

The Proceedings of

EuroPLoP 2009

!

14th annual European Conference on
Pattern Languages of Programming

"#$%%&!'%#()*+&!,-.+!/012&!2334!
!
5678%6!9+:!

• ;..)*!<%..+&!=>?8@)#%!=8#)8%A+!B86C!

• D7EF)%.!G%7$$!&!H)#.%8>*!I*7J%#$78+&!K%L)#8(%*8!>?!=+$8%($!

)*6!H>(L-8%#!5*A7*%%#7*A&!M88)@)&!H)*)6)!

!"#$%&'(&)'*+%*+,&&
• N#%?)E%!

!
-'./,0'1&2&32$%4"*5%.3&
Workshop Leader: Andreas Fie§er

1C ,-*O7%$!B7O%!I$!00!P7*67*A!Q>-#!G)+!RF#>-AF!RF%!H>..)9>#)87J%!G%9!S*>8!
$-9(788%6!?>#!L#>E%%67*A$T!!
;*6#%)$!UVL7*A!!

2C 5*8%#L#7$%!;#EF78%E8-#%!D)*)A%(%*8!N)88%#*$!?>#!5*8%#L#7$%!;#EF78%E8-#%!
W7$7>*7*A!!
=)97*%!X-EO.&!;.%Y)*6%#!DC!5#*$8&!P.>#7)*!D)88F%$&!HF#7$87)*!DC!=EF@%6)!!

ZC U>.%$!7*!)!=>?8@)#%!N#>[%E8!!
;*6#%)$!P7%\%#!!

]C ;LL.7%6!N)88%#*!?>#!=8#)8%A+!D)*)A%(%*8!>?!R%EF*>.>A+!
5*8#%L#%*%-#$F7L!)*6!"**>J)87>*!D=E!N#>A#)(!!
Q)*O)!R>6>#>J)&!N%8O>!U-$O>J&!5.7$$)J%8)!'>-#>J)&!D)#O!^)##7$!!

_C N%#?>#()*E%!>?!ML%*!=>-#E%!N#>[%E8$!!
D7EF)%.!G%7$$!!

!
-'./,0'1&6&3678/9:*,+%.&;7$$%.3&
Workshop Leaders: Uwe Zdun, Paris Avgeriou and Neil Harrison

1C RF%!U>.%!>?!;*).+7!N)88%#*$!7*!=+$8%($!;*).+$7$!!
;**)!X>9O>@$O)&!,)O-9!'#)9>@$O7!!

2C ;!$%#J7E%!?>#!$>?8@)#%!L)88%#*!$%.%E87>*!!
;.7)O$)*6#!X7#-O>-&!D7EF)%.!G%7$$!!

ZC ;LL.+7*A!;#EF78%E8-#).!N)88%#*$!?>#!N)#)..%.!N#>A#)((7*A:!=>.J7*A!8F%!
M*%067(%*$7>*).!^%)8!5`-)87>*!!
,>#A%!BC!M#8%A)0;#[>*)!!

]C R>@)#6$!P>#().7a%6!;6)L8)87>*!N)88%#*$!?>#!;6)L87J%!"*8%#)E87J%!
=+$8%($!!
D)88F7)$!X%a>.6!!

_C ;!N)88%#*!6#7J%*!;LL#>)EF!)A)7*$8!;#EF78%E8-#).!<*>@.%6A%!W)L>#7a)87>*!!
I@%!J)*!^%%$EF&!N)#7$!;JA%#7>-!!

bC U%-$)9.%!;#EF78%E8-#).!K%E7$7>*$!?>#!K=B!K%$7A*:!P>-*6)87>*).!K%E7$7>*$!
7*!K=B!N#>[%E8$!!
I@%!c6-*&!D)#O!=8#%(9%EO!!

!
-'./,0'1&)&3<%&)'.#7,:%.3&
Workshop Leader: Allan Kelly

1C ;!N)88%#*!W>E)9-.)#+!?>#!N#>6-E8!K7$8#79-87>*!!
;..)*!<%..+!!

2C X-$7*%$$!N)88%#*$!?>#!<*>@.%6A%!)-678!7(L.%(%*8)87>*!!
;.9%*)!;*8>*>J)&!5.7$$)J%8)!'>-#>J)!!

ZC ;LL.+7*A!K7$8#79-8%6!K%J%.>L(%*8!N)88%#*$!!
B7$%!XC!^J)8-(!!

]C X-$7*%$$!N.)*!H>*E%L87>*!N)88%#*!B)*A-)A%!!
G7(!B)-#7%#&!N)J%.!^#-9+&!'%%#8!N>%.$!!

_C =>?8@)#%!K%$7A*!U%J7%@$!!
d>#)!B-6%@7A!!

-'./,0'1&=&3=">:*8:3&
Workshop Leader: Christian Kohls

1C K%$7A*!N)88%#*$!?>#!H#%)87J78+!!
N%8#>$!'%>#A7)O)O7$&!=+(%>*!U%8).7$!!

2C NB"R=:;!N)88%#*!B)*A-)A%!?>#!"*8%..7A%*8!R-8>#7*A!=+$8%($!!
K7*)!=).)F&!;(7#!c%76!!
;6)L87J%!N)88%#*$!?>#!"*8%..7A%*8!R-8>#7*A!=+$8%($!!
K7*)!=).)F&!;(7#!c%76!!
!"#$%!RF%$%!L)L%#$!@%#%!>#7A7*)..+!$-9(788%6!)$!>*%!L)L%#!)*6!$L.78!
?>..>@7*A!@>#O$F>L!#%J7%@C!!

ZC ;!N)88%#*!B)*A-)A%!?>#!M*.7*%!R#)7*7*A$!!
HF#7$87)*!<>F.$!!

]C N)88%#*$!?>#!^)*6.7*A!=8-6%*8$e!P%%69)EO!!
;Y%.!=EF(>.78aO+&!R7..!=EFV((%#!!

_C N)88%#*!?>#!'#)6-)8%!=8-6%*8!H>(L)*+!B7?%!H+E.%!!
N%8O>!U-$O>J&!D7.%*)!=8>+EF%J)&!Q)*O)!R>6>#>J)!!

!
-'./,0'1&?&3?"9%,3&
Workshop Leader: Dietmar Schütz

1C N)88%#*$!?>#!N#>6-E8!B7*%!5*A7*%%#7*A!!
HF#7$8)!=EF@)**7*A%#&!D7EF)%.!<7#EF%#!!

2C U%J%#$%!W)#7)97.78+!5*A7*%%#7*A!!
K7%8()#!=EFV8a!!

ZC K7A78).!=7A*)8-#%!@78F!^)$F7*A!)*6!fDB!=7A*)8-#%!L)88%#*$!!
<%7O>!^)$F7a-(%&!56-)#6>!XC!P%#*)*6%a&!=F7F>*A!^-)*A!!

]C K%).7*A!G78F!H>(L.%Y78+!!
<.)-$!D)#`-)#68!!

_C W)#7)97.78+!N)88%#*$!!
D)#O-$!W>%.8%#!!

bC ;!N)88%#*!B)*A-)A%!>?!X.)EO0X>Y!R%$8!K%$7A*!?>#!U%)E87J%!=>?8@)#%!
=+$8%($!!
;.)7*0'C!W>-??>!P%-6[7>&!"*)!=EF7%?%#6%EO%#!!

!
-'./,0'1&;&3;',+%.3&
Workshop Leader: Tim Wellhausen

1C ;!'>>6!P>#8!F)$!)!')L!!
;#8>!,-F>.)!!

2C R>@)#6$!)!N)88%#*!B)*A-)A%!@F7EF!=-LL>#8$!8F%!D7A#)87>*!>?!=+$8%($!
?#>(!)*!5RgN!8>!)!RRH!=>?8@)#%!;#EF78%E8-#%!!
D7EF)%.!N>*8&!P)#)F!B)OF)*7&!;*[).7!K)$!!

ZC "*J>E)87>*!P.>@!B7*%$:!N)88%#*$!>?!"*J>E)87>*!)*6!D%$$)A%!N#>E%$$7*A!7*!
M9[%E8!U%(>87*A!D766.%@)#%!!
=8%?)*!=>9%#*7A&!I@%!c6-*!!

