
Simulating intervention to support compensatory strategies in an artificial neural 

network model of atypical language development 
 

Juan Yang (jkxy_yjuan@sicnu.edu.cn) 
Department of Computer Science, Sichuan Normal University 

Chengdu, 610101 China 

Michael S. C. Thomas (m.thomas@bbk.ac.uk) 
Developmental Neurocognition Lab, Department of Psychological Sciences 

Birkbeck, University of London, UK 

 

 

 

Abstract 

Artificial neural networks have been used to model 
developmental deficits in cognitive and language 
development, most often by including sub-optimal input-
output representations or computational parameters in these 
learning systems. The next step is to simulate intervention to 
alleviate developmental impairments, to inform the 
mechanistic basis of remediation. Here we used a sample 
model of atypical language development (in the well-explored 
domain of past tense acquisition) to investigate the extent to 
which alternative training regimes may induce short-term or 
long-term compensatory changes in underlying function, and 
the extent to which this depends on the timing of intervention. 
We present a new method to derive ‘intervention’ training 
sets as a simulation of behavioral interventions, and assess its 
adequacy in our sample model.  

Keywords: language development; developmental disorders; 
artificial neural network models; intervention; compensation 

Introduction 

Computational models of development, particularly those 

employing artificial neural networks (ANN), have provided 

hypotheses about the mechanistic bases of cognitive and 

language deficits (Mareschal & Thomas, 2007). For 

example, in the domain of language, Harm, McCandliss and 

Seidenberg (2003) demonstrated how limited connectivity 

in the phonology component of a reading model produced a 

system with symptoms of dyslexia. In a model of 

inflectional morphology, Thomas (2005) demonstrated how 

shallow sigmoid activation functions yielded processing 

units that were insensitive to small changes in the input, 

producing networks that exhibited developmental delay. 

More recently, Thomas and Knowland (2014) considered 

how multiple changes to intrinsic computational properties 

and extrinsic environmental factors could produce different 

types of language delay that either persisted or resolved over 

developmental time. 

Progress of this type motivated Daniloff (2002, p.viii), in 

his book Connectionist approaches to clinical problems in 

speech and language, to comment ‘ANN theory will … 

form the backbone of much of language therapy in the near 

future’. However, research and practice have yet to repay 

this optimism (though see Poll, 2011, for renewed attempts 

to make these links). Only one computational study has 

systematically explored the efficacy of a single intervention 

to address a developmental deficit (in Harm et al.’s 2003 

reading model; Harm, McCandliss & Seidenberg, 2003). 

Slightly more work has used ANN models to investigate 

remediation following acquired damage. For example, in a 

model of acquired dyslexia, Plaut (1996) considered the 

degree and speed of recovery through retraining, the extent 

to which improvement on treated items generalizes to 

untreated items, and how treated items are selected to 

maximize this generalization. Abel et al. (2007) 

demonstrated how an adult model of aphasia could guide 

actual interventions depending on patients’ error patterns. 

Even here, however, the work remains limited. 

The computational approach to development has 

generated a growing understanding of environmental factors 

that influence learning in typical development (Borovsky & 

Elman, 2006; Gomez, 2005; Onnis et al., 2005). This 

includes the importance of factors such as the frequency of 

training items, their similarity and variability, and the 

provision of novelty in familiar contexts. However, there 

has yet to be a consideration of how these factors interact 

with learning systems containing the sorts of atypical 

computational constraints that lead to impoverished internal 

representations and, in turn, behavioral deficits compared to 

typically developing children. It is yet a further step to link 

such an understanding with the diverse activities that tend to 

be used by clinicians in speech and language therapy, 

including such activities as modeling, forced alternatives, 

repetition, visual approaches to support oral language, and 

reducing distractions (Ebbels, 2014; Law et al., 2007). 

