi-
automatically constructed knowledge bases can be
effectively used to solve real-world problems.

GrapAL is publicly available at grapal.
allenai.org, along with documentation.5 In
the following section (§2), we introduce the
schema and query language used in GrapAL and
discuss how users can connect to the database. In
§3, we show how GrapAL can be used to satisfy
several compelling case studies. In §4, we discuss
some of the design choices and the system archi-
tecture for GrapAL.

2 How to Use GrapAL

GrapAL is designed to satisfy many use cases re-
quested by Semantic Scholar users who need to
process scientific literature. To achieve this, we
design GrapAL as a Neo4j property graph with
an intuitive schema, making it queryable with the
Cypher query language (Francis et al., 2018).

Schema. Fig. 1 demonstrates the schema of our
graph database, which consists of 7 node types
(displayed in turquoise) and 8 edge types (dis-
played in purple). The properties associated with

5A screencast of the tool is available at https:
//www.youtube.com/watch?v=1ivX9sHw2RU&
feature=youtu.be

147

Figure 1: Overview of GrapAL schema. *denotes indexed property.

Node Type Count
Affiliation* 16M
Author 17M
Entity 493K
Paper 46M
Relation 51
RelationInstance 347K
Venue* 78K

Edge Type Count
AFFILIATED WITH 119M
APPEARS IN 67M
AUTHORS 148M
CITES 693M
MENTIONS 400M
MENTIONS RELATION 73M
WITH ENTITY 1M
WITH RELATIONSHIP 350K

Table 1: Approximate node and edge cardinalities. (*)
indicates node types that are not canonicalized.

each node and edge type are listed. In order to
avoid violating intellectual property of publishers,
we do not include some information about papers
such as the abstract and full text.

At the core of the graph is the Paper node.
Paper nodes may connect to Venue nodes,
Author nodes, Affiliation nodes, Entity
nodes, RelationInstance nodes or other
Paper nodes via APPEARS IN edges, AUTHORS
edges, AFFILIATED WITH edges, MENTIONS
edges, MENTIONS RELATION edges and CITES
edges, respectively. A RelationInstance
node, e.g., CAUSES[SMOKING,CANCER], repre-
sents an n-ary relationship of type Relation
(via a WITH RELATIONSHIP edge) between
two or more Entity nodes (via WITH ENTITY
edges). Details on how we extract entities and var-
ious metadata for each paper can be found in Am-
mar et al. (2018). The only schema changes intro-
duced in this work are including Affiliation
and Venue nodes (and corresponding edge types),
and optimizing for query execution time. Table 1
provides the number of instances of each node and
edge type in the schema at the time of this writing.

Query Language. Before we discuss realistic
case studies in §3, we introduce the query lan-

guage used in GrapAL with a few toy examples:
First, consider the following query that matches

arbitrary author nodes in GrapAL and returns the
first 10:

// Find arbitrary authors.
MATCH (a:Author) RETURN a LIMIT 10

More often than not, we only want to match
nodes with some desired properties. In the next
example, we only match authors with first name
‘Clarence’ and last name ‘Ellis’. Note the round
brackets used to specify an instance of node type
Author, and the curly brackets used to specify its
properties.

// Find authors by name.
MATCH (a:Author {last: "Ellis", first:

"Clarence"})↪→
RETURN a

Alternatively, we could use a WHERE clause to
specify the desired properties of matched nodes,
as demonstrated in the following example that
matches papers by their title. This example also
shows how to match nodes by specifying their re-
lation to another node, e.g., authors of a paper.
Note the use of square brackets to specify edges
and the arrow to specify edge direction.

// Find authors of a specific paper.
MATCH (a:Author)-[:AUTHORS]->(p:Paper)
WHERE p.title = "One-shot learning of

object categories"↪→
RETURN a

More information about the Cypher query lan-
guage can be found in Francis et al. (2018).

Connecting to GrapAL. Users can query
GrapAL in a variety of methods. First, an
interactive graphical interface is available

148

at https://grapal.allenai.org:
7473/browser/ that is suitable for interac-
tive exploration of GrapAL with a relatively
small number of results. We demonstrate how
the interactive interface could be used in a
screencast.6

Users can also build web applications that lever-
age GrapAL through the Neo4j HTTP endpoint.7

As an example, we have developed a simple
web-based application at https://grapal.
allenai.org/app that can be used to load any
of the case studies described in the next section.8

Users can also type in arbitrary queries, share the
queries with collaborators, and download the re-
sults in JSON format.

Users can also query the graph natively in their
favourite programming language using one of the
Neo4j language drivers. Neo4j officially supports
five languages: .NET, Java, Javascript, Go and
Python, but additional drivers are available.9 We
provide an example of using the Python driver
to compute disruption scores as described in Wu
et al. (2019).10

DOI and ArXivId Compatibility. Users can
switch between Digital Object Identifiers (DOIs)
or arXiv identifiers (ArXivId) and paper IDs with
the Semantic Scholar API11. For example, we can
look up the paper node corresponding to the DOI
10.1038/nrn3241 by first executing the HTTP
query https://api.semanticscholar.
org/v1/paper/10.1038/nrn3241
that returns a JSON object with paper ID
931d6b6ee097eab80b8f89a313c8d3a6d
5443cb2. Then, we execute the Cypher query:

// Look up paper by ID.
MATCH (p:Paper {paper_id:

"931d6b6ee097eab80b8f89a313c8d3
a6d5443cb2"})

↪→
↪→
RETURN p

In the future, we plan to add DOI properties and
ArXivId properties to the knowledge base.

6https://www.youtube.com/watch?v=
1ivX9sHw2RU&feature=youtu.be

7Documentation for the API is available at https://
neo4j.com/docs/http-api/3.5/

8For example, the following URL will load the short-
est path example: https://grapal.allenai.org/
app/?example=shortest-path

9See https://neo4j.com/developer/
language-guides/ for the complete list of Neo4j
language drivers.

10https://gist.github.com/chrstnb/
088f7699930ad53e757906f4d3d6c1f5

11http://api.semanticscholar.org/

Figure 2: Shortest path between Swabha Swayamdipta
and Regina Barzilay.

3 Case Studies

We interviewed computer science and biomedical
researchers to better understand the kinds of ques-
tions they would like to answer from a knowledge
base of scientific literature. In this section, we fo-
cus on some of the more compelling use cases that
were identified in the interviews, and provide ex-
ample queries to address them in GrapAL.

For each example we give a link to load the
query in the query loader and the full text of the
query. From the query loader, users can view or
save the results of a query and also copy it to be
pasted into the Neo4j browser, where users can
view interactive visualizations of the query results.

Shortest Path. Consider a researcher a seek-
ing an introduction or an endorsement to work
with another researcher b. By finding the short-
est path between the two researchers in Gra-
pAL, researcher a can identify common collabo-
rators connecting the two. The following query,
for instance, matches a path connecting Swabha
Swayamdipta and Regina Barzilay using author-
ship edges only, and returns a path that connects
them via Luke Zettlemoyer who co-authored pa-
pers with both researchers (see Fig. 2).12

// Find shortest path between two
researchers by name.↪→

MATCH p=shortestPath((a:Author)-
[:AUTHORS*0..6]-(b:Author))

WHERE a.first = "Swabha"
AND a.last = "Swayamdipta"
AND b.first = "Regina"
AND b.last = "Barzilay"

RETURN p

In this example, we constrain the number and
type of edges in the graph to a maximum of six
AUTHORS edges. For authors with an ambiguous
name, it may be necessary to specify the author by

12This query can be loaded and modified at
https://grapal.allenai.org/app/?example=
shortest-path

149

their ID, which can be found by inspecting their
author page URL on Semantic Scholar:13

// Find shortest path between two
researchers, one by author ID.↪→

MATCH p=shortestPath((a:Author)-
[:AUTHORS*0..6]-(b:Author))

WHERE a.author_id = 2705113
AND b.first = "Regina"
AND b.last = "Barzilay"

RETURN p

Similar queries can be used to find colleagues who
published at a given venue, or currently work at a
given university or research lab.

Finding Experts. One of the pain points in orga-
nizing a conference is identifying reviewers who
are knowledgeable about the research topics dis-
cussed in submitted papers. By querying GrapAL,
members of the organizing committee will be able
to find more competent reviewers, while relying
less on their (often biased) professional network
when deciding whom to invite for peer reviewing.
For example, the following query can be used to
find researchers who published the most on “Rela-
tionship extraction” since 2013.14

// Find authors who published the most
on relation extraction since 2013.↪→

MATCH (a:Author)-[:AUTHORS]->(p:Paper),
(p)-[:MENTIONS]->
(:Entity {name: "Relationship

extraction"})
WHERE p.year > 2013
WITH a, count(p) as cp
RETURN a, cp
ORDER BY cp DESC

Here, we use ORDER BY cp DESC to sort the
authors by the number of papers they published on
this topic. In order to find the node that represents
a topic of interest in GrapAL, users could use the
search feature on semantic scholar and inspect the
relevant topic page URL for the entity ID, or use
regular expressions to query GrapAL, e.g.,15

// Fuzzy matching of entity names.
MATCH (e:Entity)
WHERE e.name =˜ "(?i)relationship

extraction"
RETURN e

13E.g., Swabha Swayamdipta’s author page URL is
https://www.semanticscholar.org/author/
Swabha-Swayamdipta/2705113

14This query can be loaded and modified at https://
grapal.allenai.org/app/?example=experts

15This query can be loaded and modified at
https://grapal.allenai.org/app/?example=
canonical-entity

Figure 3: Ten papers that mention both ‘Natural lan-
guage processing’ and ‘Constraint programming.’.

Papers at the Intersection of Entities. Search
engine results sometimes make it difficult to find
papers that discuss multiple topics or fields. With
GrapAL, we can return papers that discuss any
number of entities of interest, e.g., ”Constraint
programming” and ”Natural language process-
ing”. Fig. 3 shows a visualization of the results
on the Neo4j browser, limited to 10 papers.16

// Find papers which mention both
constraint programming and natural
language processing.

↪→
↪→
MATCH (p:Paper)-[:MENTIONS]->

(e1:Entity {name: "Constraint
programming"}),

(p:Paper)-[:MENTIONS]->
(e2:Entity {name: "Natural language

processing"})
RETURN p

Connecting Scientific Concepts. Some re-
searchers wanted to explore direct and indirect
connections between two scientific concepts (en-
tities) of interest, e.g., the impact of ‘adjuvant
antiestrogen therapy (Arimidex)’ on ‘estrogen re-
ceptors’. Using GrapAL, we can find how two
entities are indirectly connected via coded rela-
tionships and a chain of entities in the knowledge
base, which can help generate new hypotheses or
quickly assess the viability of a hypothesis before
conducting expensive lab experiments.17

16This query can be loaded and modified at
https://grapal.allenai.org/app/?example=
intersecting-entities

17This query can be loaded and modified at
https://grapal.allenai.org/app/?example=
scientific-concepts

150

// Find path between Estrogen Receptors
and Arimidex via coded
relationships.

↪→
↪→
MATCH path=shortestPath(

(er:Entity {name: "Estrogen
Receptors"})-

[:WITH_ENTITY*0..15]-
(ar:Entity {name: "Arimidex"}))

WITH nodes(path) as ns
UNWIND ns as n
MATCH (n)-[:WITH_ENTITY {position: 0}]->

(e0:Entity),
(n)-[:WITH_ENTITY {position: 1}]->

(e1:Entity),
(n)-[:WITH_RELATIONSHIP]->

(r:Relation)
RETURN e0, r, e1

This query returns a list of triples (e0, r, e1) that
connect ‘Arimidex’ to ‘Estrogen Receptors’. The
UNWIND operator allows us to examine each node
on the shortest path and process it as needed.

Citation-Based Metrics. Citations are often
used as a proxy for the impact of papers, re-
searchers or venues. In addition to computing
traditional metrics such as h-index and i10-index,
GrapAL can also be used to compute more granu-
lar metrics, e.g., to estimate the rate at which pa-
pers in one conference cite papers in another con-
ference:18

// Find the number of times a NAACL
paper cites a CVPR paper.↪→

MATCH (p1:Paper)-[:APPEARS_IN]->
(naacl:Venue),

(p2:Paper)-[:APPEARS_IN]->(cvpr:Venue),
path=((p1)-[:CITES]->(p2))
WHERE naacl.text =˜ ".*NAACL.*"
AND cvpr.text =˜ ".*CVPR.*"
RETURN count(path)

This query returns the number of times a NAACL
paper cites a CVPR paper. We use the =˜ operator
to match on venue names by regular expression
because venues are stored as unstructured strings.

4 System Design

Graph Database. Due to the high connectivity
in the data and the nature of queries GrapAL is
designed for, we opted to create GrapAL using
a graph-native database instead of a more con-
ventional relational database. Unlike a relational
database, a graph database provides a natural and
efficient way to query and traverse multi-hop re-
lations without using computationally expensive
join operations. Several graph database systems

18This query can be loaded and modified at
https://grapal.allenai.org/app/?example=
citation-metrics

have recently become available, including AWS
Neptune, Grakn.ai, dgraph and Neo4j. We de-
cided to build GrapAL on Neo4j since it is one
of the more mature platforms, has a strong com-
munity of developers, and is the most widely used
graph database system as of the time of this writ-
ing.19 One limitation of Neo4j is that it is not a
distributed database system, but we were able to
fit GrapAL on a single server.

Building and Deploying GrapAL. GrapAL
is powered by the same data that powers the
semanticscholar.orgwebsite, as described
in Ammar et al. (2018). We use a staging server to
read a snapshot of the data as Spark DataFrames
from AWS S3 and write CSV files that match
the property schema described earlier. Due to
the sheer amount of records, we process different
shards of the data in parallel before aggregating all
shards into one CSV file for each node and edge
type of the schema. Then, we use the Neo4j CSV
import function to build the database. Once we’ve
built the database, we start up a Neo4j server and
run a Cypher script to create indexes. The stag-
ing server is an EC2 machine with instance type
r5.24xlarge. This process takes around 6
hours and the resulting database is roughly 80 GB
(including indexes).

Once the data is imported, the database files
are copied over to a production server that serves
the dataset publicly and has lower processor and
memory requirements compared to the staging
server. The staging server is an EC2 machine with
instance type r4.16xlarge. We plan to rebuild
GrapAL at a monthly cadence with new snapshots
of the data.

5 Related Work

Related APIs are available to help researchers nav-
igate scientific literature. Singh et al. (2018) pro-
vides an API to interact with the ACL anthology.
However, it is limited to the areas of computa-
tional linguistics and natural langauge processing,
and it uses a predefined list of query templates
with placeholders for authors, papers and venues.
Springer Nature SciGraph 20 provides an API for
accessing publication metadata from the Springer
Nature corpus, but it is limited to papers and books

19https://db-engines.com/en/ranking/
graph+dbms

20https://scigraph.springernature.com/
explorer

151

published by Springer Nature. The Microsoft Aca-
demic Graph (Shen et al., 2018) is similarly an
API for examining academic literature. As a re-
lational database, it is hard to query with complex,
multi-hop relations as discussed in §4. This work
is also related to a line of NLP work focusing on
scientific documents including citation prediction
(e.g., Yogatama et al., 2011; Bhagavatula et al.,
2018), author modeling (e.g., Sim et al., 2015),
stylometry (e.g., Bergsma et al., 2012), bibliomet-
rics (e.g., Foulds and Smyth, 2013; Weihs and Et-
zioni, 2017) and information extraction (e.g., Ker-
gosien et al., 2018; Andruszkiewicz and Hazan,
2018).

6 Conclusion

GrapAL is a versatile tool for exploring and in-
vestigating scientific literature built on the Neo4j
graph database framework. We describe the ba-
sic elements of GrapAL, how to use it, and use
cases such as finding experts on a given topic
for peer reviewing, discovering indirect connec-
tions between biomedical entities, and computing
citation-based metrics.

Future improvements include more metadata
and changes to the structure of affiliation and
venue data. We intend to change the data pipeline
architecture to perform event-based incremental
updates rather than a regular batch build. We con-
tinue to improve the models used to populate Gra-
pAL’s nodes and edges (e.g., author disambigua-
tion and entity extraction and linking).

Acknowledgments

We thank Khaled Ammar for his graph database
suggestions, Michal Guerquin for his help in
designing and building the pipeline, and Darrell
Plessas for his technical assistance. We also thank
Noah Smith and the Semantic Scholar team for
their support.

References
Waleed Ammar, Dirk Groeneveld, Chandra Bhagavat-

ula, Iz Beltagy, Miles Crawford, Doug Downey, Ja-
son Dunkelberger, Ahmed Elgohary, Sergey Feld-
man, Vu Ha, Rodney Kinney, Sebastian Kohlmeier,
Kyle Lo, Tyler Murray, Hsu-Han Ooi, Matthew E.
Peters, Joanna Power, Sam Skjonsberg, Lucy Lu
Wang, Chris Wilhelm, Zheng Yuan, Madeleine van
Zuylen, and Oren Etzioni. 2018. Construction of

the literature graph in semantic scholar. In Proc. of
NAACL.

Piotr Andruszkiewicz and Rafal Hazan. 2018. Anno-
tated corpus of scientific conference’s homepages
for information extraction. In Proc. of LREC.

Shane Bergsma, Matt Post, and David Yarowsky. 2012.
Stylometric analysis of scientific articles. In Proc. of
NAACL.

Chandra Bhagavatula, Sergey Feldman, Russell Power,
and Waleed Ammar. 2018. Content-based citation
recommendation. In Proc. of NAACL.

James Foulds and Padhraic Smyth. 2013. Modeling
scientific impact with topical influence regression.
In Proc. of EMNLP.

Nadime Francis, Alastair Green, Paolo Guagliardo,
Leonid Libkin, Tobias Lindaaker, Victor Marsault,
Stefan Plantikow, Mats Rydberg, Petra Selmer, and
Andrés Taylor. 2018. Cypher: An evolving query
language for property graphs. In Proc. of SIGMOD.

Eric Kergosien, Amin Farvardin, Maguelonne Teis-
seire, Marie-Noëlle Bessagnet, Joachim Schöpfel,
Stéphane Chaudiron, Bernard Jacquemin, Annig La-
cayrelle, Mathieu Roche, Christian Sallaberry, and
Jean-Philippe Tonneau. 2018. Automatic identifica-
tion of research fields in scientific papers. In Proc.
of LREC.

Zhihong Shen, Hao Ma, and Kuansan Wang. 2018.
A web-scale system for scientific knowledge explo-
ration. In Proc. of ACL.

Yanchuan Sim, Bryan Routledge, and Noah A. Smith.
2015. A utility model of authors in the scientific
community. In Proc. of EMNLP.

Mayank Singh, Pradeep Dogga, Sohan Patro, Dhi-
raj Barnwal, Ritam Dutt, Rajarshi Haldar, Pawan
Goyal, and Animesh Mukherjee. 2018. Cl scholar:
The acl anthology knowledge graph miner. In Proc.
of NAACL.

Luca Weihs and Oren Etzioni. 2017. Learning to pre-
dict citation-based impact measures. In Proc. of
ACM/IEEE Joint Conference on Digital Libraries,
pages 49–58. IEEE Press.

Lingfei Wu, Dashun Wang, and James A. Evans. 2019.
Large teams develop and small teams disrupt science
and technology. Nature, 566:378–382.

Dani Yogatama, Michael Heilman, Brendan O’Connor,
Chris Dyer, Bryan R. Routledge, and Noah A.
Smith. 2011. Predicting a scientific community’s re-
sponse to an article. In Proc. of EMNLP.

152

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 153–158
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

ClaimPortal: Integrated Monitoring, Searching, Checking, and Analytics
of Factual Claims on Twitter

Sarthak Majithia Fatma Arslan Sumeet Lubal
Damian Jimenez Priyank Arora Josue Caraballo Chengkai Li

Department of Computer Science and Engineering
The University of Texas at Arlington

Abstract

We present ClaimPortal, a web-based plat-
form for monitoring, searching, checking, and
analyzing English factual claims on Twitter.
We explain the architecture of ClaimPortal,
its components and functions, and the user
interface. While the last several years have
witnessed a substantial growth in interests
and efforts in the area of computational fact-
checking, ClaimPortal is a novel infrastructure
in that fact-checkers have largely skipped fac-
tual claims in tweets. It can be a highly pow-
erful tool to both general web users and fact-
checkers. It will also be an educational re-
source in helping cultivate a society that is less
susceptible to falsehoods. While it currently
focuses on politics-related tweets, it will be ex-
tended to include more general factual claims.

1 Introduction

The spreading of falsehoods on the web has ad-
verse effects on a myriad of aspects in our society.
Politicians are doubling down on claims that are
demonstrably false because of the safety net that
“fake news” affords them. These efforts to manip-
ulate and distort public opinions in order to gain
political leverage can have negative effects on a
democracy, and they can even result in the poten-
tial manipulation of democratic election results.

At news organizations such as The Washing-
ton Post, New York Times and FactCheck.org,
professional fact-checkers take on the hard bat-
tle to counter misinformation and disinformation.
They vet claims by analyzing relevant data and
documents and publishing their verdicts. For in-
stance, PolitiFact.com gives factual claims truth-
fulness ratings such as true, half true, false, and
even “pants on fire”. However, there is simply far
more misinformation on the web than what fact-
checkers can keep up with. The process of fact-
checking is laborious and intellectually demand-

ing, as it takes the professionals about one day to
research and write a typical article about a fac-
tual claim (Hassan et al., 2015a). This difficulty
leaves many harmful claims unchecked, since fact-
checking organizations can only use their limited
resources to focus on national events and promi-
nent figures.

This problem of unchecked claims is exacer-
bated on social media. On the one hand, it is un-
likely fact-checkers are able to check every social
media post, due to limited resources and the sheer
volume of data. 1 On the other hand, a large num-
ber of false claims, likely much more than those
in traditional media, are being spread through so-
cial media. This can be due to the compounded
effect of several factors: social media platforms
have become increasingly important to public fig-
ures and organizations in engaging with voters and
citizens; mobile devices have brought an age in
which sharing and disseminating information is
easy for anyone, including both malicious and un-
intentional creators of falsehoods; the falsehoods
are further replicated and amplified by social me-
dia bots and clickbait articles. The consequence
can be devastating. For instance, a recent study
reports that a sample of 140,000 Twitter users in
the battleground state of Michigan shared as many
junk news items as professional news during the
final ten days of the 2016 election, each constitut-
ing 23% of the web links they shared on Twitter in
that period. 2

In this paper we present ClaimPortal, a web-
based platform for monitoring, searching, check-
ing, and analytics of factual claims on Twit-
ter. ClaimPortal is available at https://idir.
uta.edu/claimportal. ClaimPortal con-
tinuously collects tweets and monitors factual

1https://mashable.com/article/
snopes-stops-fact-checking-for-facebook/

2http://politicalbots.org/?p=1064

153

claims embedded in tweets. It is integrated with
fact-checking tools, including a claim matcher
which finds known fact-checks matching any
given tweet, a claim spotter which scores each
claim and the corresponding tweet based on their
check-worthiness, i.e., how important it is to fact-
check them. ClaimPortal provides an intuitive and
convenient search interface that assists its users
to sift through these factual claims in tweets us-
ing filtering conditions on dates, twitter accounts,
content, hashtags, check-worthiness scores, and
types of claims. ClaimPortal also provides simple
analytics and visualization tools for discovering
patterns pertinent to how certain twitter accounts
make claims, how different types of claims are dis-
tributed, and so on.

The initial call to arms to research on compu-
tational fact-checking was made nearly a decade
ago (Cohen et al., 2011). The last several years
have witnessed a substantial growth in interests
and efforts in this arena. These efforts tackle vari-
ous fronts, from detecting important factual claims
that are worth checking (Hassan et al., 2015b;
Jimenez and Li, 2018), to using databases for
discerning factual claims’ robustness (Wu et al.,
2017) and truthfulness (Ciampaglia et al., 2015;
Shi and Weninger, 2016; Jo et al., 2019), to build-
ing end-to-end fact-checking systems (Babakar
and Moy, 2016; Hassan et al., 2017a,b), and vi-
sualizing the spread of claims (Shao et al., 2016).
ClaimPortal is a novel infrastructure in that fact-
checkers have largely skipped factual claims in
tweets, especially those from less prominent ac-
counts, due to limited resources.

2 System Architecture and Components

2.1 System Architecture
ClaimPortal is composed of a front-end web based
GUI, a MySQL database, an Elasticsearch 3 search
engine, an API, and several decoupled batch data
processing components (Figure 1). The system
operates on two layers. The front-end presentation
layer allows users to narrow down search results
by applying multiple filters. Keyword search on
tweets is powered by Elasticsearch which is cou-
pled with querying the database to provide addi-
tional filters. Additionally, it provides numerous
visualized graphs. The back-end data collection
and computation layer performs pre-processing

3https://www.elastic.co/products/
elasticsearch

of tweets, computing check-worthiness scores of
tweets using the public ClaimBuster API (Hassan
et al., 2017a), Elasticsearch batch insertion, de-
tecting claim types of tweets, and finding similar
fact-checked claims for each tweet, using Claim-
Buster API. ClaimPortal stays up-to-date with
current tweets by periodically calling the Twitter
REST API.

Figure 1: ClaimPortal system architecture.

2.2 Monitoring, Processing, and Storing
Tweets

ClaimPortal at this moment focuses on politically-
charged tweets, but will be expanded to eventu-
ally cover all types of tweets. We curated a list
of prominent Tweet handles in U.S. politics that
include but are not limited to house representa-
tives and senators in the Congress, governors, city
mayors, U.S. Cabinet members, other government
officials, and political teams of news media. We
then made use of the user timeline endpoint of
the Twitter REST API to navigate through each
user’s timeline and collected their tweets. More
specifically, we navigated through the historic data
of a user’s timeline, which is a one-time process.
We then keep our data up-to-date by continuously
monitoring newly posted tweets. As of April 10,
2019, ClaimPortal monitors 3,200 Twitter handles
and has collected approximately 3.3 million tweets
after being deployed in mid-January 2019. We are
working on substantially expanding the curated
list of Twitter handles.

154

Claim Type FrameNet Frames
Conflict Invading, Attack, Explosion, Destroying, Hostile encounter, Use firearm, Shoot projectiles, Downing, Protest, Political actions

Life Giving birth, Being born, Death, Killing, Forming relationships, Cause harm, Personal relationship, Dead or alive
Movement Self motion, Inhibit movement, Travel, Departing, Arriving, Visiting, Motion, Cause motion, Bringing

Transaction Import export scenario, Commerce buy, Commerce sell, Getting, Commerce pay, Borrowing, Giving
Business Activity start, Conquering, Endeavor failure, Intentionally create, Business closure, Locale closure
Contact Meet with, Discussion, Come together, Communication, Contacting, Communication means, Text creation, Request

Personnel Take place of, Get a job, Hiring, Appointing, Removing, Firing, Quitting, Choosing, Becoming a member, Change of leadership

Justice Arrest, Imprisonment, Detaining, Extradition, Breaking out captive, Try defendant, Pardon, Appeal, Verdict, Sentencing, Fining, Execution,
Releasing, Notification of charges

Comparison Comparing two entities, Comparing at two different points in time
Quantity Change position on scale, Creating, Causation, Cause change of position on a scale, Occupy rank, Ratio

Stance Taking sides, Opinion, Be in agreement on assessment, Vote, Oppose and Support Consistency
Speech Statement, Affirm or deny, Telling

Table 1: Claim types and their corresponding FrameNet frames. Frames in red color are created by us.

ClaimPortal’s back-end layer focuses on data
processing and storage. The Twitter REST API
provides us with the necessary data. However,
the system does not require all of it. In fact, a
lot of the API’s response is discarded to keep our
database small and yet sufficient enough to pro-
vide all necessary information for the portal. This
is achieved through the ClaimPortal API. The API
is a web service designed using Python and the
Flask 4 micro-framework. It provides end points
for loading tweets on the GUI, search for hashtags,
and search for users in applying from-user and
user-mention filters. Based on the keyword search
and filters requested by a user, the API queries the
database to find the resulting list of tweet IDs and
returns the list as a JSON response. A tweet ID
is a unique number assigned to a tweet by Twitter.
By using Twitter’s card API 5 the system dynami-
cally populates the latest activity of a tweet at the
front-end, based on its ID.

