
Automated Error Correction and Validation for POS Tagging of
Hindi

Sachi Angle
MIT, Manipal

sachiangle@gmail.com

Pruthwik Mishra
IIIT, Hyderabad

pruthwikmishra@gmail.com

Dipti Misra Sharma 
IIIT, Hyderabad 

dipti@iiit.ac.in

Abstract

The Part-Of-Speech tag of a word can pro-
vide crucial information for a large num-
ber of tasks, and so, it is of utmost im-
portance that the POS tagged data is ac-
curate. However, manually checking the
data is a tedious and time consuming task.
Thus, there is a need for an Automatic Er-
ror Correction and Validation model for
any POS Tagged Data. In this paper,
we work towards achieving the aforemen-
tioned goal for Hindi POS Tagging. This
is achieved by using an ensemble model
consisting of three POS Tagging Models.
Based on the predictions made by the
three models, and the POS tag present in
the dataset, the ensemble model predicts
the presence of an error. The POS tagging
models explored were the Hidden Markov
Model, Support Vector Machine, Condi-
tional Random Fields, Long Short Term
Memory (LSTM) Networks, Bidirectional
LSTM Networks, and Logistic Regression.
A Fully Connected Neural Network was
used to build the ensemble model, and it
achieved an accuracy of 94.02%.

1 Introduction

Part-Of-Speech (POS) tagging refers to catego-
rizing words into the POS categories (e.g. noun,
verb, or conjunction) they belong to. It forms an
essential component of a large number of Nat-
ural Language Processing tasks, ranging from
speech modeling, where they affect the pronun-
ciation, to Information Retrieval, where they are

helpful in stemming. Although extensive work
has been done on POS tagging of English, there
is still a lot of scope for advancement for the
same with respect to Indian Languages.

Common models used for POS tagging in-
clude the Hidden Markov Model (HMM), Long-
Short Term Memory (LSTM) Networks, and
Conditional Random Fields(CRF). These mod-
els can efficiently tag the data as they take
into account the previous states of data real-
ized through words and tags. This greatly in-
creases the accuracy with which the data is
tagged. Significant work has been undertaken
for Hindi POS Tagging, however not enough
has been done yet to build an Automatic Er-
ror Correction and Validation model. Models
explored to achieve this involve a lot of manual
tagging and checking of data. Therefore, there
is a need to build a model that reduces human
effort. The method to be followed includes the
predictions of three models for a particular con-
text, and based on these predictions, check for
the presence of an error. This model will au-
tomate error checking, thus ending the need for
manual checking.

2 Literature Survey

Traditionally, rule-based tagging, stochastic tag-
ging, and transformation-based tagging have
been used for POS Tagging. Rule-based tag-
gers generally involve a large database of hand-
written disambiguation rules. On the other
hand, a Stochastic Tagger relies on available
data and on probability to resolve ambiguities.

PACLIC 32

11 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



Hidden Markov Model is one such Stochastic
Tagger, used for POS tagging of data. An HMM
uses the conditional probability of a tag being
assigned to a given word, given the previous few
tags that have already been encountered. Lo-
gistic regression is a predictive analysis of data.
Logistic regression is used to describe data and
to explain the relationship between one depen-
dent binary variable and one or more nominal,
ordinal, interval or ratio-level independent vari-
ables. One such model, Support Vector Machine
(SVM) is a machine learning model used for
classification and regression. Conditional Ran-
dom Field (Kudo, 2005) (CRF) is a probabilis-
tic framework for labeling and segmenting data,
by taking the context of the label to be pre-
dicted into account. Long Short Term Memory
(LSTM) Networks are very efficient solutions for
sequential prediction problems. LSTMs are a
special kind of Recurrent Neural Network, ca-
pable of learning long-term dependencies. In
Bidirectional LSTMs (BiLSTMs), the learning
algorithm is fed with the original data from the
beginning to the end, and then from the end to
beginning.