From the perspective of individual network models 

simulating development, where development is conceived of 

as the acquisition of the domain instantiated in the learning 

environment, it is not obvious that ‘behavioral interventions’ 

could alleviate a developmental impairment that arises 

either through inadequate representations or insufficient 

computational power. Here, we conceive of a behavioral 

intervention as representing the addition of some further 

training items to the normal training set of the network 

model. If the model is unable to learn the training set to a 

given performance level through limitations in processing 

capacity, adding further input-output mappings to the 

training set is unlikely to enhance performance on the 

patterns comprising the original training set. What one 

might call normalization through behavioral intervention is 
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therefore difficult if one conceives of developmental deficits 

as arising from limitations in individual systems. We define 

normalization as the acquisition of the abilities and 

knowledge that any typically developing system acquires 

through exposure to the normal training set. 

There are at least three possible responses to this 

difficulty in achieving normalization. First, the 

computational properties of the system might be enhanced 

to enable it to acquire the training set (for instance, for the 

actual child, by interventions targeting motivation, or by 

pharmacological means; for the network, by altering one or 

more of its parameters). 

Second, the intervention might target the input and output 

representations of the system, thereby simplifying the 

computational problem that the network has to learn. Harm, 

McCandliss and Seidenberg (2003)’s simulated 

phonological intervention for developmental dyslexia 

utilized this method. Best et al. (2015) have recently used a 

similar approach to simulate behavioral interventions for 

developmental deficits in productive vocabulary, 

alternatively targeting phonological or semantic 

representations that represent the two codes that must be 

associated in vocabulary development. 

Third, one might take the view that what the atypical 

system needs to learn is not the training set per se (even 

though this is what typical systems acquire), but a general 

function implicit in the items comprising the training set. 

Acquisition of this general function can be assessed by 

performance on generalization sets rather than the training 

set. There may then be input-output mappings that can be 

added to the training set which could improve the network’s 

ability to learn the general function, even if performance on 

the original training set did not improve (or even worsened). 

One might term this approach compensation, since the aim 

is to optimize a subset of behaviors present in the original 

training set. 

In this paper, we investigate possible ‘behavioral 

interventions’ to encourage compensation (so defined) in a 

widely used model drawn from the domain of language 

development, that of English past tense formation. This 

model has been used to capture developmental trajectories 

and error patterns as children acquire English verb 

morphology, but it has also been used as a sample 

associative system to consider more general issues in 

development (see, e.g., use of this model to investigate 

sensitive periods development: Marchman, 1993; Thomas & 

Johnson, 2006; to investigate population-level individual 

differences: Thomas, Forrester & Ronald, 2015). We 

introduce a method to derive ‘intervention patterns’ that are 

added to the training set of atypical networks for a limited 

period in development, simulating an intervention given to a 

child diagnosed with a developmental impairment. We 

compare the effectiveness of two different intervention sets 

for improving generalization performance on several 

possible implicit functions that the network might be able to 

acquire. 

 

Base Model 

We employed a simple simulation of past tense formation 

(Plunkett & Marchman, 1993) as our base model. This 

model uses an ANN to learn a quasi-regular mapping 

problem instantiated in an artificial language design to have 

many of the properties of English past tense formation. The 

learning domain is predominantly characterized by a general 

rule (add –ed to a verb stem to form its past tense). However, 

there exists a minority of exception or irregular verbs which 

form their past tense in different ways, for instance with 

arbitrary associations between stem and past tense form (go-

went), no-change irregulars where the past tense form is the 

same as the verb stem (hit-hit), and vowel-change irregulars 

(sing-sang, ring-rang). The network is required to learn the 

association of verb stems to their past tense forms. 

Generalization can be tested on whether the network can 

apply the past tense rule to novel verbs, or can apply any of 

the irregular patterns to novel verbs sharing similarity to 

irregulars existing in the training set. 