]C ^7%#)#EF7E).!N#>L%#8+!B>)6%#!!
R7(!G%..F)-$%*&!D)#87*!G)A*%#&!'%#F)#6!D-..%#!!

_C =>?8@)#%!;#EF78%E8-#%!N)88%#*$!?>#!K7$8#79-8%6!5(9%66%6!H>*8#>.!=+$8%(!!
W%.70N%OO)!5.>#)*8)&!,>F)**%$!<>$O7&!D)#O>!B%LLh*%*&!W7..%!U%7[>*%*!!

bC R@>!=7(L.%!N)88%#*$!8>!=-LL>#8!8F%!K%J%.>L(%*8!>?!U%.7)9.%&!U%).087(%!
5(9%66%6!=+$8%($!S*>8!$-9(788%6!?>#!L#>E%%67*A$T!!
;*[).7!K)$&!P)#)F!dC!B)OF)*7&!;+()*!<C!'%*6+&!D7EF)%.!,C!N>*8!!

!
;'87,&@.'71&"*5&A1%*&B1"8%&.%1'.+,&

1C =-(()#+!>?!8F%!>L%*!$%$$7>*!>*!L)88%#*!$%.%E87>*!)*6!L)88%#*!
#%L>$78>#7%$!!
5678%6!9+!;.7)O$)*6#!X7#-O>-!!

!
211%*5:4&
! =%.%E8%6!LF>8>A#)LF$!

Enterprise Architecture Management Patterns for Enterprise
Architecture Visioning

Sabine Buckl, Alexander M. Ernst, Florian Matthes, Christian M. Schweda

Chair for Informatics 19

Technische Universität München

eMail: {buckls, ernst, matthes, schweda}@in.tum.de

January 20, 2010

1 Introduction and Overview

Enterprise architecture (EA) management is one of the major challenges of modern enter-
prises. It aims at aligning business and IT in order to optimize their interaction. The general
make-up of the enterprise is reflected in the EA, which comprises both business and IT as-
pects – ranging from visions (business, as well as IT visions are of interest), via business
processes, and business applications, to infrastructure elements, like e.g. application servers
or hardware.
Documenting and managing the EA is an advanced topic, as the application landscape, which
is part of the EA often includes a few hundreds up to a few thousand business applications
and their interconnections in a medium-sized or large company. Thereby, managing the EA
is a task, that has to be executed as the need for a flexible IT is an integral concern of most
companies. Nevertheless, other reasons for maintaining an EA documentation exist, such as
compliance requirements or economic causes, i.e. the cost reduction of the IT function.
This article includes patterns on EA Visioning, which are part of the EAM Pattern Cata-
log, a pattern language for enterprise architecture management [BEL+07, BELM08, BEL+08,
Ern08, Ern09], which uses a pattern-based approach to EA management. The complete EAM
Pattern Catalog is available online at http://eampc-wiki.systemcartography.info [Cha09] and
currently includes 162 EAM patterns. For a detailed explanation of the concept of EAM
patterns refer to [Ern09]. The intention behind the article is to further extend and enhance
the already documented EAM patterns and to document not yet described ones in order to
advance the EAM pattern language.

The rest of this section list some remarks to writer’s workshop participants, gives a short
overview about the intended audience, and a map of included EAM patterns and their refer-
ences.

Copyright retain by author(s). Permission granted to Hillside Europe for inclusion in the
CEUR archive of conference proceedings and for Hillside Europe website.

A2 - 1A2 - 1

1.1 Intended Audience

1.1 Intended Audience

This article and the herein included patterns are intended for people concerned with gov-
erning the information technology (IT) of a company, aligning business and IT, and people
concerned with bringing together information about business and IT aspects of the enterprise.
Especially the topic of EA visioning is addressed by the patterns included in this article.

Potential Readers for this article are: people caring about strategies and visions for EAs from
business and from IT, business architects, enterprise architects, and business application
owners.

1.2 Map of included EAM Patterns

The EAM patterns included in this article are part of a larger pattern language and therefore
relationships between EAM patterns are an integral part of this approach. Figure 1 shows a
pattern map visualizing these relationships and descriptions about their type. The pattern
map also includes references to patterns which are not included in this article. Patterns are
referenced by their names, page numbers are included in brackets.

Process Support Map

EA Visioning
(page 4)

Landscape Planning
(page xx)

Target Landscape
Definition
(page 8)

EA Roadmapping

EA Documentation

Legend

Process Support Map

Included
M-Pattern

Not included
V-Pattern

Business Visioning
Not included
M-Pattern

Process Support

Business Visioning

IT Visioning

provides
input

provides input

provides input

provides input

uses

uses

Process Support
Not included
I-Pattern

provides
input

provides
input

EA Visioning

Landscape Planning

Composite Pattern with
associated Sub-Pattern

Figure 1: Pattern Map for this Article

The following EAM patterns are included in this article.

• EA Visioning (see page 4)

• Target Application Landscape Definition (see page 8)

A2 - 2A2 - 2

1.2 Map of included EAM Patterns

These EAM patterns are not included in this article and have to be documented or can be
found in the EAM Pattern Catalog Wiki [Cha09]:

• Business Visioning documents the steps to develop a business vision, which is aligned
with the business strategy of the company.

• IT Visioning provides insights about how to develop and maintain a vision about the
future development of the IT. An IT vision is not as concrete as an IT target and should
match the IT strategy of the company.

• EA Documentation cares about how to document the elements an enterprise archi-
tecture consists of, like business applications, business processes, etc.

• EA Roadmapping uses the information documented about the enterprise architec-
ture to create and maintain a roadmap on the future developement of the enterprise
architecture.

• Process Support Map (see [Cha09]) visualizes, which BusinessApplications support
which BusinessProcesses at which OrganizationalUnits.

• Process Support (see [Cha09]) shows how information about which organizational
unit uses which business application to support which business process can be stored.

A2 - 3A2 - 3

2. EA Visioning

2 EA Visioning

EA Visioning describes the general process of EA visioning. The term EA strategy is
widely used interchangeably with the term EA vision. We prefer the later term in accordance
to [Gro08], where a vision is referred to as distant goal, while a strategy is understood as series
of activities to pursue such goal. Based on Business Visioning, IT Visioning, and input
from the current EA Documentation a Target Landscape Definition is derived, which
then provides input for EA Roadmapping resulting in projects that have to be conducted
in order to adapt the EA according to the defined vision.

2.1 Example

The department store SoCaStore has to continually adjust its business vision to the changing
economic environment and to ensure consistency as well as appropriateness of this vision in
respect to regulatory requirements. Additionally, emerging IT-trends and new technologies
available make it necessary to adapt the IT vision, in order to effectively use the resulting
opportunities. From the business and IT strategy, SoCaStore wants to develop and reshape
the vision of the EA to achieve an optimal alignment of business and IT under the changed
circumstances.

2.2 Context

An enterprise, which wants to create a holistic vision of its future EA, taking into account
market trends, regulatory changes, and emerging IT-technologies to achieve increase align-
ment between business and IT.

2.3 Problem

You want to ensure that the vision of your company’s EA factors in the relevant environmen-
tal changes and provides both a consistent business and IT vision to guide the evolution of
the EA. How can you prevent an organization from losing its ability to develop

effective long-term strategies?

The following forces influence the solution:

• Market orientation versus innovative visioning If the EA visioning goes the same
ways as the visioning in other companies acting in the same market, the enterprise
might be able to compete with the other companies. Nevertheless, visioning in such a
direction is likely to limit the corridor of evolution, especially in respect to new markets.

• Market uncertainty versus stable markets Operating in uncertain markets may
result in better opportunities but also implies higher risk. Stable markets constitute the
contrary situation. In what kind of market is your company operating and how does
this influence your EA visioning.

• Separation of concerns versus smooth transition The EA visioning process ben-
efits from knowledge and experience of the people fulfilling certain roles. These roles
nevertheless demand strongly different skill sets, e.g. in business visioning and IT vi-
sioning. In consequence, the boards for performing these activities could be separated

A2 - 4A2 - 4

2.4 Solution

strictly, which might negatively affect innovative power, especially when IT as enabler
is considered.