The MySQL database has several normalized
tables. For each tweet the database stores its text,
when it was created, and who tweeted it. The
database also stores information about re-tweets
and quoted-tweets, hashtags and URLs mentioned
in the tweets, and information about the accounts
mentioned in the tweets.

ClaimPortal uses Elasticsearch to support key-
word search over the stored tweets. Since Elastic-
search is equipped with incremental indexing, the
system periodically feeds Elasticsearch the delta
tweets since last update for indexing. For this
the system uses a decoupled background batch
process that takes care of incrementally inserting
tweets and updating the Elasticsearch index.

4http://flask.pocoo.org
5https://developer.twitter.com/en/

docs/tweets/optimize-with-cards

2.3 Claim Spotter
In ClaimPortal, each tweet is given a check-
worthiness score which denotes whether the tweet
has a factual claim of which the truthfulness is im-
portant to the public. This score is obtained by
probing the ClaimBuster API,6 a well-known fact-
checking tool, developed by our research group,
that is being used by professional fact-checkers
on a regular basis (Adair et al., 2019). Claim-
Buster (Hassan et al., 2017a; Jimenez and Li,
2018) is a classification and ranking model trained
on a human-labeled dataset of 8,000 sentences
from past U.S. presidential debates. The Claim-
Buster API returns a check-worthiness score for
any given text. The score is on a scale from 0 to
1, ranging from least check-worthy to most check-
worthy. The background task of probing Claim-
Buster API for getting scores for tweets is another
batch process, in parallel with the tweet collection
and the Elasticsearch indexing processes.

2.4 Detecting Claim Types
ClaimPortal uses tweets to gain insights into fac-
tual claims that are being spread, by whom, how
often, and whether they are true. To answer these
questions we categorize tweets by the types of fac-
tual claims they promote. We employed a collec-
tion of FrameNet frames (Baker et al., 1998) and
created several new frames specifically for factual
claims. We then adopted the study of mapping
frames to event types (Spiliopoulou et al., 2017).

2.4.1 Frame detection
FrameNet is a linguistic resource for English com-
prised of 1,224 manually established semantic
frames. Each frame provides information about
both the linguistic and the semantic structure of a
type of event, situation, object, or relation along
with its participants. The participants, called

6https://idir.uta.edu/claimbuster/

155

(a)

(b)

Figure 2: (a) ClaimPortal user interface. (b) Similar fact-checks for the highlighted tweet in Figure (a).

frame elements, are frame-specific semantic roles
that provide additional information. Each frame is
evoked by a set of lexical units, or words, which
are a composition of the lemma and meaning of
the word.

We created new frames after conducting a sur-
vey of existing fact-checks from PolitiFact 7 and
followed it by grouping together semantically and
syntactically similar factual claims from these
fact-checks. If a group of claims did not share a
common existing frame, we created a new frame
for it. Details of these purposely created new
frames can be found in (Arslan et al., 2019). The
corpus of the newly-defined frames along with
their annotated exemplary sentences is publicly
available. 8

We used open-sesame (Swayamdipta et al.,
2017), a recurrent neural network based frame- se-
mantic parser, to detect all possible frames a tweet
can potentially hold. We retrained open-sesame
on FrameNet 1.7 dataset after extending it with
annotated sentences for the newly defined frames.

7https://www.politifact.com
8https://github.com/idirlab/factframe

Open-sesame works as a pipeline of several tasks:
target identification (detecting all lexical units),
frame identification (detecting all frames in a sen-
tence), and argument identification.

2.4.2 Claim type mapper
In (Spiliopoulou et al., 2017) eight ACE event
types were listed along with their mapped frames:
Business, Conflict, Contact, Justice, Life, Move-
ment, Personnel, and Transaction. To accommo-
date the new frames explained in Section 2.4.1, we
extended this list by introducing four new event
types, namely Comparison, Quantity, Stance, and
Speech, and their corresponding frames (Table 1).
In ensuing discussion, we refer to these event
types as claim types, for simplicity of terminology.
More specifically, Comparison is for claims that
show entities involved in some sort of comparisons
based on some criteria, Quantity presents claims
with quantities, Stance is for claims that have en-
tities with viewpoints towards issues, events, etc.,
and Speech is for claims that communicate some
messages in the written or spoken form. A script
identifies the claim types of each tweet by map-
ping identified frames to their corresponding claim

156

Figure 3: Examples of visualizations on ClaimPortal website.

types. A tweet can have multiple claim types.

2.5 Claim Matcher

Claim matching is an important step in the work-
flow of fact-checking. Given a factual claim, it
aims at finding identical or similar claims from
a repository of existing fact-checks. The premise
is that public figures keep making the same false
claims. While politicians may refrain themselves
from making outright false claims to avoid being
fact-checked, oftentimes they even double down
after their false claims are debunked. 9

ClaimPortal leverages the claim matching func-
tion in the ClaimBuster API. The fact-check
repository is composed of the Share-the-facts 10

fact checks as well as fact checks collected from
several fact-checking organizations like PolitiFact,
Snopes, factcheck.org, Washington Post, etc. The
system measures the similarity between a claim
and a fact-check based on the similarity of their
tokens. An Elasticsearch server is deployed for
searching the repository based on token similarity.

3 User Interface Features

ClaimPortal enables a user to sift through the
tweets using multiple filters. The important fil-
ters are as follows. (1) Keyword search: It al-
lows users to make a text-based search by key-

9https://wapo.st/2rucTq8
10http://www.sharethefacts.org/

words such as “climate change”. (2) Hashtags:
It allows users to further filter tweets by hashtags
such as “#116thCongress” or “#2020”. (3) Claim
type: It enables users to search for tweets with a
specific claim type, e.g., Conflict or Stance. (4)
From: It looks for tweets posted by a particu-
lar user handle, e.g., “@realDonaldTrump”. (5)
Mentions: The search results can be filtered fur-
ther by user mentions (i.e., using “@” to tag a user
in a tweet, e.g., “@POTUS”). (6) ClaimBuster
score: ClaimPortal also offers a slider to filter re-
sults based on a ClaimBuster score range. The re-
sult tweets are automatically updated as the slider
is moved. (7) Date range: Additionally, the portal
offers a date picker to filter tweets based on their
creation dates. Figure 2a shows ClaimPortal user
interface with the search results of a sample query.
The sample query contains the following filtering
conditions: a keyword “climate change“, a claim
type Stance, a range of ClaimBuster score from
0.3 to 1.0, and a date range from January 1, 2019 to
April 1, 2019. Moreover, the ClaimPortal shares
previously fact-checked claims with users by dis-
playing matching fact-checks after a tweet’s card
view is clicked at. Figure 2b depicts the matching
fact-checks of the highlighted tweet in Figure 2a.

4 Analytics and Visualizations

We work to make ClaimPortal the repository
where one can find all factual claims made on

157

Twitter. It can be a powerful tool for a diverse
group of users. It enables web users to explore
and analyze factual claims in tweets at scale. We
use analytics and visualizations to shed more light
on the importance of ClaimPortal and bring the
hidden patterns in the data to light. For instance,
a user can compare tweets from different political
groups in detail based on check-worthiness of their
claims and variety of their claims. Figures 3d and
3e compare Democratic Senators and Republican
Senators based on the types of claims they made
and check-worthiness of their claims. Figure 3a
depicts the spread of all claim types made by dif-
ferent group of politicians in the past one year and
Figure 3b shows the distribution of tweets over
five ClaimBuster score ranges made by different
group of U.S. politicians such as the 2020 presi-
dential election candidates.

Acknowledgments

The work is partially supported by NSF grant IIS-
1719054 and subawards from Duke University as
part of a grant to the Duke Tech & Check Coop-
erative from the Knight Foundation and Facebook.
Any opinions, findings, and conclusions or recom-
mendations expressed in this publication are those
of the authors and do not necessarily reflect the
views of the funding agencies.

References
Bill Adair, Mark Stencel, Cathy Clabby, and Chengkai

Li. 2019. The human touch in automated fact-
checking: How people can help algorithms expand
the production of accountability journalism. In
Computation+Journalism Symposium.

Fatma Arslan, Damian Jimenez, Josue Caraballo, Gen-
sheng Zhang, and Chengkai Li. 2019. Modeling fac-
tual claims by frames. In Computation+Journalism
Symposium.

Mevan Babakar and Will Moy. 2016. The state of au-
tomated fact-checking. Full Fact.

Collin F. Baker, Charles J. Fillmore, and John B. Lowe.
1998. The berkeley framenet project. In ACL, pages
86–90.

Giovanni Luca Ciampaglia, Prashant Shiralkar,
Luis M. Rocha, Johan Bollen, Filippo Menczer, and
Alessandro Flammini. 2015. Computational fact
checking from knowledge networks. PLOS ONE,
10:1–13.

Sarah Cohen, Chengkai Li, Jun Yang, and Cong Yu.
2011. Computational journalism: A call to arms to
database researchers. In CIDR, pages 148–151.

Naeemul Hassan, Bill Adair, James T. Hamilton,
Chengkai Li, Mark Tremayne, Jun Yang, and Cong
Yu. 2015a. The quest to automate fact-checking. In
Computation+Journalism Symposium.

Naeemul Hassan, Fatma Arslan, Chengkai Li, and
Mark Tremayne. 2017a. Toward automated fact-
checking: Detecting check-worthy factual claims by
claimbuster. In KDD, pages 1803–1812.

Naeemul Hassan, Chengkai Li, and Mark Tremayne.
2015b. Detecting check-worthy factual claims in
presidential debates. In CIKM, pages 1835–1838.

Naeemul Hassan, Gensheng Zhang, Fatma Arslan, Jo-
sue Caraballo, Damian Jimenez, Siddhant Gawsane,
Shohedul Hasan, Minumol Joseph, Aaditya Kulka-
rni, Anil Kumar Nayak, Vikas Sable, Chengkai Li,
and Mark Tremayne. 2017b. Claimbuster: The
first-ever end-to-end fact-checking system. PVLDB,
10(12):1945–1948.

Damian Jimenez and Chengkai Li. 2018. An empirical
study on identifying sentences with salient factual
statements. In IJCNN.

Saehan Jo, Immanuel Trummer, Weicheng Yu, Xuezhi
Wang, Cong Yu, Daniel Liu, and Niyati Mehta.
2019. Verifying text summaries of relational data
sets. In SIGMOD.

Chengcheng Shao, Giovanni Luca Ciampaglia,
Alessandro Flammini, and Filippo Menczer. 2016.
Hoaxy: A platform for tracking online misinforma-
tion. In WWW Companion, pages 745–750.

Baoxu Shi and Tim Weninger. 2016. Discrimina-
tive predicate path mining for fact checking in
knowledge graphs. Knowledge-Based Systems,
104(C):123–133.

Evangelia Spiliopoulou, Eduard Hovy, and Teruko Mi-
tamura. 2017. Event detection using frame-semantic
parser. In Proceedings of the Events and Stories in
the News Workshop, pages 15–20.

Swabha Swayamdipta, Sam Thomson, Chris Dyer, and
Noah A. Smith. 2017. Frame-semantic parsing with
softmax-margin segmental rnns and a syntactic scaf-
fold. CoRR, abs/1706.09528.

You Wu, Pankaj K. Agarwal, Chengkai Li, Jun Yang,
and Cong Yu. 2017. Computational fact checking
through query perturbations. ACM Transactions on
Database Systems (TODS), 42(1):4:1–4:41.

158

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 159–164
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Texar: A Modularized, Versatile, and Extensible Toolkit
for Text Generation

Zhiting Hu∗, Haoran Shi, Bowen Tan, Wentao Wang, Zichao Yang,
Tiancheng Zhao, Junxian He, Lianhui Qin, Di Wang, Xuezhe Ma, Zhengzhong Liu,

Xiaodan Liang, Wangrong Zhu, Devendra Singh Sachan, Eric P. Xing
Carnegie Mellon University, Petuum Inc.

zhitinghu@gmail.com∗

Abstract

We introduce Texar, an open-source toolkit
aiming to support the broad set of text genera-
tion tasks that transform any inputs into natural
language, such as machine translation, sum-
marization, dialog, content manipulation, and
so forth. With the design goals of modularity,
versatility, and extensibility in mind, Texar ex-
tracts common patterns underlying the diverse
tasks and methodologies, creates a library of
highly reusable modules and functionalities,
and allows arbitrary model architectures and
algorithmic paradigms. In Texar, model archi-
tecture, inference, and learning processes are
properly decomposed. Modules at a high con-
cept level can be freely assembled or plugged
in/swapped out. Texar is thus particularly suit-
able for researchers and practitioners to do
fast prototyping and experimentation. The
versatile toolkit also fosters technique sharing
across different text generation tasks. Texar
supports both TensorFlow and PyTorch, and is
released under Apache License 2.0 at https:
//www.texar.io.1

1 Introduction

Text generation spans a broad set of natural lan-
guage processing tasks that aim to generate nat-
ural language from input data or machine repre-
sentations. Such tasks include machine transla-
tion (Brown et al., 1990; Bahdanau et al., 2014),
dialog systems (Williams and Young, 2007; Ser-
ban et al., 2016; Tang et al., 2019), text summa-
rization (Hovy and Lin, 1998), text paraphrasing
and manipulation (Madnani and Dorr, 2010; Hu
et al., 2017; Lin et al., 2019), and more. Recent
years have seen rapid progress of this active area,
in part due to the integration of modern deep learn-
ing approaches in many of the tasks. On the other
hand, considerable research efforts are still needed

1An expanded version of the tech report can be found at
https://arxiv.org/abs/1809.00794

in order to improve techniques and enable real-
world applications.

A few remarkable open-source toolkits have
been developed (section 2) which largely focus on
one or a few specific tasks or algorithms. Emerg-
ing new applications and approaches instead are
often developed by individual teams in a more ad-
hoc manner, which can easily result in hard-to-
maintain custom code and duplicated efforts.

The variety of text generation tasks indeed have
many common properties and share a set of key
underlying techniques, such as neural encoder-
decoders (Sutskever et al., 2014), attentions (Bah-
danau et al., 2014; Luong et al., 2015; Vaswani
et al., 2017), memory networks (Sukhbaatar et al.,
2015), adversarial methods (Goodfellow et al.,
2014; Lamb et al., 2016), reinforcement learn-
ing (Ranzato et al., 2015; Tan et al., 2018), struc-
tured supervision (Hu et al., 2018; Yang et al.,
2018), as well as optimization techniques, data
pre-processing and result post-processing, evalu-
ations, etc. These techniques are often combined
together in various ways to tackle different prob-
lems. Figure 1 summarizes examples of various
model architectures.

It is therefore highly desirable to have an open-
source platform that unifies the development of the
diverse yet closely-related applications, backed
with clean and consistent implementations of the
core algorithms. Such a platform would enable
reuse of common components; standardize de-
sign, implementation, and experimentation; foster
reproducibility; and importantly, encourage tech-
nique sharing among tasks so that an algorithmic
advance developed for a specific task can quickly
be evaluated and generalized to many others.

We introduce Texar, a general-purpose text gen-
eration toolkit aiming to support popular and
emerging applications in the field, by provid-
ing researchers and practitioners a unified and

159

E D

A

𝑥 𝑦 E D

Prior

𝑥 𝑦𝑧 E D

M

𝑥 𝑦

C

E D𝑥 𝑦𝑧

E D𝑥 𝑦

C0/1

E1

E2

E3

D1

D2

D3

𝑦1

𝑦2

𝑦3

𝑥1

𝑥2

𝑥3

𝑥 E
D1

D2

C

𝑦1

𝑦2
0/1

(a) (b) (d)(c)

(e) (f) (g)

Figure 1: Examples of model architectures in recent text generation literatures (E: encoder, D: decoder, C: clas-
sifier). (a): The canonical encoder-decoder, sometimes with attentions A (Sutskever et al., 2014; Bahdanau
et al., 2014; Vaswani et al., 2017) or copy mechanisms (Gu et al., 2016; Vinyals et al., 2015). (b): Variational
encoder-decoder (Bowman et al., 2015). (c): Augmenting with external memory (Sukhbaatar et al., 2015). (d):
Adversarial model using a binary discriminator C, w/ or w/o reinforcement learning (Zhang et al., 2017; Yu et al.,
2017). (e): Multi-task learning with multiple encoders/decoders (Luong et al., 2016). (f): Augmenting with
cyclic loss (Hu et al., 2017). (g): Adversarial alignment, either on samples y or hidden states (Lamb et al., 2016).

flexible framework for building their models.
Texar has two versions, building upon TensorFlow
(tensorflow.org) and PyTorch (pytorch.
org), respectively, with the same uniform design.

Underlying the core of Texar’s design is prin-
cipled anatomy of extensive text generation mod-
els and learning algorithms, which subsumes the
diverse cases in Figures 1 and beyond, enabling
a unified formulation and consistent implementa-
tion. Texar emphasizes three key properties:
Versatility. Texar contains a wide range of
features and functionalities for 1) arbitrary model
architectures as a combination of encoders, de-
coders, embedders, discriminators, memories, and
many other modules; and 2) different model-
ing and learning paradigms such as sequence-to-
sequence, probabilistic models, adversarial meth-
ods, and reinforcement learning. Based on these,
both workhorse and cutting-edge solutions to the
broad spectrum of text generation tasks are either
already included or can be easily constructed.
Modularity. Users can construct models at a
high conceptual level just like assembling build-
ing blocks. It is convenient to plug in or swap
out modules, configure rich module options, or
even switch between distinct modeling paradigms.
For example, switching from adversarial learning
to reinforcement learning involves only minimal
code changes (e.g., Figure 4). Modularity makes
Texar particularly suitable for fast prototyping and
experimentation.
Extensibility. The toolkit provides interfaces
ranging from simple configuration files to full li-
brary APIs. Users of different needs and expertise
are free to choose different interfaces for appro-
priate programmability and internal accessibility.
The library APIs are fully compatible with the na-

tive TensorFlow/PyTorch interfaces, which allows
seamless integration of user-customized modules,
and enables the toolkit to take advantage of the vi-
brant open-source community by effortlessly im-
porting any external components as needed.

Furthermore, Texar emphasizes on well-
structured code, clean documentation, rich tutorial
examples, and distributed GPU training.

2 Related Work

There exist several toolkits that focus on one or
a few specific tasks. For neural machine transla-
tion and alike, there are Tensor2Tensor (Vaswani
et al., 2018) on TensorFlow, OpenNMT (Klein
et al., 2017) on PyTorch, Nematus (Sennrich
et al., 2017) on Theano, MarianNMT (Junczys-
Dowmunt et al., 2018) on C++, etc. ParlAI (Miller
et al., 2017) is a specialized platform for dialogue.
Differing from the task-focusing tools, Texar aims
to cover as many text generation tasks as possible.
The goal of versatility poses unique design chal-
lenges.

On the other end of the spectrum, there are
libraries for more general NLP or ML applica-
tions: AllenNLP (allennlp.org), GluonNLP
(gluon-nlp.mxnet.io) and others are de-
signed for the broad NLP tasks in general, while
Keras (keras.io) is for high conceptual-level
programming without specific task focuses. In
comparison, Texar has a proper focus on the text
generation sub-area, and provide a comprehensive
set of modules and functionalities that are well-
tailored and readily-usable for relevant tasks. For
example, Texar provides rich text docoder
with optimized interfaces to support over ten de-
coding methods (see section 3.3 for an example).

160

Applications

Model templates + Config files

Evaluation

Models Data

Decoder

PredictionTraining

Library APIs

Architectures Losses

Embedder Classifier

Memory

. . .

(Seq) MaxLikelihood Adversarial

Rewards Regularize

MonoText PairedText

Dialog Numerical

Trainer

Optimizer

Seq/Episodic RL Agent

lr decay / grad clip / ...

Encoder

Connector Policy QNet RL-related Multi-field/type Parallel

.

Executor

. . .

stack

learning
decoding
inference

decoder
architecture

Maximum likelihood
Adversarial

Reinforcement
Reward-augmented

…

Teacher-forcing
Sample
Greedy

Beam-search
Gumbel-softmax

Top-k sample
…

Basic RNN

Attention RNN

Transformer

…

called as subroutines provide uniform interfaces

Figure 2: Left: The stack of main modules and functionalities in Texar. Right: The learning-inference-architecture
anatomy, taking decoder for example. A sequence decoder can have an arbitrary architecture; all architectures
expose uniform interfaces for specifying one of the tens of inference (decoding) strategies to generate samples or
infer probabilities; a learning procedure repeated calls specified inference procedure during training.

3 Structure and Design

Figure 2, left panel, shows the stack of main mod-
ules and functionalities in Texar. In the following,
we first present the design principles (sec 3.1) of
the toolkit, and then describe the detailed structure
of Texar with running examples to demonstrate the
key properties (sec 3.2-3.4).

3.1 The Design of Texar

Designing a versatile toolkit is challenging due to
the large variety of text generation tasks and fast-
growing new models. We tackle the challenges
by adopting principled anatomy of the modeling
and experimentation pipeline. Specifically, we
break down the complexity of rich tasks into three
dimensions of variations, namely, varying data
types/formats, arbitrary combinational model ar-
chitectures and inference procedures, and diverse
learning algorithms. Within the unified abstrac-
tion, all learning paradigms are each specifying
one or multiple loss functions (e.g., cross-entropy
loss, policy gradient loss), along with an optimiza-
tion procedure that improves the losses:

minθ L(fθ, D) (1)

where fθ is the model that defines the model archi-
tecture and the inference procedure; D is the data;
L is the learning objectives (losses); and min de-
notes the optimization procedure. Note that the
above can have multiple losses imposed on differ-
ent model parts (e.g., adversarial learning).

Further, as illustrated in Figure 2 right panel,
we decouple learning, inference, and model archi-
tecture, forming abstraction layers of learning –
inference – architecture. That is, different ar-
chitectures implement the same set of inference

procedures and provide the same interfaces, so
that learning algorithms can call proper inference
procedures as subroutines while staying agnos-
tic to the underlying architecture and implemen-
tation details. For example, maximum likelihood
learning uses teacher-forcing decoding (Mikolov
et al., 2010); a policy gradient algorithm can in-
voke stochastic or greedy decoding (Ranzato et al.,
2015); and adversarial learning can use either
stochastic decoding for policy gradient-based up-
dates (Yu et al., 2017) or Gumbel-softmax repa-
rameterized decoding (Jang et al., 2016) for direct
gradient back-propagation. Users can switch be-
tween different learning algorithms for the same
model, by simply specifying the corresponding in-
ference strategy and plugging into a new learning
module, without adapting the model architecture
(see section 3.3 for a running example).

3.2 Assemble Arbitrary Model Architectures

We develop an extensive set of frequently-used
modules (e.g., various encoders, decoders,
embedders, classifiers, etc). Crucially,
Texar allows free concatenation between these
modules in order to assemble arbitrary model ar-
chitectures. Such concatenation can be done by
directly interfacing two modules, or through an
intermediate connector module that provides
general functionalities of reshaping, reparameteri-
zation, sampling, and others.

Besides the flexibility of arbitrary assembling,
it is critical for the toolkit to provide proper ab-
stractions to relieve users from overly concerning
low-level implementations. Texar provides two
major types of user interfaces with different ab-
stract levels, i.e., YAML configuration files and
full Python library APIs. Figure 3 shows an exam-

161

 1 # Read data

2 dataset = PairedTextData(data_hparams)
3 batch = DataIterator(dataset).get_next()
4
5 # Encode
6 embedder = WordEmbedder(dataset.vocab.size, hparams=embedder_hparams)
7 encoder = TransformerEncoder(hparams=encoder_hparams)
8 enc_outputs = encoder(embedder(batch['source_text_ids']),
9 batch['source_length'])

10
11 # Decode
12 decoder = AttentionRNNDecoder(memory=enc_outputs,
13 hparams=decoder_hparams)
14 outputs, length, _ = decoder(inputs=embedder(batch['target_text_ids']),
15 seq_length=batch['target_length']-1)
16
17 # Loss
18 loss = sequence_sparse_softmax_cross_entropy(
19 labels=batch['target_text_ids'][:,1:], logits=outputs.logits, seq_length=length)
20

1 source_embedder: WordEmbedder
2 source_embedder_hparams:
3 dim: 300
4 encoder: UnidirectionalRNNEncoder
5 encoder_hparams:
6 rnn_cell:
7 type: BasicLSTMCell
8 kwargs:
9 num_units: 300

10 num_layers: 1
11 dropout:
12 output_dropout: 0.5
13 variational_recurrent: True
14 embedder_share: True
15 decoder: AttentionRNNDecoder
16 decoder_hparams:
17 attention:
18 type: LuongAttention
19 beam_search_width: 5
20 optimization: …

 Figure 3: Two ways of specifying an attentional encoder-decoder model. Left: Part of an example YAML config

file of the model template. Hyperparameters taking default values can be omitted in the file. Right: Python code
assembling an encoder-decoder model using library APIs. Modules are created as Python objects, and called as
functions to create computation operations and return output tensors. Other code such as optimization is omitted.

ple of specifying an attentional encoder-decoder
model through the two interfaces, respectively.

Configuration file passes hyperparameters to
a predefined model template, which instantiates
the model for training and evaluation. Text high-
lighted in blue in the figure (left panel) specifies
the names of modules to use. Most hyperparame-
ters have sensible default values. Users only have
to specify hyperparameter values that differ from
the default. The interface is easily understandable
for non-expert users, and has also been adopted in
other tools (e.g., Klein et al., 2017).

Library APIs offer clean function calls. Users
can efficiently build any desired pipelines at a high
conceptual level. Power users have the option to
access the full internal states for low-level manip-
ulations. Texar modules support convenient vari-
able re-use. That is, each module instance creates
its own sets of variables, and automatically re-uses
them on subsequent calls. Hence TensorFlow vari-
able scope is transparent to users.

3.3 Plug-in and Swap-out Modules

It is convenient to change from one model-
ing paradigm to another by simply plugging
in/swapping out a single or few modules, or even
merely changing a configuration parameter. For
example, given the base code of an encoder-
decoder model in Figure 3 (right panel), Figure 4
illustrates how one can switch between different
learning paradigms by changing only Lines.14–19
of the original code (maximum-likelihood learn-

ing). In particular, Figure 4 shows adversar-
ial learning and reinforcement learning, which
invokes Gumbel-softmax decoding and random-
sample decoding, respectively.

3.4 Customize with Extensible Interfaces

Texar emphasizes on extensibility and allows easy
addition of customized/external modules without
editing the Texar codebase. Specifically, with the
YAML configuration file, users can directly in-
sert their own modules by providing the Python
importing path to the module. For example,
to use a customized RNN cell in the encoder,
one can simply change Line.7 of Figure 3 (left
panel) to type: path.to.MyCell, as long as
MyCell has a compatible interface to other parts
of the model. Using customized modules with the
library APIs is even more flexible, since the APIs
are designed to be fully compatible with native
TensorFlow/PyTorch programming interfaces.