Simulating atypical development in the base model 

Three layered ANNs were used to simulate individual 

children. All the ANNs had 57 input units in the input layer 

and 62 output units in the output layer, used to represent tri-

phoneme verb stems and their past tense forms. The 57 

input units corresponded to the binary encoding of a 

monosyllabic three-phoneme verb, where each phoneme 

was represented using 19 binary articulatory features. The 

output included the same binary encoding of the tri-

phoneme string with the addition 5 extra bits to represent 

the suffix part of the past tense. The encoding is based on 

one that proposed by Plunkett & Marchman (1991; P&M91) 

(see Thomas & Karmiloff-Smith, 2003, for more details of 

the artificial language, including the consonant-vowel 

templates used to generate the artificial verbs). 

 
Figure 1: An ‘atypical’ ANN caused by a capacity deficit of 

reducing the number of hidden units from 50 to 15. 

 

The training set comprised 508 artificial verbs, 410 

regular verbs, 20 identical irregular verbs, 10 arbitrary 

irregular verbs and 68 vowel changed irregular verbs. 

Developmental trajectories were simulated by 1000 

presentations of this training set (epochs). A network with 

50 hidden units (back propagation algorithm, learning rate 

0.1, momentum 0, temperature 1, initial weights randomized 

between ±1) proved able to learn the training set within 
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approximately 300 epochs. We implemented a 

developmental deficit by reducing the computational 

capacity of the network (Thomas & Knowland, 2014). 

Piloting indicated that a reduction of hidden unit resources 

to 15 produced a persisting deficit in learning the training 

set (architecture show in Figure 1). 

Simulating interventions to encourage 

compensation in the atypical network 

We simulated a behavioral intervention to remediate the 

developmental impairment in the following way. We 

assumed that the impairment was diagnosed at some point 

relatively early in development. At this time, additional 

patterns were added to the original training set. The 

intervention set was added to, rather than replaced, the 

original training set, since we assume that in a clinical 

setting, interventions take place against the child’s 

continued experience of his or her normal learning 

environment. In ANNs, replacement would also incur the 

risk of catastrophic interference. We assumed that the 

behavioral intervention was much smaller in scale than 

continued everyday experience, and so limited the 

intervention set to 10% the size of the original training set 

(50 input-output mappings versus 508 in the original set). 

Intervention continued for a limited duration (30 epochs of 

training), at which point the intervention ceased and training 

reverted to the original set. Intervention had the goal of 

encouraging acquisition of the regular past tense rule. 

We manipulated the timing of intervention, from ‘early’ at 

50 epochs in steps of 50 up to ‘late’ at 250 epochs (i.e., 5 

stages: 50, 100, 150, 200, and 250) compared to the full 

training trajectory of 1000 epochs. The importance of early 

intervention has been stressed within a clinical setting, 

under the view that plasticity reduces over time. Simple 

feedforward ANNs have been claimed to capture a 

reduction in plasticity through entrenchment effects 

(Marchman, 1993), though a broader set of mechanisms 

may also produce reductions in plasticity, such as synaptic 

pruning (Thomas & Johnson, 2006). 

We assessed normalization with respect to changes in 

performance on the original training set. We assessed 

compensation with respect to changes in performance on 

five generalization sets. These were: 

• A novel rhyme set. Each novel verb shared two out of 

three phonemes with a verb in the training set. There 

were 410 regular verb rhymes, 20 no-change irregular 

verb rhymes, 10 arbitrary irregular verb rhymes, and 76 

vowel change irregular verb rhymes. Finally, there were 

56 novel verbs only shared one phoneme with any verb 

in the training set. This novel verb set has been used in 

previous simulations (e.g., Thomas & Karmiloff-Smith, 

2003).  

• A shadow training set. These were novel artificial verbs 

regenerated using the same consonant-vowel templates 

as the original training set (P&M91) and in the same 

proportions: 410 regular verbs, 20 no-change irregular 

verbs, 10 arbitrary irregular verbs, and 68 vowel-change 

irregular verbs. 

• A novel set of 508 arbitrary irregular verbs generated 

using the P&M91 templates. 

• A novel set of 508 no-change irregular verbs generated 

using the P&M91 templates. 

