Nom
Gràfic
Equació
Derivada
Validesa
Ordre de continuïtat
Derivable
Identitat/Rampa
f
(
x
)
=
x
{\displaystyle f(x)=x}
f
′
(
x
)
=
1
{\displaystyle f'(x)=1}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
∞
{\displaystyle C^{\infty }}
Sí
Esglaó/Heaviside
f
(
x
)
=
{
0
si
x
<
0
1
si
x
≥
0
{\displaystyle f(x)=\left\{{\begin{array}{rcl}0&{\mbox{si}}&x<0\\1&{\mbox{si}}&x\geq 0\end{array}}\right.}
f
′
(
x
)
=
{
0
si
x
≠
0
?
si
x
=
0
{\displaystyle f'(x)=\left\{{\begin{array}{rcl}0&{\mbox{si}}&x\neq 0\\?&{\mbox{si}}&x=0\end{array}}\right.}
{
0
,
1
}
{\displaystyle \{0,1\}}
C
−
1
{\displaystyle C^{-1}}
NO
Lògica (o esglaó suau, o sigmoide )
f
(
x
)
=
1
1
+
e
−
x
{\displaystyle f(x)={\frac {1}{1+{\rm {e}}^{-x}}}}
f
′
(
x
)
=
f
(
x
)
(
1
−
f
(
x
)
)
{\displaystyle f'(x)=f(x)(1-f(x))}
(
0
,
1
)
{\displaystyle (0,1)}
C
∞
{\displaystyle C^{\infty }}
Sí
Tangent hiperbòlica
f
(
x
)
=
tanh
(
x
)
=
2
1
+
e
−
2
x
−
1
{\displaystyle f(x)=\tanh(x)={\frac {2}{1+{\rm {e}}^{-2x}}}-1}
f
′
(
x
)
=
1
−
f
(
x
)
2
{\displaystyle f'(x)=1-f(x)^{2}}
(
−
1
,
1
)
{\displaystyle (-1,1)}
C
∞
{\displaystyle C^{\infty }}
Sí
Arc tangent
f
(
x
)
=
tan
−
1
(
x
)
{\displaystyle f(x)=\tan ^{-1}(x)}
f
′
(
x
)
=
1
x
2
+
1
{\displaystyle f'(x)={\frac {1}{x^{2}+1}}}
(
−
π
2
,
π
2
)
{\displaystyle (-{\frac {\pi }{2}},{\frac {\pi }{2}})}
C
∞
{\displaystyle C^{\infty }}
Sí
Signe suau
f
(
x
)
=
x
1
+
|
x
|
{\displaystyle f(x)={\frac {x}{1+|x|}}}
f
′
(
x
)
=
1
(
1
+
|
x
|
)
2
{\displaystyle f'(x)={\frac {1}{(1+|x|)^{2}}}}
(
−
1
,
1
)
{\displaystyle (-1,1)}
C
1
{\displaystyle C^{1}}
Sí
Unitat de rectifició lineal (ReLU)
f
(
x
)
=
{
0
si
x
<
0
x
si
x
≥
0
{\displaystyle f(x)=\left\{{\begin{array}{rcl}0&{\mbox{si}}&x<0\\x&{\mbox{si}}&x\geq 0\end{array}}\right.}
f
′
(
x
)
=
{
0
si
x
<
0
1
si
x
≥
0
{\displaystyle f'(x)=\left\{{\begin{array}{rcl}0&{\mbox{si}}&x<0\\1&{\mbox{si}}&x\geq 0\end{array}}\right.}
[
0
,
∞
[
{\displaystyle [0,\infty [}
C
0
{\displaystyle C^{0}}
Sí
Unitat de rectificació lineal paramètric (PReLU)[ 3]
f
(
x
)
=
{
α
x
si
x
<
0
x
si
x
≥
0
{\displaystyle f(x)=\left\{{\begin{array}{rcl}\alpha x&{\mbox{si}}&x<0\\x&{\mbox{si}}&x\geq 0\end{array}}\right.}
f
′
(
x
)
=
{
α
si
x
<
0
1
si
x
≥
0
{\displaystyle f'(x)=\left\{{\begin{array}{rcl}\alpha &{\mbox{si}}&x<0\\1&{\mbox{si}}&x\geq 0\end{array}}\right.}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
0
{\displaystyle C^{0}}
Sí
Unitat exponencial lineal (ELU)[ 4]
f
(
x
)
=
{
α
(
e
x
−
1
)
si
x
<
0
x
si
x
≥
0