• Holistic visioning versus selective visioning The success of EA visioning is depen-
dent on the focus on the business content. A broader focus may lead to better overall
results but it is more difficult to get the required input by the business. How do you
find the right focus of your visioning approach?

• Continuous adaptation versus one time approach Continuously adapting the
vision of your EA may lead to the best results but requires high efforts. A one time
approach does not require high investments but may be outdated soon. What is a good
space of time for reconsidering the created EA vision?

• Regulatory instability Rules and regulations do not stay the same over time. They
change and require changes concerning the vision of your EA. How do you find a balance
between adapting to regulatory changes and keeping already developed visions of the
EA?

2.4 Solution

The development of an EA vision is a compound process consisting of distinct activities as
indicated in Figure 2. These activities themselves are quite coarse grained and are detailed
in separate M-Patterns: Business Visioning, IT Visioning, and Target Application
Landscape Definition (see page 8). In the notion of a composite pattern [Cop96, BHS07],
this EA Visioning describes the coordinating process of EA visioning, caring about the cor-
rect execution of the contained activities. Subsequently, we sketch the role of these activities
and detail on the exchange of information and knowledge between connected activities.

Target Landscape
Definition
(page 8)

EA Roadmapping

EA Documentation

Business Visioning IT Visioning

Figure 2: EA Visioning Process

Business Visioning In this activity, business plans and visions are developed. Therefore,
current trends in the market fields, which the company is acting in, are analyzed and possible
scenarios for the future development of the markets are created and prioritized according
to their likelihood. Additionally, related market fields should be taken into consideration to
supply ideas for diversification or to give indications on potential future developments. From
this input, a joint vision of the business is developed and a complementing business mission is
formulated. Subsequently, both vision and mission are detailed to goals and strategies, respec-
tively. The Business Motivation Model (BMM) [Gro08] of the Object Management Group

A2 - 5A2 - 5

2.5 Implementation

(OMG) establishes a language, which can be used during business visioning and sketches
additional process steps, which could be supportive during the execution of this activity.
IT Visioning The business vision and mission from business visioning provide input to this
activity, where new technologies and IT trends are discussed and analyzed in respect to the
applicability for supporting the business plans. During the activity, standardization endeavors
targeting the IT support in the respective business area are assessed.
Target Landscape Definition The business vision determines the framework for the target
landscape to be developed. The target landscape is often (see e.g. [EHH+08]) alluded to as
to-be landscape. We decided to stay to the former terminology, as the term to-be could also
apply to planned landscape, i.e. landscapes, which result from the execution of concrete project
portfolios. For in-depth discussions on this topic see e.g. [BDM+08]. The IT vision lays the
basis for the target landscape by defining concepts, standards, and technologies, which are
preferably used in realizing the IT support for the business vision. The documented current
landscape provides valuable input for the discussions on the target landscape, especially in
areas, where business and IT vision do not differ substantially from the currently established
business and IT plan, or where business and IT vision do not exert influence upon.

2.5 Implementation

EA Visioning should incorporate people from the business, as well as from the IT part
of your company. This is important as EA Visioning has an high impact on the future
development of your company and the capability to support new business requirements.
Developing or revising the EA Visioning depends on the planning cycle of your company,
which may also be dependent to market demands. Manufacturing companies for example
usually feature longer planning cycles then telecommunication companies.

2.6 Variants

A variant of EA Visioning is that there is no business vision, which can be used as an input
for the IT vision. In this case an IT vision is created without input from business. This
usually results in an IT vision which does not meet the future development and goals of the
company. Therefore, this variant should be avoided.

2.7 Known Uses

The approach documented in EA Visioning is in use in the following companies:

• BMW

The approach documented in EA Visioning can be used in the following EA management
tools

• planningIT (alfabet AG)

• ARIS IT Architect (IDS Scheer AG)

A2 - 6A2 - 6

2.8 Consequences

2.8 Consequences

Market orientation versus independent visioning EA Visioningmay encompass higher
future benefits if you don’t only consider your own market because you may penetrate other
markets which you right now cannot address appropriately. If you try that approach you have
the problem, that you cannot consider every available market. For this reason, you have to
select a few markets you orient at for for EA Visioning. Orienting only on your own market
may be the safe way but may lead to lower benefits in the future.
Market uncertainty versus stable markets The business vision does not only account for
today’s market situation, but has to anticipate future market trends and identify developing
opportunities. Especially the latter are inevitably associated with risks, so that during busi-
ness visioning you have to decide on an appropriate spread between safe and risky business
goals.
Separation of concerns versus smooth transition The separation of concerns, i.e. the
assignment of domain experts only to the boards deciding on the business and IT vision
respectively, may be helpful for keeping this boards small and agile. Further, bringing together
experts from one domain reduces the potential for misconceptions during the discussion, which
is in such case more likely to be based on a consistent understanding of the used terms. In
contrast, bringing together experts from the business and IT domain for visioning can help
to leverage the full potential of IT as an enabler for business opportunities. Additionally, a
joint discussion board for visioning may help to avoid error-prone translations between the
domain terminologies.
Holistic visioning versus selective visioning On one hand, focusing you EA Visioning
to only some business aspects of your company may reduce the required effort. On the other
hand this may lead to sub optimal overall solutions for your whole company. For this reason,
you have to find the right focus for you EA Visioning.
Continuous adaptation versus one time approach Doing EA Visioning once is rel-
atively simple and requires less effort compared to an iterative approach, which regularly
checks for required changes to your EA vision. Although, you should consider to establish a
continuous approach if you have once invested in an EA Visioning. The benefits exceed the
required effort.
Regulatory instability Rules and regulations usually have to be adopted in an appropriate
way. For this reason, you have to find a solution to incorporate changes to rules and regulations
within you EA Visioning. In some cases there are transition periods, which you can use to
adopt your vision to match the new guidelines.

2.9 See Also

EA Visioning is a composite pattern and therefore the following sub patterns should be
considered:

• Business Visioning

• IT Visioning

• Target Application Landscape Definition (see page 8)

Additionally EA Documentation should be considered as it provides input for Target
Application Landscape Definition.

A2 - 7A2 - 7

3. Target Application Landscape Definition

3 Target Application Landscape Definition

Target Application Landscape Definition describes the process of defining a target
landscape derived from the business and IT vision of the enterprise. In addition, the current
documentation of the EA is used as input for the development process. Thereby, the target
landscape defines the vision of future business processes and the support provided by the IT.

3.1 Example

The department store SoCaStore wants to gain a common understanding how the target
landscape of their enterprise looks like. As the existing application landscape has grown his-
torically, the impacts and influences current projects might have on the application landscape
are hardly predictable and the direction in which the landscape should be developed is not
clear. Therefore, a common vision of the optimal future landscape derived from the strategies
– both business and IT – of the enterprise is necessary.

3.2 Context

An enterprise, which wants to gain a common understanding how the target landscape pro-
viding optimal business support according to the currently defined strategies looks like.

3.3 Problem

You want to ensure that the evolution of your application landscape takes a direction, which
conforms to the strategies of your enterprise. You want to know how an optimal future land-
scape would look like. How do you define an optimal target landscape according to

the strategies of your enterprise?

The following forces influence the solution:

• Planning intervals versus effort Small planning intervals may be required to do
detailed planning, but require high efforts as you need up-to-date information. Which
planning intervals should be selected for landscape planning?

• Complete control versus laissez-fair Do you want to control all projects changing
the application landscape within your company or is there a limit in project size or cost,
which allows to ignore smaller projects?

• Long-term versus medium-term planning Do you just care about a medium-term
planning cycle or do you consider a long-term, visionary target?

• Efficiency versus thoroughness Detailed planning of the target landscape up to the
level of individual components of business applications may be required, but results in
high efforts, which may not be worthwhile. What is the right level of detail for planning
a target landscape for your enterprise?

• Business versus IT demands The demands of the business units of a company may
conflict with the demands of the IT units concerning the future development of the
landscape. How do you find a good balance between these conflicting requirements?