• A novel set of 508 vowel-change irregular verbs 

generated using the P&M91 templates. 

For the novel rhyme set, generalization was assessed 

according to accuracy of producing regularly inflected 

forms. For irregular verbs in the shadow training set, and 

for the three novel irregular sets, generalization was tested 

according to accuracy of producing the target irregular 

output form. 

We asked two questions. Did the intervention to 

encourage a compensatory strategy produce any benefit at 

the immediate end of the intervention period? And if so, did 

any benefit persist after the intervention ceased so that it 

was observable at the end of training? For the earliest 

intervention, performance was therefore assessed at 80 and 

1000 epochs. For the latest intervention, performance was 

assessed at 280 and 1000 epochs. In each case, there were 

10 replications of networks with different random seeds. 

This leaves the challenge of how to construct an 

intervention set to encourage a compensatory strategy. In 

the next section, we propose a method.  

A method for generating intervention sets for 

compensation 

The problem we needed to solve is how to choose the most 

effective 50 intervention verbs among the hundreds of 

thousands of possible artificial verbs possible within the 

encoding scheme. The idea is intuitive: if we suppose some 

of the input units are more important and decisive than 

others, then the intervention verbs can be chosen based on 

these features. Now the problem becomes how to identify 

the key features within the original training set among the 

original 57 dimensional input space. The extra data set 

should be able to remedy a disordered ANN in its 

generalization of the past tense rule. Broadly, the approach 

we adopted was to take an ANN that had successfully 

learned the past tense problem. We then varied the 

activation level of input units and assessed the extent to 

which this might generate the error on the output. This 

should indicate the extent which input units encoded key 

dimensions would influence the performance of learning. 

Formally, we translated this challenge into an optimization 

problem, specified as: ��������(��	
(����� − ���, ∑ �� = �, �� = 0	��	1���� (1) 

 

In Formula (1), Y is the past tense matrix in the training data 

set, while ��	
(�����  is the actual output of the ANN,  � is 
the number of the final layer of the ANN. So, Formula (1) 

attempts to select out the input units that contribute most to 

the learning based on the training data set. ��	�   is a 
recursive function defined in Formula (2): 
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��	� = ��� �(���� , !"�,						# = 1
�� �$��	�%", !�&, # > 1((2) 

Since this is a combinatorial optimization problem, we used 

a Genetic Algorithm (GA) approach to find the optimized 

result. In this algorithm, � = 25 features. However, after the 
GA filtered out these features, a further selection was 

necessary, since no artificial verbs could fully satisfied the 

filtered features. In the final step, a subset of 5 or 6 features 

were chosen to generate two possible intervention data sets. 

Key features selected to generate the intervention 

data sets 

After running the GA, two sets of features were constructed. 

We refer to the first as the GA feature set, since it was 

closest to a shortened version of the original filtered 25 

features yet consistent with legal verbs within the P&M91 

encoding scheme. Novel verbs each contained 5 selected 

features shown in Table 1. We refer to the second as the 

Voice satisfied feature set. Novel verbs each contained 6 

selected features shown in Table 2. These verbs were more 

consistent with those present in the original training set in 

terms of their voicing features. One might think of the first 

intervention set as optimized but somewhat strange, and the 

second as slightly less optimized but more natural given the 

ANNs previous training experiences. 

Fifty novel verbs were created for each intervention set. 

The target output for each novel verb was the regular 

inflected past tense. 

Table 1: GA Featured intervention data set. 

 
Corresponding Unit Feature location Meaning 

1 first phoneme sonorant 

2 first phoneme consonantal 

5 first phoneme voiced 

21 second phoneme consonantal 

43 third phoneme voiced 

Table 2: Voice Feature Satisfied data set. 

 
Corresponding Unit Feature location Meaning 

2 first phoneme consonantal 

5 first phoneme voiced 

21 second phoneme consonantal 

24 second phoneme voiceless 

40 third phoneme vowel 

43 third phoneme voiced 

Results 

The results of the intervention are shown in Table 3. 

