
Scalability Potential of BWA DNA Mapping Algorithm on Apache Spark

Zaid Al-Ars Hamid Mushtaq
Computer Engineering Lab, Delft University of Technology

2628 CD Delft, The Netherlands
E-mail: z.al-ars@tudelft.nl

Abstract
This paper analyzes the scalability potential
of embarrassingly parallel genomics applica-
tions using the Apache Spark big data frame-
work and compares their performance with na-
tive implementations as well as with Apache
Hadoop scalability. The paper uses the BWA
DNA mapping algorithm as an example due
to its good scalability characteristics and due
to the large data files it uses as input. Re-
sults show that simultaneous multithreading
improves the performance of BWA for all sys-
tems, increasing performance by up to 87% for
Spark on Power7 with 80 threads as compared
to 16 threads (# of physical cores). In addition,
Hadoop has slightly better performance of up
to 17% for low system utilization, while Spark
has up to 27% better performance for high sys-
tem utilization. Furthermore, Spark is able to
sustain high performance when the system is
over-utilized, while the performance decreases
for Hadoop as well as the native implementa-
tion.

1 Introduction
With the fast increase in the sizes of genomics datasets
and the growing throughput of DNA sequencing ma-
chines, there is an urgent need to develop scalable,
high-performance computational solutions to address
these challenges. A number of different approaches
are being investigated as possible solutions, ranging
from highly connected, customized server-based solu-
tions (Kelly15) to Hadoop-based big data infrastruc-
tures (Decap15). Predominantly, however, classical
computer cluster-based solutions are the most widely
used computational approach, either used locally or in
the cloud (Stein10).

Each of these solutions has advantages and disad-
vantages as it relates to the scalability potential on
large computer infrastructures. Customized solutions
are expensive to design, but have the advantage of be-
ing highly optimized for the specific analysis pipeline
being performed. Classical cluster-based solutions are
more generic making them less costly, but also less ef-
fective. Genomics analysis problems, however, have
the potential of offering a huge amounts of parallelism

by segmenting the large input datasets used in the anal-
ysis. This creates the opportunity of using recent big
data solutions to address these analysis pipelines.

In this paper, we investigate the scalability potential
of using Apache Spark to genomics problems and com-
pare its performance to both the native scalable imple-
mentation developed for classical clusters, as well as
to Hadoop-based big data solutions (Zaharia12). This
analysis is performed using a popular DNA mapping
algorithm called the Burrow-Wheeler Aligner (BWA-
MEM), which is known for its speed and high scalabil-
ity potential on classical clusters (Li13).

This paper is organized as follows. Section 2 dis-
cusses typical genomics analysis pipelines and the dif-
ferent stages of the analysis. Section 3 presents the
BWA-MEM algorithm, evaluates its scalability poten-
tial and discusses some of its computational limita-
tions. Section 4 presents and compares the scalabil-
ity potential of native implementations, Hadoop and
Spark on the used test computer systems. Section 5
evaluates the effectiveness of these different solutions
for genomics analysis by evaluating the scalability of
BWA-MEM. Section 6 ends with the conclusions.

2 Genomics pipelines
In this section, we discuss the basic steps of a so-called
reference-based DNA analysis pipeline, used for ana-
lyzing the mutations in a DNA dataset using a known
reference genome.

DNA sequencing
The first step in any genome analysis pipeline starts by
acquiring the DNA data using sequencing machines.
This is done in a massively parallel fashion with mil-
lions of short DNA pieces (called short reads) being
sequenced at the same time. These reads are stored in
large files of sizes ranging from tens to hundreds of gi-
gabytes. One standard file format used today to store
these reads is called the FASTQ file format (Jones12).

Read mapping
The second step is used to assemble the short reads into
a full genome, by mapping the short reads to a refer-
ence genome. This is one of the first computational
steps in any genomics analysis pipeline, needed to re-
construct the genome. At the same time, it is one of the
most computationally intensive steps, requiring a lot of

85



CPU time. The output represents a mapping of the pos-
sible locations of a specific read in the FASTQ file to
a specific reference genome. BWA-MEM is one of the
most widely used DNA mapping programs (Li13).