A2 - 8A2 - 8

3.4 Solution

• Long-term integrity versus short-term business benefits Planning of a target
landscape should consider long-term integrity of the landscape, e.g. to reduce hetero-
geneity, this usually conflicts with short-term business benefits. What is a good balance
between those two aspects?

• Ideal target landscape versus pressure of time Developing an ideal target land-
scape requires time to develop it. This conflicts with pressure of time in an operative
department. How much time can you invest to define a target landscape useful for the
future development?

• Legal requirements versus freedom of choice In some situations legal requirements
may apply, which delimit the freedom of choice for the target landscape development.
What legal requirements do you have to consider?

• Holistic planning versus partial planning Considering the whole landscape in tar-
get landscape planning may lead to optimal results but demands high efforts. Contrary,
planning of parts of the landscape requires less effort but may lead to suboptimal results.
How do you balance holistic versus partial target landscape planning?

3.4 Solution

In order to develop target landscapes of the enterprise, a step-wise approach to decrease
complexity should be used [EHH+08]. Before executing the five steps illustrated in Figure 3,
you should decide on the level of detail regarding the planning and about the planning interval
in order to decide on the effort required to execute the process.

Develop
Organizational

Model

Identify Outsourcing
Areas

Decide on vertical
or horizontal
Integration

Communicate target
landscape

Decide on
disruptive or
evolutionary
approach

Figure 3: Target Landscape Definition Process

Step 1:

Prior to starting with the actual development of the target landscape some decisions about
the approach used have to be taken. Based on the environment and context of the initiative
a disruptive or evolutionary approach should be chosen. Whereas a disruptive approach is
well suited if a comprehensive reorganization of the enterprise is desired, e.g. after a merger
has taken place, the evolutionary approach provides a softer transformation as it is build on
existing structures of the enterprise and supports smoother transitions. The choice between
these two approaches implies major impacts on the following steps.
Step 2:

If a disruptive approach is followed, the organizational model of the enterprise is developed
from scratch based on the business vision of the enterprise. Otherwise, if an evolutionary
approach is used, the current organizational model is augmented utilizing the business vi-
sion [Sch08]. Elements of this model, e.g. business processes, domains, business units, etc.
are used as clusters to structure the landscape and decrease complexity. These clusters may
be used to split-up the planning activities. This may lead to sub optimal results but requires
less effort. If the complexity of the landscape demands a stronger clustering, the clusters may
contain subclusters, e.g. business processes may be structured into sub business processes.

A2 - 9A2 - 9

3.5 Implementation

Step 3:

Based on the business and IT vision of the enterprise the areas should be identified where
business support is provided by the enterprise itself and where support is gained from third
parties via outsourcing. Thereby, regulatory limitations, like taxes, originating e.g. from
country-specific laws are taken into consideration.
Step 4:

Based on the developed framework, derived from the organizational model – business processes
and organizational units – the business support provided by IT has to be derived. Thereby,
the business and IT vision of the enterprise is considered to identify parts of the application
landscape where horizontal or vertical integration should be applied. Although both kinds of
integration lead to synergy effects e.g. homogenization and cost reductions, they might not
be applicable:

Vertical integration, which refers to uniform process support for different organizational
units, products, or locations, is e.g. not applicable if the business vision of the enterprise
asks for diversification in different markets.

Horizontal integration, which means that several successive business processes are con-
tinually supported by one business application, is e.g. not applicable if the IT vision
demands for different kind of IT support during the execution of two sequenced business
processes.

Furthermore, regulatory limitations as mentioned in Step 3 should be considered during the
definition of business support provided by business applications.
Step 5:

The derived target landscape needs to be communicated among the various stakeholders of
EA management to gain an enterprise-wide understanding of the future vision of the appli-
cation landscape. In this step you should consider the required level of detail in documenting
the planned landscape. Documenting on business application component level may be very
accurate but requires high effort.
Different versions of Process Support Map (see [Cha09]) are commonly used to document
the picture of the target landscape. In order to create these documentations, the respective
data has to be stored in a repository implementing Process Support (see [Cha09]).

3.5 Implementation

There is no ideal planning interval for Target Application Landscape Definition but
it should be aligned with the interval defined for developing/revising the strategies of your
company.
The time required to execute the steps described in Target Application Landscape Def-
inition may also vary based on the size of the application landscape respectively the cluster
selected for landscape planning. Another factor influencing the execution is the selected level
of detail. In both cases you have to balance between effort and benefit.
There are various people, which should be incorporated inTarget Application Landscape
Definition. Business application owners should be considered when trying to replace one
business application by another one, e.g. when trying to increase vertical integration. En-
terprise architects should also be incorporated as they have a more holistic view on the
application landscape in contrast to the business application owners, which focus on single

A2 - 10A2 - 10

3.6 Variants

business applications. The enterprise architects should be in lead of the process of Tar-
get Application Landscape Definition and should thereby keep contact to the people
deciding on the business and the IT strategy of your company.

3.6 Variants

Variants of Target Application Landscape Definition may emerge if the subject of
planning changes. The previously described steps may apply to business applications but
they may also apply e.g. to services. This may result in a more fine grained planning
leading to higher efforts but also to higher flexibility because services are typically smaller in
functionality or supported capability.

3.7 Known Uses

The approach documented in Target Application Landscape Definition is in use in
the following companies:

• BMW

• Nokia Siemens Networks

• Munich Re

The approach documented in Target Application Landscape Definition can be used
in the following EA management tools

• planningIT (alfabet AG)

• ARIS IT Architect (IDS Scheer AG)

Similar approaches for Target Application Landscape Definition can be found in lit-
erature, see e.g. [Der06].

3.8 Consequences

Planning intervals versus effort At first sight it may be appealing to be able to plan the
future development whenever this is needed. To be able to do this requires high efforts as the
information needed for the future planning has to be up-to-date the whole time and this fact
has a high impact on the information collection style used in the company (see [MJBS09].
E.g. it is not possible to update information about the application landscape once a year if
you want to do continuous planning. An advantage of continuous planning is that you are
able to react instantly on new demands. The method described in Target Application
Landscape Definition supports various planning intervals, but you should always consider
the required effort, which is tied to the length of the planning intervals. Typically planning
according to Target Application Landscape Definition is done once a year.
Complete control versus laissez-fair You can try to control every project affecting your
application landscape, but in this case you will have to spend most of your time on performing
this task. Another way to cope with this situation is to define a limit, e.g. on project size
or costs, which has to be exceeded for the project to come into focus in planning the target
application landscape. You may now miss some of the smaller projects, but you can focus on
the important ones.

A2 - 11A2 - 11

3.9 See Also

Long-term versus medium-term planning The easy way is to only care about the next
planning period, because you don’t have to care about the strategies or goals of your company,
and you can find an optimal solution for your current problems. But you will miss an overall
goal, bringing together all future developments. If you also consider long-term planning you
have to care about the strategies and goals of your company and even have to define your
own strategies or goals but on the long run this approach will pay off.
Efficiency versus thoroughness Selecting the right level of detail for Target Applica-
tion Landscape Definition is no easy to address task. As a rule of thumb you should
always think about what amount of information do you really need when you want to im-
plement your planning and what efforts are required to reach this level of detail. Typically
it should be enough to stay on the level of business applications restraining from going into
more detail.
Business versus IT demands Demands from business and from IT units usually differ. One
reasons for this is that business is first of all interested to get a required functionality as fast
as possible into place for the lowest price, without considering the future development of the
business application and its surrounding application landscape. This conflicts with IT units
demands, which should incorporate the future operation and development of the business
application. In cases where this conflict appears you should try to find a compromise between
the two positions.
Long-term integrity versus short-term business benefits This force is similar to busi-
ness versus IT demands. And the resolution is also similar. Try to find a compromise between
the two positions at least in a long-term perspective.
Ideal target landscape versus pressure of time Pressure of time is a problem that
is always hard to address, but you should consider the result of not spending a minimum
amount of time on Target Application Landscape Definition. This may result in
a future landscape, which becomes more and more hard to manage and at some point the
investments needed to improve the landscape to be manageable again exceed the costs required
for Target Application Landscape Definition.
Legal requirements versus freedom of choice In some cases legal requirements may
apply in Target Application Landscape Definition. In this cases the possibilities are
limited to increase the freedom of choice again. For this reason, you should try to get along
with the restrictions and try to find a solution still fitting your future demands.
Holistic planning versus partial planning Holistic planning should result in an overall
better solution then restricting Target Application Landscape Definition e.g. to a
single cluster. But the efforts to plan the overall solution may exceed the benefits of an
overall optimal solution. Again, try to find a solution which balances both approaches to find
the solutions fitting your demands.