{\displaystyle f(x)=\left\{{\begin{array}{rcl}\alpha ({\rm {e}}^{x}-1)&{\mbox{si}}&x<0\\x&{\mbox{si}}&x\geq 0\end{array}}\right.}
f
′
(
x
)
=
{
f
(
x
)
+
α
si
x
<
0
1
si
x
≥
0
{\displaystyle f'(x)=\left\{{\begin{array}{rcl}f(x)+\alpha &{\mbox{si}}&x<0\\1&{\mbox{si}}&x\geq 0\end{array}}\right.}
(
−
α
,
∞
)
{\displaystyle (-\alpha ,\infty )}
C
1
{\displaystyle C^{1}}
si
α
=
1
{\displaystyle \alpha =1}
Sí
Unitat de rectificació lineal suau (SoftPlus)
f
(
x
)
=
ln
(
1
+
e
x
)
{\displaystyle f(x)=\ln(1+{\rm {e}}^{x})}
f
′
(
x
)
=
1
1
+
e
−
x
{\displaystyle f'(x)={\frac {1}{1+{\rm {e}}^{-x}}}}
(
0
,
∞
)
{\displaystyle (0,\infty )}
C
∞
{\displaystyle C^{\infty }}
Sí
Identitat corba
f
(
x
)
=
x
2
+
1
−
1
2
+
x
{\displaystyle f(x)={\frac {{\sqrt {x^{2}+1}}-1}{2}}+x}
f
′
(
x
)
=
x
2
x
2
+
1
+
1
{\displaystyle f'(x)={\frac {x}{2{\sqrt {x^{2}+1}}}}+1}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
∞
{\displaystyle C^{\infty }}
Sí
Exponencial suau paramètrica (soft exponential ) [ 5]
f
(
α
,
x
)
=
{
−
ln
(
1
−
α
(
x
+
α
)
)
α
si
α
<
0
x
si
α
=
0
e
α
x
−
1
α
+
α
si
α
>
0
{\displaystyle f(\alpha ,x)=\left\{{\begin{array}{rcl}-{\frac {\ln(1-\alpha (x+\alpha ))}{\alpha }}&{\mbox{si}}&\alpha <0\\x&{\mbox{si}}&\alpha =0\\{\frac {{\rm {e}}^{\alpha x}-1}{\alpha }}+\alpha &{\mbox{si}}&\alpha >0\end{array}}\right.}
f
′
(
α
,
x
)
=
{
1
1
−
α
(
α
+
x
)
si
α
<
0
e
α
x
si
α
≥
0
{\displaystyle f'(\alpha ,x)=\left\{{\begin{array}{rcl}{\frac {1}{1-\alpha (\alpha +x)}}&{\mbox{si}}&\alpha <0\\{\rm {e}}^{\alpha x}&{\mbox{si}}&\alpha \geq 0\end{array}}\right.}
(
−
∞
,
∞
)
{\displaystyle (-\infty ,\infty )}
C
∞
{\displaystyle C^{\infty }}
Sí
Sinusoide
f
(
x
)
=
sin
(
x
)
{\displaystyle f(x)=\sin(x)}
f
′
(
x
)
=
cos
(
x
)
{\displaystyle f'(x)=\cos(x)}
[
−
1
,
1
]
{\displaystyle [-1,1]}
C
∞
{\displaystyle C^{\infty }}
Sí
Sinus cardinal
f
(
x
)
=
{
1
si
x
=
0
sin
(
x
)
x
si
x
≠
0
{\displaystyle f(x)=\left\{{\begin{array}{rcl}1&{\mbox{si}}&x=0\\{\frac {\sin(x)}{x}}&{\mbox{si}}&x\neq 0\end{array}}\right.}
f
′
(
x
)
=
{
0
si
x
=
0
cos
(
x
)
x
−
sin
(
x
)
x
2
si
x
≠
0
{\displaystyle f'(x)=\left\{{\begin{array}{rcl}0&{\mbox{si}}&x=0\\{\frac {\cos(x)}{x}}-{\frac {\sin(x)}{x^{2}}}&{\mbox{si}}&x\neq 0\end{array}}\right.}
[
≈
−
.217234
,
1
]
{\displaystyle [\approx -.217234,1]}
C
∞
{\displaystyle C^{\infty }}
Sí
Funció gaussienne
f
(
x
)
=
e
−
x
2
{\displaystyle f(x)={\rm {e}}^{-x^{2}}}
f
′
(
x
)
=
−
2
x
e
−
x
2
{\displaystyle f'(x)=-2x{\rm {e}}^{-x^{2}}}
]
0
,
1
]
{\displaystyle ]0,1]}
C
∞
{\displaystyle C^{\infty }}
Sí