Brants (2000) established that an HMM us-
ing trigrams performs at least as well as other
known methods at POS tagging by building the
Trigrams‘n’Tags (TnT) model. TnT tagger re-
lies on all possible trigrams having occurred in
the dataset. For unseen trigrams the proba-
bility will be wrongly set to zero. To handle
sparse data, different methods of smoothing are
discussed, like Deleted Interpolation, which are
used to redistribute the probabilities of the data
such that possible trigrams have probabilities
greater than 0. If a word has not occurred in
the training data, the probability of that word
being assigned a tag will be set to zero. In this
case, the TnT uses the suffix of the unknown
word to predict a POS tag for it based on the
suffixes of the words in the training data.

In (Gadde and Yeleti, 2008), they used the
TnT tagger, and Conditional Random Fields to
generate POS tags for Hindi and Telegu. The
effects of introducing features like Root, Gen-
der, Number and Person of the word to the TnT
are subsequently shown. The addition of these

morph features enabled the model to achieve an
accuracy of 91.35% with Hindi data, and 91.23%
with Telegu Data.

Yao et al. (2002) built a model to detect the
errors in Chinese data. This model built rules
on when to correct the data based on the errors
found in the training data, which consisted of
predicted data as well as the actual tags, and
the context in which the errors occurred. The
rules generated were then added to a library of
candidate rules.

Park et al. (1998) emphasized that one of the
main reasons for inaccurate prediction of tags is
a large number of unknown or previously un-
seen words. It built rules for error detection
and correction by training on errors and their
context. The data was then manually verified
for errors, and detected errors, along with their
contexts were added to the already built set of
rules. This new set of rules consisting of both,
the learnt rules as well as the manually formed
rules, were then used to correct more data.

Agarwal (2012) suggested a hybrid model,
which was a combination of a rule based model
and a statistical model. Rules for rule based
correction module were formed using detailed
analysis of the development data. The statis-
tical model initially predicted a list of possible
tags for a word, along with their probabilities of
being the tag. The probabilities of the two most
likely tags were compared to a threshold value
to detect the presence of errors.

In (Agrawal, 2016), a dependency parser was
used to check for errors. If the parser performed
well in some constructions, it would mostly give
a correct decision and this decision could be
compared to the annotator‘s decision . If the
decision made by the annotator was different,
it could be inferred that the annotation may be
incorrect.

Through the Literature Survey, it becomes
clear that there is a need for an Error Detec-
tion system that does not require manual effort
during the training. Creation of such a system
would greatly reduce the time spent on checking
Hindi POS Tagged Data.

PACLIC 32

12 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



3 Methodology
To analyze if there are errors present in the
Hindi data, we explore the following models -
HMM, SVM, Logistic Regression, LSTMs, BiL-
STMs, and CRF. The three models that perform
the best are used in the ensemble model, and if
two or more of the models find an error, then
that row of data is said to contain an error. For
this, the three models have to be built to achieve
high accuracy. Smoothing methods such as Add
One Smoothing, Good Turing Smoothing, and
Deleted Interpolation can be used to improve
the accuracy of the HMM. The accuracies of the
SVM, Logistic Regression, and the CRF can be
improved by experimenting with different sets of
features. The LSTM and BiLSTM are built us-
ing the word sequences as features and the POS
Tags as labels. Once the models have been built,
the error analysis model has to be built by com-
bining the three models. Four different meth-
ods are explored for the ensemble model. The
first is a Voting Model which checks if the tag in
the dataset is correct, by checking if it matches
the tag predicted by the majority of the three
POS Tagging models. The second uses an aver-
age of the probabilities the three POS tagging
models predict for a certain tag to obtain the
possible correct tag for that word. The third
and the fourth use neural networks to predict
the presence of an error or not. The ensemble
model that performs the best can then be used
to identify and correct errors in the Hindi data.