3.9 See Also

In order to support the implementation of Target Application Landscape Definition
the Process Support Map (see [Cha09]) should be considered. Additionally, EA Visioning
as a composite pattern should be considered for supplemental advice which other patterns
should be taken into account.

A2 - 12A2 - 12

4. Acknowledgment and Outlook

4 Acknowledgment and Outlook

This section includes acknowledgments to the people who supported the creation of this article
and gives an outlook to the next steps in the development of the EAM pattern approach.

4.1 Acknowledgments

We want to thank all participants of the writer’s workshop of EuroPloP09 and especially our
shepherd Wolfgang Keller for the time they spent for reading, commenting, and discussing
this article.

4.2 Next Steps in EAM Pattern Approach Development

The EAM Pattern Catalog is currently available at
http://eampc-wiki.systemcartography.info, based on the results of an extensive online survey.
Certainly, the EAM patterns should continually be revised for readability and understand-
ability and be extended to give more detailed guidance in addressing the problems of EA
practitioners, preferably by an EAM Patterncommunity.
In order to improve the current version and to further exploit the advantages of patterns in
EA management, an excerpt of the EAM Pattern Catalog had been included in this document
to be discussed in the pattern community.

References

[BDM+08] S. Buckl, T. Dierl, F. Matthes, R. Ramacher, and C. M. Schweda. Current
and future tool support for ea management. In U. Steffens, J.S. Addicks, and
N. Streekmann, editors, MDD, SOA und IT-Management (MSI 2008), Berlin,
2008. GITO-Verlag.

[BEL+07] Sabine Buckl, Alexander M. Ernst, Josef Lankes, Kathrin Schneider, and Chris-
tian M. Schweda. A pattern based approach for constructing enterprise architec-
ture management information models. In Wirtschaftsinformatik 2007, pages 145
– 162, Karlsruhe, Germany, 2007. Universitätsverlag Karlsruhe.

[BEL+08] Sabine Buckl, Alexander Ernst, Josef Lankes, Florian Matthes, and Christian M.
Schweda. Enterprise architecture management patterns – exemplifying the ap-
proach. In The 12th IEEE International EDOC Conference (EDOC 2008), Mu-
nich, 2008. IEEE Computer Society.

[BELM08] Sabine Buckl, Alexander M. Ernst, Josef Lankes, and Florian Matthes. Enterprise
Architecture Management Pattern Catalog (Version 1.0, February 2008). Tech-
nical report, Chair for Informatics 19 (sebis), Technische Universität München,
Munich, Germany, 2008.

[BHS07] Frank Buschmann, Kevlin Henney, and Douglas C. Schmidt. Pattern Oriented
Software Architecture Volume 5: On Patterns and Pattern Languages. Wiley,
2007.

A2 - 13A2 - 13

REFERENCES

[Cha09] Chair for Informatics 19 (sebis), Technische Universität München. Eam pattern
catalog wiki. http://eampc-wiki.systemcartography.info (cited 2009-11-06), 2009.

[Cop96] James Coplien. Software Patterns: Management Briefs. Cambridge University
Press, 1996.

[Der06] Gernot Dern. Management von IT-Architekturen (Edition CIO). Vieweg, Wies-
baden, 2006.

[EHH+08] Gregor Engels, Andreas Hess, Bernhard Humm, Oliver Juwig, Marc Lohmann,
and Jan-Peter Richter. Quasar Enterprise – Anwendungslandschaften serviceori-
entiert gestalten. dpunkt.verlag, Heidelberg, Germany, 2008.

[Ern08] Alexander Ernst. Enterprise architecture management patterns. In PLoP 08:
Proceedings of the Pattern Languages of Programs Conference 2008, Nashville,
USA, 2008.

[Ern09] Alexander M. Ernst. A Pattern-Based Approach to Enterprise Architecture Man-
agement. PhD thesis, Technische Universität München, München, Germany, 2009.

[Gro08] Object Management Group. Business motivation model 1.0, 2008.

[MJBS09] Christoph Moser, Stefan Junginger, Matthias Brückmann, and Klaus-Manfred
Schöne. Some process patterns for enterprise architecture management. In Soft-
ware Engineering 2009 – Workshopband, pages 19–30. Lecture Notes in Informat-
ics (LNI), 2009.

[Sch08] Jaap Schekkerman. Enterprise Architecture Good Practices Guide – How to
Manage the Enterprise Architecture Practice. Trafford Publishing, Victoria, BC,
Canada, 2008.

A2 - 14A2 - 14

A3 - 1

Lead Roles In A Software Project

Andreas Fießer
patterns@fiesser.de

January 2010

This paper discusses patterns about the lead roles of a software
development team: The Product Manager who is the interface to the
customer, the Project Manager who allocates the resources and the
Architect who designs the software and leads the developers.
A fourth pattern discusses how these roles act as hubs and how they
relate to each other. The view is based on the project management
triangle.

1 Introduction
Projects are teamwork. When teams reach a certain size they require organizational
structure to be effective. Team members need to set different emphases in their work to
make sure the project goals are fulfilled.
This paper illustrates how different roles can be used to organize a software
development team. When looking at the flow of communication, it becomes apparent
that distinct roles communicate differently.
As Coplien and Harrison describe in their pattern HUB, SPOKE, AND RIM some roles act
as hubs [Coplien Harrison 2005]. Typical examples of such hubs are the PRODUCT
MANAGER, the PROJECT MANAGER and the ARCHITECT. Depending on the situation
roles like developers or testers might also act as hubs.

2 Audience
The patterns presented here try to structure communication and responsibilities in a
project team. The focus of this paper is planning project teams, not the detailed actions
of the respective team members. The patterns might also work in other domains than
software development.
The author’s experience stems largely from web development in small teams of less
than a dozen people. The products created are individually constructed and the
development process takes several months. This setup is also the focus of this paper.
Nevertheless the patterns also apply to other scenarios. The author welcomes any kind
of feedback about the relevance of these patterns in other setups.
For the scope of this paper, creating a mass market product can be treated in the same
way as a tailor-made product ordered by a customer. In both cases there are certain
needs that are to be met and thus features that have to match the needs.

Copyright retained by author. Permission granted to Hillside Europe for
inclusion in the CEUR archive of conference proceedings and for

Hillside Europe website.

A3 - 2

3 Pattern Map

Fig. 1: Hubs and Stakeholders

For a software project stakeholders come together from different directions. Their roads
cross inside the project team. The goal of the project has to be to avoid conflicts and
turn the different views into an advantage.
After taking a closer look at the use of TEAM HUBS in this context, the three roles of the
PRODUCT MANAGER, the PROJECT MANAGER and the ARCHITECT are presented in
patterns.
The patterns in this paper focus on the hub aspects of the mentioned roles. Although this
is only part of the roles, the patterns are named after the corresponding roles coined by
literature and practice for readability. Their hub function is expressed by their alias
names: CUSTOMER PROXY, CARETAKER, WATCHTOWER.

A3 - 3

4 The Patterns

4.1 TEAM HUBS

Context
A team of several people is working on a software project that has a limited budget and
a deadline. The customer expects the finished product to meet his expectations.
Some tasks in a project are not closely related to coding.

Problem
How to organize the flow of information in a project?

Forces

Fig. 2: The Project Management Triangle

 As illustrated by the Project Management Triangle [Schwanninger Kircher
2009, Kelly 2008, Wikipedia 2009a] projects happen within certain
constraints. You cannot change one aspect without touching another.
Focussing on all four conflicting aspects at the same time is very difficult for
a single person. Letting every team member acquire all skills necessary to
carry out a project is not effective either. Management tasks and coding
require completely different mindsets [Kelly 2009a].