4 Case Study: Transformer on Different
Tasks

We present a case study to show that Texar can
greatly reduce implementation efforts and enable
technique sharing among different tasks. Trans-
former, as first introduced in (Vaswani et al.,
2017), has greatly improved the machine transla-
tion results and created other successful models
such as BERT for text embedding (Devlin et al.,
2019) and GPT-2 for language modeling (Radford
et al., 2018). Texar supports easy construction of

162

Discriminator

Decoder

!" BLEU

Policy Gradient Agent "

Rewards
<BOS>

Decoder

…

<BOS>

" 0/1

!"1 !"2 …

!"1 !"2

helper = GumbelSoftmaxTrainingHelper(# Gumbel-softmax decoding
start_tokens=[BOS]*batch_size, end_token=EOS, embedding=embedder)

outputs, _, _ = decoder(helper=helper)

discriminator = Conv1DClassifier(hparams=conv_hparams)

G_loss, D_loss = binary_adversarial_losses(
embedder(batch[‘target_text_ids’][:, 1:]),
embedder(soft_ids=softmax(outputs.logits)),
discriminator)

outputs, length, _ = decoder(# Random sample decoding
start_tokens=[BOS]*batch_size, end_token=EOS,
embedding=embedder, decoding_strategy=‘infer_sample')

agent = SeqPGAgent(
samples=outputs.sample_id, logits=outputs.logits, seq_length=length)

for _ in range(STEPS):
samples = agent.get_samples()
rewards = BLEU(batch[‘target_text_ids’], samples)
agent.observe(rewards) # Train the policy (decoder)

(a) Adversarial learning

(b) Reinforcement learning

Figure 4: Switching between different learning paradigms of a decoder involves only modification of Line.14-19 of
Figure 3 (maximum-likelihood learning). The same decoder is called with different decoding modes, and discrim-
inator or reinforcement learning agent is added as needed. (Left): Module structure of each paradigm; (Right):
The respective code snippets. For adversarial learning in (b), continuous Gumbel-softmax approximation (Jang
et al., 2016) to generated samples is used to enable gradient propagation from the discriminator to the decoder.

these models and fine-tuning pretrained weights.
We can also deploy the Transformer components
to various other tasks and get improved results.

The first task we explored is the variational
autoencoder (VAE) language modeling (Bowman
et al., 2015). We test two models, one with an
LSTM RNN decoder which is traditionally used
in the task, and the other with a Transformer de-
coder. All other model configurations including
parameter size are the same across the two mod-
els. Table 1, top panel, shows the Transformer
VAE consistently improves over the LSTM VAE.
With Texar, changing the decoder from an LSTM
to a Transformer is easily achieved by modifying
only 3 lines of code. It is also worth noting that,
building the VAE language model (including data
reading, model construction, and optimization) on
Texar uses only 70 lines of code (with the length
of each line < 80 chars). As a (rough) reference, a
popular public TensorFlow code (Li, 2017) of the
same model has used around 400 lines of code for
the same part (without line length limit).

The second task is conversation genera-
tion. The dialog history is encoded with the
HierarchicalRNNEncoder module which is
followed by a decoder to generate the response.
We study the performance of a Transformer de-
coder v.s. a conventional GRU RNN decoder. Ta-
ble 1, bottom panel, shows the Transformer out-
performs GRU. Regarding the implementation ef-
fort, the Texar code has around 100 lines of code,
while the reference TensorFlow code (Zhao et al.,
2017) involves over 600 lines.

Dataset Metrics VAE-LSTM VAE-Tran

Yahoo PPL 68.31 61.26
(Yang et al.) NLL 337.36 328.67

PTB PPL 105.27 102.46
(Bowman et al.) NLL 102.06 101.46

Dataset Metrics HERD-GRU HERD-Tran

Switchboard BLEU4-p 0.228 0.232
(Zhao et al.) BLEU4-r 0.205 0.214

Table 1: Top: Transformer vs LSTM for VAE LM.
Perplexity (PPL) and sentence negative log likelihood
(NLL) are evaluated (The lower the better). Bottom:
Transformer vs GRU decoders in HERD (Serban et al.,
2016) for conversation response generation. BLEU4-p
and -r are precision and recall (Zhao et al., 2017).

References
Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Ben-

gio. 2014. Neural machine translation by jointly
learning to align and translate. arXiv:1409.0473.

Samuel R Bowman, Luke Vilnis, Oriol Vinyals, An-
drew M Dai, Rafal Jozefowicz, and Samy Ben-
gio. 2015. Generating sentences from a continuous
space. arXiv:1511.06349.

Peter F Brown, John Cocke, Stephen A Della Pietra,
Vincent J Della Pietra, Fredrick Jelinek, John D Laf-
ferty, Robert L Mercer, and Paul S Roossin. 1990. A
statistical approach to machine translation. CL.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. NAACL.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza,
Bing Xu, David Warde-Farley, Sherjil Ozair, Aaron
Courville, and Yoshua Bengio. 2014. Generative ad-
versarial nets. NeurIPS.

Jiatao Gu, Zhengdong Lu, Hang Li, and Victor OK

163

Li. 2016. Incorporating copying mechanism in
sequence-to-sequence learning. arXiv:1603.06393.

Eduard Hovy and Chin-Yew Lin. 1998. Automated text
summarization and the SUMMARIST system. In
Advances in automatic text summarization.

Zhiting Hu, Zichao Yang, Xiaodan Liang, Ruslan
Salakhutdinov, and Eric P Xing. 2017. Toward con-
trolled generation of text. In ICML.

Zhiting Hu, Zichao Yang, Ruslan Salakhutdinov, Xi-
aodan Liang, Lianhui Qin, Haoye Dong, and Eric
Xing. 2018. Deep generative models with learnable
knowledge constraints. In NeurIPS.

Eric Jang, Shixiang Gu, and Ben Poole. 2016. Cat-
egorical reparameterization with Gumbel-softmax.
arXiv:1611.01144.

Marcin Junczys-Dowmunt, Roman Grundkiewicz,
Tomasz Dwojak, Hieu Hoang, Kenneth Heafield,
Tom Neckermann, Frank Seide, Ulrich Germann,
Alham Fikri Aji, Nikolay Bogoychev, Andr F. T.
Martins, and Alexandra Birch. 2018. Mar-
ian: Fast neural machine translation in C++.
arXiv:1804.00344.

Guillaume Klein, Yoon Kim, Yuntian Deng, Jean
Senellart, and Alexander M Rush. 2017. OpenNMT:
Open-source toolkit for neural machine translation.
arXiv:1701.02810.

Alex M Lamb, Anirudh Goyal Alias Parth Goyal, Ying
Zhang, Saizheng Zhang, Aaron C Courville, and
Yoshua Bengio. 2016. Professor forcing: A new al-
gorithm for training recurrent networks. In NeurIPS.

Zhong-Yi Li. 2017. https://github.com/Chung-
I/Variational-Recurrent-Autoencoder-Tensorflow.

Shuai Lin, Wentao Wang, Zichao Yang, Haoran Shi,
Frank Xu, Xiaodan Liang, Eric Xing, and Zhiting
Hu. 2019. Towards unsupervised text content ma-
nipulation. arXiv preprint arXiv:1901.09501.

Minh-Thang Luong, Quoc V Le, Ilya Sutskever, Oriol
Vinyals, and Lukasz Kaiser. 2016. Multi-task se-
quence to sequence learning. In ICLR.

Minh-Thang Luong, Hieu Pham, and Christo-
pher D Manning. 2015. Effective approaches
to attention-based neural machine translation.
arXiv:1508.04025.

Nitin Madnani and Bonnie J Dorr. 2010. Generating
phrasal and sentential paraphrases: A survey of data-
driven methods. CL.

Tomáš Mikolov, Martin Karafiát, Lukáš Burget, Jan
Černockỳ, and Sanjeev Khudanpur. 2010. Recur-
rent neural network based language model. In IN-
TERSPEECH.

Alexander H Miller, Will Feng, Adam Fisch, Jiasen Lu,
Dhruv Batra, Antoine Bordes, Devi Parikh, and Ja-
son Weston. 2017. ParlAI: A dialog research soft-
ware platform. arXiv:1705.06476.

Alec Radford, Jeffrey Wu, Rewon Child, David Luan,
Dario Amodei, and Ilya Sutskever. 2018. Language
models are unsupervised multitask learners. Techni-
cal report, Technical report, OpenAI.

Marc’Aurelio Ranzato, Sumit Chopra, Michael
Auli, and Wojciech Zaremba. 2015. Sequence
level training with recurrent neural networks.
arXiv:1511.06732.

Rico Sennrich, Orhan Firat, Kyunghyun Cho, Alexan-
dra Birch, Barry Haddow, Julian Hitschler, Marcin
Junczys-Dowmunt, Samuel Läubli, et al. 2017. Ne-
matus: a toolkit for neural machine translation.
arXiv:1703.04357.

Iulian Vlad Serban, Alessandro Sordoni, Yoshua Ben-
gio, Aaron C Courville, and Joelle Pineau. 2016.
Building end-to-end dialogue systems using gener-
ative hierarchical neural network models.

Sainbayar Sukhbaatar, Jason Weston, Rob Fergus, et al.
2015. End-to-end memory networks. In NeurIPS.

Ilya Sutskever, Oriol Vinyals, and Quoc Le. 2014. Se-
quence to sequence learning with neural networks.
NeurIPS.

Bowen Tan, Zhiting Hu, Zichao Yang, Ruslan
Salakhutdinov, and Eric Xing. 2018. Connecting the
dots between MLE and RL for sequence generation.
arXiv:1811.09740.

Jianheng Tang, Tiancheng Zhao, Chengyan Xiong, Xi-
aodan Liang, Eric P Xing, and Zhiting Hu. 2019.
Target-guided open-domain conversation. In ACL.

Ashish Vaswani, Samy Bengio, Eugene Brevdo, Fran-
cois Chollet, Aidan N Gomez, Stephan Gouws,
Llion Jones, Łukasz Kaiser, Nal Kalchbrenner, Niki
Parmar, et al. 2018. Tensor2Tensor for neural ma-
chine translation. arXiv:1803.07416.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. In NeurIPS.

Oriol Vinyals, Meire Fortunato, and Navdeep Jaitly.
2015. Pointer networks. In NeurIPS.

Jason D Williams and Steve Young. 2007. Partially ob-
servable Markov decision processes for spoken dia-
log systems. CSL.

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and
Taylor Berg-Kirkpatrick. 2018. Unsupervised text
style transfer using language models as discrimina-
tors. arXiv:1805.11749.

Zichao Yang, Zhiting Hu, Ruslan Salakhutdinov, and
Taylor Berg-Kirkpatrick. 2017. Improved varia-
tional autoencoders for text modeling using dilated
convolutions. ICML.

Lantao Yu, Weinan Zhang, Jun Wang, and Yong Yu.
2017. SeqGAN: Sequence generative adversarial
nets with policy gradient. In AAAI.

Yizhe Zhang, Zhe Gan, Kai Fan, Zhi Chen, Ricardo
Henao, Dinghan Shen, and Lawrence Carin. 2017.
Adversarial feature matching for text generation.
arXiv:1706.03850.

Tiancheng Zhao, Ran Zhao, and Maxine Eskenazi.
2017. Learning discourse-level diversity for neural
dialog models using conditional variational autoen-
coders. In ACL.

164

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 165–180
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Parallax: Visualizing and Understanding the Semantics of Embedding
Spaces via Algebraic Formulae

Piero Molino
Uber AI Labs

San Francisco, CA, USA
piero@uber.com

Yang Wang
Uber Technologies Inc.

San Francisco, CA, USA
gnavvy@uber.com

Jiawei Zhang∗
Facebook

Menlo Park, CA, USA
rivulet.zhang@gmail.com

Abstract

Embeddings are a fundamental component of
many modern machine learning and natural
language processing models. Understanding
them and visualizing them is essential for gath-
ering insights about the information they cap-
ture and the behavior of the models. In this
paper, we introduce Parallax1, a tool explicitly
designed for this task. Parallax allows the user
to use both state-of-the-art embedding analy-
sis methods (PCA and t-SNE) and a simple yet
effective task-oriented approach where users
can explicitly define the axes of the projection
through algebraic formulae. In this approach,
embeddings are projected into a semantically
meaningful subspace, which enhances inter-
pretability and allows for more fine-grained
analysis. We demonstrate2 the power of the
tool and the proposed methodology through a
series of case studies and a user study.

1 Introduction

Learning representations is an important part of
modern machine learning and natural language
processing. These representations are often real-
valued vectors also called embeddings and are ob-
tained both as byproducts of supervised learning
or as the direct goal of unsupervised methods. In-
dependently of how the embeddings are learned,
there is much value in understanding what infor-
mation they capture, how they relate to each other
and how the data they are learned from influences
them. A better understanding of the embedded
space may lead to a better understanding of the
data, of the problem and the behavior of the model,
and may lead to critical insights in improving such
models. Because of their high-dimensional nature,
they are hard to visualize effectively.

∗Work done while at Purdue University
1
http://github.com/uber-research/parallax

2
https://youtu.be/CSkJGVsFPIg

Figure 1: Screenshot of Parallax.

In this paper, we introduce Parallax, a tool for
visualizing embedding spaces. The most widely
adopted projection techniques (Principal Com-
ponent Analysis (PCA) (Pearson, 1901) and t-
Distributed Stochastic Neighbor Embedding (t-
SNE) (van der Maaten and Hinton, 2008)) are
available in Parallax. They are useful for obtaining
an overall view of the embedding space, but they
have a few shortcomings: 1) projections may not
preserve distance in the original space, 2) they are
not comparable across models and 3) do not pro-
vide interpretable axes, preventing more detailed
analysis and understanding.

PCA projects embeddings on a lower dimen-
sional space that has the directions of the high-
est variance in the dataset as axes. Those dimen-
sions do not carry any interpretable meaning, so
by visualizing the first two dimensions of a PCA
projection, the only insight obtainable is semantic
relatedness (Budanitsky and Hirst, 2006) between
points by observing their relative closeness, and
therefore, topical clusters can be identified. More-
over, as the directions of highest variance differ
from embedding space to embedding space, the
projections are incompatible among different em-
beddings spaces, and this makes them incompara-
ble, a common issue among dimensionality reduc-
tion techniques.

165

t-SNE, differently from PCA, optimizes a loss
that encourages embeddings that are in their re-
spective close neighborhoods in the original high-
dimensional space to be close in the lower di-
mensional projection space. t-SNE projections vi-
sually approximate better the original embedding
space and topical clusters are more clearly distin-
guishable, but do not solve the issue of compara-
bility of two different sets of embeddings, nor do
they solve the lack of interpretability of the axes
or allow for fine-grained inspection.

For these reasons, there is value in mapping em-
beddings into a more specific, controllable and in-
terpretable semantic space. In this paper, a new
and simple method to inspect, explore and debug
embedding spaces at a fine-grained level is pro-
posed. This technique is made available in Par-
allax alongside PCA and t-SNE for goal-oriented
analysis of the embedding spaces. It consists of
explicitly defining the axes of projection through
formulae in vector algebra that use embedding la-
bels as atoms. Explicit axis definition assigns in-
terpretable and fine-grained semantics to the axes
of projection. This makes it possible to analyze in
detail how embeddings relate to each other with
respect to interpretable dimensions of variability,
as carefully crafted formulas can map (to a certain
extent) to semantically meaningful portions of the
space. The explicit axes definition also allows for
the comparison of embeddings obtained from dif-
ferent datasets, as long as they have common la-
bels and are equally normalized.

We demonstrate three visualizations that Par-
allax provides for analyzing subspaces of inter-
est of embedding spaces and a set of example
case studies including bias detection, polysemy
analysis and fine-grained embedding analysis, but
additional ones, like diachronic analysis and the
analysis of representations obtained through graph
learning or any other means, may be performed as
easily. Moreover, the proposed visualizations can
be used for debugging purposes and, in general,
for obtaining a better understanding of the embed-
ding spaces learned by different models and rep-
resentation learning approaches. We show how
this methodology can be widely used through a
series of case studies on well known models and
data, and furthermore, we validate its usefulness
for goal-oriented analysis through a user study.

Parallax interface, shown in Figure 1, presents a
plot on the left side (scatter or polar) and controls

on the right side that allow users to define parame-
ters of the projection (what measure to use, values
for the hyperparameters, the formuale for the axes
in case of explicit axes projections are selected,
etc.) and additional filtering and visualization pa-
rameters. Filtering parameters define logic rules
applied to embeddings metadata to decide which
of them should be visualized, e.g., the user can de-
cide to visualize only the most frequent words or
only verbs if metadata about part-of-speech tags is
made available. Filters on the embeddings them-
selves can also be defined, e.g., the user can decide
to visualize only the embeddings with cosine sim-
ilarity above 0.5 to the embedding of “horse”.

Figure 2: In the top we show professions plotted on
“male” and “female” axes in Wikipedia embeddings.
In the bottom we show their comparison in Wikipedia
and Twitter datasets.

In particular, Parallax’s capability of explicitly
defining axes is useful for goal-oriented analyses,
e.g., when the user has a specific analysis goal in
mind, like detecting bias in the embeddings space.
Goals are defined in terms of dimensions of vari-
ability (axes of projection) and items to visualize
(all the embeddings that are projected, after filter-
ing). In the case of a few dimensions of variability

166

(up to three) and potentially many items of inter-
est, a Cartesian view is ideal. Each axis is the vec-
tor obtained by evaluating the algebraic formula it
is associated with, and the coordinates displayed
are similarities or distances of the items with re-
spect to each axis. Figure 2 shows an example of a
bi-dimensional Cartesian view. In the case where
the goal is defined in terms of many dimensions
of variability, a polar view is preferred. The polar
view can visualize many more axes by showing
them in a circle, but it is limited in the number of
items it can display, as each item will be displayed
as a polygon with each vertex lying on a differ-
ent axis and too many overlapping polygons would
make the visualization cluttered. Figure 5 shows
an example of a five-dimensional polar view.

The use of explicit axes allows for interpretable
comparison of different embedding spaces, trained
on different corpora or on the same corpora but
with different models, or even trained on two dif-
ferent time slices of the same corpora. The only
requirement for embedding spaces to be compara-
ble is that they contain embeddings for all labels
present in the formulae defining the axes. More-
over, embeddings in the two spaces do not need
to be of the same dimension, but they need to be
normalized. Items will now have two sets of co-
ordinates, one for each embedding space, and thus
they will be displayed as lines. Short lines are in-
terpreted as items being embedded similarly in the
subspaces defined by the axes in both embedding
spaces, while long lines are interpreted as really
different locations in the subspaces, and their di-
rection gives insight on how items shift in the two
subspaces. The bottom side of Figure 2 shows an
example of how to use the Cartesian comparison
view to compare embeddings in two datasets.

2 Case Studies

In this section, a few goal-oriented use cases are
presented, but Parallax’s flexiblity allows for many
others. We used 50-dimensional publicly avail-
able GloVe (Pennington et al., 2014) embeddings
trained on Wikipedia and Gigaword 5 summing to
6 billion tokens (for short Wikipedia) and 2 billion
tweets containing 27 billion tokens (Twitter).

Bias detection The task of bias detection is to
identify, and in some cases correct for, bias in data
that is reflected in the embeddings trained on such
data. Studies have shown how embeddings incor-
porate gender and ethnic biases ((Garg et al., 2018;

Bolukbasi et al., 2016; Islam et al., 2017)), while
other studies focused on warping spaces in order
to de-bias the resulting embeddings ((Bolukbasi
et al., 2016; Zhao et al., 2017)). We show how our
proposed methodology can help visualize biases.

To visualize gender bias with respect to pro-
fessions, the goal is defined with the formulae
avg(he, him) and avg(she, her) as two dimen-
sions of variability, in a similar vein to (Garg
et al., 2018). A subset of the professions used
by (Bolukbasi et al., 2016) is selected as items
and cosine similarity is adopted as the measure
for the projection. The Cartesian view visualizing
Wikipedia embeddings is shown in the left of Fig-
ure 2. Nurse, dancer, and maid are the professions
closer to the “female” axis, while boss, captain,
and commander end up closer to the “male” axis.

The Cartesian comparison view comparing the
embeddings trained on Wikipedia and Twitter is
shown in the right side of Figure 2. Only the em-
beddings with a line length above 0.05 are dis-
played. The most interesting words in this visual-
ization are the ones that shift the most in the direc-
tion of negative slope. In this case, chef and doc-
tor are closer to the “male” axis in Twitter than in
Wikipedia, while dancer and secretary are closer
to the bisector in Twitter than in Wikipedia.

Polysemy analysis Methods for representing
words with multiple vectors by clustering con-
texts have been proposed (Huang et al., 2012; Nee-
lakantan et al., 2014), but widely used pre-trained
vectors conflate meanings in the same embedding.

Widdows (2003) showed how using a binary or-
thonormalization operator that has ties with the
quantum logic not operator it is possible to remove
part of the conflated meaning from the embedding
of a polysemous word. The authors define the op-
erator nqnot(a, b) = a − a·b

|b|2 b and we show with
a comparison plot how it can help distinguish the
different meanings of a word.

For illustrative purposes, we choose the same
polysemous word used by (Widdows, 2003), suit,
and use the nqnot operator to orthonormalize with
respect to lawsuit and dress, the two main mean-
ings used as dimensions of variability. The items
in our goal are the 20,000 most frequent words
in the Wikipedia embedding space removing stop-
words. In Figure 3, we show the overall plot and
we zoom on the items that are closer to each axis.
Words closer to the axis negating lawsuit are all re-
lated to dresses and the act of wearing something,

167

Figure 3: Plot of embeddings in Wikipedia with suit negated with respect to lawsuit and dress respectively as axes.

Figure 4: The top figure is a fine-grained comparison
of the subspace on the axis google and microsoft in
Wikipedia, the bottom one is the t-SNE counterpart.

while words closer to the axis negating dress are
related to law. This visualization clearly confirms
the ability of the nqnot operator to disentangle
multiple meanings from polysemous embeddings.

Fine-grained embedding analysis We consider
embeddings that are close to be semantically re-
lated, but even close embeddings may have nu-
ances that distinguish them. When projecting in
two dimensions through PCA or t-SNE we are
conflating a multidimensional notion of similar-

Figure 5: Two polar views of countries and foods.

ity to a bi-dimensional one, losing the fine-grained
distinctions. The Cartesian view allows for a
more fine-grained visualization that emphasizes
nuances that could otherwise go unnoticed.

To demonstrate this capability, we select as
dimensions of variability single words in close
vicinity to each other in the Wikipedia embedding
space: google and microsoft, as google is the clos-
est word to microsoft and microsoft is the 3rd clos-
est word to google. As items, we pick the 30,000
most frequent words removing stop-words and re-
move the 500 most frequent words (as they are too
generic) and keeping only the words that have a
cosine similarity of at least 0.4 with both google
and microsoft and a cosine similarity below 0.75
with respect to google+microsoft, as we are in-
terested in the most polarized words.

The left side of Figure 4 shows how even if
those embeddings are close to each other, it is
easy to identify peculiar words (highlighted with
red dots). The ones that relate to web companies
and services (twitter, youtube, myspace) are much
closer to the google axis. Words related to both
legal issues (lawsuit, antitrust) and videogames
(ps3, nintendo, xbox) and traditional IT companies
are closer to the microsoft axis.

For contrast, the t-SNE projection is shown in
the right side of Figure 4: it is hard to appreciate
the similarities and differences among those em-
beddings other than seeing them being close in the
projected space. This confirms on one hand that
the notion of similarity between terms in an em-

168

Accuracy Factor F(1,91) p-value

Projection Projection 46.11 0.000∗∗∗

× Task 1.709 0.194
Task Projection × Task 3.452 0.066

Projection Projection 57.73 0.000∗∗∗

× Obfuscation 23.93 0.000∗∗∗

Obfuscation Projection × Obf 5.731 0.019∗

Table 1: Two-way ANOVA analyses of Task (Com-
monality vs. Polarization) and Obfuscation (Obfus-
cated vs. Non-obfuscated) over Projection (Explicit
Formulae vs. t-SNE).

bedding space hides many nuances that are cap-
tured in those representations, and on the other
hand, that the proposed methodology enables for
a more detailed inspection of the embedded space.

Multi-dimensional similarity nuances can be vi-
sualized using the polar view. In Figure 5, we
show how to use Parallax to visualize a small num-
ber of items on more than two axes, specifically
five food-related items compared over five coun-
tries’ axes. The most typical food from a spe-
cific country is the closest to the country axis,
with sushi being predominantly close to Japan and
China, dumplings being close to both Asian coun-
tries and Italy, pasta being predominantly closer to
Italy, chocolate being close to European countries
and champagne being closer to France and Italy.
This same approach could be also be used for bias
detection among different ethnicities, for instance.

3 User Study

We conducted a user study to find out if and
how visualizations using user-defined semanti-
cally meaningful algebraic formulae help users
achieve their analysis goals. What we are not test-
ing for is the projection quality itself, as in PCA
and t-SNE it is obtained algorithmically, while in
our case it is explicitly defined by the user. We for-
malized the research questions as: Q1) Does Ex-
plicit Formulae outperform t-SNE in goal-oriented
tasks? Q2) Which visualization do users prefer?

To answer these questions we invited twelve
subjects among data scientists and machine learn-
ing researchers, all acquainted with interpreting
dimensionality reduction results. We defined two
types of tasks, namely Commonality and Polariza-
tion, in which subjects were given a visualization
together with a pair of words (used as axes in Ex-
plicit Formulae or highlighted with a big font and
red dot in case of t-SNE). We asked the subjects to
identify either common or polarized words w.r.t.
the two provided ones. The provided pairs were:

banana & strawberry, google & microsoft, nerd &
geek, book & magazine. The test subjects were
given a list of eight questions, four per task type,
and their proposed lists of five words are compared
with a gold standard provided by a committee of
two computational linguistics experts. The tasks
are fully randomized within the subject to prevent
from learning effects. In addition, we obfuscated
half of our questions by replacing the words with
a random numeric ID to prevent prior knowledge
from affecting the judgment. We track the accu-
racy of the subjects by calculating the number of
words provided that are present in the gold stan-
dard set, and we also collected an overall prefer-
ence for either visualizations.

As reported in Table 1, two-way ANOVA tests
revealed significant differences in accuracy for the
factor of Projection and t-SNE against both Task
and Obfuscation, which is a strong indicator that
the proposed Explicit Formulae method outper-
forms t-SNE in terms of accuracy in both Com-
monality and Polarization tasks. We also observed
significant differences in Obfuscation: subjects
tend to have better accuracy when the words are
not obfuscated. We run post-hoc t-tests that con-
firmed how the accuracy of Explicit Formulae on
Non-obfuscated is significantly better than Obfus-
cated, which in turn is significantly better that t-
SNE Non-obfuscated, which is significantly better
than t-SNE Obfuscated. Concerning Preference,
nine out of all twelve (75%) subjects chose Ex-
plicit Formulae over t-SNE. In conclusion, our an-
swers to the research questions are that (Q1) Ex-
plicit Formulae leads to better accuracy in goal-
oriented tasks, (Q2) users prefer Explicit Formu-
lae over t-SNE.

4 Related Work

A consistent body of research went into research-
ing distributional semantics and embedding meth-
ods ((Lenci, 2018) for a comprehensive overview),
but we will focus om the embedding visualization
literature. In their recent paper, (Heimerl and Gle-
icher, 2018) extracted a list of routinely conducted
tasks where embeddings are employed in visual
analytics for NLP, such as compare concepts, find-
ing analogies, and predict contexts. iVisCluster-
ing (Lee et al., 2012) represents topic clusters as
their most representative keywords and displays
them as a 2D scatter plot and a set of linked visual-
ization components supporting interactively con-

169

structing topic hierarchies. ConceptVector (Park
et al., 2018) makes use of multiple keyword sets
to encode the relevance scores of documents and
topics: positive words, negative words, and irrel-
evant words. It allows users to select and build a
concept iteratively. (Liu et al., 2018) display pairs
of analogous words obtained through analogy by
projecting them on a 2D plane obtained through a
PCA and an SVM to find the plane that separates
words on the two sides of the analogy. Besides
word embeddings, visualization has been used to
understand topic modeling (Chuang et al., 2012)
and how topic models evolve over time (Havre
et al., 2002). Compared to existing literature, our
work allows for more fine-grained direct control
over the conceptual axes and the filtering logic, al-
lowing users to: 1) define concepts based on ex-
plicit algebraic formulae beyond single keywords,
2) filter depending on metadata, 3) perform mul-
tidimensional projections beyond the common 2D
scatter plot view using the polar view, and 4) per-
form comparisons between embeddings from dif-
ferent data sources. Those features are absent in
other proposed tools.

5 Conclusions

We presented Parallax, a tool for embedding visu-
alization, and a simple methodology for projecting
embeddings into lower-dimensional semantically-
meaningful subspaces through explicit algebraic
formulae. We showed how this approach al-
lows goal-oriented analyses, more fine-grained
and cross-dataset comparisons through a series of
case studies and a user study.