The Hindi data used consists of 1,187 doc-
uments each containing an average of 20 sen-
tences from the publicly available hindi treebank
1. The sentences are stored in Shakti Standard
Format (Bharati et al., 2007), with each line
containing a word in a sentence, along with ad-
ditional features about the word. After extrac-
tion of each word and its features from these
files, a data set of 457701 words (20882 sen-
tences) is obtained. Two additional features,
the previous tag ti − 1 and the tag that ap-
peared before that ti − 2, are required to be
extracted for each word. Additional features of
the previous two tokens (words) and the follow-

1http://ltrc.iiit.ac.in/treebank_H2014

ing two tokens, i.e, a context window of size 5,
are also extracted. Thus the final Hindi dataset
consists of ‘Root’, ‘Category’, ‘Gender’, ‘Per-
son’, ‘Number’, ‘Case’, ‘Word’, ‘POS’, ‘Previous
POS’, ‘Previous2 POS’, ‘Previous word’, ‘Previ-
ous2 word’, ‘Next Word’ and ‘Next2 word’ fea-
tures. A sample consisting of 3 rows from the
data set can be seen in Table 1 and Table 2.
SS in the tables below denotes ‘start of the sen-
tence’.

For the implementation of the Automatic Er-
ror Correction and Validation model, three sub-
models, from HMM, SVM, LSTM, BiLSTM, Lo-
gistic Regression, and CRF, are built.

3.1 Hidden Markov Model
The HMM is built using trigrams. To han-
dle the zero probabilities due to missing bi-
grams and trigrams, various smoothing tech-
niques have been applied. These include Add
One Smoothing, Good Turing Smoothing, and
Deleted Interpolation. To handle zero probabil-
ities because of unknown words, an SVM model
was trained on the features about the words.
The structure of the word could give informa-
tion about the most likely tag for a word. If the
word has not been seen before, the probabili-
ties associated with it in the HMM are all set to
zero. The zero probabilities are replaced by the
probabilities provided by the SVM.

3.2 Support Vector Machines
The second model used for Hindi POS tagging
is Support Vector Machine (SVM). To imple-
ment this, the Sklearn Library (Pedregosa et
al., 2011) is used. First, just the features about
the word, i.e, the word, word category, gender,
number, person, case, and the root are used.
Subsequently, all the above features except the
root and the word itself are used. The previous
two encountered POS tags are also added to the
feature set. Finally, all the features mentioned
above are tried.

YAMCHA - Yet Another Multipurpose
Chunk Annotator (Kudo and Matsumoto, 2005)
- is a moderately high performance chunker
based on Support Vector Machines. The fea-
ture sets (window-size), parsing-direction (for-

PACLIC 32

13 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



root category gender number person direct oblique word
यह pn any sg 3 d यह
एȡशया� n m sg 3 o एȡशया
का psp f pl any o का

Table 1: Dataset.

POS POS-1 POS-2 word-1 word-2 word+1 word+2
DM_DMD SS SS SS SS एȡशया� का
N_NNP DM_DMD SS यह SS का सबसे
PSP N_NNP DM_DMD एȡशया� यह सबसे बड़ा

Table 2: Dataset - Continuation.

ward/backward) and algorithms of multi-class
problem (pair wise/one versus rest) can be re-
defined according to the the task at hand.

3.3 Conditional Random Fields

The CRF++ toolkit (Kudo, 2005) is used with
different sets of features for predicting the most
probable pos tag sequence for a sentence. The
features included the word, the prefixes of the
word upto the length of 3, the suffixes of the
word upto the length of 7, a binary feature stat-
ing whether the word is long or short (where
long is greater than 4), and a context window of
sizes 3 (the previous word and the next word)
or 5 (the previous two words and the next two
words). To use the CRF++ Tool, a template
needs to be created describing the features in
terms of the row and column of the dataset con-
taining the mentioned features. The data can
then be trained and tested.