Beginning with the early intervention condition, no reliable 

improvement was observed on the original training set at the 

end of intervention. If anything, intervention caused 

performance on the training set to worsen. This is in line 

with the view that normalization is difficult for a network 

with limited capacity. Compensation was assessed via 5 

novel verb sets assessing generalization of different 

functions that might be extended from the original training 

set. The first two, novel rhyme and shadow training set, 

contain significant numbers of regular verbs which one 

might expect to aided by the intervention. In both cases, 

statistically reliable benefits of intervention were observed. 

Three sets considered the possibility of generalizing 

irregular patterns. Since there is no systematic relation 

between arbitrary mappings, one would not expect an 

intervention effect on novel arbitrary verbs, and none was 

found. However, both novel no-change and novel vowel-

change generalization sets showed benefits. This implies 

that the intervention had better enabled the atypical network 

to separate regular and irregular mappings within its 

representational space, and so generalize both types of 

general function to novel verbs with features that would 

support these functions. 

We ran a series of omnibus ANOVAs to assess broader 

patterns. To emphasize the possibility that timing of 

intervention might have an effect, we focused on a 

comparison between the earliest intervention point (50 

epochs) and latest (250 epochs). Figure 2 demonstrates the 

effect of intervention at intermediate time points. We first 

examined training set performance, considering factors of 

group (treated vs. untreated), intervention type (GA vs. V), 

and timing (50 vs. 250 epochs), separately for the immediate 

end of intervention and at the end of training. For 

performance at the immediate end of intervention, there was 

a reliable effect of the intervention (F(1,9)=12.96, p=.006), 

with an effect size of ηp
2
=.59, corresponding to a worsening 

of performance. The intervention effect was not modulated 

by intervention type, nor by timing of intervention. For 

performance at the end of training, there was no effect of the 

intervention at 1000 epochs. 

 

 
Figure 2: improvements produced by interventions, in terms 

of reductions in sum-squared error, for interventions 

occurring at different epochs between 50 and 250. Left 

panel: effects immediately after the end of intervention. 

Right panel: effects at the end of training (GA=GA feature 

intervention set, V=voice satisfied intervention set; 

TR=training set performance, NR=novel rhyme set, 

ST=shadow training set, AR=arbitrary, ID=identity, 

VC=vowel change). 

We then considered generalization, with the same design 

but adding a 5-level factor of generalization set. For 

performance at the immediate end of intervention, 

performance was reliably improved by the intervention, 

(F(1,9)=478.49, p<.001), with an effect size of ηp
2
=.98; the 

effect differed between intervention sets, with the GA 

featured set having the larger effect (F(1,9)=31.68, p<.001, 
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ηp
2
=.78); improvement depended on the generalization set 

used (F(1,9)=7.64, p=.022, ηp
2
=.46); and the intervention 

effect was not modulated by timing of intervention. The 

results at the end of training were similar, but with a 

reduced intervention effect size (ηp
2
=.83), and now no 

modulation depending on the type of intervention used. 

In sum, in line with our expectations, compensatory 

strategies were effectively encouraged via the addition of an 

intervention set. Intervention sets did not achieve 

normalization and indeed the compensatory strategy (while 

effective) initially caused performance to further diverge 

from the typical trajectory. Benefits of intervention were 

possible across a wide stretch of the developmental 

trajectory, with little indication of reductions in plasticity 

across the range of timing of interventions we considered. 

However, early interventions showed dissipating effects 

across development once the intervention was discontinued, 

with the exact type of intervention becoming less relevant. 

Table 3: Intervention results. UN=untreated, GA=GA feature intervention set, V=voice satisfied intervention set. Scores 

show performance of the network prior to intervention, immediately following an intervention lasting 30 epochs, and at the 

end of training of 1000 epochs, for untreated networks and networks treated with each intervention set. Performance is 

measured by sum-squared error, where lower numbers represent better performance and higher numbers represent worse 

performance. Reliable treatment effects are marked. Interventions were at five time points, 50, 100, 150, 200 and 250 epochs. 