References
Tolga Bolukbasi, Kai-Wei Chang, James Y. Zou,

Venkatesh Saligrama, and Adam Tauman Kalai.
2016. Man is to computer programmer as woman
is to homemaker? debiasing word embeddings. In
NIPS, pages 4349–4357.

Alexander Budanitsky and Graeme Hirst. 2006. Eval-
uating wordnet-based measures of lexical semantic
relatedness. Comput. Ling., 32(1):13–47.

Jason Chuang, Christopher D. Manning, and Jeffrey
Heer. 2012. Termite: visualization techniques for
assessing textual topic models. In AVI, pages 74–77.

Nikhil Garg, Londa Schiebinger, Dan Jurafsky, and
James Zou. 2018. Word embeddings quantify 100
years of gender and ethnic stereotypes. Proceedings
of the National Academy of Sciences.

Susan Havre, Elizabeth G. Hetzler, Paul Whitney, and
Lucy T. Nowell. 2002. Themeriver: Visualizing the-
matic changes in large document collections. IEEE
Trans. Vis. Comput. Graph., 8(1):9–20.

Florian Heimerl and Michael Gleicher. 2018. Interac-
tive analysis of word vector embeddings. Comput.
Graph. Forum, 37(3):253–265.

Eric H. Huang, Richard Socher, Christopher D. Man-
ning, and Andrew Y. Ng. 2012. Improving word
representations via global context and multiple word
prototypes. In ACL.

Aylin Caliskan Islam, Joanna J. Bryson, and Arvind
Narayanan. 2017. Semantics derived automatically
from language corpora necessarily contain human
biases. Science, 356:183–186.

Hanseung Lee, Jaeyeon Kihm, Jaegul Choo, John T.
Stasko, and Haesun Park. 2012. ivisclustering:
An interactive visual document clustering via topic
modeling. Comput. Graph. Forum, 31(3):1155–
1164.

Alessandro Lenci. 2018. Distributional models of word
meaning. Annual Review of Linguistics, 4(1):151–
171.

Shusen Liu, Peer-Timo Bremer, Jayaraman J. Thia-
garajan, Vivek Srikumar, Bei Wang, Yarden Livnat,
and Valerio Pascucci. 2018. Visual exploration of
semantic relationships in neural word embeddings.
IEEE Trans. Vis. Comput. Graph., 24(1):553–562.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-SNE. Journal of Machine
Learning Research, 9:2579–2605.

Arvind Neelakantan, Jeevan Shankar, Alexandre Pas-
sos, and Andrew McCallum. 2014. Efficient non-
parametric estimation of multiple embeddings per
word in vector space. In EMNLP, pages 1059–1069.

Deok Gun Park, Seungyeon Kim, Jurim Lee, Jaegul
Choo, Nicholas Diakopoulos, and Niklas Elmqvist.
2018. Conceptvector: Text visual analytics via in-
teractive lexicon building using word embedding.
IEEE Trans. Vis. Comput. Graph., 24(1):361–370.

K. Pearson. 1901. On lines and planes of closest fit to
systems of points in space. Philosophical Magazine,
2:559–572.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In EMNLP, pages 1532–1543.

Dominic Widdows. 2003. Orthogonal negation in vec-
tor spaces for modelling word-meanings and docu-
ment retrieval. In ACL, pages 136–143.

Jieyu Zhao, Tianlu Wang, Mark Yatskar, Vicente Or-
donez, and Kai-Wei Chang. 2017. Men also like
shopping: Reducing gender bias amplification using
corpus-level constraints. In EMNLP, pages 2979–
2989.

170

A Appendix

In this appendix we show all the images presented
in the main body of the paper in full size for mak-
ing reading them easier.

171

Figure 6: Screenshot of Parallax.

172

Figure 7: Professions plotted on “male” and “female” axes in Wikipedia embeddings.

173

Figure 8: Professions plotted on “male” and “female” axes in Wikipedia and Twitter embeddings.

174

Fi
gu

re
9:

Pl
ot

of
em

be
dd

in
gs

in
W

ik
ip

ed
ia

w
ith

su
it

ne
ga

te
d

w
ith

re
sp

ec
tt

o
la

w
su

it
an

d
dr

es
s

re
sp

ec
tiv

el
y

as
ax

es
.

175

Fi
gu

re
10

:P
lo

to
fe

m
be

dd
in

gs
in

W
ik

ip
ed

ia
w

ith
ap

pl
e

ne
ga

te
d

w
ith

re
sp

ec
tt

o
fr

ui
ta

nd
co

m
pu

te
r

re
sp

ec
tiv

el
y

as
ax

es
.

176

Figure 11: Fine-grained comparison of the subspace on the axis google and microsoft in Wikipedia.

177

Fi
gu

re
12

:F
in

e-
gr

ai
ne

d
co

m
pa

ri
so

n
of

th
e

su
bs

pa
ce

on
th

e
ax

is
n
qn

ot
(g
oo
g
le
,m

ic
ro
so
f
t)

an
d
n
qn

ot
(m

ic
ro
so
f
t,
g
oo
g
le
)

in
W

ik
ip

ed
ia

.

178

Figure 13: t-SNE visualization of google and microsoft in Wikipedia.

179

Figure 14: Two polar view of countries and foods in Wikipedia.

180

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 181–188
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Flambé: A Customizable Framework for
Machine Learning Experiments

Jeremy Wohlwend
ASAPP Inc.

jeremy@asapp.com

Nicholas Matthews
ASAPP Inc.

nick@asapp.com

Ivan Itzcovich
ASAPP Inc.

ivan@asapp.com

Abstract

Flambé is a machine learning experimenta-
tion framework built to accelerate the entire
research life cycle. Flambé’s main objective
is to provide a unified interface for prototyp-
ing models, running experiments containing
complex pipelines, monitoring those experi-
ments in real-time, reporting results, and de-
ploying a final model for inference. Flambé
achieves both flexibility and simplicity by al-
lowing users to write custom code but instantly
include that code as a component in a larger
system which is represented by a concise con-
figuration file format. We demonstrate the ap-
plication of the framework through a cutting-
edge multistage use case: fine-tuning and dis-
tillation of a state of the art pretrained lan-
guage model used for text classification. 1

1 Introduction

Scientists and engineers in the machine learning
community dedicate many hours and resouces to-
wards preprocessing data, iterating on model ar-
chitectures, tuning hyperparameters, aggregating
results and ultimately deploying their most per-
formant model. While frameworks like PyTorch
(Paszke et al., 2017) and Tensorflow (et al., 2016)
abstract away the details of operations like back-
progpagation and make building models possible
in a few lines of code, they do not explicitly aim
to solve these other parts of the research cycle.

The explosion of available resources in the ma-
chine learning community (Dean et al., 2018) has
included many tools that address one or more
of these other phases of research, but these iso-
lated tools do not always work harmoniously with
one another, trading off customizability to provide
high-level interfaces. Understanding that machine

1The code and documentation can be found at
https://flambe.ai

learning research particularly in the field of Natu-
ral Language Processing might require innovation
at any level of abstraction and across any stage
in the research process, we’ve built Flambé to
include standardized implementations of model-
ing components, hyperparameter optimization and
distributed execution that can all be effortlessly re-
placed with custom user-developed code.

By facilitating customization and iteration on a
particular data pipeline and model architecture, we
aim for Flambé users to spend the majority of their
time doing research, not re-implementing tools for
training, tuning, reporting and deploying.

Flambé’s contributions are:

1. Modular machine learning components to de-
velop replicable, state of the art research
results. This includes: neural network
components (pretrained or not), benchmark
datasets, and standardized training and eval-
uation modules.

2. A configuration format that natively enables
searching over hyperparameters and running
remote multistage experiments at scale.

3. Smooth reporting and exporting, to facilitate
sharing models and results with collaborators
and the larger community.

4. An open source framework for both the aca-
demic community and teams in industry.

We demonstrate the application of our frame-
work through a cutting-edge use case, namely
knowledge distillation of a state of the art language
model, the BERT model (Devlin et al., 2019), on
a downstream text classification task.

2 Related work

Many different tools are attempting to tackle the
various challenges of building machine learning

181

systems from different angles. Frameworks like
PyTorch and Tensorflow (et al., 2016) provide
the building blocks of models as simple modules
e.g. various linear and recurrent layers, losses,
optimizers etc. Many model implementations
have been built on top of these modules, with
some proposing new standardizations of specific
architectures like sequence-to-sequence modeling
(et al, 2019).

Libraries such as Keras (Chollet et al., 2015)
offer a high-level API for building and training
models. Others including AllenNLP (Gardner
et al., 2018), FastAI (Howard et al., 2018) and
Texar (et al, 2018) focus on some specific domains
or tasks like reading comprehension or text style
transfer. These types of frameworks tend to focus
on training a single model at a time, but many re-
search experiments consist of complex multistage
pipelines, with hyperparameter tuning and dis-
tributed computation required at each stage. With
Flambé, users can write their custom code inde-
pendent from these concerns, and then easily start
using algorithms like Hyperband (Li et al., 2016)
and Bayesian Optimization (Bergstra et al., 2013),
link components across stages, and run everything
on a cluster without any modifications.

MLFlow (Zaharia et al., 2018) focuses on ex-
periment tracking, metric reporting, and contains
powerful features aimed at production deploy-
ment. However, it does not have a natural way to
run hyperparameter tuning, or advanced trial sam-
pling and scheduling.

Ray (Moritz et al., 2017) implements infrastruc-
ture for distributing computational tasks on a clus-
ter, and it also provides a higher level extension,
Tune (Liaw et al., 2018), that handles hyperparam-
eter optimization.

Flambé leverages and builds upon existing
tools, connecting the dots between frameworks
like PyTorch and Ray, and providing a smooth in-
tegration between them with a powerful layer of
abstraction on top. By not trying to re-implement
solved problems like back-propagation and dis-
tributed task execution, we can focus our attention
on usability and efficiency.

3 The Flambé Framework

Flambé executes experiments which are com-
posed of a pipeline of modeling and processing
stages (Subsection A), extensions that import user-
supplied code (Subsection B), links to existing

Figure 1: Example YAML config for text classification
on the TREC dataset. The highlighted and labeled sec-
tions refer to the subsections in 3.1. There are a number
of different objects that could be used in any place of
this config e.g. the optimizer could be !torch.SGD
and the scheduler tune.HyperOpt (Bayesian opti-
mization). Note the pipeline stage names “stage0”, etc.
are arbitrary.

components (Subsection C), and tunable hyper-
parameters (Subsections D, E, F). All of these
features are demonstrated in the Experiment
shown in Figure 1, which defines a simple text
classification task consisting of training an LSTM
(Hochreiter and Schmidhuber, 1997) on the TREC
dataset (Li and Roth, 2002).

182

Each tag in the YAML (Oren Ben-Kiki, 2009)
config (anything beginning with ‘!’) corresponds
to a python object that will be initialized with the
keyword arguments following the tag. These tags
are not hardcoded into the system, and users can
use their own classes in the config just as easily
as the ones we’ve already built. After we explain
all the aforementioned features, we introduce how
Flambé saves object state, enables simple metric
logging, and deploys models for production.

3.1 Walkthrough

In this section we present an example driven ex-
planation of the core features as they’re used in
Figure 1.

A. Pipeline

The most important section of the YAML file is
the pipeline section. This section contains a
series of stages which each implement a step
method. The example shown in Figure 1 contains
3 stages: (1) dataset loading and processing, (2)
training of each model variant, and (3) evaluating
the best model from stage1.

A stage in the pipeline can be any Python ob-
ject. Users need only add a parent class to their
class definition if they intend to use it in the YAML
config. All objects will receive the keyword argu-
ments given inline in the configuration file. For
example, in Figure 1 the TextClassifier ob-
ject receives an embedding, encoder and decoder,
matching its definition in code:

All subclasses of Flambé classes like Model
are automatically registered with YAML

B. Extending Flambé with Custom Code

Flambé is flexible because of its ability to use cus-
tom Flambé objects in the experiment configura-
tion file. By default, only classes in the main
Flambé library and PyTorch can be referenced, but
by using the extensions feature users can in-
clude their own classes and functions, from either
local or remote source code repositories.

To create an extension, users need only organize
their code into one or more pip-installable pack-
ages. After declaring the extensions and including
them at the top of the config file, they are useable
anywhere in the YAML configuration file.

In the example, the TRECDataset object is
defined in an external extension hosted in GitHub.
By adding its URL at the top of the YAML con-
figuration file, the cl.TrecDataset object and
any other Flambé class can be used. If you can-
not or do not want to inherit from one of our
pipeline classes (Model, Trainer, etc.) you can
inherit from flambe.nn.Module which will
supply the minimum needed functionality to sup-
port use in the config file and automatic hierarchi-
cal serialization (See later sections).

C. Referencing Earlier Objects
A core feature of Flambé is the ability to connect
(or “link”) different components with the !@ no-
tation, a custom YAML tag we’ve implemented.
Any value anywhere in the pipeline can be a ref-
erence to an earlier value that has already been
defined. Each link consists of the identifier of
a stage, e.g. “stage1” which in this case is the
Trainer object, followed by the rest of the ob-
ject attributes. In the highlighted example (C), the
link stage0.train means that the data key-
word argument for BaseSampler should point
to the train attribute of the TCProcessor.

D. Hyperparameter Search
In addition to referencing other values via links,
the value for any parameter in the config can be
replaced with either a list of possible options to
try (for grid search) or a distribution for sampling
possible options. Grid search options are defined
with the !g tag followed by the list of candidate
values; Flambé will automatically duplicate the
stage, choosing a single value for each variant of
the stage. In the example we use this mechanism
to search over different numbers of layers.

If distributions are used instead of lists of can-
didate values, Flambé performs a simple random
search. Users can also specify a search field that
maps stage names to the hyperparameter search
algorithm, e.g. Bayesian optimization, which
changes the distributions used to sample the tun-
able hyperparameters.

When Links reference stages with multiple
variants, the stage containing the link is duplicated
as many times as there are variants.

183

E. Trial Scheduling
Regardless of the strategy used to choose hyper-
parameters, some variants will start to clearly out-
perform others and scheduling algorithms like Hy-
perband (Li et al., 2016) use that information to
intelligently allocate resources to the variants that
are performing the best. Flambé surfaces an in-
terface to these schedulers in the same way as
the search algorithms: “schedulers” maps pipeline
stage names to the desired scheduling algorithms,
as shown in the example configuration.

F. Selecting the Best Variants
After trying many different combinations of hy-
perparameters, only the best will propagate to the
next stages if the reduce operation is used. For ex-
ample, with reduce mapping stage1 to 1 in the
example, only the single best configuration, with
the optimal number of layers, will be evaluated in
the final stage. In order to use this feature, the
stages need to supply a metric fn that can be used
to rank the variants.

3.2 Hierarchical Serialization
While PyTorch already provides a clear and robust
saving mechanism, we augment this functionality
with a generic serialization protocol for all objects
that includes opt-in versioning and a directory
based file format that anyone can inspect. Rather
than dumping all of the model weights and other
state into a single file, the directory based struc-
ture mirrors the object hierarchy and enables the
possibility of referencing a specific component.
Rather than having to load the save file to inspect
the contents, it can be navigated like any other di-
rectory. By default, only what PyTorch normally
saves is included in the save file; users can add ad-
ditional state by overriding custom state and
load custom state

3.3 Using a cluster
To run experiments on a cluster, an additional
piece of YAML is needed to define the remote
manager. As shown below in Figure 3 one can
indicate the instance types and a timeout flag for
both the orchestrator and the factories. We use
this feature to keep our experiment tracking web-
site running on the orchestrator once an experi-
ment is over, but also to keep factories alive when
rapidly experimenting or debugging. The orches-
trator will communicate with workers in the clus-
ter via Ray and Tune to execute and checkpoint

Figure 2: Save file directory structure for the
Experiment in Figure 1

.

progress at each step. If an experiment fails or
is interrupted, it can be quickly resumed with an
additional flag resume: True. Crucially, this
remote functionality allows to distribute the exe-
cution of the variants across a cluster of machines
by only adding a few lines to the configuration.

Figure 3: Example remote config for AWS cluster.

3.4 Deploying
Typically after experimentation, machine learning
projects require packaging a model together with
some preprocessing and post-processing functions
into a single inference-ready interface, e.g. a
text classifier that actually takes raw string(s) as
input. Flambé facilitates this use-case with the
Exporter object, wherein users can define a
new version of the model from the best variants
tested, and with the right interface for later use.

3.5 Library usage
In addition to using the Flambé framework via
YAML configuration files, users can also use the
individual objects (e.g. the Trainer, or RNNEn-
coder classes) in any python script. This usage
may be important for users that already have a pro-
duction codebase (including training scripts) writ-
ten purely in Python. In a future version of the

184

software we plan to support creating full exper-
iments and deploying models via code (instead
of YAML) to enable dynamic experiment creation
and model exporting.

3.6 Logging

Flambé provides full integration with Python’s
logging module and Tensorboard ((et al.,
2016)). Users are able to visualize their results
by simply including log statements in their code
(See Figure 4).

Figure 4: Example log statement. Logging can be done
anywhere inside a custom object.

All variants will appear under the same plot for
easy analysis (see Figure 5).

4 Case study: BERT Distillation

In this section we showcase Flambé’s ability to
transform a pre-existing codebase with no pre-
existing support for hyperparameter optimization
into a complex multi-stage pipeline with a YAML
config less than 80 lines long. Furthermore, We
were able to find the optimal set of parameters in
roughly half the time otherwise needed by adding
Hyperband scheduling (Li et al., 2016), and run-
ning the experiment over a large cluster.

BERT (Devlin et al., 2019) is a popular model
which performs competitively across several NLP
tasks by leveraging language model pre-training
over a very large corpus. Two crucial issues with
the BERT model are the size of the model, and its
inference speed, which generally inhibits its use
in production environments. To address this issue,
recent efforts have shown that most of BERT’s
performance on a downstream task can be con-
served, while dramatically reducing its memory
footprint (Chia et al., 2018).

In this experiment, we fine-tune the BERT
model on two standard text classification bench-
marks: TREC (Li and Roth, 2002) and Sentiment
Treebank (Socher et al., 2013). We then apply
knowledge distillation to reduce the BERT model
to a simple 4 layer, 256 units, SRU network (Lei
et al., 2018). This is a typical multistage experi-
ment with preprossessing, fine tuning, and distil-
lation stages. All of this can be expressed in a sin-

Model TREC SST2 # Parameters
SRU 94.8 86.2 ≈ 5M
BERT 96.8 91.0 ≈ 110M
DISTILLED 95.5 87.8 ≈ 5M

Table 1: Accuracy on benchmark text classification
datasets: TREC and SST2 (Binary Sentiment Tree-
bank). Distilling BERT improves the accuracy of the
base SRU model, while reducing the number of param-
eters by more than 95%. All models were trained or
fine-tuned using Flambé. The SRU and DISTILLED
model have the same architecture, the SRU model be-
ing trained from scratch and the DISTILLED model
benefiting from the BERT model’s improved perfor-
mance.

Figure 5: Some runs are pruned early by the Hyberband
scheduling algorithm. The x-axis is training steps, and
the y-axis is accuracy.

gle, concise configuration. Results are provided
in Table 1. The full configuration, containing all
three stages and their respective hyperparameters,
is provided as supplementary material.

Not only can Flambé express the above experi-
ment in a concise configuration, but using a state
of the art trial scheduling algorithm such as Hyper-
band (Li et al., 2016) can be accomplished with a
single additional line in the configuration. Figure
5 shows Hyperband allocating more training steps
to the best-performing models. In this example,
defining grid searches, running over a cluster, and
using a scheduling algorithm on an existing code-
base required little to no effort.

5 Future work

Flambé aims to integrate with research and engi-
neering workflows through its focus on usability,
modularity and reproducibility. We continue to

185

pursue this goal by developing a large collection
of machine learning components including state
of the art models, benchmark datasets, and novel
training strategies. Real, working, and repro-
ducible experiment configurations will showcase
these components alongside their performance in
task-based leaderboards. In parallel, we will con-
tinue to develop user-friendly abstractions like the
ability to auto-scale clusters based on the size
of each stage in the pipeline, and to monitor or
even alter experiment execution in real-time from
a website.

References
Martin Abadi et al. 2016. Tensorflow: A system for

large-scale machine learning. In 12th USENIX Sym-
posium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 265–283.

Myle Ott et al. 2019. fairseq: A fast, extensible toolkit
for sequence modeling. In Proceedings of the 2019
Conference of the North American Chapter of the
Association for Computational Linguistics (Demon-
strations), pages 48–53, Minneapolis, Minnesota.
Association for Computational Linguistics.

Zhiting Hu et al. 2018. Texar: A modularized,
versatile, and extensible toolbox for text genera-
tion. In Proceedings of Workshop for NLP Open
Source Software (NLP-OSS), pages 13–22, Mel-
bourne, Australia. Association for Computational
Linguistics.

James Bergstra, Dan Yamins, and David D Cox. 2013.
Hyperopt: A python library for optimizing the hy-
perparameters of machine learning algorithms. In
Proceedings of the 12th Python in science confer-
ence, pages 13–20. Citeseer.

Yew Ken Chia, Sam Witteveen, and Martin Andrews.
2018. Transformer to cnn: Label-scarce distillation
for efficient text classification.

François Chollet et al. 2015. Keras. https://
keras.io.

Jeff Dean, David Patterson, and Cliff Young. 2018. A
new golden age in computer architecture: Empow-
ering the machine-learning revolution. IEEE Micro,
38(2):21–29.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In Proceedings of the 2019 Conference
of the North American Chapter of the Association
for Computational Linguistics: Human Language
Technologies, Volume 1 (Long and Short Papers),
pages 4171–4186, Minneapolis, Minnesota. Associ-
ation for Computational Linguistics.

Matt Gardner, Joel Grus, Mark Neumann, Oyvind
Tafjord, Pradeep Dasigi, Nelson F. Liu, Matthew Pe-
ters, Michael Schmitz, and Luke Zettlemoyer. 2018.
AllenNLP: A deep semantic natural language pro-
cessing platform. In Proceedings of Workshop for
NLP Open Source Software (NLP-OSS), pages 1–
6, Melbourne, Australia. Association for Computa-
tional Linguistics.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Jeremy Howard et al. 2018. fastai. https://
github.com/fastai/fastai.

Tao Lei, Yu Zhang, Sida I Wang, Hui Dai, and Yoav
Artzi. 2018. Simple recurrent units for highly par-
allelizable recurrence. In Proceedings of the 2018
Conference on Empirical Methods in Natural Lan-
guage Processing, pages 4470–4481.

Lisha Li, Kevin Jamieson, Giulia DeSalvo, Afshin Ros-
tamizadeh, and Ameet Talwalkar. 2016. Hyperband:
A novel bandit-based approach to hyperparameter
optimization. arXiv preprint arXiv:1603.06560.

Xin Li and Dan Roth. 2002. Learning question clas-
sifiers. In COLING 2002: The 19th International
Conference on Computational Linguistics.

Richard Liaw, Eric Liang, Robert Nishihara, Philipp
Moritz, Joseph E Gonzalez, and Ion Stoica.
2018. Tune: A research platform for distributed
model selection and training. arXiv preprint
arXiv:1807.05118.

Philipp Moritz, Robert Nishihara, Stephanie Wang,
Alexey Tumanov, Richard Liaw, Eric Liang,
William Paul, Michael I. Jordan, and Ion Stoica.
2017. Ray: A distributed framework for emerging
AI applications. CoRR, abs/1712.05889.

Ingy döt Net Oren Ben-Kiki, Clark Evans. 2009.
Yaml. https://yaml.org/spec/1.2/
spec.html.

Adam Paszke, Sam Gross, Soumith Chintala, Gre-
gory Chanan, Edward Yang, Zachary DeVito, Zem-
ing Lin, Alban Desmaison, Luca Antiga, and Adam
Lerer. 2017. Automatic differentiation in pytorch.
In NIPS-W.

Richard Socher, Alex Perelygin, Jean Wu, Jason
Chuang, Christopher D Manning, Andrew Ng, and
Christopher Potts. 2013. Recursive deep models
for semantic compositionality over a sentiment tree-
bank. In Proceedings of the 2013 conference on
empirical methods in natural language processing,
pages 1631–1642.

Matei Zaharia, Andrew Chen, Aaron Davidson, Ali
Ghodsi, Sue Ann Hong, Andy Konwinski, Sid-
dharth Murching, Tomas Nykodym, Paul Ogilvie,
Mani Parkhe, et al. 2018. Accelerating the machine
learning lifecycle with mlflow. Data Engineering,
page 39.

186

A Screenshots

Below is a screenshot of the reporting site that includes a progress bar, links to see the console output
and Tensorboard, and a download link for the model weights:

When you launch an experiment from the console, you will see a series of status updates as
shown below:

187

B BERT Configuration File

188

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 189–194
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

A Modular Tool for Automatic Summarization

Valentin Nyzam
LIASD - Universit Paris 8

v.nyzam@iut.univ-paris8.fr

Aurélien Bossard
LIASD - Universit Paris 8

a.bossard@iut.univ-paris8.fr

Abstract

This paper introduces the first fine-grained
modular tool for automatic summarization.
Open source and written in Java, it is designed
to be as straightforward as possible for end-
users. Its modular architecture is meant to ease
its maintenance and the development and inte-
gration of new modules. We hope that it will
ease the work of researchers in automatic sum-
marization by providing a reliable baseline for
future works as well as an easy way to evaluate
methods on different corpora.

1 Introduction

Automatic summarization (AS) is studied since
the late 1950s (Luhn, 1958). Automatic summa-
rization methods were mostly extractive until re-
cently, where abstractive methods have emerged
thanks to the recent breakthrough in neural net-
works. Abstractive automatic summarization
methods are for the most part supervized. How-
ever, because of the automatic summarization task
complexity, huge corpora made of pairs of docu-
ments and their associated summary are needed.
For example, the CNN and Dailymail news cor-
pora on which are based the first neural-based
news automatic summarizers are composed of
more than 200,000 pairs of document and sum-
mary. Other summarization tasks can also be pro-
vided with large corpora, such as scientific articles
summarization. However, most of real-life sum-
marization tasks come without any learning cor-
pus. The cost in human resources to build such
corpora is such that unsupervized summarization
methods cannot be excluded from the research
field.

In the last decades, efforts have been made
in different fields of computer science to release
open source systems that encode several methods.

GATE1(Dowman et al., 2005) platform is an ex-
ample of such an open source system for NLP.
Other research fields such as machine learning
benefit from several open source modular systems,
e.g., Weka (Hall et al., 2009), SPMF (Fournier-
Viger et al., 2014), or Orange (Demšar et al.,
2013). To our knowledge, no such tool exists for
AS. A modular and open source tool for automatic
summarization could allow to easily test differ-
ent automatic summarization methods on differ-
ent tasks / corpora. If such a tool is proven to be
reliable, it can also be used as an acknowledged
baseline for new systems – abstractive or extrac-
tive – to compare to. In fact, we found that some
recent papers in neural abstractive summarization
compare their results with naive extractive base-
lines or even no extractive baseline at all (e.g. (See
et al., 2017) with a lead-based extractive baseline,
(Chopra et al., 2016) with no extractive baseline at
all). These works could have sorely benefited from
a straightforward and easy-to-use summarization
platform to establish fair comparisons to older ex-
tractive systems.

In this paper, we present an open source
modular tool dedicated to automatic summariza-
tion. Written in Java, it is designed to first
answer the lack of such a tool and so pro-
vide the community with an easy-to-use summa-
rization tool, to allow a straightforward mainte-
nance of existing modules and development of
new modules, and to allow methods compari-
son in a unified framework. The tool is avail-
able on GitHub : https://github.com/
ToolAutomaticSum/MOTS. We also present
a study on DUC, TAC, CNN and Dailymail cor-
pora.