3.4 Long Short Term Memory Network

The LSTM (Hochreiter and Schmidhuber, 1997)
network was built, using the Keras library
(Chollet and others, 2015), to process a sentence
at a time, with the length of the lookback equal
to the length of the longest sentence found in the
entire dataset. The network used softmax acti-
vation, and categorical cross entropy loss. The
BiLSTM (Graves and Schmidhuber, 2005) had
a similar structure, and the Keras Library was
used to build both the models.

3.5 Logistic Regression

The Logistic Regression POS Tagger was imple-
mented using the Sklearn Library. First, the
feature set - ‘word, third person, category, case,
gender, number, root, previous POS tag, the tag
before the previous POS tag’ - was used. Fol-
lowing this, to obtain a higher accuracy, word
embeddings of all the words were used in the fea-
ture set. Word embeddings were obtained from
FastText (Joulin et al., 2016).

After building all the models, an ensemble
model of the three is built. Based on predictions
made by each model for a particular data point,
the data point is analyzed for errors. If major-
ity of the models predict that the tag is different
from the given tag of that word, that particular
tag can be considered erroneous. Experiments
are also conducted to take into account the con-
fidence level of predictions, i.e, the probability
with which a classifier has made the prediction,
for the model‘s prediction to be considered as
the correct tag. If all models have low confi-
dence in the predictions, then this data point is
clearly ambiguous and can be seen as a possible
error. Three ensemble models were explored for
the Error Detection - Voting Model, Probability
Average Model, and a Neural Network Model to
learn from the data of the errors.

3.6 Voting Model

The Voting Model comprises of three models,
and three from a set of five classifiers consisting
of HMM, SVM, LSTM, BiLSTM, and CRF were

PACLIC 32

14 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



used. If majority of the models‘ predictions for
the a point match the tag in the dataset, the
tag is deemed accurate. Otherwise, the tag is
erroneous. If none of the models agree upon a
tag, the pos tag of a token is clearly ambiguous,
and thus a source of possible error.

3.7 Probability Average Model
Every model makes its predictions with proba-
bilities. Each data point can be tagged with a
POS tag with a certain probability. Thus, if you
average the probabilities as scored by all models
for a certain data point, it results in the aver-
age probability (AP) with which that data point
could take on the corresponding tag. Following
this, the tag with the maximum average proba-
bility (MAP) is the most likely tag for that data
point. If this tag matches the tag in the dataset,
the tag is not an error. Otherwise, it is.

AP = predicted_probabilities(X)

MAP = max(AP )

3.8 Neural Network
Half of the datapoints in the dataset were ran-
domly picked and their tags were set to any
other tag. A separate binary error list is main-
tained, with 1 for every correct tag, and 0 for
the presence of an error. Then for any to-
ken, the confidence probabilities of each model
are fetched for the given tag. The confidence
probability is the probability with which that
tag would be predicted by that model. Three
models are picked from the HMM, CRF, SVM,
LSTM, and the BiLSTM. Thus the features are
given POS tag of the word, Model-1 probabil-
ity, Model-2 probability, Model-3 probability.
Thus, the neural network trains on POS tagged
data, and the probabilities with which a partic-
ular tag could be present, and is used to pre-
dict the presence of errors. The confidence of a
model can be assessed by getting the difference
between the probability of the most likely tag
and the next most likely tag. The higher the
difference, the more accurate the model. The
difference between the probability of the most
likely tag and the tag present in the data pro-
vides information on the tag-confidence on how

accurate the present tag could be. The Neural
Network is then provided with additional fea-
tures of confidence and tag-confidence of each
model and retrained. This model can accurately
capture trends in the level of probabilities re-
quired for accurate predictions.