 As the developer is the one who actually creates the product, he should play
a central role in the process. Nevertheless he needs support by others.

 Communication becomes more complex with an increasing number of
participants.

A3 - 4

Solution
Classify the aspects of a project and channel the communication and tasks they
implicate over dedicated hubs.
These hubs perform all the management activities that are not directly connected to
coding. They actively look for tasks that fall to their sphere and support the team with
their skills.
To formalize the hubs create several roles, each only focussing on a subset of the four
aspects. There are many roles in a software project. Typical examples of hub roles
include the PRODUCT MANAGER, the PROJECT MANAGER and the ARCHITECT. These
roles bundle the interaction between their respective group and the outside. This does of
course include other hubs.

Fig. 3: Aspects covered by roles

Sometimes hubs emerge naturally from the characters of the team members. A
beneficial formal organization structure fosters these momenta instead of blocking
them.
The most obvious way to separate the tasks is to assign the roles to different individuals.
If there is nobody available full time, make sure that somebody dedicates at least a share
of his time to switch views. Although it reduces the necessary communication efforts
this option can only be a workaround as it requires considerable discipline from that
person to stay objective in both roles [Kelly 2009a, Kelly 2009c].

Rationale
Assigning an aspect to a role makes sure that every constraint is sufficiently taken into
consideration when making decisions. Overlapping the aspects makes it easier to find a
compromise of two positions.
In software development the types of quality that the roles care about are different in
focus. As Schwanninger and Kircher explain, high quality for the ARCHITECT means
developmental quality, i.e. maintainability of the code. For the PRODUCT MANAGER it is
the user perceived quality, e.g. usability and performance. The PROJECT MANAGER
focuses mainly on regulatory quality. This means he has an eye on the compliance with
standards the company or the project have committed to [Schwanninger Kircher 2009].

A3 - 5

Consequences

Benefits
 Representing a specific role makes it easy for a team member to have a

specific point of view and argue for it.
 It also allows for the roles to be filled not by generalists but by specialists.

So a wider range of skills and experience can be considered when making a
decision.

 Overlapping spheres might seem like ineffective redundancy at first. But
they guarantee that the roles share common interfaces they can use for
negotiation.

 Since requirements, planning and implementation are done by different
people each of them is more objective as they are less biased by the other
side.

 The work of the developers is coordinated and prepared by lead roles with a
different focus. This relieves the developers from organizational details and
other non-technical issues. They can focus on their strength: Coding. The
developers as well as the stakeholders of the project know whom to address
with an issue.

 Introducing more than one leading role leads to a division of powers that
prevents arbitrariness.

 A team member fills a role with his skillset and experience. If the person
leaves the team, it is clear which requirements the replacement person needs
to fulfil to be able to take over the role.

Liabilities
 As a person is asked to fill a predefined role, the team member might feel

pressed into a role that does not fit well. It is important to allow the freedom
that the role adjusts to the person as long as this does not touch other goals.

 When splitting up into different roles, team members have different
responsibilities. This tends to create a hierarchy between managers and
producers. As the roles described here have no disciplinary rights, this
requires more networking and a more sophisticated style of communication.

 The PROJECT MANAGER and the PRODUCT MANAGER are detached from the
code. So it is necessary to abstract communication when talking about
technical issues.

 Explicitly separating the aspects of the project creates the opportunity to
delegate responsibilities for a problem. If the one the problem was delegated
to does not take care of the issue properly, there is a risk that nobody feels
responsible any more and the problem is neglected.

 Separating the roles creates a management layer. This requires extra
manpower and creates extra cost.

Example
A caravan manufacturer contacts a web agency with the blurry vision to add a section to
his website that can exclusively accessed by his retailers.
Before the web agency’s developers start to work, the PRODUCT MANAGER advises the
customer on the set of useful features to support his intentions.

A3 - 6

After the PRODUCT MANAGER and the ARCHITECT have jointly estimated the required
budget, the customer picks the features he wants to get implemented.
The PROJECT MANAGER now allocates the available resources.
The developers start to work within the given structure of requirements and deadlines.

Related Patterns
The PROJECT MANAGER, the PRODUCT MANAGER, and the ARCHITECT act as TEAM
HUBS. The ARCHITECT contributes technical overview. The PRODUCT MANAGER shares
his knowledge of the target market and the PROJECT MANAGER contributes monitoring
and organization.
Coplien and Harrison have created a number of patterns that give some details on how
the TEAM HUBS should work. A productive team is a COMMUNITY OF TRUST in which
WORK FLOWS INWARD to the developers so that the DEVELOPER CONTROLS PROCESS (in
the team) and the other roles are supporters. Depending on the context this pattern is
complemented by HUB, SPOKE, AND RIM. The approach that developers ENGAGE
CUSTOMERS finds its limits in a FIREWALL that shields the developing staff from
external interruptions and noise and a GATEKEEPER that facilitates the flow of useful
information between the team and the outside.
PRODUCT MANAGER, PROJECT MANAGER and ARCHITECT are implementations of these
patterns for their domain [Coplien Harrison 2005].
See BALANCE CONSTRAINTS [Schwanninger Kircher 2009] about how to cope with the
aspects of the project management triangle.

A3 - 7

4.2 PRODUCT MANAGER

Also known as
CUSTOMER PROXY

Context
The customer has certain needs and a rough idea about how the software should meet
them. The customer has limited resources to supervise the project. The ARCHITECT and
the development team are focussed on solving technical problems and creating features.

Problem
How can you ensure that the product meets the customer’s expectations?

Forces
 The customer wants the product to meet his expectations but he might not

know how to communicate them. The customer might not have a consistent
view of his needs and has no overview over the technical possibilities.

 The customer is not interested in the concrete technical implementation. He
wants his requirements to be fulfilled.

 The customer is required for feedback but he might not be available when
needed or willing to get involved in the development process [Völter Kircher
2008a].

 Developers are not experts in the customer’s domain. Because they should be
able to relate to the intention of the requirements, they need some
understanding of that domain without investing too much time to gather the
required knowledge.

 Features that look easy to the customer might turn out to be complicated to
implement. This might prolong the development process.

 Taking care of the customer can be a time consuming process [Kelly 2009b].

Solution
Bundle communication between the team and the outside.
Gather market knowledge in one point to create a perspective free from the details of
technical implementation inside the development team. This creates the role of a
PRODUCT MANAGER who is able to support the customer in specifying his requirements
and explain these requirements to the developers. He helps to clean up inconsistencies
and point out solutions the customer might not have thought of.

A3 - 8

Fig. 4: The Product Manager at the Focal Point

The less the actual customer is available, the more the requirements become a base for
the PRODUCT MANAGER to act as a SURROGATE CUSTOMER for the team [Coplien
Harrison 2005].
In the outward direction the PRODUCT MANAGER lets the customer know when a certain
request involves extraordinary technological challenges. This allows them to see why a
certain feature creates so much effort or even trade it in for some less complicated
features that achieve a similar effect.
Starting from that point and keeping the customer in mind, the PRODUCT MANAGER can
turn to the inside of the team and start negotiating with the development team lead by
the ARCHITECT about the actual way to implement a feature. In this process the
decisions are made, which technology will have to be implemented. The choice might
be made in spite of the challenges it brings. Technologies that seem fancy at first may
be cancelled because they do not add to the value of the product [Kelly 2009b].
When discussing within the team it is important to make sure that the features planned
and their priorities match with those of the customer. Consequently, substantial
technical constraints in implementation need to be carried on to the customer to find an
efficient solution. It is important to use this option with caution. It is not the sole
purpose of the PRODUCT MANAGER to make life easy for the developers. The
ARCHITECT must be challenged to look for a solution outside of his comfort zone to
prevent bothering the customer unnecessarily.

Rationale
Now all market knowledge comes together in a single point. At the same time the
insight into the product’s features cumulates in this point. The focal point in which both
sides converge is the place where the overview is optimal.
This position is ideal to mediate between the two viewpoints. In the end the goal of all
actions is to create a product that is attractive to the customer. The customer does not
care about technical details.