Variant calling
The third step is called variant calling, which uses al-
gorithms to identify the variations of a mutated DNA
as compared to a reference DNA. This analysis is be-
coming standard in the field of genomics diagnostics,
where DNA analysis is used to advise clinical decision.
The Genome Analysis Toolkit (GATK) and SAMtools
are two widely used software tools for variant call-
ing (Pabinger13).

3 BWA mapping algorithm

BWA-MEM is one of the most widely used DNA map-
ping algorithms that ensures both high throughput and
scalability of the large datasets used in genomics. This
section discusses the BWA-MEM algorithm which we
use as an example for parallel algorithms used in big
data application domains.

BWA-MEM, as well as many other DNA mapping
algorithms, is based on the observation that two DNA
sequences of the same organism are likely to contain
short highly matched subsequences. Therefore, they
can follow a strategy which consists of two steps: 1)
seeding and 2) extension. The seeding step is to first
locate the regions within the reference genome where a
subsequence of the short read is highly matched. This
subsequence is known as a seed, which is an exact
match to a subsequence in the reference genome. After
seeding, the remaining read is aligned to the reference
genome around the seed in the extension step using the
Smith-Waterman algorithm (Houtgast15).

In BWA-MEM, before starting the read alignment,
an index of the reference genome is created. This is a
one time step and hence not on the critical execution
path. In our discussion, we assume that an index is al-
ready present. The different execution stages of BWA-
MEM read alignment algorithm are described below.
The first two stages belong to seeding.

SMEM generation
BWA-MEM first computes the so-called super-
maximal exact matches (SMEMs). An SMEM is a sub-
sequence of the read that is exactly matching in the ref-
erence DNA and cannot be further extended in either
directions. Moreover, it must not be contained in an-
other match.

Suffix array lookup
The suffix array lookup stage is responsible for locating
the actual starting position of the SMEM in the refer-
ence genome. An SMEM with its known starting po-
sition(s) in the reference genome forms seed(s) in the
reference.

0 10 20 30 40 50 60 70 80
200

400

600

800

1000

1200

1400

1600

1800

Cores

Ti
m

e 
(s

ec
s)

 

 

Spark
Hadoop

Figure 1: Execution time of WordCount on Power7

Seed extension
Seeds are subsequences of the read that are exactly
matching in the reference genome. To align the whole
read against the reference genome, these seeds are
extended in both directions. This extension is per-
formed using a dynamic programming algorithm based
on Smith- Waterman.

Output
The read alignment information is written to a file in
the SAM (sequence alignment/map) format (Li09).

4 Baseline performance analysis
The increasing sizes of big data files have called for
a continued effort to develop systems capable of man-
aging such data sizes and enabling the needed scala-
bility to process them efficiently. Hadoop MapReduce
is the current industry system of choice for big data
systems, which uses the in-disk Hadoop distributed file
system (HDFS). Apache Spark is emerging as a strong
competitor in the field due to its in-memory resilient
distributed datasets. This section compares these two
systems using the WordCount benchmark to identify a
baseline for the BWA-MEM implementation.

We tested the WordCount application on two differ-
ent kinds of machines. The first one is an IBM Pow-
erLinux 7R2 with two Power7 CPUs and 8 physical
cores each. The Power7 cores are capable of executing
4 simultaneous threads. The second machine is an In-
tel Linux server with two Xeon CPUs and 10 physical
cores each. The Xeon cores are capable of executing 2
simultaneous threads.

The results for the WordCount application are shown
for the IBM Power7 and Intel Xeon in Figure 1 and 2,
respectively. For the Hadoop version, the input files
are read from the HDFS file system, while for Spark,
the files are read from the local file system. We can
see that on both machines, the Spark version is faster
than the Hadoop version. Moreover, there is an ap-
proximately constant increase in the execution time of

86



0 5 10 15 20 25 30 35 40 45 50
0

200

400

600

800

1000

1200

1400

Cores

Ti
m

e 
(s

ec
s)

 

 

Spark
Hadoop

Figure 2: Execution time of WordCount on Xeon

Hadoop as compared to that of Spark for the different
thread count on both machines. This indicates a con-
stant added overhead for Hadoop-based programs over
Spark for different number of threads. This overhead is
partly incurred by Hadoop having to access files from
the HDFS system instead of the local file system.