Of the various methods explored for POS Tag-
ging, Logistic Regression proved to be the worst,
and was therefore, omitted from the ensemble
model. Using the remaining models, various en-
semble models were experimented with. The
Voting model only considered the tag predicted
by majority models, the Probability Average
Model considered the predicted probabilities for
all tags, by all models, and then took into con-
sideration the tag with the highest average prob-
ability. Neither model took into consideration
the actual tag present while making its predic-
tion. They only predict the most likely tag and
then check for an error. The ensemble model
built using Neural Networks, on the other hand,
learned from the errors present in the data, and
the corresponding model probabilities to predict
whether an error has occurred or not.

4 Result Analysis

The HMM has been built, using trigrams and
the three methods of Smoothing were tried. The
TNT Tagger (Brants, 2000) achieved an accu-
racy of 95.1% on this dataset, while the HMM,
using Add One Smoothing, with SVM probabil-
ities for unknown words, achieved an accuracy
percentage of 96.1%.

The SVM model was used with different sets
of features. The first being just the features
about the word, i.e, word, word category, gen-
der, number, person, case, and the root (Feature
Set A). The second, all the above features except
the root and the word, along with the previ-
ous two encountered POS tags (Feature Set B).
The third feature set included all the features
mentioned above (Feature Set C). Feature set B
achieved an accuracy of 88.42%, Feature set C
achieved an accuracy of 91.84%, and Feature set
A performed the best with 93.29% accuracy.

The CRF++ Tool was used with features in-
cluding the word, the prefixes of the word upto

PACLIC 32

15 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



the length of 3, the suffixes of the word of lengths
varying between 4 to 7, a binary feature stat-
ing whether the word is long or short (where
long is greater than 4), and a context window of
sizes 3 (the previous word and the next word)
and 5 (the previous two words and the next two
words). The experiments with different con-
text windows and suffix lengths were conducted,
and the highest accuracy of 97.2% was obtained
with suffix length 7, and context window size 5.
Remaining work includes building the ensemble
model of the three described models, and ana-
lyzing their results to be able to identify errors
in the data.

Logistic Regression was attempted initially
with features about the words of the data - i.e.
the word, third person, category, case, gender,
singular or plural, root, the previous POS tag,
and the tag before the previous POS tag - but
this model could achieve an accuracy of only
26%. To improve this, fast text word embed-
dings were used, and the model trained on this
achieved an accuracy of 81.64%.

The LSTM and BiLSTM performed the best,
with the LSTM was 98.22% accurate and the
BiLSTM, 98.59% accurate.

Therefore, HMM, SVM, LSTM, BiLSTM, and
CRF++ were used for the ensemble model. Ex-
periments were conducted with both, sklearn‘s
SVM model and YamCha‘s SVM model.

Three methods were experimented with, for
the ensemble model, the first being - The Voting
Model (VM). The POS tag predicted by major-
ity of the three models is considered to be the
correct tag, and if it does not match the tag in
the dataset, that tag is marked as an error.

Voting Model 1: Using the sklearn library for
SVM,the HMM, and the CRF, 1232 data points
were tagged as errors (No errors were inten-
tionally introduced into the data). Therefore,
90.02% accuracy was achieved (Assuming no er-
rors were present).

Voting Model 2: Replacing the SVM built
using sklearn in the previous model with the
SVM built using the YamCha Toolkit, 1094 data
points were tagged as errors (No errors were in-
tentionally introduced into the data). 91.14%
accuracy was achieved.

Voting Model 3: The Voting model was used
with the LSTM and the BiLSTM too. In
this model, the HMM is replaced with the
LSTM, and this ensemble model tagged 1102
data points as errors. This model has as accu-
racy of 91.07%.

Voting Model 4: The Voting Model was built
with the CRF, SVM and BiLSTM models. 1145
errors were tagged, with the model achieving
90.2% accuracy.

The second method tried, the Probability
Average Model (PAM) involved averaging the
probabilities made by all models for a certain
data point, resulting in the average probability
with which that data point could take on that
tag.