1http://gate.ac.uk

189

2 Related Work

Open source summarizers can be classified into
two categories: systems that only implement one
or more methods defined by their authors as results
of research and systems conceived as a way to im-
plement existing methods. In the first category,
one can cite MEAD (Radev et al., 2004a) that
originally implemented centroid-based extraction
method (Radev et al., 2004b) and later imple-
mented LexRank (Erkan and Radev, 2004). How-
ever, this system does not seem to be available
anymore. Among the other systems in that cat-
egory, one can cite ICSISUMM (Gillick et al.,
2009) that implements ILP-based summarization
and MUSEEC (Litvak et al., 2016). However, sys-
tems in this first category cover only a few meth-
ods among existing methods, so there was a need
for platforms with a better summarization meth-
ods coverage. SUMMA (Saggion, 2014) is a sum-
marization toolkit implemented with GATE. It in-
cludes several sentence scorers, such as LexRank,
Centroid and shallow features based. It benefits
from GATE NLP methods. Sumy2 is a more com-
plete toolkit that implements eight different ex-
traction methods, including baseline systems (ran-
dom, first sentences only). As for PKUSum-
Sum3, (Zhang et al., 2016) implements ten differ-
ent methods and handles three different summa-
rization tasks: mono-document, multi-document
and topic-based multi-document summarization.
Modularity for these two system is however lim-
ited to tokenization/stemming and the choice of
extraction method which is not decomposed itself
in modules. This is the main asset of our tool: it is
modular on a fine-grained level so automatic sum-
marization methods are not defined globally but
as a combination of small interchangeable mod-
ules. Table 1 shows details about the summa-
rization methods implemented by SUMMA, Sumy
and PKUSumSum.

3 Architecture

3.1 Modularity

Our tool is modular on a fine-grained level. Be-
cause of the modularity and the need of mod-
ule compatibility definition, we made the choice
of Java as programming language. Our tool can
handle mono and multi-document summarization,

2https://github.com/miso-belica/sumy
3https://github.com/PKULCWM/PKUSUMSUM

Multicorpus

SummarizationMethod

Abstracts

ROUGE evaluation

Genetic Algorithm

List<Process>

PreProcess

PostProcess

List<CharacteristicsBuilder>

List<IndexBuilder>

List<ScoringMethod>

SelectionMethod

Configuration
file

List<Fitness>

Figure 1: Architecture and workflow of our tool

topic-based or not. It embeds a genetic algo-
rithm to tune hyperparameters. The summariza-
tion modules are all language-independent for
multilingual summarization. Its architecture is
conceived for both extractive, semi-extractive and
abstractive paradigms. Also, using it as an end-
user is straightforward.

It is divided in two branches: one for traditional
greedy extractive methods, and one for global
search algorithms such as genetic or knapsack al-
gorithms (cf Figure 1). Our system can also handle
fully abstractive methods.

The greedy branch is divided in four steps:
• IndexBuilder: an index is built using uni-

grams or n-grams for which a set of features
is built;
• CharacteristicsBuilder: a set of features is

computed for every text chunk4 based on one
or more indexes;
• SentenceScoring: score computation for ev-

ery text chunk based on previous features;
• SelectionMethod: text chunks extraction

with a method using previous scores.
The global search algorithms branch is divided

in two steps:
• FitnessScore: a score computed for a candi-

date summary;
• SelectionMethod: the search algorithm itself

guided by the fitness.
The four steps (or atomic processings) of a sum-

marization method are independent, and they com-
municate via the Process class that controls their
execution and compatibility. Input and output of
the atomic processings are specified via inheri-
tance of a specific method and the implementation
of interfaces defined and documented in our tool.
These interfaces make the Process class able to use
Java methods to adapt input and output between
each atomic processing. All atomic processings
are independent and follow compatibility rules, so

4e.g., sentences, phrases, defined during preprocessing

190

our system architecture is completely modular.

3.2 Embedded evaluation

If the gold standard summaries are provided with
the corpus to summarize, our tool can perform a
call to ROUGE (Lin, 2004) in order to instantly
retrieve the results of a summarization method on
a specific corpus.

3.3 Embedded genetic algorithm

All summarization methods have parameters that
influence the quality of the summaries. Optimiz-
ing these parameters for a specific task is crucial.
Litvak et al. (2010); Bossard and Rodrigues (2011)
have shown that a genetic algorithm (GA) can be
efficient for this kind of optimization. Our tool in-
tegrates a GA to optimize summarization methods
hyperparameters. We specified a dna syntax for
the definition of methods hyperparameters that can
be used by any module implemented in our tool.
The GA uses ROUGE-2 as objective function, but
it can be overrided using the modular architecture
of our tool. The GA is launched using a XML con-
figuration file that sets the hyperparameters to be
optimized.

4 Implemented modules

The IndexBuilder class defines what the tokens are
and how they are represented. We can use uni-
grams or n-grams and each of them can be asso-
ciated with a frequency, a tf.idf value, or a vector
representation computed with LSA or word em-
beddings.

The CharacteristicsBuilder class defines the
representation of a text chunk (most of the time,
text chunks are sentences). We can use a bag-
of-words representation, the mean vector (the
mean vector of all the tokens in a text chunk),
the matrix composed of all tokens vectors, the
co-occurrence graph (Rousseau and Vazirgiannis,
2013), the k-core representation (Batagelj and Za-
versnik, 2003), or a clustering based on any repre-
sentation (Bossard and Rodrigues, 2011).

The SentenceScore class defines how to com-
pute a score for a text chunk depending on the
characteristics computed previously. We can
choose the sum of tf.idf above a threshold, the sim-
ilarity with a vector or a matrix (to emulate (Radev
et al., 2004b)), the position of the text chunk in a
document.

The SelectionMethod class defines how the sen-
tences are selected. We can chose greedy algo-
rithms such as MMR (Carbonell and Goldstein,
1998), CSIS (Radev et al., 2004a), an extraction
method based on a previous clustering (Bossard,
2013) or a naive extraction of the best sentences,
or global search algorithms such as Knapsack
(Gillick et al., 2008), a genetic algorithm (Bossard
and Rodrigues, 2017), ILP (Gillick et al., 2009) or
a reinforcement algorithm (Ryang and Abekawa,
2012).

Our tool can also call an abstractive external
summarization method, retrieve the results and use
them for postprocessing or evaluation purposes.
This is not trivial as the index has to be updated in
order to take into account out of vocabulary words.

Combining these modules, we can emulate
most of the most known summarization methods.
Table 1 shows a comparison between our tool and
other summarization tools introduced in Section 2.
It shows that, to our knowledge and at the moment
we write this paper, our tool covers the most of the
summarization methods covered by other known
summarizers. Moreover, two of the three methods
not yet implemented: Manifold rank (Wan et al.,
2007) and Submodular functions (Lin and Bilmes,
2011) are currently under development and should
be released soon.

5 Using our tool

Using our tool as an end user is straightforward. It
only requires a configuration file that describes the
summarization method to use by defining every
module used and their parameters, and a descrip-
tor file for the multicorpus to summarize. Even if a
configuration file can be written from scratch, we
supply standard configuration files that encode the
most known and used summarization methods.

6 Study

We evaluated some summarization methods from
our tool on different corpora: DUC 2006 and 2007
and TAC 2008, 2009 and 2010 corpora (multidoc-
ument news summarization) and CNN/Dailymail
corpus.

We used 264.999 documents of the merged cor-
pus of CNN and Dailymail to train the pointer-
generator abstractive method. It was then vali-
dated on 11.659 documents and tested on 12.143
documents. We used the same evaluation set for
all methods. We evaluated all methods with a limit

191

Luhn Edmundson Lead Centroid LexRank TextRank KL incr. Manifold Rank Clust. ILP LDA Submodular Knapsack Genetic Pointer Generator
SUMMA 3 3 3 3 7 7 7 7 7 7 7 7 7 7 7

Sumy 3 3 7 7 3 3 3 7 7 7 3 7 7 7 7

PKUSumSum 7 7 3 3 3 3 7 3 3 3 7 3 7 7 7

Our tool 3 7 3 3 3 3 3 7 3 3 3 7 3 3 3

Table 1: Comparison of systems summarization methods handling capabilities

of 100 and 50 words, because we found out that
Pointer-Generator often produces only 50 words
long summaries.

As DUC and TAC corpora do not provide
enough data to train a neural network, we used
the model learned on CNN/Dailymail to generate
a summary for DUC and TAC and applied it on the
most recent newswire article of each set of docu-
ments.

Table 2 shows the results of a small sample
of methods from our tool on DUC, TAC and
CNN/DailyMail corpora. We made the choice of
selecting methods that show the modularity of our
tool:

• lead: the first n words of a document (for
DUC and TAC the first n words of the most
recent document);

• tf.idf MMR: sentences are scored with the
sum of tf.idf scores and selected with MMR;

• Centroid MMR: sentences are scored with
the Centroid method and selected with
MMR;

• 2G Centroid MMR: sentences are scored
with the Centroid method on bigrams and se-
lected with MMR;

• 3G Centroid MMR: sentences are scored
with the Centroid method on trigrams and se-
lected with MMR;

• LexRank MMR: sentences are scored with
the LexRank method on unigrams and se-
lected with MMR;

• 2G LexRank MMR: sentences are scored
with the LexRank method on bigrams and se-
lected with MMR;

• 2G Centroid KS: sentences are scored with
the LexRank method on bigrams and selected
with a knapsack algorithm;

• 2G JS KS: sentences are extracted with a
knapsack algorithm that uses the Jensen-
Shannon divergence as fitness and bigrams as
tokens;

• ILP: sentences are extracted with an ILP
based solver under the constraints of (Gillick
et al., 2009);

• Genetic: sentences are extracted with a ge-
netic algorithm that uses the Jensen-Shannon
divergence as fitness and bigrams as tokens;

• Pointer Generator: our tool calls the Pointer
Generator (See et al., 2017) and retrieves its
results.

DUC and TAC were evaluated using the best
ROUGE parameters for these corpora in Graham
(2015)’s study. CNN/Dailymail tasks were eval-
uated using a standard configuration of ROUGE:
recall as score, bigrams as tokens, no stemming,
removal of stop words.

As one can see in Table 2, 2G JS KS,
ILP and Genetic methods perform badly on the
CNN/DailyMail task. This is due to the fact that
ILP method is designed for multidocument sum-
marization. 2G JS KS and Genetic use the same
fitness: a Jensen-Shannon divergence. We hypoth-
esize that the CNN/DailyMail documents are too
small for such a fitness based on the bigrams prob-
ability distribution. Without any suprise, Pointer
Generator performs badly on DUC and TAC cor-
pora. Even if the corpora are close (newswire arti-
cles for both DUC/TAC and CNN/DailyMail), the
task is not exactly the same. This confirms that
sometimes, unsupervized extractive methods are
the only solution available, and that such methods
shall not yet be laid aside by the research commu-
nity.

7 Conclusion

This paper introduces a new tool for automatic
summarization. Written in Java, it is completely
modular and can emulate most of the most known
extractive summarization methods. The tool is
open source, and modules can be added easily.
Compared to other existing tools, ours is mod-
ular on a fine-grained level, so a summarization
method can be defined as a combination of differ-
ent modules: token representation, text chunk rep-
resentation, text chunk scoring, and text chunk se-

192

DUC2006 DUC2007 TAC2008 TAC2009 TAC2010 CNN/DM(100) CNN/DM(50)
lead 6.69 8.76 8.81 7.44 6.58 19.62 9.51

tf.idf MMR 8.08 9.48 7.72 7.1 7.72 19.71 10.69
Centroid MMR 8.73 9.34 8.39 7.63 7.93 21.15 12.55

2G Centroid MMR 9.88 11.21 10.84 9.29 10.15 21.58 11.85
3G Centroid MMR 9.10 10.94 10.84 9.29 10.40 21.14 11.50

LexRank MMR 8.83 10.44 8.98 9.36 9.24 21.17 10.96
2G LexRank MMR 8.37 9.82 8.62 8.9 8.94 17.62 10.78

2G Centroid KS 8.85 9.34 8.4 9.03 9.65 18.47 10.69
2G JS KS 10.18 12.61 11.28 11.35 10.01 14.92 8.55

ILP 9.63 11.35 10.96 9.88 10.43 14.89 5.44
Genetic 10.55 12.17 11.01 10.62 10.79 15.35 10.51

Pointer Generator 3.07 7.47 3.33 5.75 4.26 10.24 10.24

Table 2: Results on DUC, TAC and CNN/Dailymail corpora

lection. As we write this paper, and to our knowl-
edge, our tool covers more automatic summariza-
tion methods than the three other existing summa-
rizers.

As an end-user, using our tool, avail-
able on GitHub (https://github.com/
ToolAutomaticSum/MOTS), is straightfor-
ward. It only needs a description of the corpus to
summarize and a configuration file that describes
the modules to use. We provide configuration files
for the most known summarization methods.

For this paper, we evaluated a small sample of
the methods that can be ran with our tool. Except
for three methods that are really specific to mul-
tidocument summarization, the evaluated summa-
rization methods beat the naive baseline that ex-
tracts the n first words from a document. This
is still a competitive baseline when summarizing
newswire articles.

Due to its ease of use and to its results on differ-
ent summarization tasks, our tool can be used as
a baseline for forthcoming research on automatic
summarization.

Acknowledgement

This work is supported by a public grant overseen
by the French National Research Agency (ANR)
as part of the “Young researchers program” (refer-
ence : ANR-16-CE38-0008 ASADERA).

References
Vladimir Batagelj and Matjaz Zaversnik. 2003. An

o(m) algorithm for cores decomposition of net-
works. CoRR, cs.DS/0310049.

Aurélien Bossard. 2013. Generating update sum-
maries: Using an unsupervized clustering algorithm
to cluster sentences. In Multi-source, Multilingual
Information Extraction and Summarization, Theory

and Applications of Natural Language Processing,
pages 205–227. Springer.

Aurélien Bossard and Christophe Rodrigues. 2011.
Combining a multi-document update summarization
system–cbseas–with a genetic algorithm. In Com-
binations of intelligent methods and applications,
pages 71–87. Springer.

Aurélien Bossard and Christophe Rodrigues. 2017. An
evolutionary algorithm for automatic summariza-
tion. In Proceedings of the International Conference
Recent Advances in Natural Language Processing,
RANLP 2017, pages 111–120, Varna, Bulgaria. IN-
COMA Ltd.

Jaime Carbonell and Jade Goldstein. 1998. The use of
mmr, diversity-based reranking for reordering doc-
uments and producing summaries. In Proceedings
of the 21st annual international ACM SIGIR confer-
ence on Research and development in information
retrieval, pages 335–336. ACM.

Sumit Chopra, Michael Auli, and Alexander M. Rush.
2016. Abstractive sentence summarization with at-
tentive recurrent neural networks. In Proceedings of
the 2016 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies, pages 93–98, San
Diego, California. Association for Computational
Linguistics.

Janez Demšar, Tomaž Curk, Aleš Erjavec, Črt Gorup,
Tomaž Hočevar, Mitar Milutinovič, Martin Možina,
Matija Polajnar, Marko Toplak, Anže Starič, Miha
Štajdohar, Lan Umek, Lan Žagar, Jure Žbontar,
Marinka Žitnik, and Blaž Zupan. 2013. Orange:
Data mining toolbox in python. Journal of Machine
Learning Research, 14:2349–2353.

Mike Dowman, Valentin Tablan, Hamish Cunningham,
and Borislav Popov. 2005. Web-assisted annotation,
semantic indexing and search of television and ra-
dio news. In Proceedings of the 14th International
World Wide Web Conference, Chiba, Japan.

Günes Erkan and Dragomir R Radev. 2004. Lexrank:
Graph-based lexical centrality as salience in text
summarization. Journal of AIR, 22:457–479.

193

P. Fournier-Viger, A. Gomariz, T. Gueniche, A. Soltani,
C. Wu., and V. S. Tseng. 2014. SPMF: a Java Open-
Source Pattern Mining Library. Journal of Machine
Learning Research (JMLR), 15:3389–3393.

Daniel Gillick, Benoit Favre, and Hakkani-Tür. 2008.
The icsi summarization system at tac 2008. In Proc.
of the Text Analysis Conference workshop.

Daniel Gillick, Benoit Favre, Dilek Hakkani-Tür,
Berndt Bohnet, Yang Liu, and Shasha Xie. 2009.
The icsi/utd summarization system at tac 2009. In
Proc. of the Text Analysis Conference workshop,
Gaithersburg, MD (USA).

Yvette Graham. 2015. Re-evaluating automatic sum-
marization with bleu and 192 shades of rouge. In
Proceedings of the 2015 Conference on Empirical
Methods in Natural Language Processing, pages
128–137, Lisbon, Portugal. Association for Compu-
tational Linguistics.

Mark Hall, Eibe Frank, Geoffrey Holmes, Bernhard
Pfahringer, Peter Reutemann, and Ian H. Witten.
2009. The weka data mining software: An update.
SIGKDD Explor. Newsl., 11(1):10–18.

Chin-Yew Lin. 2004. Rouge: A package for auto-
matic evaluation of summaries. In Text summariza-
tion branches out: Proceedings of the ACL-04 work-
shop, volume 8. Barcelona, Spain.

Hui Lin and Jeff Bilmes. 2011. A class of submodu-
lar functions for document summarization. In Pro-
ceedings of the 49th Annual Meeting of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies-Volume 1, pages 510–520. As-
sociation for Computational Linguistics.

Marina Litvak, Mark Last, and Menahem Friedman.
2010. A new approach to improving multilingual
summarization using a genetic algorithm. In Pro-
ceedings of the 48th annual meeting of the associ-
ation for computational linguistics, pages 927–936.
Association for Computational Linguistics.

Marina Litvak, Natalia Vanetik, Mark Last, and Elena
Churkin. 2016. Museec: A multilingual text sum-
marization tool. In Proceedings of ACL-2016 Sys-
tem Demonstrations, pages 73–78. Association for
Computational Linguistics.

H. P. Luhn. 1958. The automatic creation of literature
abstracts. IBM J. Res. Dev., 2(2):159–165.

Dragomir R Radev, Timothy Allison, Sasha Blair-
Goldensohn, John Blitzer, Arda Celebi, Stanko
Dimitrov, Elliott Drabek, Ali Hakim, Wai Lam,
Danyu Liu, et al. 2004a. Mead-a platform for
multidocument multilingual text summarization. In
LREC.

Dragomir R Radev, Hongyan Jing, Małgorzata Styś,
and Daniel Tam. 2004b. Centroid-based summa-
rization of multiple documents. Information Pro-
cessing & Management, 40:919–938.

François Rousseau and Michalis Vazirgiannis. 2013.
Graph-of-word and tw-idf: new approach to ad hoc
ir. In Proceedings of the 22nd ACM international
conference on Information & Knowledge Manage-
ment, pages 59–68. ACM.

Seonggi Ryang and Takeshi Abekawa. 2012. Frame-
work of automatic text summarization using rein-
forcement learning. In Proceedings of the 2012
Joint Conference on Empirical Methods in Natu-
ral Language Processing and Computational Natu-
ral Language Learning, pages 256–265. Association
for Computational Linguistics.

Horacio Saggion. 2014. Creating summarization sys-
tems with summa. In Proceedings of the Ninth In-
ternational Conference on Language Resources and
Evaluation (LREC’14), Reykjavik, Iceland. Euro-
pean Language Resources Association (ELRA).

Abigail See, Peter J. Liu, and Christopher D. Manning.
2017. Get to the point: Summarization with pointer-
generator networks. In Proceedings of the 55th An-
nual Meeting of the Association for Computational
Linguistics, ACL 2017, Vancouver, Canada, July 30
- August 4, Volume 1: Long Papers, pages 1073–
1083.

Xiaojun Wan, Jianwu Yang, and Jianguo Xiao.
2007. Manifold-ranking based topic-focused multi-
document summarization. In Proceedings of the
20th International Joint Conference on Artifical In-
telligence, IJCAI’07, pages 2903–2908, San Fran-
cisco, CA, USA. Morgan Kaufmann Publishers Inc.

Jianmin Zhang, Tianming Wang, and Xiaojun Wan.
2016. PKUSUMSUM : A java platform for multi-
lingual document summarization. In COLING (De-
mos), pages 287–291. ACL.

194

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 195–200
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

TARGER: Neural Argument Mining at Your Fingertips

Artem Chernodub1,2, Oleksiy Oliynyk3, Philipp Heidenreich3, Alexander Bondarenko4,
Matthias Hagen4, Chris Biemann3, and Alexander Panchenko5,3

1Grammarly
2Faculty of Applied Sciences, Ukrainian Catholic University, Lviv, Ukraine

3Language Technology Group, Universität Hamburg, Hamburg, Germany
4Big Data Analytics Group, Martin-Luther Universität Halle-Wittenberg, Halle, Germany

5Skolkovo Institute of Science and Technology, Moscow, Russia

Abstract

We present TARGER, an open source neu-
ral argument mining framework for tag-
ging arguments in free input texts and for
keyword-based retrieval of arguments from
an argument-tagged web-scale corpus. The
currently available models are pre-trained on
three recent argument mining datasets and en-
able the use of neural argument mining with-
out any reproducibility effort on the user’s
side. The open source code ensures portabil-
ity to other domains and use cases, such as an
application to search engine ranking that we
also describe shortly.

1 Introduction

Argumentation is a multi-disciplinary field that ex-
tends from philosophy and psychology to linguis-
tics as well as to artificial intelligence. Recent de-
velopments in argument mining apply natural lan-
guage processing (NLP) methods to argumenta-
tion (Palau and Moens, 2011; Lippi and Torroni,
2016a) and are mostly focused on training classi-
fiers on annotated text fragments to identify argu-
mentative text units, such as claims and premises
(Biran and Rambow, 2011; Habernal et al., 2014;
Rinott et al., 2015). More specifically, current ap-
proaches mainly focus on three tasks: (1) detec-
tion of sentences containing argumentative units,
(2) detection of the argumentative units’ bound-
aries inside sentences, and (3) identifying relations
between argumentative units.

Despite vital research in argument mining, there
is a lack of freely available tools that enable users,
especially non-experts, to make use of the field’s
recent advances. In this paper, we close this gap
by introducing TARGER: a system with a user-
friendly web interface1 that can extract argumen-
tative units in free input texts in real-time using

1ltdemos.informatik.uni-hamburg.de/targer

models trained on recent argument mining corpora
with a highly configurable and efficient neural se-
quence tagger. TARGER’s web interface and API
also allow for very fast keyword-based argument
retrieval from a pre-tagged version of the Common
Crawl-based DepCC (Panchenko et al., 2018).

The native PyTorch implementation underlying
TARGER has no external depencies and is avail-
able as open source software:2 it can easily be in-
corporated into any existing NLP pipeline.

2 Related Work

There are three publicly available systems of-
fering some functionality similar to TARGER.
ArgumenText (Stab et al., 2018) is an argument
search engine that retrieves argumentative sen-
tences from the Common Crawl and labels them
as pro or con given a keyword-based user query.
Similarly, args.me (Wachsmuth et al., 2017) re-
trieves pro and con arguments from 300,000 ar-
guments crawled from debating portals. Finally,
MARGOT (Lippi and Torroni, 2016b) provides ar-
gument tagging for free-text inputs. However, an-
swer times of MARGOT are rather slow for single
input sentences (>5 seconds) and the F1 scores
of 17.5 for claim detection and 16.7 for evidence
detection are slightly worse compared to our ap-
proach (see Section 4.1).
TARGER offers a real-time retrieval functional-

ity similar to ArgumenText and fast real-time free-
text argument tagging with the option of switching
between different pre-trained state-of-the-art mod-
els (MARGOT offers only a single one).

3 Architecture of TARGER

The independent components of the modular and
flexible TARGER framework are shown in Fig-
ure 1. In an offline training step, a neural

2github.com/achernodub/targer

195

TaggerTraining
Datasets

labeled
text data

Models
models

DepCC Indexer
text data

Index
text + tags

API
query

texttext + tags

Web UI

text + model /
querytagged text /

arguments with tags

text + model /
query

tagged text /
arguments with tags

text +
 tags

tag
s

text data

text + model /

query

tagged text /

arguments with tags

Offline pre-processing Application

Figure 1: Modular architecture of TARGER. The central API is accessed through the Web UI or directly from any
application; it routes requests either to the tagging models or to the retrieval component. TARGER’s components
communicate via HTTP requests and can be deployed on different servers—in Docker containers or natively.

BiLSTM-CNN-CRF sequence tagger is trained on
different datasets yielding a variety of argument
mining models (details in Section 3.1). As part of
the preprocessing, the trained models are run on
the 14 billion sentences of the DepCC corpus to
tag and store argument unit information as addi-
tional fields in an Elasticsearch BM25F-index of
the DepCC (details in Section 3.2).

The online usage is handled via a Flask-based
web app whose API accepts AJAX requests from
the Web UI component or via API calls (details in
Sections 3.3 and 3.4). The API routes free text in-
puts to the respective selected model to be tagged
with argument information or it routes keyword-
based queries to the index to retrieve sentences in
which the query terms match argument units.

3.1 Neural Sequence Tagger

We implement a BiLSTM-CNN-CRF neural tag-
ger (Ma and Hovy, 2016) for identifying argumen-
tative units and for classifying them as claims or
premises. The BiLSTM-CNN-CRF method is a
popular sequence tagging approach and achieves
(near) state-of-the-art performance for tasks like
named entity recognition and part-of-speech tag-
ging (Ma and Hovy, 2016; Lample et al., 2016);
it has also been used for argument mining be-
fore (Eger et al., 2017). The general method re-
lies on pre-computed word embeddings, a sin-
gle bidirectional-LSTM/GRU recurrent layer, con-
volutional character-level embeddings to capture
out-of-vocabulary words, and a first-order Condi-
tional Random Field (Lafferty et al., 2001) to cap-
ture dependencies between adjacent tags.

Besides the existing BiLSTM-CNN-CRF im-
plementation of Reimers and Gurevych (2017), we

Essays WebD IBM

Claims 22,443 3,670 8,073,589
Premises 67,157 20,906 35,349,501
Major Claims 10,966 - -
Backing - 10,775 -
Refutations - 867 -
Rebuttals - 2,247 -
None 47,619 46,352 3,710,839

Combined 148,185 84,817 47,133,929

Table 1: Number of tokens per category in the training
datasets. Note that the IBM data contains many dupli-
cate claims; it was originally published as a dataset to
identify relevant premises for 150 claims.

also use an own Python 3.6 / PyTorch 1.0 im-
plementation that does not contain any third-party
dependencies, has native vectorized code for effi-
cient training and evaluation, and supports several
input data formats as well as evaluation functions.

The different argument tagging models cur-
rently usable through TARGER’s API are trained
on the persuasive essays (Essays) (Eger et al.,
2017), the web discourse (WebD) (Habernal and
Gurevych, 2017), and the IBM Debater (IBM)
(Levy et al., 2018) datasets (characteristics in
Table 1). The models use GloVe (Pennington
et al., 2014), fastText (Mikolov et al., 2018), or
dependency-based embeddings (Levy and Gold-
berg, 2014) (overview in Table 2).

For training, the following variations were
used for hyperparameter tuning: optimizer [SGD,
Adam], learning rate [0.001, 0.05, 0.01],
dropout [0.1, 0.5], number of hidden units in
recurrent layer [100, 150, 200, 250]. On all
datasets, GloVe embeddings, Adam with learning
rate of 0.001 and dropout rate of 0.5 performed

196

Data Embeddings Tagger

Essays fastText (Reimers and Gurevych, 2017)
Essays Dependency (Reimers and Gurevych, 2017)
Essays GloVe Ours

WebD fastText (Reimers and Gurevych, 2017)
WebD Dependency (Reimers and Gurevych, 2017)
WebD GloVe Ours

IBM fastText (Reimers and Gurevych, 2017)
IBM GloVe Ours

Table 2: Models currently deployed in TARGER.

best (hidden units: 200 on the persuasive essays,
250 on web discourse and IBM data).

3.2 Retrieval Functionality

Our background collection for the retrieval
of argumentative sentences is formed by the
DepCC corpus (Panchenko et al., 2018), a linguis-
tically pre-processed subset of the Common Crawl
containing 14.3 billion unique English sentences
from 365 million web documents.

The trained WebD-GloVe model was run on all
the sentences in the DepCC corpus since it per-
formed best on the web data in a pilot experiment.
The respective argumentative unit spans and labels
were added as additional fields to an Elasticsearch
BM25F-index of the DepCC.