 
Test data sets Average RMS errors returned by ANNs’ intervened at different time point 

50
th
 100

th
 150

th
 200

th
 250

th
 

50 80 1000 100 130 1000 150 180 1000 200 230 1000 250 280 1000 

508 verbs 

(training 

data) 

UN 1.50  1.24  0.66  1.17  1.07  0.61  0.98  0.93  0.56  0.95  0.86  0.57  0.88  0.90  0.61  

GA 1.50  1.38*  0.67  1.17  1.22*  0.61  0.98  1.05*  0.52  0.95  1.04*  0.59  0.88  0.98  0.59  

V 1.50  1.46*  0.65  1.17  1.22*  0.60  0.98  1.05*  0.55  0.95  1.01*  0.58  0.88  1.02  0.65  

572 novel 

rhymes 

UN 6.41  6.41  6.65  6.34  6.35  6.64  6.38  6.41  6.63  6.28  6.30  6.53  6.28  6.31  6.56  

GA 6.41  6.08*  6.59  6.34  6.14*  6.61  6.38  6.10*  6.60  6.28  6.09*  6.47  6.28  6.09*  6.48  

V 6.41  6.04*  6.59  6.34  6.14*  6.57  6.38  6.18*  6.54  6.28  6.10*  6.41  6.28  6.05*  6.44  

508 shadow 

training set 

UN 7.34  7.39  8.22  7.40  7.50  8.26  7.56  7.67  8.21  7.68  7.70  8.27  7.81  7.84  8.33  

GA 7.34  6.14*  7.93+  7.40 6.25*  8.13+  7.56  6.49*  7.91*  7.68  6.49*  8.00*  7.81  6.49*  8.07*  

V 7.34  6.23*  7.97+  7.40  6.38*  8.15  7.56  6.60*  8.00  7.68  6.71*  8.04*  7.81  6.81*  8.13*  

508 arbitrary 

irregular 

verbs 

UN 18.47  18.56  18.77  18.58  18.62  18.81  18.60  18.69  18.88  18.64  18.66  18.86  18.70  18.74  18.88  

GA 18.47  18.63  18.84  18.58  18.66  18.83  18.60  18.77  18.91  18.64  18.72  18.85  18.70  18.79  18.96  

V 18.47  18.62  18.87  18.58  18.70  18.83  18.60  18.71  18.91  18.64  18.75  18.85  18.70  18.82  18.85  

508 identical 

irregular 

verbs 

UN 5.36  5.38  6.00  5.43  5.45  6.00  5.53  5.68  5.98  5.47  5.52  5.96  5.63  5.69  6.00  

GA 5.36  4.57*  5.75  5.43  4.61*  5.77+  5.53  4.83* 5.73  5.47  4.63*  5.72*  5.63  4.72  5.77  

V 5.36  4.67*  5.77  5.43  4.69*  5.89  5.53  4.86*  5.85  5.47  4.71*  5.80*  5.63  4.75  5.79  

508 vowel 

changed 

irregular 

verbs 

UN 8.15  8.24  9.04  8.29  8.35  9.11  8.42  8.47  8.93  8.45  8.48  8.98  8.57  8.52  8.91  

GA 8.15  7.62*  8.91  8.29  7.69*  8.86+  8.42  7.71*  8.75  8.45  7.88*  8.83  8.57  7.88*  8.63+  

V 
8.15  7.74*  8.99  8.29  7.80*  8.95  8.42  7.82*  8.76  8.45  8.07*  8.89  8.57  8.00*  8.74  

* Independent t-test treated vs. untreated p<.05 

+ Independent t-test treated vs. untreated p<.10 

 