Average Probability Model 1: Using Sklearn
library for the SVM, the HMM, and the CRF,
1137 data points tagged as errors (No errors
were intentionally introduced into the data).
90.79% accuracy was obtained.

Average Probability Model 2: Replacing the
Sklearn-SVM with the YAMCHA-SVM, 1740
data points tagged as errors (No errors were in-
tentionally introduced into the data). 85.91%
accuracy was obtained.

Average Probability Model 3: Using the
LSTM instead of the HMM, 1648 data points
tagged as errors (No errors were intentionally
introduced into the data). 86.65% accuracy was
obtained.

Average Probability Model 4: When the BiL-
STM is used instead of the LSTM, 1670 data
points were tagged as errors, and thus, 86.47%
accuracy was obtained.

The third model was built using a neural net-
work (NN1). The neural network trained on
data including whether an error was present or
not, and the predicted probabilities with which
an error could be present.

Neural Network 1: For this model, only Yam-
Cha was used as it had performed better in-
dividually than the Sklearn model, along with
the HMM and CRF models. Errors were intro-
duced into the data at random. The POS Tag
present, and the probabilities with which each
model would predict the tag present were used
as features. The output class, 0 and 1, are used

PACLIC 32

16 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



Voting Model : Sub-Models Used Accuracy
SVM(sklearn), HMM, CRF 90.02%
SVM(YAMCHA toolkit), HMM, CRF 91.14%
SVM(YAMCHA toolkit), LSTM, CRF 91.07%
SVM(YAMCHA toolkit), Bi-LSTM, CRF 90.20%

Table 3: Voting Model Accuracies.

Average Probability Model : Sub-Models Used Accuracy
SVM(sklearn), HMM, CRF 90.79%
SVM(YAMCHA Toolkit), HMM, CRF 85.91%
SVM(YAMCHA Toolkit), LSTM, CRF 86.65%
SVM(YAMCHA Toolkit), Bi-LSTM, CRF 86.47%

Table 4: Average Probability Model Accuracies.

for error and no error, respectively. This model
predicted the presence of an error with 91.37%
accuracy.

Neural Network 2: When this model is tried
with the CRF, SVM, and LSTM, and the model
had 93.19% accuracy.

Neural Network 3: By replacing the LSTM
with the BiLSTM, 90.86% accuracy was ob-
tained.

The model was improved by adding more fea-
tures (NN2). The confidence of the model (dif-
ference in probabilities of the highest probabil-
ity tag and second highest probability tag) and
the difference in probabilities of highest proba-
bility tag and the probability of the particular
tag present in the dataset (the one being checked
for error or not) were added for each model.

Neural Network (with additional Features) 1:
Using HMM, CRF, and YAMCHA-SVM mod-
els, 93.64% accuracy was achieved.

Neural Network (with additional Features) 2:
Using an LSTM instead of the HMM, 94.02%
accuracy was obtained.

Neural Network (with additional Features)
3: By replacing the LSTM with the BiLSTM,
93.97% was achieved.

Thus, the Improved Neural Network model
2, the neural network with additional features
comprising of the LSTM, CRF, and SVM per-
formed the best with 94.02% accuracy, resulting
in this being the best model of the ones under

consideration.

5 Conclusion
Error Detection in Hindi POS Tagged data is
achieved by using an ensemble model consist-
ing of three POS Tagging Models. Based on
the predictions made by the three models and
on the probabilities with which the models pre-
dict the tag present, if the predicted tag fails
to match the tag in the dataset, then that data
point is tagged as an error. To find three mod-
els that could accurately predict the POS tags,
the Hidden Markov Model, Support Vector Ma-
chine, Conditional Random Fields, and Logistic
Regression were explored. The ensemble model
was built using a Fully Connected Neural Net-
work.

The Error Detection and Correction model,
built with the Neural Network training on the
results of the individual models and their pre-
dicted probabilities, has achieved an accuracy
of 94.02% and can accurately identify majority
of the errors present in a dataset, thus, reducing
the amount of human effort required in cleans-
ing the data to a minimum.