3.3 TARGER API

To keep the TARGER framework modular and
scalable while still allowing access to the models
from external clients, online interaction is handled
via a restful API. Each trained model is associated
with a separate API endpoint accepting raw text
as input. The output is provided as a list of word-
level tokens with IOB-formatted labels for argu-
ment units (premises and claims) and the tagger’s
confidence scores for each label.

3.4 TARGER Web UI

The web interface of TARGER offers two function-
alities: Analyze Text and Search Arguments. On
the analysis tab (cf. Figure 2), the user can choose
one of the deployed models to identify arguments
in a user-provided free text. The result is shown
with colored labels for different types of argumen-
tative units (premises and claims) as well as de-
tected named entities (nested tags for entities in
argumentative units are supported). Once a result
is shown, it is possible to customize the display

Essays Web Discourse
Approach F1 Approach F1

STagBLCC 64.74 SVMhmm 22.90
TARGER (GloVe) 64.54 TARGER (GloVe) 24.20

Table 3: Comparison of TARGER’s performance on
the essays (Eger et al., 2017) and web discourse data
(Habernal and Gurevych, 2017) to the best approaches
from the original publications.

by enabling/disabling different labels without per-
forming additional tagging runs.

On the retrieval tab (cf. Figure 3), the user
can enter a keyword query and choose whether it
should be matched in claims, premises, etc. Every
retrieved result is rendered as a text fragment col-
orized with argument and entity information just
as on the analysis tab. To enable provenance, the
URL of the source document is also provided.

4 Evaluation

To demonstrate that our neural tagger is able to re-
produce the originally published argument mining
performances, we compare the best performing of
our pre-trained models (parameter settings at the
end of Section 3.1) to the best performances from
the original dataset publications. We also report
on a pilot study using TARGER as a subroutine in
runs for the TREC 2018 Common Core track.

4.1 Experimental Results
Table 3 shows a comparison of TARGER’s best
performing models (parameter settings at the end
of Section 3.1) on the Persuasive Essays and the
Web Discourse datasets to the best performance
in the original publications. We apply the exper-
imental settings of the original papers: a fixed
70/20/10 train/dev/test split on the Essays data,
and a 10-fold cross-validation for Web Discourse
(in our case allocating 7 folds for training and 2 for
development in each iteration).

On the Persuasive Essays dataset (paragraph
level), the best TARGER model achieves a span-
based micro-F1 of 64.54 for extracted argu-
ment components matching the best performance
of 64.74±1.97 reported by Eger et al. (2017) for
their STagBLCC approach (BiLSTM-CRF-CNN
approach (BLCC) similar to ours).

On the Web Discourse dataset, TARGER’s best
model’s token-based macro-F1 of 24.20 slightly
improves upon the originally reported best macro-
F1 of 22.90 (Habernal and Gurevych, 2017)

197

Figure 2: Analyze Text: input field, drop-down model selection, colorized labels, and tagged result.

Figure 3: Search Arguments: query box, field selectors, and result with link to the original document.

achieved by a structural support vector machine
model SVMhmm for sequence labeling (Joachims
et al., 2009). The SVMhmm model uses lexi-
cal, structural, and other handcrafted feature types.
In contrast, TARGER just uses word embeddings
since especially for cross-domain scenarios, hand-
crafted features show a strong tendency to overfit
on the topics of the training texts (Habernal and
Gurevych, 2017). Thus, we chose “word embed-
dings only” as a more robust feature type for our
domain-agnostic general-purpose argument min-
ing system (free input text and web data).

We cannot compare TARGER’s performance on
the IBM dataset to originally published perfor-
mances since the tasks are different. Instead of
TARGER’s identification of claims and premises,
Levy et al. (2018) focus on the identification of

relevant premises for a given claim (called “topic”
in the original publication). Still, a large num-
ber of potential general domain premises for the
overall 150 topics (i.e., claims) are contained in
the dataset, such that we transformed the original
entries to a token-level claim and premise anno-
tation. This way, only some 2500 distinct tokens
were labeled as not argumentative (e.g., punctua-
tion) while the vast majority are tokens in claims
and premises (but the only 150 different claims are
heavily duplicated).

Not surprisingly—given the class imbalance
and duplication—, the resulting trained TARGER
models “optimistically” identify some argumenta-
tive units in almost every input text. We still pro-
vide the models as a starting point with the inten-
tion to de-duplicate the data and to add more non-

198

Title / Query BM25F Axiomatic
Re-Ranking

declining middle class in u.s. 0.91 0.98 (+0.07)
euro opposition 0.81 1.00 (+0.19)
airport security 0.52 0.72 (+0.20)
law enforcement, dogs 0.43 0.63 (+0.20)

Table 4: The TREC 2018 Common Core track topics
with argument axiom re-ranked nDCG@10 improve-
ments > 0.05 over a BM25F baseline.

argumentative text passages for a more balanced /
realistic training scenario.

4.2 TARGER @ TREC Common Core Track

As a proof of concept, we used TARGER’s
model pre-trained on essays with dependency-
based embeddings in a TREC 2018 Common
Core track submission (Bondarenko et al., 2018).
The TARGER API served as a subroutine in a
pipeline axiomatically re-ranking (Hagen et al.,
2016) BM25F retrieval results with respect to
their argumentativeness (presence/absence of ar-
guments). For the Washington Post corpus used in
the track, the dependency-based essays model best
tagged argumentative units in a small pilot study.

Out of 25 topics manually labeled as argumen-
tative from the 50 Common Core track topics, the
TARGER-based argumentativeness re-ranking im-
proved the retrieval quality by > 0.05 nDCG@10
for 4 topics (see Table 4). Argumentativeness-
based re-ranking might thus be a viable way to in-
tegrate neural argument mining into the retrieval
process—for instance, using TARGER.

5 Conclusion

We have presented TARGER: an open source sys-
tem for tagging arguments in free text and for re-
trieving arguments from a web-scale corpus. With
the available RESTful API and the web interface,
we make the recent argument mining technolo-
gies more accessible and usable to researchers and
developers as well as the general public. The
different argument mining models can easily be
used to perform manual text analyses or can seam-
lessly be integrated into automatic NLP pipelines.
New taggers can be deployed to TARGER at any
time, so that users can have the state of the art
in argument mining at their fingertips. For future
work, we plan to integrate contextualized embed-
dings with ELMo- and BERT-based models (Pe-
ters et al., 2018; Devlin et al., 2018).

Finally, by looking at our experimental results
as well as tagging examples for free input texts or
the DepCC web data, we noticed that despite the
recent advances in argument mining, there is still
considerable headroom to improve in-domain, but
especially out-of-domain argument tagging per-
formance. Free input texts of different styles or
genres taken from the web are tagged very in-
consistently by the different models. More re-
search on domain adaptation and transfer learning
(Ruder, 2019) in the scenario of argument mining
needs to address this issue—and could then ideally
directly be deployed to TARGER as new models.

Acknowledgments

This work was partially supported by the German
Academic Exchange Service (DAAD) through
the short-term research grant 57314022 “Argu-
ment Mining in Web Documents using Orthog-
onal Simple Recurrent Networks” and by the
Deutsche Forschungsgemeinschaft (DFG) through
the project “ACQuA: Answering Comparative
Questions with Arguments” (grants BI 1544/7-
1 and HA 5851/2-1) as part of the priority pro-
gram “RATIO: Robust Argumentation Machines”
(SPP 1999).

References
Or Biran and Owen Rambow. 2011. Identifying Justifi-

cations in Written Dialogs. In Proceedings of the 5th
IEEE International Conference on Semantic Com-
puting (ICSC 2011), pages 162–168.

Alexander Bondarenko, Michael Völske, Alexander
Panchenko, Chris Biemann, Benno Stein, and
Matthias Hagen. 2018. Webis at TREC 2018: Com-
mon Core Track. In 27th International Text Re-
trieval Conference (TREC 2018).

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training of
Deep Bidirectional Transformers for Language Un-
derstanding. CoRR, abs/1810.04805.

Steffen Eger, Johannes Daxenberger, and Iryna
Gurevych. 2017. Neural end-to-end learning for
computational argumentation mining. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 11–22.

Ivan Habernal, Judith Eckle-Kohler, and Iryna
Gurevych. 2014. Argumentation Mining on the Web
from Information Seeking Perspective. In Proceed-
ings of the Workshop on Frontiers and Connections
between Argumentation Theory and Natural Lan-
guage Processing, pages 26–39.

199

Ivan Habernal and Iryna Gurevych. 2017. Argumen-
tation Mining in User-Generated Web Discourse.
Computational Linguistics, 43(1):125–179.

Matthias Hagen, Michael Völske, Steve Göring, and
Benno Stein. 2016. Axiomatic Result Re-Ranking.
In 25th ACM International Conference on Infor-
mation and Knowledge Management (CIKM 2016),
pages 721–730.

Thorsten Joachims, Thomas Finley, and Chun-Nam J.
Yu. 2009. Cutting-plane training of structural svms.
Machine Learning, 77(1):27–59.

John D. Lafferty, Andrew McCallum, and Fernando
C. N. Pereira. 2001. Conditional Random Fields:
Probabilistic Models for Segmenting and Label-
ing Sequence Data. In Proceedings of the Eigh-
teenth International Conference on Machine Learn-
ing (ICML 2001), pages 282–289.

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
In Proceedings of the 2016 Conference of the North
American Chapter of the Association for Computa-
tional Linguistics: Human Language Technologies,
pages 260–270.

Omer Levy and Yoav Goldberg. 2014. Dependency-
based word embeddings. In Proceedings of the 52nd
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 2: Short Papers), pages
302–308.

Ran Levy, Ben Bogin, Shai Gretz, Ranit Aharonov, and
Noam Slonim. 2018. Towards an Argumentative
Content Search Engine Using Weak Supervision. In
Proceedings of the 27th International Conference on
Computational Linguistics, COLING, pages 2066–
2081.

Marco Lippi and Paolo Torroni. 2016a. Argumenta-
tion Mining: State of the Art and Emerging Trends.
ACM Trans. Internet Techn., 16(2):10:1–10:25.

Marco Lippi and Paolo Torroni. 2016b. MARGOT: A
Web Server for Argumentation Mining. Expert Syst.
Appl., 65:292–303.

Xuezhe Ma and Eduard Hovy. 2016. End-to-end
sequence labeling via bi-directional LSTM-CNNs-
CRF. In Proceedings of the 54th Annual Meeting of
the Association for Computational Linguistics (Vol-
ume 1: Long Papers), pages 1064–1074.

Tomas Mikolov, Edouard Grave, Piotr Bojanowski,
Christian Puhrsch, and Armand Joulin. 2018. Ad-
vances in Pre-Training Distributed Word Represen-
tations. In Proceedings of the Eleventh International
Conference on Language Resources and Evaluation,
LREC 2018, pages 52–55.

Raquel M. Palau and Marie-Francine Moens. 2011.
Argumentation Mining. Artif. Intell. Law, 19(1):1–
22.

Alexander Panchenko, Eugen Ruppert, Stefano Far-
alli, Simone P. Ponzetto, and Chris Biemann.
2018. Building a Web-Scale Dependency-Parsed
Corpus from CommonCrawl. In Proceedings of the
Eleventh International Conference on Language Re-
sources and Evaluation, LREC 2018, pages 1816–
1823.

Jeffrey Pennington, Richard Socher, and Christo-
pher D. Manning. 2014. Glove: Global vectors for
word representation. In Proceedings of the 2014
Conference on Empirical Methods in Natural Lan-
guage Processing (EMNLP), pages 1532–1543.

Matthew Peters, Mark Neumann, Mohit Iyyer, Matt
Gardner, Christopher Clark, Kenton Lee, and Luke
Zettlemoyer. 2018. Deep contextualized word rep-
resentations. In Proceedings of the 2018 Confer-
ence of the North American Chapter of the Associ-
ation for Computational Linguistics: Human Lan-
guage Technologies, Volume 1 (Long Papers), pages
2227–2237.

Nils Reimers and Iryna Gurevych. 2017. Reporting
score distributions makes a difference: Performance
study of LSTM-networks for sequence tagging. In
Proceedings of the 2017 Conference on Empirical
Methods in Natural Language Processing, pages
338–348.

Ruty Rinott, Lena Dankin, Carlos Alzate Perez,
Mitesh M. Khapra, Ehud Aharoni, and Noam
Slonim. 2015. Show me your evidence - an auto-
matic method for context dependent evidence detec-
tion. In Proceedings of the 2015 Conference on Em-
pirical Methods in Natural Language Processing,
pages 440–450.

Sebastian Ruder. 2019. Neural Transfer Learning for
Natural Language Processing. Ph.D. thesis, Na-
tional University of Ireland, Galway.

Christian Stab, Johannes Daxenberger, Chris Stahlhut,
Tristan Miller, Benjamin Schiller, Christopher
Tauchmann, Steffen Eger, and Iryna Gurevych.
2018. ArgumenText: Searching for arguments in
heterogeneous sources. In Proceedings of the 2018
Conference of the North American Chapter of the
Association for Computational Linguistics: Demon-
strations, pages 21–25.

Henning Wachsmuth, Martin Potthast, Khalid Al-
Khatib, Yamen Ajjour, Jana Puschmann, Jiani Qu,
Jonas Dorsch, Viorel Morari, Janek Bevendorff, and
Benno Stein. 2017. Building an argument search en-
gine for the web. In Proceedings of the 4th Work-
shop on Argument Mining, pages 49–59.

200

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 201–206
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

MoNoise: A Multi-lingual and Easy-to-use Lexical Normalization Tool

Rob van der Goot
Center for Language and Cognition

University of Groningen
r.van.der.goot@rug.nl

Abstract

In this paper, we introduce and demonstrate
the online demo as well as the command line
interface of a lexical normalization system
(MoNoise) for a variety of languages. We
further improve this model by using features
from the original word for every normalization
candidate. For comparison with future work,
we propose the bundling of seven datasets
in six languages to form a new benchmark,
together with a novel evaluation metric which
is particularly suitable for cross-dataset com-
parisons. MoNoise reaches a new state-of-art
performance for six out of seven of these
datasets. Furthermore, we allow the user
to tune the ‘aggressiveness’ of the normal-
ization, and show how the model can be
made more efficient with only a small loss in
performance. The online demo can be found
on: http://www.robvandergoot.
com/monoise and the corresponding
code on: https://bitbucket.org/
robvanderg/monoise/

1 Lexical Normalization

Because many natural language processing (NLP)
systems are designed with standard texts in mind,
they suffer performance drops when applied to
texts from other domains. In recent years, social
media has become a major source of information.
Due to their hasty and spontaneous nature, texts
on social media are particularly non-standard.

One solution to adapt NLP systems, is to ‘trans-
late’ these non-standard texts to their standard
equivalent. This task is also called lexical nor-
malization, see Figure 1 for the normalization of
“most social pple r troublesome”. Previous work
on normalization is fragmented; a variety of ap-
proaches is evaluated on a variety of benchmarks,
using a variety of evaluation metrics and assump-
tions. Furthermore, most normalization systems
are not opensource or publicly available.

most social pple r troublesome
most social people are troublesome

Figure 1: Example normalization of “most social pple
r troublesome”

In this paper, we present MoNoise, an easy-to-
use normalization system, consisting of an online
demo as well a more elaborate command line in-
terface. We include benchmarks, results and pre-
trained models for a variety of languages.

2 Multi-lingual Normalization
Benchmark

The manually annotated datasets on which we will
evaluate MoNoise are summarized in Table 1. In
all datasets, gold tokenization was assumed. When
1-N is indicated in the table, this means that split-
ting of words was included in the annotation, and
in some rare cases also merging. Since capital-
ization is usually not corrected (merely kept) in
almost all of these datasets, we will lowercase ev-
erything in our evaluation. For datasets with ex-
isting splits, those are used, in other cases the
data is split 80%-10%-10% (train-dev-test). For
LexNorm1.2 we use LiLiu as training and devel-
opment data, in line with previous work (Li and
Liu, 2014, 2015).1.

3 MoNoise

In this section, we will give a summary of the nor-
malization model MoNoise (van der Goot and van
Noord, 2017). Additionally, we added one group
of features which improves the performance of
this model.

1This benchmark can be obtained by running
./scripts/0.getNormData.sh from the reposi-
tory

201

Corpus Words Lang. %normed 1-N Caps
Source

GhentNorm 12,901 NL 4.8 + +-
De Clercq et al. (2014)

TweetNorm 13,542 ES 6.3 + +-
Alegria et al. (2013)

LexNorm1.2 10,576 EN 11.6 - -
Yang and Eisenstein (2013)

LiLiu 40,560 EN 10.5 - +-
Li and Liu (2014)

LexNorm2015 73,806 EN 9.1 + -
Baldwin et al. (2015)

IWT 38,918 TR 8.5 + +
Eryiǧit and Torunoǧ-Selamet (2017)

Janes-Norm 75,276 SL 15.0 - +-
Erjavec et al. (2017)

ReLDI-hr 89,052 HR 9.0 - +-
Ljubešić et al. (2017a)

ReLDI-sr 91,738 SR 8.0 - +-
Ljubešić et al. (2017b)

Table 1: Comparison of the normalization corpora used
in this work. %normed indicates the percentage of
words which is normalized. The ‘1-N’ column indi-
cates whether words are split/merged in the annota-
tion, the ‘caps’ column indicates whether everything
was lowercased (-), capitalization was transferred to the
normalization (+-), or corrected (+).

3.1 The Architecture

MoNoise splits the normalization task in two sub-
tasks; candidate generation and candidate rank-
ing. In contrast to most other systems, no error
detection is performed beforehand, the decision
whether to normalize is made during ranking. Be-
cause the normalization task consists of a variety
of replacement types (van der Goot et al., 2018),
MoNoise is developed in a modular way. Some of
the modules are based on raw, external data. This
dependency allows the model to be transferred to
new domains and timespans more easily. For both
sub-tasks a variety of modules is designed, which
are described in the following two paragraphs.

Important modules for candidate generation are
Aspell2, a dictionary learned from the training
data and word embeddings (Mikolov et al., 2013)
trained on non-standard data (where the 40 clos-
ests words using cosine distance are used). Be-
cause no normalization detection is done, the orig-
inal word is also included as a candidate.

For the ranking of candidates, features from the

2http://aspell.net/

generation are complemented with additional fea-
tures. The additional features are: N-gram proba-
bilities over non-standard text as well as standard
texts, a feature which indicates whether a word
contains alphanumeric characters or is a domain-
specific token (hashtags, usernames and URLs)
and the length of the original word and the candi-
date. All these features are combined in a random
forest classifier, and the probability that a candi-
date belongs to the ‘correct’ class is used to rank
the candidates.

3.2 Re-use Features of Original Word

A word should only be normalized when a sub-
stantially better candidate is found, this was not
taken into account in the original model. To incor-
porate this intuition, we copy the features from the
orginal word to all the other normalization candi-
dates as additional features.

3.3 Models

For reproducability and reusability of the system,
we provide pre-trained models for all the lan-
guages available in our multi-lingual benchmark
(Section 2). These models are all trained using the
default settings of MoNoise. These models exploit
raw data from the source (non-standard) as well as
the target (standard) domain, as n-gram probabili-
ties and word embeddings are derived from these.
As target domain data we use Wikipedia dumps
from 01-01-20193. For the non-standard data, we
use raw data based on an in-house twitter collec-
tion4. In contrast to van der Goot and van Noord
(2017), we do not not use language specific collec-
tions, but collect random tweets provided by the
Twitter API during 2012 and 2018, and filter these
by language based on the FastText language iden-
tifier (Joulin et al., 2016). Furthermore, we train
embeddings with only 100 dimensions as opposed
to van der Goot and van Noord (2017), who used
400. Because of these new embeddings, MoNoise
uses 2-3 times less RAM, while experiencing only
a very minor performance loss.

The pre-trained models can be found on:
http://www.robvandergoot.com/
data/monoise

3cleaned with https://github.com/attardi/
wikiextractor

4https://developer.twitter.com/

202

Corpus Lang ERR Precision Recall Prev. SOTA Metric Prev. MoNoise

GhentNorm NL 44.62 89.19 50.77 Schulz et al. (2016) WER 3.2 1.365

TweetNorm ES 38.73 94.37 41.19 Porta and Sancho (2013) OOV-Precision 63.4 70.40
LexNorm1.2 EN 59.21 80.87 77.56 Li and Liu (2015) OOV Accuracy 87.58 87.63
LexNorm2015 EN 77.09 95.49 80.91 Jin (2015) F1 84.21 86.58
IWT TR 28.94 96.24 30.12 Eryiǧit et al. (2017) OOV Accuracy 67.37 48.99
Janes-Norm SL 31.67 85.19 0.3833 Ljubešic et al. (2016) L1 CER 0.38 0.53
Janes-Norm SL 63.90 95.66 0.6694 Ljubešic et al. (2016) L3 CER 1.58 2.24
ReLDI-hr HR 51.65 95.66 0.541
ReLDI-sr SR 64.61 94.70 68.43

Table 2: Results of MoNoise on the test data and a comparison with previous benchmarks. For WER and CER
lower scores are better. Words normalized to the wrong candidate are classified as false positive (recall).

4 Evaluation

In this section, we first discuss existing evaluation
metrics and their shortcomings and then introduce
our novel metric. Secondly, we evaluate MoNoise
on the test-splits of the multi-lingual benchmark,
this is done twofold: using our preferred metric as
well as a comparison to previous work.

4.1 Evaluation Metrics
Evaluation beyond word-level Some previous
work used evaluation metrics which allow for
evaluation beyond the word level. However, most
of the normalization corpora do not include anno-
tation beyond the word-level, except for the work
of Zhang et al. (2013). Sometimes, BLEU score is
used, whereas others use word error rate (WER) or
character error rate (CER). We consider these met-
rics to be overly complex, since the word-order is
not altered during annotation.

F1 In the shared task on normalization hosted
at WNUT (Baldwin et al., 2015), F1 score was
used as main evaluation. During development
of MoNoise, we found multiple reasons why this
might not be the preferable metric:

• Hard to interpret (how much of the problem
is solved with an F1 score of 0.35?)

• It is unclear what to do with a word which
should be normalized, but is normalized in-
correctly, does this harm recall (false posi-
tive), precision (false negative) or both? 6

• Because of the previous point, reproducibil-
ity and comparison with previous work can
be difficult.

5Results are not directly comparable as different splits and
tokenization is used

6For a more extensive discussion on this, we refer
to van der Goot (2019). In the WNUT share task, they are
FP and FN, in this paper they are considered only FP (recall).

Accuracy Early work on normalization often
used accuracy over the words in need of nor-
malization as main evaluation (Han and Baldwin,
2011; Liu et al., 2012) (OOV accuracy in Table 2).
However, in this setting, the detection of which
words need to be normalized is not taken into ac-
count. To include the full task of normalization,
accuracy over all the words could be used. Accu-
racy is much easier interpretable compared to F1
score. However, accuracy does not allow for easy
comparison across corpora, as different percent-
ages of words might be in need of normalization.
This is the main motivation for a novel evaluation
metric, discussed in the next paragraph.

Error Reduction Rate Because previous met-
rics are overly complicated, hard to interpret or
do not allow for an easy comparison between dif-
ferent datasets, we introduce the Error Reduction
Rate (ERR). Error reduction rate can be inter-
preted as accuracy normalized for the number of
words that are normalized in the gold standard.
This allows for a direct comparison with a baseline
which always copies the original word, the accu-
racy of such a baseline is equal to the percentage
of words which need to be normalized. The for-
mula for ERR is:

ERR =
Accuracysystem −Accuracybaseline

1.0−Accuracybaseline
(1)

The ERR will usually have a value between 0.0
and 1.0. A negative ERR indicates that the sys-
tem normalizes makes more erroneous than cor-
rect normalizations. A baseline which always
keeps the original word scores exactly 0.0, and a
perfect system will score 1.0. We will use ERR
as main evaluation metric and additionally report
precision and recall, to gain more insights into the
strengths and weaknesses of the system. A more

203

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4 1.6

Weight

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
E
R

R
GhentNorm

TweetNorm

LexNorm1.2

LexNorm2015

IWT

Janes-Norm

ReLDI-hr

ReLDI-sr

Figure 2: The effect of tuning the weight of the original
candidate. A low weight indicates a more aggressive
system.

detailed discussion on the motivation behind ERR
can be found in (van der Goot, 2019).

4.2 Results
We present the results on all corpora of the multi-
lingual benchmark in Table 2. We report the ERR,
precision, recall, as well as the standard metric for
each dataset. During development, no tuning was
done on the test data, as described in more detail
in (van der Goot and van Noord, 2017).

As mentioned in Section 4.1, it is disputable
whether words which are normalized to the wrong
normalization candidate should be counted as
false positive or false negative. We choose to cat-
egorize these as false negatives, and thus be ac-
counted for in the recall.

The ERR differs quite substantially across the
datasets, this is due to different sizes of train-
ing data as well as differences in annotation. In
the LexNorm2015 dataset, for example, phrasal
abbreviations are expanded (‘lol’7→‘laughing out
loud’), leading to a lot of very common replace-
ments, which can easily be learned from the train-
ing data. On all datasets, the precision is higher
than the recall. In other words, the model is con-
servative. This is arguably a desirable result, as it
is important to avoid over-normalization.

When we look at the comparison to the previous
state-of-the-art systems, we see that MoNoise per-
forms highly competitive. Only on the Slovenian
and Turkish datasets, the previous state-of-the-art
is not surpassed.

5 Aggressiveness

To gain more control over the output normaliza-
tion, we introduce a parameter which controls for
the aggressiveness of the model. This is done by
weighing the confidence score estimated for the

original word (see also Section 3.1). If this is given
a high weight, the original word is more likely to
rank high.

The effect of tuning this parameter is plotted
in Figure 2. It becomes apparent that the default
weight of 1.0 leads to rather stable performance.
For some datasets, minor gains can be achieved
by a more aggressive setting. Furthermore, we
can see that the parameter only becomes effective
with extreme values, which is because the classi-
fier is relatively certain about its predictions, and
often gives very high scores to a certain candi-
date (>0.99). Although this parameter only leads
to minor gains, it can still be useful to adapt the
model to other domains, or to inspect whether the
model was close to the correct normalization.

6 Efficiency

The main bottleneck for efficiency in the model is
the searching of the 40 closest words in the word-
embeddings. In the original word2vec (Mikolov
et al., 2013) code, this is done by a for-loop which
iterates through the whole vocabulary, and calcu-
lates the cosine distance for every word. There
are more efficient techniques to calculate these
distance, like the one used by Gensim (Řehůřek
and Sojka, 2010). However, this still takes half a
second per word on a modern pc for our English
embeddings with a vocabulary size of 4,500,000.
Therefore, we cache the 40 closest candidates in
the embeddings for each word. We included the
cached embeddings with each of our models. 7

The next bottleneck of the model is the random
forest classifier. So, further gains in efficiency can
be gained by limiting the number of allowed can-
didates, as previously done by (Jin, 2015). This
can be done by only considering words which oc-
cur in the corrected data, or a larger list by also
including the Aspell dictionary.

The effect of filtering the candidates on the
LiLiu dataset is shown in Table 3. Results on
the other datasets showed similar trends. Filter-
ing candidates based on only the training data re-
sults in a huge speedup, however also substan-
tially harms performance. However, if we add
the Aspell dictionary to the list of allowed candi-
dates, performance remains relatively close, and a
speedup of factor 2 is achieved.

7The code to cache embeddings (including a python
wrapper) is available at: https://bitbucket.org/
robvanderg/cacheembeds.

204

Restrictions ERR avg. cands words/ trainTime
sec (seconds)

None 61.83 84 29 2,171
Train 51.64 12 137 280
Train + Aspell 61.12 43 62 1,104

Table 3: ERR when filtering candidates before ranking,
and speed of the model when predicting and training.
All reported results are the average of five runs on the
LiLiu development set.

7 Interface

We provide two interfaces to use MoNoise; a com-
mand line application and a demo website.