A3 - 9

Consequences

Benefits
 Customer wish lists and techie talk become structured information in the

language of the target before reaching the other party.
 By having an outside view, i.e. outside of the code, the PRODUCT MANAGER

is not biased by the effort or the complexity of the technology that is
necessary to create the desired features. He can come up with ideas inspired
by nothing but the customer needs.

 The customer and the development team now have a clear contact that can
explain the other side in their language and forwards their issues to the other
viewpoint.

 Somebody watches that the intention of the customer is followed inside the
executing team without the customer disturbing. Optimally, the customer can
limit himself to reacting to the progress reports and does not even have to
take any proactive action.

 The PRODUCT MANAGER has a clear vision of the product but at the same
time is part of the team. This allows immediate decisions that are
nevertheless robust and objective.

 Outlining the customer needs for the team members motivates them because
they know the reason behind a request. The given information also serves as
a background for the team and by that improves the quality of the feedback.

 Especially in busy times it becomes a benefit that the resources required for
customer care are not drawn from development capacity. Taking your time
for the customer does therefore not slow down the coding.

Liabilities
 As the contact between the customer and the development is limited it is a

challenge to assure that information reaches the other end without shifting
the message.

 Laying the feature strategy in the hands of one person evokes the risk of
subjective influence.

Example
The caravan manufacturer wants his retailers to reduce support requests, order spare
parts and stay in close contact with him. The company is an expert in building vehicles.
Even in their marketing department there is no expert on online communication. So they
hire a web agency to set up an ecommerce system and a blog. The agency’s PRODUCT
MANAGER discusses the customer’s ideas, presents more options and proposes possible
solutions. While discussing the details of the required ecommerce system to order spare
parts it turns out that the caravan manufacturer rather wants his retailers to communicate
with each other to exchange experience than to bother him. Nevertheless he wants to
keep an eye on the issues they are concerned with. So the idea of a blog is discarded and
replaced by a bulletin board. To detail the solution the PRODUCT MANAGER consults the
ARCHITECT that was assigned to the project.
As the field of the wanted features narrows, the PRODUCT MANAGER starts to write
down specifications to prepare the quote. He consults the ARCHITECT on open issues to
get a more concrete picture of the actions and effort required.

A3 - 10

After a set of features has been authorized, the PRODUCT MANAGER gives feedback to
the developers about the features they develop and requests that the board allows to
attach files to postings. He is told that this requires considerable coding effort because
the software package used as a platform does not provide this feature. From discussions
he had with the marketing director the PRODUCT MANAGER knows that the retailers need
to exchange manuals, sketches and other documents. So in spite of the effort it causes,
the PRODUCT MANAGER insists on the feature. He asks the PROJECT MANAGER to block
the developer in charge of the board for some more time.

Related Patterns
The PRODUCT MANAGER passes on all necessary information the PROJECT MANAGER
needs to set the stage for the project. In turn he receives an organizational framework
for the project.
The PRODUCT MANAGER strives for maximum customer value. By that he is a
counterpart for the ARCHITECT who seeks technical quality.
Depending on project size the role of the PRODUCT MANAGER might not be executed by
a single person but a team of requirements engineers.
In Scrum the PRODUCT MANAGER is replaced by the Product Owner [Kelly 2009b].

This pattern is an implementation of Coplien and Harrison’s SURROGATE CUSTOMER
[Coplien Harrison 2005]
Unlike a PRODUCT MANAGER, a business analyst does not analyze the needs of various
customers but of the single company that employs him. It is a double inward view since
this is the same company as the one that conducts the software project to satisfy the
needs. [Kelly 2009c]

A3 - 11

4.3 PROJECT MANAGER

Also known as
CARETAKER

Context
A team of several people is to work on a project. There are requirements and limited
resources of time, staff and budget to implement them.

Problem
How can you ensure that a project reaches its goal and stays within its given
constraints?

Forces
 A feature might turn out to be much more complicated to implement than

anticipated. So it will exceed the resources allocated to it. As the main costs
in software projects are personnel costs, an increase of project duration
commonly means a rise of costs.

 The needs of the customer might change due to changes in his market.
 As time goes by the vision of the product becomes clearer. The customer

comes up with ever new ideas how to improve the features. Explicit new
features would cause a request for extra budget, so the new feature requests
are camouflaged as bugs or minor extensions of existing features.
Nevertheless this scope creep requires time and effort to be implemented.

 The customer might be willing to cut features to meet the deadline. But
depending on his situation he might instead prefer to either postpone the
deadline or even increase the budget to keep scope and quality.

 During the course of the project, unforeseen events and trends might occur.
 There might be a finished third party solution available. Using it instead of

developing the module yourself might save time and reduce risk but it might
not fulfil the same quality standards as the main project. Licence costs might
occur.

 Striving for the perfect product promotes quality but – as the Pareto Principle
predicts – the higher the quality requirements are, the less efficient the
development process becomes [Wikipedia 2009b].

 Motivated staff is more productive.
 Monitoring and controlling are not contributing directly to the product itself.

So the capacities they consume increase the overall costs of a project without
having a tangible result.

Solution
To ensure project success, have a dedicated person to set the stage within the
constraints of the project. While monitoring the project, it is this person’s job to
create a good working atmosphere to motivate the team.

A3 - 12

Fig. 5: Steering the project within the project constraints

The PROJECT MANAGER creates a plan considering the given resources and defends it.
He assigns tasks to the team members and keeps an eye on the project environment. He
steers the resources actively, takes decisions when necessary and advocates trade-offs.
The PROJECT MANAGER tracks the progress of the project. Whenever he discovers a
weak spot, he takes actions to remove it.
Instruments of the PROJECT MANAGER include cutting features, postponing deadlines,
extending funds, replacing tailor-made features by third-party-modules and, with
caution, adding manpower [Kelly 2008].
When it comes to trade-offs between the project constraints it is important to know the
customer’s priorities. To further increase the options there should be some buffer in
every plan and actions should be taken as early as possible.
To keep the schedule and reach an optimum in quality, the focus needs to shift during
the course of the project. First it is implementing new features to perfection. Later in the
project the PROJECT MANAGER needs to make sure that the developers concentration
shifts towards debugging of the existing features in order to finalize the product.

Rationale

Fig. 6: The Project Manager shielding the constraints

A3 - 13

Developers want to concentrate on their work. Their focus is on the details of the code.
The same is true for the PRODUCT MANAGER who focuses on customer value. So having
a separate role that is not dazzled by such aspects makes sure that the other project
constraints are not disregarded. Being outside of the creational process, the PROJECT
MANAGER can also take care of social aspects.

Consequences

Benefits
 The stage is set. The developers can concentrate on coding in a productive

atmosphere and the PRODUCT MANAGER has room to focus on requirements.
 The resources of a project get enough attention to be managed with overview

and foresight.
 A neutral role can moderate between conflicting interests and facilitates

trade-offs.
 High motivation and thus productivity in the team takes tension from the

project as it saves time and money.
 Monitoring creates transparency. The positive effect active management can

have on keeping other actions within the plan makes it a very profitable
activity.

Liabilities
 The PROJECT MANAGER is far away from the actual development. Functional

quality is not his main concern. He sees features as milestones and judges
them by their status.

 It is important that the PROJECT MANAGER as the ever monitoring authority is
perceived as a supporter not a threat.

Example
The PRODUCT MANAGER requests more resources for the bulletin board to get the
picture attachment feature implemented. The task that would need to be postponed for
that is the multi-language support of the parts order tool. The PROJECT MANAGER asks
the PRODUCT MANAGER to decide which feature has the higher priority. As not all
retailers will use the board but all of them shall use the order tool, and the multi-
language support is crucial to the latter, it is prioritized. After evaluating all other
options, the file upload feature is scheduled for the buffer time at the end of the
development timeline. In parallel the customer is asked whether it would be ok to
postpone the feature after the launch if necessary.

Related Patterns
The PROJECT MANAGER stays in close contact with the ARCHITECT to learn about the
effort a feature causes, to update project status and discover problems early. He also
interacts with the PRODUCT MANAGER. He knows when requirements change and can be
asked to cause it actively.
Coplien and Harrison have created a number of patterns on project management.
SIZE THE SCHEDULE explains how a schedule should be dimensioned.