The figures also show that the highest performance
gains are achieved using scalability of the physical
cores (up to 16 threads for the Power7 and 20 threads
for the Xeon). In addition, high performance gains
are achieved by running 2 threads per core, with the
Power7 achieving better performance gains as com-
pared to the Xeon. Further increase in the thread count
on the Power7 only achieves marginal gains. One inter-
esting remark is that on both machines, over-saturating
the CPUs by issuing more threads than the machine
is capable of causes Hadoop to loose performance
slightly, while Spark is still capable of a (marginal) in-
crease in performance.

5 Experimental results
In this section, we investigate the scalability poten-
tial of BWA-MEM on big data systems as an example
of genomics data processing pipelines. We compare
its native implementation, developed for classical clus-
ters, to the performance of an Apache Spark as well
as of a Hadoop-based big data implementation. The
Hadoop version uses the Halvade scalable system with
a MapReduce implementation (Decap15). In this eval-
uation, we use the same IBM PowerLinux 7R2 and In-
tel Xeon servers we used for the WordCount example
above.

The results for the BWA mapping are shown for
IBM Power7 and Intel Xeon in Figure 3 and 4, respec-
tively. The results are shown for 3 different version of
BWA: 1. native, 2. Hadoop, and 3. Spark. Both the
Hadoop and Spark versions divide the input dataset of
short reads into a number of smaller files referred to as
chunks. For example, for these experiments, we had 32
input chunks. Halvade and Spark were run with 4 in-

0 10 20 30 40 50 60 70 80
200

400

600

800

1000

1200

1400

1600

Cores

Ti
m

e 
(s

ec
s)

 

 

Native
Hadoop
Spark

Figure 3: Execution time of BWA-MEM on Power7

0 5 10 15 20 25 30 35 40 45 50
100

200

300

400

500

600

700

800

900

Cores

Ti
m

e 
(s

ec
s)

 

 

Native
Hadoop
Spark

Figure 4: Execution time of BWA-MEM on Xeon

stances, which means that 4 simultaneous BWA tasks
were run in parallel on different data chunks. The num-
ber of threads used in each experiment was varied by
controlling the number of threads issued by each BWA
instance (using the -t command line argument). For
example, to use 12 threads, we used 4 instances with
each instance having 3 threads, while to use 32 threads,
we used 4 instances with 8 threads each.

It also has to be mentioned here that there are few
differences in how files are read in Hadoop and the
Spark versions. In the Hadoop version, the input zipped
files are extracted on the fly by the Hadoop MapRe-
duce framework and delivered to the mappers line by
line, where each mapper is executing one instance of
BWA. Each instance then processes the input data line
by line. That data is read right away by the BWA in-
stances using the stdin buffer. On the other hand, each
instance in the Spark version reads a zipped input file
and then decompresses it first. Afterwards, the decom-
pressed file is forwarded as an input to a BWA instance.
However, in both cases, the output is written to the lo-
cal file system. It is also important to mention here that
in the Power7 case, we wrote the output into a RAM

87



disk for all three BWA versions. This is because we
wanted to know how good BWA scales with simultane-
ous threads without letting file I/O overshadowing the
execution time.

On both the Power7 and Xeon machines, we can see
that simultaneous multithreading improves the perfor-
mance of BWA. This is because the BWA algorithm
usually suffers from a large number of memory stalls,
as a result of random accesses to the memory that ren-
ders the cache ineffective causing a high cache miss
rate. These cache misses can be reduced by simultane-
ous multithreading, since some threads can run while
others are stalled. The Power7 system is able to make
significant performance gains using its capability to is-
sue 4 simultaneous threads. Spark is able to increase in
performance by up to 87% with 80 threads as compared
to 16 threads (# of physical cores).