7.1 Command Line
The only requirement to install MoNoise is a
somewhat recent c++ compiler (c++11 or newer).
In this section, we will highlight the most useful
commands, for the full list of options we refer to
the repository.
--cands N Outputs at most N candidates

for each word and their probability. These proba-
bilities are obtained by normalizing the confidence
scores of the classifier so that they sum to 1.0.
--caps Do not lowercase everything, can

be used during training as well as testing/running.
This parameter is enabled for the online demo.
--feats Lets you provide a bytestring with

which specific modules can be disabled, the mod-
ules are explained in van der Goot and van Noord
(2017) and listed in utils/feats.txt.
--known N Only allow normalization can-

didates which occur in the normalized version of
the training data(N=1), or allow candidates which
occur in the training data or the Aspell dictio-
nary(N=2).
--tokenize Employ a conservative to-

kenizer, which splits sequences of punctuation
(∗.”?!(){} :; /, \˜&) from the beginning and end
of a word. Here, we assume that the normalization
model will take care of other irregularities.
--weight N Weigh the confidence of the

original word with N, thereby tuning the aggres-
siveness (Section 5).

7.2 Online
In the online interface (Figure 3), the user can
type a sentence and get the predicted normaliza-
tion. The dropdown menu includes all languages
for which a pre-trained model is available. The
aggressiveness (Section 5) can be tuned with a

Figure 3: The layout of the online demo on a low reso-
lution screen.

slider which converts this agressiveness factor to
a weight for the original word. This allows the
user to inspect beyond the top-1 predicted nor-
malization sequence. Additionally, some exam-
ple social media posts are displayed for the user,
which are not shown in Figure 3 due to privacy is-
sues. The online demo can be used on: http:
//www.robvandergoot.com/monoise

8 Conclusion

In this paper, we have demonstrated the online in-
terface and command line interface of MoNoise.
For this system, we release models for 6 differ-
ent languages, of which a new state-of-the-art is
reached for multiple datasets. The system is easy
to install and use on Unix-based systems and has
many useful extra options. For even easier usage,
the online demo can be used from any device with
internet access and a browser. We discussed multi-
ple practical issues, like evaluation, efficiency, and
extra tuning parameters.

Acknowledgements

I would like to thank Kevin Humphreys for his
help with integrating Aspell into MoNoise, Ian
Matroos for providing the python wrapper for the
cached embeddings, Gertjan van Noord for his
suggestions during the development of MoNoise,
and Hessel Haagsma for the suggesting the name
‘error reduction rate’. This system is developed
in the ‘Parsing Algorithms for Uncertain Input’
project, funded by the Nuance foundation.

205

References
Inaki Alegria, Nora Aranberri, Vı́ctor Fresno, Pablo

Gamallo, Lluis Padró, Inaki San Vicente, Jordi
Turmo, and Arkaitz Zubiaga. 2013. Introducción
a la tarea compartida Tweet-Norm 2013: Normal-
ización léxica de tuits en español. In Tweet-Norm@
SEPLN, pages 1–9.

Timothy Baldwin, Marie-Catherine de Marneffe,
Bo Han, Young-Bum Kim, Alan Ritter, and Wei
Xu. 2015. Shared tasks of the 2015 workshop on
noisy user-generated text: Twitter lexical normal-
ization and named entity recognition. In Proceed-
ings of the Workshop on Noisy User-generated Text,
pages 126–135, Beijing, China.

Orphée De Clercq, Sarah Schulz, Bart Desmet, and
Véronique Hoste. 2014. Towards shared datasets for
normalization research. In Proceedings of the Ninth
International Conference on Language Resources
and Evaluation (LREC’14), Reykjavik, Iceland. Eu-
ropean Language Resources Association (ELRA).

Tomaž Erjavec, Darja Fišer, Jaka Čibej, Špela
Arhar Holdt, Nikola Ljubešić, and Katja Zupan.
2017. CMC training corpus janes-tag 2.0.

Gülşen Eryiǧit and Dilara Torunoǧ-Selamet. 2017. So-
cial media text normalization for turkish. Natural
Language Engineering, 23(6):835–875.

Rob van der Goot. 2019. Normalization and Parsing
Algorithms for Uncertain Input. Ph.D. thesis, Uni-
versity of Groningen.

Rob van der Goot and Gertjan van Noord. 2017.
MoNoise: Modeling noise using a modular normal-
ization system. Computational Linguistics in the
Netherlands Journal, 7:129–144.

Rob van der Goot, Rik van Noord, and Gertjan van
Noord. 2018. A taxonomy for in-depth evaluation
of normalization for user generated content. In
Proceedings of the Eleventh International Confer-
ence on Language Resources and Evaluation (LREC
2018), Miyazaki, Japan. European Language Re-
sources Association (ELRA).

Bo Han and Timothy Baldwin. 2011. Lexical normal-
isation of short text messages: Makn sens a #twit-
ter. In Proceedings of the 49th Annual Meeting of
the Association for Computational Linguistics: Hu-
man Language Technologies, pages 368–378, Port-
land, Oregon, USA.

Ning Jin. 2015. NCSU-SAS-Ning: Candidate gener-
ation and feature engineering for supervised lexical
normalization. In Proceedings of the Workshop on
Noisy User-generated Text, pages 87–92, Beijing,
China.

Armand Joulin, Edouard Grave, Piotr Bojanowski, and
Tomas Mikolov. 2016. Bag of tricks for efficient text
classification. arXiv preprint arXiv:1607.01759.

Chen Li and Yang Liu. 2014. Improving text normal-
ization via unsupervised model and discriminative
reranking. In Proceedings of the ACL 2014 Student
Research Workshop, pages 86–93, Baltimore, Mary-
land, USA.

Chen Li and Yang Liu. 2015. Joint POS tagging and
text normalization for informal text. In Proceedings
of IJCAI 2015, Buenos Aires, Argentina, July 25-31,
2015, pages 1263–1269.

Fei Liu, Fuliang Weng, and Xiao Jiang. 2012. A broad-
coverage normalization system for social media lan-
guage. In Proceedings of the 50th Annual Meet-
ing of the Association for Computational Linguistics
(Volume 1: Long Papers), pages 1035–1044, Jeju Is-
land, Korea.

Nikola Ljubešić, Tomaž Erjavec, Maja Miličević, and
Tanja Samardžić. 2017a. Croatian Twitter training
corpus ReLDI-NormTagNER-hr 2.0.

Nikola Ljubešić, Tomaž Erjavec, Maja Miličević, and
Tanja Samardžić. 2017b. Serbian Twitter training
corpus ReLDI-NormTagNER-sr 2.0.

Nikola Ljubešic, Katja Zupan, Darja Fišer, and Tomaz
Erjavec. 2016. Normalising slovene data: historical
texts vs. user-generated content. Bochumer Linguis-
tische Arbeitsberichte.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey
Dean. 2013. Efficient estimation of word represen-
tations in vector space. Proceedings of Workshop at
ICLR.

Jordi Porta and José-Luis Sancho. 2013. Word nor-
malization in Twitter using finite-state transducers.
Tweet-Norm@ SEPLN, 1086:49–53.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA.

Sarah Schulz, Guy De Pauw, Orphée De Clercq, Bart
Desmet, Véronique Hoste, Walter Daelemans, and
Lieve Macken. 2016. Multimodular text normaliza-
tion of Dutch user-generated content. ACM Trans-
actions on Intelligent Systems Technology, 7(4):1–
22.

Yi Yang and Jacob Eisenstein. 2013. A log-linear
model for unsupervised text normalization. In Pro-
ceedings of the 2013 Conference on Empirical Meth-
ods in Natural Language Processing, pages 61–72,
Seattle, Washington, USA.

Congle Zhang, Tyler Baldwin, Howard Ho, Benny
Kimelfeld, and Yunyao Li. 2013. Adaptive parser-
centric text normalization. In Proceedings of the
51st Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
1159–1168, Sofia, Bulgaria.

206

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 207–212
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Level-Up: Learning to Improve Proficiency Level of Essays

Wen-Bin Han, Jhih-Jie Chen, Ching-Yu Yang, Jason S. Chang
Department of Computer Science

National Tsing Hua University
{vincent.han, jjc, chingyu, jason}@nlplab.cc

Abstract

We introduce a method for generating sug-
gestions on a given sentence for improving
the proficiency level. In our approach, the
sentence is transformed into a sequence of
grammatical elements aimed at providing sug-
gestions of more advanced grammar elements
based on originals. The method involves pars-
ing the sentence, identifying grammatical el-
ements, and ranking related elements to rec-
ommend a higher level of grammatical ele-
ment. We present a prototype coaching sys-
tem, Level-Up, that applies the method to En-
glish learners’ essays in order to assist them in
writing and reading. Evaluation on a set of es-
says shows that our method does assist user in
writing.

1 Introduction

Many essays (e.g., “Amazingly, the child is
so fashionable and creative that he makes the
ugly house modern.”) are submitted to tutor-
ing services by English learners on the Web
every day, and an increasing number of ser-
vices on the Web specifically target learn-
ers’ essays. For example, LanguageToolPlus
(languagetoolplus.com) uses rule-based
model with n-grams extracted from the nu-
merous data to inspect essays for grammat-
ical errors, while Grammarly (grammarly.
com), 1checker (1checker.com) and Ginger
(gingersoftware.com) use proprietary neu-
ral network approaches to proofread texts, check
grammar, review style, and enrich vocabulary.

Tutoring services such as Write&Improve
(writeandimprove.com) and WhiteSmoke
(whitesmoke.com) typically correct and grade
essays as a whole. However, very few systems
provide focused suggestions on how to raise the
level of proficiency. Learners could raise their
level of grammatical proficiency, if a system can

identify grammatical elements and suggest the
learner to use related elements with a higher level.

Consider the essay “Amazingly, the child is so
fashionable and creative that he makes the ugly
house modern.”. The useful suggestion for this
sentence is definitely not just a level for the whole
essay, which is pointless for learners, but the lev-
els of grammatical elements with explanation and
level-up grammatical elements. A helpful sugges-
tion for an essay should not only contain the pairs
of level and explanation such as: “B1 - make the
ugly house modern - Can use adjectives as ob-
ject complement after ‘make’.” but also suggest
improvement: “B2 - Can use a limited range of
degree adjectives (‘real’, ‘absolute’, ‘complete’)
before a noun to express intensity.”. These gram-
matical elements can be retrieved from English
Grammar Profile (EGP) with more than a thou-
sand grammatical elements with levels stipulated
by Common European Framework of Reference
(CEFR). Intuitively, by categorizing grammatical
elements, we can provide more informative in-
struction for learners to improve their essays.

We present a new system, Level-Up, that parses
essays into trees expected to recommend related
advanced grammatical elements. An example
Level-Up recommending for the essay “Amaz-
ingly, the child is so fashionable and creative that
he made the ugly house modern.” is shown in Fig-
ure 1. Level-Up has identified several grammat-
ical elements (e.g., {make NOUN ADJ}) for the
given essay. Level-Up detects these grammatical
elements by matching patterns against the parse
trees. We describe the Level-Up model in more
detail in Section 3.

At run-time, Level-Up starts with a given es-
say submitted by the learner (e.g., “Amazingly,
the child is so fashionable and creative that he
made the ugly house modern.”), which is first con-
verted into a set of grammatical elements. Then,

207

Figure 1: The screenshot of Level-Up

Level-Up ranks categorized elements and retrieves
the related elements with a higher level as sugges-
tions. In our prototype, Level-Up returns detected
grammatical elements and recommendations of
higher level elements to English learners directly
(see Figure 1); alternatively, the elements and lev-
els returned by Level-Up can be used as input to
an essay scoring system.

The rest of the paper is organized as follows.
We review the related work in the next section.
Then we present our method for detecting gram-
matical elements in learners’ essays expected to
suggest more advanced elements. In our eval-
uation, Level-Up can provide useful collocations
with levels for learners during writing.

2 Related work

English Language Teaching (ELT) has been an
area of active research in Applied Linguistics and
Computational Linguistics. Recently, the state-
of-the-art research in ELT has been represented
in the 13th Workshop on Innovative Use of NLP
for Building Educational Applications (Tetreault
et al., 2018) in the Association for Computational
Linguistics (ACL) community. The workshop in-
volves developing applications based on NLP ap-
proaches for teachers and learners of English as
a Second Language (ESL) in educational settings.
For example, Bryant and Briscoe (2018) build a
competitive system only requiring minimal anno-
tated data by using a simple Language Model ap-

proach. In our work, we address an aspect of En-
glish Language Teaching which is not the focus
of correcting errors. Instead, we concentrate on
how to analyze grammatical elements and suggest
more advanced elements for learners to level up
their essays.

More specifically, we focus on grammatical
analysis for assisting learners in writing En-
glish, namely, suggesting grammatical elements at
higher proficiency level based on identified gram-
matical elements in learner’s writing. Grammat-
icality improvement for learners has been the fo-
cus of ELT research with much works concentrat-
ing on Grammar Error Correction (GEC). In gen-
eral, GEC systems are aimed at correcting errors
in learners’ essays without considering the levels
of grammatical elements used in the essays. In
contrast, we will analyze the levels of grammat-
ical elements in a given essay and provide more
grammatically and lexically advanced elements to
inform learners of how to refine and level up their
essays.

The most commonly used criteria for measuring
the proficiency levels is the Common European
Framework of Reference for Languages (CEFR)
(Council of Europe, 2001) with six proficiency
levels: the basic level (A1 and A2), independent
level (B1 and B2) and proficient level (C1 and
C2). As an aid to defining levels for learning,
teaching and assessment, CEFR describes what
language learners can do (“can-do” statement) at
different learning stages. (e.g., level A1 - Can use

208

Regex Level Statement
JJR and JJR B1 Can use ’and’ to join a limited range of comparative adjectives.
too JJ TO VB B1 Can use ’too’ before adjectives followed by ’to’-infinitive.
very JJ A1 Can use ’very’ to modify common gradable adjectives.

Table 1: Example regular expressions

commas and “and” to join more than two adjec-
tives, after “be”.) Moreover, Cambridge Univer-
sity Press organizes a wealth of information re-
lated to CEFR, including English Grammar Pro-
file (EGP) and English Vocabulary Profile (EVP).
EGP grades learners’ ability in terms of grammat-
ical form and CEFR levels, while EVP defines
words and phrases of different CEFR levels.

Previous works targeting CEFR level detection
of learners’ essays include Hancke and Meurers
(2013) for German and Vajjala (2014) for Estonian
based on annotated learner data. To cope with high
cost of collecting learners’ data, Pilán et al. (2016)
investigated the benefits of using texts from lan-
guage learning coursebooks to train classifiers for
predicting proficiency levels of learners’ texts. Va-
jjala (2017) and Tack et al. (2017) present methods
for identifying the linguistic variables that are in-
dicative of writing quality to evaluate a learner’s
proficiency. Their researches and Bartning et al.
(2019) all use CEFR to assess proficiency levels.
We also utilize CEFR criteria in our research to
evaluate essays, but focusing more on grammati-
cal elements laid out in Cambridge EGP.

In a study more closely related to our work,
Write&Improve1 (Andersen et al., 2013; Yan-
nakoudakis et al., 2018) supports self-assessment
and learning by correcting common errors and re-
turning an overall score for an essay. Furthermore,
it also indicates potentially worst sentences. In
contrast, we focus on providing specific informa-
tion on raising the proficiency level as the learner
writes.

Researches have pointed out that supplying sug-
gestions while writing is more helpful than sug-
gesting after the fact (Hearst, 2015). Grammarly
tries to correct grammatical errors and provides
the explanation while the user is writing. WriteA-
head2 (Yen et al., 2015) provides real-time writ-
ing suggestions on what to write next in the form
of grammar patterns and example sentences. Sim-
ilarly, ColloCaid3 (Lew et al., 2018) checks if the

1www.writeandimprove.com
2www.writeahead.nlpweb.org
3www.collocaid.uk

collocation is used correctly and provides frequent
collocates so that writers can choose words that go
well together.

In contrast to the previous research in En-
glish Language Teaching and Grammatical Error
Correction, we present a tutoring system, Level-
Up, that provides writing assistance, focusing on
analyzing grammatical elements and suggesting
higher level elements during writing.

3 The Level-Up System

To improve learners’ essays, grammatical error
correction (GEC) is not sufficient. Unfortunately,
very few Language tools go beyond GEC and
provide suggestions on proficiency level improve-
ment for learners. In this section, we address such
a problem. Level-Up displays a set of suggestions
based on leveled grammatical elements for im-
proving an unfinished sentence or complete sen-
tences in essays. We transform criteria (e.g., EGP)
into a pattern-matching program to identify gram-
matical elements and example n-grams from the
corpus. We describe the process of our solution to
this problem in the subsections that follow.

3.1 Extracting Grammatical Elements

Due to the lack of annotated data on grammati-
cal elements, we attempt to extract grammatical
elements using rules representing grammatical el-
ements. The method involves using regular ex-
pressions, a lexical dictionary, and a parser, since
regular expression is straightforward for matching
patterns. Table 1 shows the examples of regular
expression corresponding to EGP elements.

After converting these elements into regular ex-
pressions, we first parse the given corpus, and
then retrieve grammatical elements and example
n-grams for recommendation later at run-time.
Since regular expressions have some limitations
on flexibility, we solve this problem by using a de-
pendency parser. Therefore, we take advantage of
dependency tree to generate all phrasal elements
from the parse tree layer by layer, and then match
all the rules with these element candidates. We

209

(1) Parse the sentence into POS tags and keywords.
S: Actually, the child is very nice and friendly.

“ADV , DET NOUN be ADV ADJ and ADJ .”

(2) Generate all element candidates layer by layer.
S: Actually, the child is very nice and friendly.

“is”, “Actually , child is nice”, “Actually , the child is very nice and friendly .”
“be”, “ADV , NOUN be ADJ”, “ADV , DET NOUN be ADV ADJ and ADJ .”

(3) Match candidates against all regular expressions.
(a) “ADV”
(b) “be ADJ”
(c) “ADJ and ADJ”

(4) Extract these matches with the corresponding n-grams.
(a) Actually, “ADV”
(b) is nice, “be ADJ”
(c) nice and friendly, “ADJ and ADJ”

Figure 2: Outline of the process used to identify elements in an example sentence

(1) Obtain n-grams belonging to the given element.
(2) Remove the n-grams not containing the last word

in the unfinished sentence.
(3) Calculate Language Model of the unfinished sen-

tence with each n-gram.
(4) Retain top 10 highest n-grams of Language

Model.
(5) Calculate the n-grams of the average word level.
(6) Select the highest n-gram and its corresponding

grammatical elements.

Figure 3: Outline of the process used to select top 1
n-gram to exemplify a given suggested grammatical el-
ement.

then record every matching phrase and sentence
for generating suggestions at run-time. Figure 2
shows the process of identifying grammatical ele-
ments in an example sentence.

3.2 Automated Writing Suggestion for
Leveling up

Once the grammatical elements and n-grams are
automatically extracted and counted from the
given corpus, they are stored as suggestion can-
didates. Level-Up constantly returns suggestions
based on the last word the user types in the writ-
ing area. With the last word as a query, Level-
Up retrieves and displays n-grams, ranked by Lan-
guage Model and the level of words. Furthermore,
each n-gram exemplifies different grammatical el-
ements and is accompanied with three example

(1) Obtain grammatical elements in the same subcat-
egory.

(2) Retain elements with higher level than the identi-
fied element.

(3) Select the first one element for recommendation

Figure 4: Outline of the process of recommending
level-up elements for identified grammatical elements.

sentences. The process of selecting n-grams is
shown in Figure 3.

3.3 Analyzing Elements and Ranking
Suggestions

Level-Up also analyzes essays after users finish
writing. The process of analyzing is the same as
described in Subsection 3.1. However, we do not
display all the matches to the user. Instead, if
the grammatical element is completely overlapped
by the other element, we only retain the one with
higher level.

Our system not only identifies grammatical el-
ements but also suggests level-up elements. EGP
contains the broad categories of the grammatical
elements, including adjectives and adverbs. Fur-
thermore, every category includes several subcate-
gories (e.g., adjectives - comparatives and superla-
tives). We group those elements by the categories
and then select the most related level-up element
in the same group. The process of selecting level-
up elements is shown in Figure 4.

210

4 Experiments and Results

In this section, we describe the details of our ex-
periments and the results. First, we introduce how
we preprocess the corpus and extracted grammati-
cal elements. Then, we explain the analysis of vo-
cabularies in Level-Up. Finally, we describe the
program architecture and the toolkits used, and
show the evaluation results of our system.

4.1 English Grammar Profile
CEFR lists total 1,222 grammatical elements in
EGP. In our prototype, we experimented with two
categories, adjectives and adverbs, as a pilot study
to prove that our approach is effective. Some
specific types of words, such as degree adverbs,
are enumerated from Sinclair (2005). For prepro-
cessing, we used British National Corpus (BNC)
(Corpus, 2001), containing over four million sen-
tences, to collect example n-grams for grammati-
cal elements. To be more specific, we parsed all
the sentences and generated grammatical element
candidates by using SpaCy parser (Honnibal and
Montani, 2017). Then, we matched all the candi-
dates against all the rules. Every detected match
of grammar pattern is stored with its n-gram and
sentence.

4.2 English Vocabulary Profile
In addition to EGP, we also utilize EVP in our sys-
tem. Level-Up not only analyzes the levels of vo-
cabularies defined by EVP in learner’s essays but
also provides similar vocabularies at higher level.
For example, Level-Up can suggest “strive” (C2
level) for the verb “try” (A2 level). However, an-
alyzing vocabulary in our study is not described
in Section 3 due to our focus of EGP. First of all,
we obtained the full six-level vocabularies from
EVP4, which covers levels A1-C2 of CEFR. How-
ever, disambiguating the meanings of polysemy is
still an open problem. Therefore, we use the low-
est level of a word directly. In other words, after
tokenizing sentences with SpaCy, we match these
tokens against the lookup table, EVP, to obtain the
lower level.

For word suggestions, we use the pre-trained
300 dimension Word2Vec (Mikolov et al., 2013)
trained on Google News to generate top 100 sim-
ilar words as candidates using Gensim (Řehůřek
and Sojka, 2010). Then, we filter out those can-
didates that are not in EVP, at a lower level, or

4vocabulary.englishprofile.org/staticfiles/about.html

Suggestion Count Percent Precision
1st suggestions 22 0.53 0.44
2nd suggestions 13 0.32 0.26
3rd suggestions 6 0.15 0.12
Top 3 suggestions 41 - 0.82
Not in Top 3 9 - 0.18

Table 2: Human evaluation of Level-Up

different POS tags. Finally, we choose the top 10
candidates to show to learners.

4.3 Technical Architecture
Leve-Up was implemented in Python with the
Flask Web framework. We stored the suggestions
in JSON format and read the content into mem-
ory for fast access. Level-Up server obtains client
input from a popular browser (Safari, Chrome, or
Firefox) dynamically with AJAX techniques.

4.4 Evaluating Level-Up
To evaluate the performance of Level-Up, we
randomly sampled sentences from learner’s cor-
pus. For simplicity, we tested if learners can ac-
quire suitable n-grams with advanced grammat-
ical structures from using Level-Up and evalu-
ate the performance. We randomly selected 50
sentences with adjectives or adverbs from EF-
Cambridge Open Language Database (EFCAM-
DAT) as test data and segmented each sentence
from start to adjective or adverb word for recom-
mended n-grams. After typing it in Level-Up, we
considered n-grams from first one to third one, and
counted the position of good suggestions. We as-
sumed that learners can fit the n-grams to the in-
put with less tolerance of edit. Finally, we manu-
ally determined the appropriateness of suggestions
based on the precision of the Top-3 suggestions.
Table 2 shows the performance of Level-Up.

5 Future Work and Conclusion

Many avenues exist for future research and im-
provement of our system, Level-Up. For exam-
ple, other categories in EGP could be handled.
The method of ranking n-grams could be im-
proved by considering the relevancy of n-gram
to learner’s sentence more precisely. NLP and
Machine Learning techniques could be applied
to identify and rank grammatical elements. Ad-
ditionally, an interesting direction to explore is
recommending well-spoken words and phrases to
level up learner’s essays lexically. For example,

211

we could suggest “the better part of a week” to
level up “almost a week”. Similarly, we could
suggest “in the making” for “happening.” Yet an-
other direction of research is evaluating an essay
as a whole based on the detected grammatical el-
ements. In other words, teachers can assess stu-
dents’ essays more efficiently using Level-Up.

In summary, we have proposed a method for
analyzing grammatical elements and suggesting
level-up elements while a user is writing. The ap-
proach involves extracting, retrieving, and ranking
grammatical elements and examples. We have im-
plemented and evaluated the proposed approach as
applied to a large corpus with promising results.

References
Øistein E. Andersen, Helen Yannakoudakis, Fiona

Barker, and Tim Parish. 2013. Developing and
testing a self-assessment and tutoring system. In
BEA@NAACL-HLT.

Inge Bartning, M Martin, and Ineke Vedder. 2019.
Communicative proficiency and linguistic develop-
ment: intersections between sla and language testing
research.

Christopher Bryant and Ted Briscoe. 2018. Language
model based grammatical error correction without
annotated training data. In BEA@NAACL-HLT.

British National Corpus. 2001.

Council of Europe. 2001. Common European Frame-
work of Reference for Languages: Learning, Teach-
ing, Assessment. Common European Framework of
Reference for Languages: Learning, Teaching, As-
sessment. Cambridge University Press.

Julia Hancke and Detmar Meurers. 2013. Exploring
cefr classification for german based on rich linguis-
tic modeling. pages 54–56.

Marti A. Hearst. 2015. Can natural language process-
ing become natural language coaching? In ACL.

Matthew Honnibal and Ines Montani. 2017. spacy 2:
Natural language understanding with bloom embed-
dings, convolutional neural networks and incremen-
tal parsing. To appear.

Robert Lew, Ana Frankenberg-Garcia, Geraint Paul
Rees, Jonathan C Roberts, and Nirwan Sharma.
2018. Collocaid: A real-time tool to help academic
writers with english collocations. In The XVIII EU-
RALEX International Congress, page 165.

Tomas Mikolov, Ilya Sutskever, Kai Chen, Greg Cor-
rado, and Jeffrey Dean. 2013. Distributed represen-
tations of words and phrases and their composition-
ality. In Proceedings of the 26th International Con-
ference on Neural Information Processing Systems -

Volume 2, NIPS’13, pages 3111–3119, USA. Curran
Associates Inc.

Ildikó Pilán, Elena Volodina, and Torsten Zesch. 2016.
Predicting proficiency levels in learner writings by
transferring a linguistic complexity model from
expert-written coursebooks. In COLING.

Radim Řehůřek and Petr Sojka. 2010. Software Frame-
work for Topic Modelling with Large Corpora. In
Proceedings of the LREC 2010 Workshop on New
Challenges for NLP Frameworks, pages 45–50, Val-
letta, Malta. ELRA. http://is.muni.cz/
publication/884893/en.

J. Sinclair. 2005. Collins Cobuild English grammar.
Collins Cobuild. HarperCollins.

Anaı̈s Tack, Thomas Franois, Sophie Roekhaut, and
Cédrick Fairon. 2017. Human and automated cefr-
based grading of short answers. In BEA@EMNLP.

Joel Tetreault, Jill Burstein, Ekaterina Kochmar, Clau-
dia Leacock, and Helen Yannakoudakis. 2018. Pro-
ceedings of the thirteenth workshop on innovative
use of nlp for building educational applications. In
Proceedings of the Thirteenth Workshop on Innova-
tive Use of NLP for Building Educational Applica-
tions. Association for Computational Linguistics.

Sowmya Vajjala. 2014. Automatic cefr level prediction
for estonian learner text.

Sowmya Vajjala. 2017. Automated assessment of non-
native learner essays: Investigating the role of lin-
guistic features. International Journal of Artificial
Intelligence in Education, 28:79–105.

Helen Yannakoudakis, Øistein E. Andersen, Ardeshir
Geranpayeh, Ted Briscoe, and Diane Nicholls. 2018.
Developing an automated writing placement system
for esl learners.