Discussion 

In this work, we have sought to build on successful research 

using ANNs to simulate atypical cognitive and language 

development, to consider implications for behavioral 

interventions to remediate developmental deficits. We 

focused on the domain of past tense formation, which has 

been a target of intervention for children with grammatical 

deficits (Ebbels, 2007; Kulkarni et al., 2014; Seeff-Gabriel 

et al., 2012). Rather than a realistic model of these 

interventions, our goal here was more preliminary: to 

explore methods for deriving possible intervention sets, to 

assess their impact on different areas of performance, to 

assess the influence of timing of intervention, and to assess 

the extent to which any gains were sustained following the 

cessation of intervention. However, we followed one of the 

broad tenets of an intervention called grammar facilitation, 

one of the most widely investigated methods for intervening 

to address grammar deficits in school age children. In 

grammar facilitation, the aim is to make target forms more 

frequent, which is hypothesized to help the child identify 

grammatical rules and give them practice at producing 

forms they tend to omit (Ebbels, 2014). In line with this 

view, our intervention added information to the training set 

of an ANN model for a fixed period, to increase the salience 

of certain regularities in the problem domain. 

Our results demonstrated that, where a language deficit 

arises due to limitations in processing capacity, 

compensation (optimization on a subset of the problem 

domain) is more readily achievable than normalization 

(improvement on the whole problem domain), and the 

particular training items chosen to effect the compensation 

can alter the size of the effect. Within the intervention 

window we considered, we found no reductions in 

receptiveness of the ANN to remediation, indicating no 

entrenchment or reductions in plasticity. However, benefits 

did dissipate once the intervention had ceased. 

Returning to the target phenomenon, in reality, behavioral 

interventions to remediate developmental disorders of 

language and cognition are multi-faceted. They are usually 

interactional and social, and involve emotional and 

motivational factors in the child, as well as cognitive factors. 

There are myriad causes of variability in children’s abilities, 

be they biological, psychological, environmental, or social – 

factors that must be considered in planning preventions or 

interventions (Beauchaine, Neuhaus, Brenner & Gatzke-

Kopp, 2008). Clinical practice is driven by a range of 

principles including the emerging evidence base and the 

therapeutic setting, as well as the child and family’s goals. 

Within approaches targeting speech and language needs 
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directly, the clinician may form a hypothesis as to (i) the 

nature of the difficulty and (ii) what will be optimally 

effective for a child. The results of intervention will further 

refine these hypotheses. 

Nevertheless, the quality of neurocomputational 

mechanisms of learning and development is a key 

constraining factor, given that these mechanisms underlie 

behavior, and given that their plasticity is crucial in 

achieving remediation. We believe there is value in 

computational modeling work to further understand the 

mechanistic basis of atypical development and how deficits 

might be remediated by behavioral means. 

Acknowledgments 

This research is supported by the National Natural Science 

Foundation of China (61402309) and UK ESRC grant RES-

062-23-2721. 

References  

Abel, S., Willmes, K. & Huber, W. (2007). Model-oriented 

naming therapy: Testing predictions of a connectionist 

model. Aphasiology, 21(5), 411-447. 

Beauchaine, T. P., Neuhaus, E., Brenner, S. L., & Gatzke-

Kopp, L. (2008). Ten good reasons to consider biological 

processes in prevention and intervention research. 

Development and Psychopathology, 20, 745-774. 

Best, W., Fedor, A., Hughes, L., Kapikian, A., Masterson, J., 

Roncoli, S., Fern-Pollak, L., & Thomas, M. S. C. (2015). 

Intervening to alleviate word-finding difficulties in 

children: Case series data and a computational modelling 

foundation. Cognitive Neuropsychology. Article first 

published online: 25 FEB 2015, doi: 

10.1080/02643294.2014.1003204 

Borovsky, A. & Elman, J. L. (2006). Language input and 

semantic categories: a relation between cognition and 

early word learning. Journal of Child Language, 33(4), 

759-790. 

Daniloff, R. G. (2002). Connectionist approaches to clinical 

problems in speech and language. Erlbaum: Mahwah, NJ 

Ebbels, S. (2007). Teaching grammar to school-aged 

children with specific language impairment using Shape 

Coding. Child Language Teaching & Therapy, 23, 67-93. 