References
Rahul Agarwal. 2012. Automatic Error Detection

for Treebank Validation. Ph.D. thesis, PhD thesis,
International Institute of Information Technology
Hyderabad.

PACLIC 32

17 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors



Neural Network : Sub-Models Used Accuracy
SVM(YAMCHA Toolkit), HMM, CRF 91.37%
SVM(YAMCHA Toolkit), LSTM, CRF 93.19%
SVM(YAMCHA Toolkit), Bi-LSTM, CRF 90.86%

Table 5: Neural Network Model Accuracies.

Neural Network Model 2 : Sub-Models Used Accuracy
SVM(YAMCHA Toolkit), HMM, CRF 93.64%
SVM(YAMCHA Toolkit), LSTM, CRF 94.02%
SVM(YAMCHA Toolkit), Bi-LSTM, CRF 93.97%

Table 6: Neural Network (with additional Features) Accuracies.

Bhasha Agrawal. 2016. Error Detection and Depen-
dency Parsing. Ph.D. thesis, International Insti-
tute of Information Technology Hyderabad.

Akshar Bharati, Rajeev Sangal, and Dipti M
Sharma. 2007. Ssf: Shakti standard format guide.
Language Technologies Research Centre, Interna-
tional Institute of Information Technology, Hyder-
abad, India, pages 1–25.

Thorsten Brants. 2000. Tnt: a statistical part-of-
speech tagger. In Proceedings of the sixth confer-
ence on Applied natural language processing, pages
224–231. Association for Computational Linguis-
tics.

François Chollet et al. 2015. Keras.
Phani Gadde and Meher Vijay Yeleti. 2008. Improv-

ing statistical pos tagging using linguistic feature
for hindi and telugu. Proc. of ICON.

Alex Graves and Jürgen Schmidhuber. 2005. Frame-
wise phoneme classification with bidirectional lstm
and other neural network architectures. Neural
Networks, 18(5):602–610.

Sepp Hochreiter and Jürgen Schmidhuber. 1997.
Long short-term memory. Neural computation,
9(8):1735–1780.

Armand Joulin, Edouard Grave, Piotr Bojanowski,
Matthijs Douze, Hérve Jégou, and Tomas Mikolov.
2016. Fasttext. zip: Compressing text classifica-
tion models. arXiv preprint arXiv:1612.03651.

Taku Kudo and Yuji Matsumoto. 2005.
Yamcha: Yet another multipurpose chunk
annotator. URL: http://chasen. org/~
taku/software/YamCha/(accessed 2011 May
9).

Taku Kudo. 2005. Crf++: Yet another crf toolkit.
http://crfpp. sourceforge. net/.

Junsik Park, Jung-Goo Kang, Wook Hur, and Key-
Sun Choi. 1998. Machine aided error-correction

environment for korean morphological analysis
and part-of-speech tagging. In Proceedings of the
17th international conference on Computational
linguistics-Volume 2, pages 1015–1019. Associa-
tion for Computational Linguistics.

Fabian Pedregosa, Gaël Varoquaux, Alexandre
Gramfort, Vincent Michel, Bertrand Thirion,
Olivier Grisel, Mathieu Blondel, Peter Pretten-
hofer, Ron Weiss, Vincent Dubourg, et al. 2011.
Scikit-learn: Machine learning in python. Journal
of machine learning research, 12(Oct):2825–2830.

Tianfang Yao, Wei Ding, and Gregor Erbach. 2002.
Correcting word segmentation and part-of-speech
tagging errors for chinese named entity recogni-
tion. In The Internet Challenge: Technology and
Applications, pages 29–36. Springer.

PACLIC 32

18 
32nd Pacific Asia Conference on Language, Information and Computation 

Hong Kong, 1-3 December 2018 
Copyright 2018 by the authors