Tzu-Hsi Yen, Jian-Cheng Wu, Jim Chang, Joanne Bois-
son, and Jason Chang. 2015. Writeahead: Min-
ing grammar patterns in corpora for assisted writing.
Proceedings of ACL-IJCNLP 2015 System Demon-
strations, pages 139–144.

212

Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics: System Demonstrations, pages 213–218
Florence, Italy, July 28 - August 2, 2019. c©2019 Association for Computational Linguistics

Learning to Link Grammar and Encyclopedic Information to Assist ESL
Learners

Jhih-Jie Chen1, Ching-Yu Yang1, Pei-Chen Ho2, Ming Chiao Tsai1,
Chia-Fang Ho2, Kai-Wen Tuan2, Chung-Ting Tsai2, Wen-Bin Han1, Jason S. Chang1

1Department of Computer Science
National Tsing Hua University

2Institute of Information Systems and Applications
National Tsing Hua University

{jjc, chingyu, patina, jason}@nlplab.cc

Abstract
We introduce a method for learning to extract
vocabulary and encyclopedic information to
assist second language (L2) learners acquir-
ing deep knowledge of target vocabulary. In
our approach, grammar patterns, collocations,
representative examples are extracted, aimed
at providing rich lexical information for any
target words. The method involves word sense
disambiguation on target words, automatically
parsing the sentences in a large-scale cor-
pus, automatically generating grammar pat-
terns, collocations, examples, and quizzes for
every target word, and automatically linking
named entities to corresponding Wikipedia in-
formation. We present a prototype vocabulary
learning system, Linggle Booster, that applies
the method to corpora and web pages. Eval-
uation on a set of target words shows that the
method has reasonably good performance in
terms of generating useful and correct infor-
mation for vocabulary learning.

1 Introduction

Many English learners read articles and watch
videos on the Web everyday to improve their lan-
guage skills, and an increasing number of services
uses Web-based content to assist learning lan-
guages. For example, VOA Learning English1 pro-
vides level-appropriate articles with a vocabulary
list. Websites, such as VoiceTube2, allow learners
to watch English videos and read English subti-
tles with on-demand Chinese translations of vo-
cabulary. WordBooster3, highlights target words
in user submitted articles, and provides vocabulary
quizzes for users to learn and self-assess vocabu-
lary and reading comprehension skills. These web
services, however, do not support easy customiza-
tion for different users’ English proficiency level,

1learningenglish.voanews.com
2tw.voicetube.com
3wordbooster.com

nor do they provide other lexical information than
definitions and examples. The lack of grammar
patterns and collocations makes it inefficient for
learners to acquire rich vocabulary knowledge.

To facilitate a more efficient learning process,
we develop a prototype interactive system, Ling-
gle Booster4. At run-time, Linggle Booster starts
with an URL or text submitted by user, and then
generates a reformatted, reader-friendly content in
the left column of our system. In the column, vo-
cabulary that fit user’s English proficiency level
is underlined and words linkable to Wikipedia in-
formation are shown in blue (see Figure 1). By
clicking on an underlined word, the system will
provide the Chinese definition of the target word.
The most appropriate definition (e.g.,決賽 in Fig-
ure 1) is presented in the first line under the target
word, along with other senses appended under the
definition (e.g.,期中考試 in Figure 1). Addition-
ally, we offer grammar patterns, collocations and
examples of the target word with native language
support (i.e., translation in learners’ native lan-
guage). Additionally, Linggle Booster also iden-
tifies and displays relevant Encyclopedic informa-
tion (e.g., Wikipedia) to provide another level of
information to users. Furthermore, a quiz is gen-
erated based on vocabulary in input text for self-
assessment (see Figure 2).

2 Related Work

Learning English as a Second Language (ESL)
has been an area of active research. For example,
many researches have done on autonomous lan-
guage learning (e.g., Kormos and Csizer (2014))
and on ESL learning strategy on the part of teach-
ers (e.g., Richards and Renandya (2002)). In
the field closely related to our work, the Com-
mon European Framework of Reference (CEFR)

4https://read.linggle.com/

213

Figure 1: An example Linggle Booster session for the user-selected web page 5, presenting the reformatted article
in the left column, where Wikipedia information shown in a pop-up, and we provide the following vocabulary in-
formation for the highlighted word, finals: Chinese translations of the word sense, grammar patterns, collocations,
and examples in the right column.

describes what language learners can do at six
language stages (i.e., A1, A2, B1, B2, C1, and
C2), which has a major effect on language ex-
ams and course material design. Stemmed from
CERF, Cambridge University Press compiles the
English Vocabulary Profile which classifies words
and phrases by CERF levels. In our system,
we perform word sense disambiguation on user-
submitted content and label words with simplified
CERF level (i.e., A, B, C) offered by Cambridge
online Dictionary and English Vocabulary Profile.

In the field of computer-assisted English learn-
ing, there have been an increasing interest in
helping second language learners acquire the
grammatical usage of a target word. Hunston
et al. (1996) and Francis et al. (1998) manually
mapped out lexical grammar patterns for common
verbs, nouns, and adjectives, using the Collins
COBUILD corpus. To explore the feasibility
of identifying grammar patterns computationally,
Mason (2004) conducted a limited experiment of
automatic parsing based on COBUILD grammar
patterns with reasonable success. More recently,
Yen et al. (2015) introduced a method for inducing
grammar patterns to use in an interactive writing
environment aimed at assisting language learners
in writing.

Identifying the intended word sense relevant to
the context has long been an active topic of word

sense disambiguation (WSD) research. In general,
WSD systems typically use supervised learning
approach with a sense inventory such as WordNet
WSD systems based on dictionary-based sense
inventory (e.g., WordNet) and a sense-annotated
corpus (e.g., Semcor Miller et al. (1994)). In our
work, we adopt BERT introduced by Devlin et al.
(2018) to disambiguate words in user-submitted
contents to provide correct word definition and ap-
propriate quizzes.

Wikification of educational materials has been
touted as a novel approach to facilitate reading and
learning. In this work, we use the existing method
proposed by Kolitsas et al. (2018), to identify po-
tentially ambiguous mentions of key phrases in a
document and link them to relevant Wikipedia ar-
ticles.

Much of previous work shows that one of the
most efficient way to learn a second language
is through extensive reading, using engaging ex-
tracurricular articles, news or books (e.g., Coady
(1997), Pigada and Schmitt (2006)). Inspired by
their insights, we present Linggle Booster, an in-
teractive environment which provides helpful in-
formation related to input article, to help learners
acquiring deeper knowledge while reading.

214

Figure 2: An example of auto-generated test items for
the user-selected web page 6

3 Method

Our system is composed of four main compo-
nents: (i) extracting grammar patterns, collo-
cations, and example sentences; (ii) generating
words or phrases linked to Wikipedia information;
(iii) training language representations for WSD;
(iv) generating vocabulary quizzes.

3.1 Extracting grammar patterns,
collocations and example sentences

We extract grammar patterns, collocations and ex-
ample sentences from Corpus of Contemporary
American English (COCA) and data from Cam-
bridge online dictionary (CAM)7. We first parse
sentences in the two datasets using spaCy toolkit.
From the result of dependency parsing, we extract
grammar patterns of content words (i.e., verbs,
nouns and adjectives) based on handcrafted tem-
plates. For each target content word, we only keep
words which are its children and labeled by spe-
cific dependency relations. For example, the ex-
tracted grammar pattern of the verb chew in the
sentence “She is chewing at her nail” is V at n.

Then, to cope with noise caused by parser er-
rors, we discard extracted grammar patterns not
listed in extended Collins COBUILD Grammar
Patterns (COBUILD) (Hunston et al., 1996). We

7https://dictionary.cambridge.org/

also extract collocations to accompany grammar
patterns. For example, the grammar pattern of role
is extended from N in n to v N in n by adding the
verb collocation play (school play an important
role in society).

After that, for each target word, we calculate
patterns and collocations and filter out those less
frequent than the mean by 1.0 standard deviation.

Finally, we select examples of each pattern from
COCA and Cambridge online dictionary (with
Chinese translations) using the GDEX method
(Kilgarriff et al., 2008).

3.2 Link Words or Phrases to Wikipedia
Information

To link words and phrases in user-submitted con-
tents to correct Wikipedia entries, we perform
Mention Detection and Entity Disambiguation on
user-submitted contents, using the End-to-End
Neural Entity Linking method (Kolitsas et al.,
2018). We generate possible spans from unigram
to trigram, and each span selects some Wikipedia
entry candidates with an empirical probabilistic
entity map (Ganea and Hofmann, 2017) from
Wikipedia hyperlinks, Crosswikis and YAGO dic-
tionaries. Each mention candidate produces a lo-
cal contextual similarity scores. Accordingly, we
provide correct Wikipedia knowledge for words to
assist ESL better understanding the contents and
world knowledge.

3.3 Word Sense Disambiguation

We disambiguate polysemous words in user-
submitted contents using a pre-trained language
representation model, BERT (Devlin et al., 2018).
We use word definitions in CAM as word sense
labels. For a given word, CAM offers all possible
word definitions, CERF levels and example sen-
tences. We view example sentence as the feature
of a word sense. Then, we use the last four hid-
den layers of BERT hidden state to compute the
vector representations of each example sentence.
Next, we use BERT again to compute word vector
for words in user-submitted contents. Finally, we
disambiguate the word sense by calculating the co-
sine similarity of the representations and each rep-
resentation of word definition in CAM, and return
the word definition of which examples contains
the most similar representation. After word sense
disambiguation, we provide appropriate word def-
initions and correspondent word level to learners.

215

3.4 Generating Quizzes
Fill in the blank questions (FBQ) are automatically
generated after the reading session. We randomly
select vocabulary from user-submitted content that
matches the user-declared proficiency level. To
form questions, we select representative examples
containing the target word with the word sense in
the user-submitted content from CAM. Then, the
target word is replaced with a blank to help learn-
ers self-assess the acquisition of vocabulary. After
users complete a test, Linggle Booster presents
the scores and corrections to the users.

4 Run-Time Interactive Environment

Linggle Booster is implemented in Python based
on Django Web framework. For faster retrieval,
we save the added reference information (cf. Sec-
tion 3.1) in JSON format using PostgreSQL and
hash table. We choose to host Linggle Booster
on Heroku, a cloud-platform-as-a-service site for
uninterrupted service and scalability. The server
of Linggle Booster with AJAX techniques re-
ceives users-submitted content (e.g., Web page
URLs, URL of YouTube video with closed cap-
tion, or essay draft) from any popular browser
(e.g., Chrome, Safari, or Firefox).

If users submit an URL, we use an existing tool
8 to parse the html of give URL and extract arti-
cle content. We detect possible Named Entity and
link to correct Wikipedia entries using the method
in Section 3.2. At the same time, we parse the
article content using spaCy toolkit and compute
representations using BERT. After disambiguating
the word sense of each word using the method in
Section 3.3, we can access the Word Level of the
word sense in CAM.

Then, we reformat the article content in a
reader-friendly layout presented in the left col-
umn of Linggle Booster. Words with the level
matched to the user-selected level are underlined,
and keywords and phrases linked to Wikipedia in-
formation are presented in blue. For each word
in the content, we retrieve five pieces of informa-
tion, the definition of the word sense in Chinese,
the grammar patterns of the word, the frequency,
collocations, and example for each grammar pat-
tern, and commonly used phrases if they exist. If
a key word lacks grammar patterns, we present
the vocabulary definitions and synonyms based on

8https://github.com/buriy/
python-readability

WSD Pattern Col. Example
Level A 70 % 92 % 82 % 85 %
Level B 90 % 91 % 89 % 89 %
Level C 75 % 92 % 87 % 91 %

Table 1: Accuracy of human evaluations of Linggle
Booster for CNN news article.

WordNet (Miller, 1998). We process rare words
not in vocabulary by decomposing them into af-
fixes and stems, and retrieving linguistic informa-
tion accordingly. In the self-assessment session,
users can access a vocabulary quiz with one click,
along with scores and corrections after answering
the quizzes.

5 Evaluation

In this section, we report the results of preliminary
evaluations on automated extraction of grammar
patterns, collocations, and examples. The quality
evaluation of Wikification and word sense disam-
biguation is also included in this section.

Vocabulary knowledge extraction is a king of
information extraction (IE) tasks, which are tra-
ditionally evaluated based on the quality of accu-
racy or appropriateness of generated result. We
selected a CNN news article9 to assess Linggle
Booster’s performance. We examined the Chinese
word sense, grammar patterns, collocations, and
examples for first 20 unique vocabulary in each
word level. We checked if Linggle Booster returns
the correct word sense used in the article. For each
vocabulary, we check if grammar patterns more
frequent than 5% frequency are valid. We also ex-
amined the accuracy of collocations. Finally, we
evaluated whether the example for each grammar
pattern is actually a good representation of it’s us-
age.

Across all three Word Levels, the results (shown
in Table 1) indicates Linggle Booster provides
good definition at least 70% of time and grammar
patterns, collocations and examples are all close to
90% correct.

To evaluate the quality of linking words to
Wikipedia information, we conduct experiments
on public Entity Linking dataset AIDA Hoffart
et al. (2011) using the Gerbil platform Usbeck
et al. (2015). Micro and macro F1 scores are 0.83

9https://edition.cnn.com/2019/04/10/
australia/australia-china-election-intl/
index.html

216

Dataset F1 Score
senseval2 66.8
senseval3 66.1
SemEval 2007 55.1
SemEval 2013 62.8
SemEval 2015 67.8

Table 2: WSD evaluation

and 0.84 respectively.
We also performed an experiment on word

sense disambiguation based on method proposed
in ELMO using SemCor 3.0 Miller et al. (1994)
and OMSTI Taghipour and Ng (2015) as training
data. After training, we take the average repre-
sentations for each Wordnet sense. To test our
WSD method using (Raganato et al., 2017), we
use BERT again to compute word vectors for every
target word and take the most similar sense from
the training set. If lemma is not in training set,
we use the first sense from Wordnet as our word
sense. The result of this test is shown in Table 2.

6 Conclusion and Future Work

We have presented Linggle Booster, an interac-
tive and customizable environment for reading to
improve language skills, where ESL learners can
submit self-selected engaging content and set an
appropriate proficiency level of vocabulary. With
Linggle Booster, second language learners should
have a much better chance of acquiring deeper vo-
cabulary knowledge (e.g. grammar patterns, collo-
cations, examples and encyclopedic information).
In addition, users can self-assess how well they
have acquired the vocabulary. Our methodology
supports adaptive, self-paced vocabulary learning,
resulting in an effective and engaging system that
combines the advantages of freedom in the selec-
tion of learning content and rich and rewarding
learning experiences enhanced by technology.

Many avenues exist for improving Linggle
Booster. We could improve the ability to down-
load an URL and parse the content. Our sys-
tem cannot extract part of or all of the content for
some web pages due to the limit of the adopted
tool Readability. One solution is to use different
parsing tools (e.g., Mercury10). Linggle Booster
attempts to disambiguate words in user-submitted

10https://mercury.postlight.com/
web-parser/

content and provide users with correspondent Chi-
nese definitions. We will take one step further
to offer users with grammar patterns and colloca-
tions specific to a word sense. Besides, we could
improve our results by expanding training corpus
for WSD. Additionally, an interesting direction to
explore is ranking grammar patterns to match the
proficiency level of readers. Yet another direction
of research would be using the same design to as-
sist writing in English. Instead of providing sup-
ports for reading a user-selected article, the sys-
tem could take the user’s own writing as input and
use grammar patterns and collocations to improve
writing quality and correct grammatical errors.

References
James Coady. 1997. 1 1 l2 vocabulary acquisition

through extensive reading. Second language vocab-
ulary acquisition: A rationale for pedagogy, page
225.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. Bert: Pre-training of deep
bidirectional transformers for language understand-
ing. arXiv preprint arXiv:1810.04805.

G Francis, S Hunston, and E Manning. 1998. Cobuild
grammar patterns 2: Nouns.

Octavian-Eugen Ganea and Thomas Hofmann. 2017.
Deep joint entity disambiguation with local neural
attention. arXiv preprint arXiv:1704.04920.

Johannes Hoffart, Mohamed Amir Yosef, Ilaria Bor-
dino, Hagen Fürstenau, Manfred Pinkal, Marc Span-
iol, Bilyana Taneva, Stefan Thater, and Gerhard
Weikum. 2011. Robust disambiguation of named
entities in text. In Proceedings of the Conference on
Empirical Methods in Natural Language Process-
ing, pages 782–792. Association for Computational
Linguistics.

Susan Hunston, Gill Francis, and E Manning. 1996.
Collins cobuild grammar patterns 1: verbs.

Adam Kilgarriff, Milos Husák, Katy McAdam,
Michael Rundell, and Pavel Rychlỳ. 2008. Gdex:
Automatically finding good dictionary examples in
a corpus. In Proc. Euralex.

Nikolaos Kolitsas, Octavian-Eugen Ganea, and
Thomas Hofmann. 2018. End-to-end neural entity
linking. arXiv preprint arXiv:1808.07699.

Judit Kormos and Kata Csizer. 2014. The interac-
tion of motivation, self-regulatory strategies, and
autonomous learning behavior in different learner
groups. Tesol Quarterly, 48(2):275–299.

217

Oliver Mason. 2004. Automatic processing of local
grammar patterns. In Proceedings of the 7th Annual
Colloquium for the UK Special Interest Group for
Computational Linguistics, University of Birming-
ham, pages 166–171. Citeseer.

George Miller. 1998. WordNet: An electronic lexical
database. MIT press.

George A Miller, Martin Chodorow, Shari Landes,
Claudia Leacock, and Robert G Thomas. 1994. Us-
ing a semantic concordance for sense identification.
In Proceedings of the workshop on Human Lan-
guage Technology, pages 240–243. Association for
Computational Linguistics.

Maria Pigada and Norbert Schmitt. 2006. Vocabulary
acquisition from extensive reading: A case study.
Reading in a foreign language, 18(1):1–28.

Alessandro Raganato, Jose Camacho-Collados, and
Roberto Navigli. 2017. Word sense disambiguation:
A unified evaluation framework and empirical com-
parison. In Proceedings of the 15th Conference of
the European Chapter of the Association for Compu-
tational Linguistics: Volume 1, Long Papers, pages
99–110.

Jack C Richards and Willy A Renandya. 2002.
Methodology in language teaching: An anthology of
current practice. Cambridge university press.

Kaveh Taghipour and Hwee Tou Ng. 2015. One mil-
lion sense-tagged instances for word sense disam-
biguation and induction. In Proceedings of the
nineteenth conference on computational natural lan-
guage learning, pages 338–344.

Ricardo Usbeck, Michael Röder, Axel-Cyrille
Ngonga Ngomo, Ciro Baron, Andreas Both, Martin
Brümmer, Diego Ceccarelli, Marco Cornolti, Didier
Cherix, Bernd Eickmann, et al. 2015. Gerbil:
general entity annotator benchmarking framework.
In Proceedings of the 24th International Conference
on World Wide Web, pages 1133–1143. International
World Wide Web Conferences Steering Committee.

Tzu-Hsi Yen, Jian-Cheng Wu, Jim Chang, Joanne Bois-
son, and Jason Chang. 2015. Writeahead: Min-
ing grammar patterns in corpora for assisted writing.
Proceedings of ACL-IJCNLP 2015 System Demon-
strations, pages 139–144.

218

Author Index

Ai, Xingsheng, 87
Ammar, Waleed, 147
Arai, Mio, 1
Arora, Priyank, 153
Arslan, Fatma, 153

Barry, Joel, 19
Bashkansky, Guy, 49
Beigman Klebanov, Beata, 141
Betts, Christine, 147
Bié, Laurent, 70
Biemann, Chris, 195
Billa, Jayadev, 19
Black, Jason, 49
Bleeker, Andrew, 49
Blessing, Andre, 105
Blokker, Nico, 105
Bondarenko, Alexander, 195
Boschee, Elizabeth, 19
Bossard, Aurélien, 189
Brockett, Chris, 123
Butt, Miriam, 13

Callison-Burch, Chris, 129
Caraballo, Josue, 153
Casacuberta, Francisco, 70, 81
Chan, Yee Seng, 31
Chang, Jason, 207, 213
Chen, Bo, 99
Chen, Huimin, 25
Chen, Jhih-Jie, 207, 213
Chen, Sihao, 129
Chen, Zhigang, 99
Chernodub, Artem, 195

Dolan, Bill, 123
Domingo, Miguel, 70
Dovgalecs, Vladislavs, 49
Duong, Long, 49

El-Assady, Mennatallah, 13
Estela Pastor, Amando, 70

Fasching, Joshua, 31
Flor, Michael, 141

Freedman, Marjorie, 19
Fu, Ran, 87

Galley, Michel, 123
Gao, Jianfeng, 64, 123
Gao, Xiang, 123
García-Martínez, Mercedes, 70
Gehrmann, Sebastian, 111
Govindarajan, Nithya, 123
Gowda, Thamme, 19
Grant, Will J, 43
Guerini, Marco, 75
Gyawali, Binod, 141

Hagen, Matthias, 195
Han, Wen-Bin, 207, 213
Haunss, Sebastian, 105
Hautli-Janisz, Annette, 13
He, Junxian, 159
Heidenreich, Philipp, 195
Helle, Alexander, 70
Herranz Pérez, Manuel, 70
Ho, Chia-Fang, 213
Ho, Peichen, 213
Hoang, Vu Cong Duy, 49
Hong, Yu-Heng, 49
Hu, Guoping, 99
Hu, Zhiting, 159
Huang, Minlie, 64
Huitouze, Serge Le, 49

Itzcovich, Ivan, 181

Jentner, Wolfgang, 13
Jimenez, Damian, 153
Johnson, Mark, 49

Kandogan, Eser, 135
Karacevic, Zorica, 93
Keim, Daniel, 13
Kepler, Fabio, 117
Khashabi, Daniel, 129
Khonglah, Banriskhem Kayang, 19
Kodaira, Tomonori, 1
Komachi, Mamoru, 1

219

Kuhn, Jonas, 105
Kummerfeld, Jonathan K., 7

Lan, Ouyu, 58
Lange, Patrick, 141
Lapesa, Gabriella, 105
Lasecki, Walter, 135
Lee, Dong-Ho, 58
Lee, Sungjin, 64
Li, Chengkai, 153
Li, Jinchao, 64
Li, Pengyu, 87
Li, Ruoyu, 25
Li, Wenhao, 25
Li, Xiang, 64
Li, Xiujun, 64
Li, Yunyao, 135
Liang, Jiannan, 25
Liang, Xiaodan, 159
Lignos, Constantine, 19
Lin, Bill Yuchen, 58
Lin, Sheng, 99
Liu, Liqun, 87
Liu, Zhengzhong, 159
Loukina, Anastassia, 141
Lubal, Sumeet, 153

Ma, Xuezhe, 159
Madikeri, Srikanth, 19
Madnani, Nitin, 141
Magnini, Bernardo, 75
Majithia, Sarthak, 153
Martins, André F. T., 117
Matthews, Nicholas, 181
May, Jonathan, 19
Menon, Tulasi, 123
Mewburn, Inger, 43
Miller, Scott, 19
Min, Bonan, 31
Molino, Piero, 165
Mu, Funan, 87
Mu, Xin, 87

Nyzam, Valentin, 189

Oliynyk, Oleksiy, 195
Ortega, Daniel, 93

Padó, Sebastian, 105
Palen-Michel, Chester, 19
Panchenko, Alexander, 195
Peng, Baolin, 64
Peris, Álvaro, 70, 81

Pham, Tuyen Quang, 49
Power, Joanna, 147
Pust, Michael, 19

Qin, Lianhui, 159
Qiu, Haoling, 31
Quirk, Chris, 123

Ren, Xiang, 58, 99
Roth, Dan, 129
Rush, Alexander, 111

Sabatini, John, 141
Sachan, Devendra, 159
Schmidt, Maximilian, 93
Sen, Prithviraj, 135
Sevastjanova, Rita, 13
Shahid, Khuram, 123
Shi, Haoran, 159
Shiv, Vighnesh Leonardo, 123
Sperrle, Fabian, 13
Strobelt, Hendrik, 111
Sun, Maosong, 25
Suominen, Hanna, 43
Suri, Anshuman, 123

Takanobu, Ryuichi, 64
Tan, Bowen, 159
Tang, Jing, 87
Tang, Siliang, 99
Tekiroglu, Serra Sinem, 75
Trénous, Jonay, 117
Treviso, Marcos, 117
Tsai, Chung-Ting, 213
Tsai, Ming Chiao, 213
Tuan, Kai-Wen, 213

van der Goot, Rob, 201
Vanderlyn, Lindsey, 93
Väth, Dirk, 93
Vera, Miguel, 117
Vig, Jesse, 37
Völkel, Moritz, 93
Vu, Ngoc Thang, 93

Wang, Di, 159
Wang, Lifeng, 87
Wang, Wentao, 159
Wang, Yang, 165
Weber, Gianna, 93
Wohlwend, Jeremy, 181
Wu, Fei, 99

Xing, Eric, 159

Xu, Chenchen, 43
Xu, Frank F., 58

Yang, Cheng, 25
Yang, Chingyu, 207, 213
Yang, Yiwei, 135
Yang, Zichao, 159
Yi, Xiaoyuan, 25

Zhang, Jiawei, 165
Zhang, Yaoqin, 64
Zhang, Yizhe, 123
Zhang, Yuhui, 25
Zhang, Zheng, 64
Zhao, Tiancheng, 159
Zheng, Luye, 99
Zhipeng, Guo, 25
Zhou, Xing, 87
Zhu, Qi, 64
Zhu, Wanrong, 159
Zhuang, Yueting, 99

	Program
	Sakura: Large-scale Incorrect Example Retrieval System for Learners of Japanese as a Second Language
	SLATE: A Super-Lightweight Annotation Tool for Experts
	lingvis.io - A Linguistic Visual Analytics Framework
	SARAL: A Low-Resource Cross-Lingual Domain-Focused Information Retrieval System for Effective Rapid Document Triage
	Jiuge: A Human-Machine Collaborative Chinese Classical Poetry Generation System
	Rapid Customization for Event Extraction
	A Multiscale Visualization of Attention in the Transformer Model
	PostAc : A Visual Interactive Search, Exploration, and Analysis Platform for PhD Intensive Job Postings
	An adaptable task-oriented dialog system for stand-alone embedded devices
	AlpacaTag: An Active Learning-based Crowd Annotation Framework for Sequence Tagging
	ConvLab: Multi-Domain End-to-End Dialog System Platform
	Demonstration of a Neural Machine Translation System with Online Learning for Translators
	FASTDial: Abstracting Dialogue Policies for Fast Development of Task Oriented Agents
	A Neural, Interactive-predictive System for Multimodal Sequence to Sequence Tasks
	NeuralClassifier: An Open-source Neural Hierarchical Multi-label Text Classification Toolkit
	ADVISER: A Dialog System Framework for Education & Research
	KCAT: A Knowledge-Constraint Typing Annotation Tool
	An Environment for Relational Annotation of Political Debates
	GLTR: Statistical Detection and Visualization of Generated Text
	OpenKiwi: An Open Source Framework for Quality Estimation
	Microsoft Icecaps: An Open-Source Toolkit for Conversation Modeling
	PerspectroScope: A Window to the World of Diverse Perspectives
	HEIDL: Learning Linguistic Expressions with Deep Learning and Human-in-the-Loop
	My Turn To Read: An Interleaved E-book Reading Tool for Developing and Struggling Readers
	GrapAL: Connecting the Dots in Scientific Literature
	ClaimPortal: Integrated Monitoring, Searching, Checking, and Analytics of Factual Claims on Twitter
	Texar: A Modularized, Versatile, and Extensible Toolkit for Text Generation
	Parallax: Visualizing and Understanding the Semantics of Embedding Spaces via Algebraic Formulae
	Flambé: A Customizable Framework for Machine Learning Experiments
	A Modular Tool for Automatic Summarization
	TARGER: Neural Argument Mining at Your Fingertips
	MoNoise: A Multi-lingual and Easy-to-use Lexical Normalization Tool
	Level-Up: Learning to Improve Proficiency Level of Essays
	Learning to Link Grammar and Encyclopedic Information of Assist ESL Learners