Ebbels, S. (2014). Effectiveness of intervention for grammar 

in school-aged children with primary language deficits. 

Child Language Teaching & Therapy, 30(1), 7-40. 

Fedor, A., Best, W., Masterson, J., & Thomas, M. S. C. 

(2013). Towards identifying principles for clinical 

intervention in developmental language disorders from a 

neurocomputational perspective. DNLTechreport2013-1 

(www.psyc.bbk.ac.uk/research/DNL) 

Gomez, R. L. (2005), Dynamically guided learning. In M. 

Johnson & Y. Munakata (Eds.) Attention and 

Performance XXI (pp. 87—110). Oxford: OUP. 

Harm, M. W., McCandliss, B. D. & Seidenberg, M. S. 

(2003). Modeling the successes and failures of 

interventions for disabled readers. Scientific Studies of 

Reading, 7, 155-182. 

Kulkarni, A., Pring, T., & Ebbels, S. (2014). Evaluating the 

effectiveness of therapy based around Shape Coding to 

develop the use of regular past tense morphemes in two 

children with language impairments. Child Language 

Teaching & Therapy, 30(3), 245-254. 

Law, J., Campbell, C., Roulstone, S., Adams, C. & Boyle, J. 

(2007). Mapping practice onto theory: The speech and 

language practitioner’s construction of receptive language 

impairment. International Journal of Language and 

Communication Disorders, 43, 245–63. 

Marchman, V. A. (1993). Constraints on plasticity in a 

connectionist model of the English past tense. Journal of 

Cognitive Neuroscience, 5, 215-234. 

Mareschal, D. & Thomas M. S. C. (2007) Computational 

modeling in developmental psychology. IEEE 

Transactions on Evolutionary Computation (Special Issue 

on Autonomous Mental Development), 11, 137-150. 

Onnis, L., Monaghan, P., Christiansen, M., & Chater, N. 

(2005). Variability is the spice of learning, and a crucial 

ingredient for detecting and generalizing in nonadjacent 

dependencies. In: K. Forbus, D. Gentner & T. Regier 

(Eds.), Proceedings of the 26
th
 Annual Conference of the 

Cognitive Science Society (pp. 1047-1052). Mahwah, NJ: 

Erlbaum.  

Plaut, D.C. (1996). Relearning after damage in connectionist 

networks: Toward a theory of rehabilitation. Brain and 

Language, 52, 25-82. 

Plunkett， K.，  & Marchman, V.  (1991). U-shaped 

learning and frequency effects in a multi-layered 

perception: Implications for child language acquisition. 

Cognition, 38, 43-102.  

Poll, G. H. (2011). Increasing the odds: Applying 

emergentist theory in language intervention. Language, 

Speech, and Hearing Services in Schools, 42, 580-591. 

Seeff-Gabriel, B., Chiat, S., & Pring, T. (2012). Intervention 

for co-occurring speech and language difficulties. Child 

Language Teaching & Therapy, 20, 123-35. 

Thomas, M. S. C. (2005). Characterising compensation. 

Cortex, 41(3), 434-442. 

Thomas, M. S. C., Forrester, N. A., & Ronald, A. (2015). 

Multiscale modeling of gene–behavior associations in an 

artificial neural network model of cognitive development. 

Cognitive Science. Article first published online: 3 APR 

2015, doi: 10.1111/cogs.12230 

Thomas, M. S. C. & Johnson, M. H. (2006). The 

computational modelling of sensitive periods. 

Developmental Psychobiology, 48(4), 337-344. 

Thomas, M. S. C. & Karmiloff-Smith, A. (2003). Modeling 

language acquisition in atypical phenotypes. 

Psychological Review, 110, 647-682. 

Thomas, M. S. C. & Knowland, V. C. P. (2014). Modelling 

mechanisms of persisting and resolving delay in language 

development. Journal of Speech, Language, and Hearing 

Research, 57(2), 467-483 

 

128