One interesting result in the figures is that while the
Hadoop version is faster by up to 17% using lower
number of threads, the Spark version gets faster by
up to 27% at higher number of threads. This behav-
ior can be explained by the way the input chunk files
are handled. As mentioned before, the Hadoop ver-
sion uses on-the-fly decompression of the zipped input
chunk files, while the Spark version first decompresses
a zipped input chunk file before using it. This causes
an increased overhead that makes Spark run slower for
lower number of threads. As the number of threads in-
creases, Spark improves in performance and overtakes
Hadoop in execution time.

Finally, the figures show that over saturating the
thread capacity of the cores (i.e., issuing more threads
than number of virtual cores available) causes the per-
formance of the native version and the Hadoop version
to degrade, while Spark is able to continue to improve
in performance. This behavior is similar to the one
observed in the WordCount example. Therefore, this
could be caused by the internal implementation of the
Spark and Hadoop systems themselves.

6 Conclusions
This paper analyzed the scalability potential of the
widely used BWA-MEM DNA mapping algorithm.
The algorithm is embarrassingly parallel and can be
used as an example to identify the scalability potential
of embarrassingly parallel genomics applications using
the Spark and Hadoop big data frameworks. The paper
compared the performance of 3 BWA implementations:
1. a native cluster-based version, 2. a Hadoop version,
and 3. a Spark versions. Results show that simultane-
ous multithreading improves the performance of BWA
for all systems, increasing performance by up to 87%
for Spark on Power7 with 80 threads as compared to 16
threads (# of physical cores). The results also show that
while the Hadoop version is faster by up to 17% using

4 threads, the Spark version gets faster by up to 27%
at higher number of threads. Finally, the results also
indicate that the Spark system is more capable of han-
dling higher number of threads as it is able to continue
to reduce its run time when over-saturating the thread
capacity of the cores.

References
D. Decap, J. Reumers, C. Herzeel, P. Costanza and

J. Fostier, ”Halvade: scalable sequence analy-
sis with MapReduce”, Bioinformatics, btv179v2-
btv179, 2015.

E.J. Houtgast, V.-M. Sima, K. Bertels and Z. Al-
Ars, ”An FPGA-Based Systolic Array to Acceler-
ate the BWA-MEM Genomic Mapping Algorithm”,
International Conference on Embedded Computer
Systems: Architectures, Modeling and Simulation,
2015.

D.C. Jones, W.L. Ruzzo, X. Peng and M.G. Katze,
”Compression of next-generation sequencing reads
aided by highly efficient de novo assembly”, Nucleic
Acids Research, 2012.

B.J. Kelly, J.R. Fitch, Y. Hu, D.J. Corsmeier, H. Zhong,
A.N. Wetzel, R.D. Nordquist, D.L. Newsom and P.
White,”Churchill: an ultra-fast, deterministic, highly
scalable and balanced parallelization strategy for
the discovery of human genetic variation in clinical
and population-scale genomics”, Genome Biology,
vol. 16, no. 6, 2015.

H. Li, ”Aligning sequence reads, clone sequences
and assembly contigs with BWA-MEM”,
arXiv:1303.3997 [q-bio.GN], 2013.

H. Li, B. Handsaker, A. Wysoker, T. Fennell, J. Ruan,
N. Homer, G. Marth, G. Abecasis, R. Durbin, ”The
Sequence Alignment/Map format and SAMtools”,
Bioinformatics, vol. 25, no. 16, pp. 2078-2079,
2009.

S. Pabinger, A. Dander, M. Fischer, R. Snajder, M.
Sperk, M. Efremova, B. Krabichler, M.R. Speicher,
J. Zschocke, Z. Trajanoski, ”A survey of tools for
variant analysis of next-generation genome sequenc-
ing data”, Brief Bioinformatics, bbs086v1-bbs086,
2013.

L.D. Stein, ”The case for cloud computing in genome
informatics”, Genome Biology, vol. 11, no. 207,
2010.

M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M.
McCauley, M.J. Franklin, S. Shenker, I. Stoica, ”Re-
silient Distributed Datasets: A Fault-Tolerant Ab-
straction for In-Memory Cluster Computing”, NSDI,
April 2012.

88