A3 - 14

When the COMPLETION HEADROOM gets out of control, there are means for crisis
management: SOMEONE ALWAYS MAKES PROGRESS, TEAM PER TASK or SACRIFICE ONE
PERSON. If they are not sufficient, the PROJECT MANAGER should better TAKE NO
SMALL SLIPS to keep up motivation of customer and team.
The limit of detail to which the PROJECT MANAGER is concerned is set by INFORMAL
LABOR PLAN.
To take care of the social aspects in a team, the PROJECT MANAGER should incorporate
the MATRON ROLE and foster DEVELOPMENT EPISODES. [Coplien Harrison 2005]

A3 - 15

4.4 ARCHITECT

Also known as
WATCHTOWER

Context
There is a variety of technical options to implement the requirements and a team of
developers to do so.

Problem
How should the requirements be transformed into software?

Forces
 It is tempting to include as many features as possible in the product. This

strains cost and time and it does not even necessarily improve quality.
 The development team concentrates on solving technical problems and

creating features.
 A single person can only handle a limited workload. But the more hands are

working on a product, the faster it becomes inconsistent, redundant,
inflexible and error-prone.

 Established technologies are easy to handle, quick to implement and less
buggy. New technologies might offer options that have not been available
before. But using new technologies implies risks: Uncertainty, compatibility,
security, introduction effort.

 Using it third party features might save but it comes with the risk to lose
quality because it is not tailor-made any more.

 Using complex frameworks or third party modules creates a lot of overhead
but it may save time.

 Marketing people often do not understand technical details and language.

Solution
Have somebody design the big picture. He is the one to check changes in the
architecture for consistency with the existing system. He has to keep track of
technological innovations and monitor the quality of the code.

A3 - 16

Fig. 7: The Architect as interface to the outside world

The ARCHITECT brings all his knowledge into the design. To increase the pool of
experience, he orchestrates the ideas of the other developers. The ARCHITECT is to
encourage the team to look for solutions off the beaten track as well.
The team has to agree on the technical platforms to use before starting to code. Also to
the inside the ARCHITECT makes sure that the features implemented correspond to the
requirements and are not just nice to have. He creates coding guidelines to support
consistency.
The ARCHITECT’s job is to break down complexity and structure issues to make the
design decisions accessible for non-technical contacts. He can filter outside requests
before they reach the development team.
During the project the ARCHITECT has to abstract on the development to discover when
the code drifts away from the goals set and make sure it is corrected. Discussing design
decisions before and during development makes sure they are incorporated by the team
and not perceived as commands that just need to be obeyed to.
To keep in touch with the code, the ARCHITECT should be a lead programmer or at least
at times be involved in coding.

Rationale
The ARCHITECT is a watchtower in two directions. To the outside of his realm his
function is to be the first to discover a change and judge whether it might be a chance or
a threat. He then reacts accordingly. Only if action is required he informs the rest of the
people.
Guidelines provide orientation. He also watches the inside to make sure that everything
follows the rules that were set. Knowing that these tasks are done by somebody, the rest
of the team is able to concentrate on their main business without fear.
Proper delegation and division of work allow growth without overloading the single
person and still create a coherent product.

A3 - 17

Consequences

Benefits
 Requirements and coding guidelines channel the developers ideas and also

give them a basis to reflect on their work.
 New technological options may be a leap in product and development

quality. The risks they might bring have been anticipated and are mitigated.
 Keeping the overview for them and providing the developers orientation

inside the project gives them peace of mind for development. At the same
time it does not confine the developers. Whenever they want to get an
overview, they know whom to ask.

 The central hub brings clear communication channels that can be used. This
makes it easier to expand the team because adding a new member does not
necessarily require a new connection to every single team member.

 Shielding outside communication and introducing a hub for outside
communication that understands their language frees the developers from the
need to translate their detailed view into a non-technical one themselves.

Liabilities
 A predefined environment narrows creativity for the single team member. It

requires discipline.
 Having a head of development that does the communication with outside

requires an extra step in communication.

Example
Before giving a cost estimate for the parts order tool the ARCHITECT starts an
investigation to compare possible third party platforms. He gathers the available
experience from the developers and lets them evaluate unknown packages. On this basis
the ARCHITECT and his team settle for a solution. The ARCHITECT presents it to the
PRODUCT MANAGER and gives a cost estimate for its customization to the PROJECT
MANAGER.

Related Patterns
The ARCHITECT discusses technical feasibility with the PRODUCT MANAGER.
The PROJECT MANAGER requires a plausibility check for his schedules and feedback
about progress during development.
The ARCHITECT as a watchtower is an implementation of Coplien and Harrison’s
ARCHITECT CONTROLS PRODUCT. They also deal with how the role might be split up
into an ARCHITECTURE TEAM. They emphasize the necessity that ARCHITECT ALSO
IMPLEMENTS to stay up to date [Coplien Harrison 2005].
Depending on the team size the outside view may be supported by a dedicated
technologist who researches new technologies. [Völter Kircher 2008b]

5 Acknowledgements
My thanks go to my shepherd Michael Kircher for his invaluable domain and pattern
expertise and the right hints at the right time. I would also like to thank Allan Kelly for
inspiring me to make the first steps towards this paper and the participants of my
workshop at EuroPLoP 2009, especially Andreas Rüping, for their incredibly helpful
comments.

A3 - 18

6 References
Coplien, James O. and Neil B. Harrison 2005. Organizational Patterns of Agile
Software Development. Upper Saddle River, NJ: Pearson Prentice Hall.

Kelly, Allan 2008. On management.
http://www.allankelly.net/static/writing/OnManagement/OnMngm1-Constraints.pdf.
2008-07-03 (Last accessed 2010-1-21).

Kelly, Allan 2009a. On Management #4: Caveat Emptor.
http://www.allankelly.net/static/writing/OnManagement/OnMngm4-CaveatEmptor.pdf.
2009-02-20 (Last accessed 2010-1-21).

Kelly, Allan 2009b. On Management #5: The Product Manager role.
http://www.allankelly.net/static/writing/OnManagement/OnMngm5-
ProductManager.pdf. 2009-04 (Last accessed 2010-1-21).

Kelly, Allan 2009c. On Management #6: The Business Analyst’s role.
http://www.allankelly.net/static/writing/OnManagement/OnMngm4-CaveatEmptor.pdf.
2009-06-08 (Last accessed 2010-1-21).

Schwanninger, Christa, and Michael Kircher 2009. Patterns for Product Line
Engineering. In: Proceedings of the EuroPLoP 2009 conference, Irsee. In: CEUR-WS
online repository, http://ftp.informatik.rwth-aachen.de/Publications/CEUR-WS/.

Völter, Markus and Michael Kircher 2008a. Roles in Software Engineering I. Episode
110. http://www.se-radio.net/podcast/2008-09/episode-110-roles-software-engineering-
i. 2008-09-18 (Last accessed 2010-1-21).

Völter, Markus and Michael Kircher 2008b. Roles in Software Engineering II. Episode
112. http://www.se-radio.net/podcast/2008-09/episode-112-roles-software-engineering-
ii. 2008-09-28, (Last accessed on 2010-1-21).

Wikipedia 2009a. Project Management Triangle.
http://en.wikipedia.org/wiki/Project_management_triangle. 2009-03-22 (Last accessed
on 2010-01-21).

Wikipedia 2009b. Pareto Principle. http://en.wikipedia.org/wiki/Pareto_principle 2009-
03-22 (Last accessed on 20010-01-21).

A4-1

Yanka Todorova1, Petko Ruskov2, Elissaveta Gourova3, Mark Harris4

1Sofia University, Faculty of Mathematics and Informatics, Sofia, Bulgaria, todorova.yana@gmail.com
2Sofia University, Faculty of Mathematics and Informatics, Sofia, Bulgaria, petkor@fmi.uni-sofia.bg

3Sofia University, Faculty of Mathematics and Informatics, Sofia, Bulgaria, elis@fmi.uni-sofia.bg
4Intel GmbH, mark.harris@intel.com

!"#$%&'$

The paper introduces three patterns for use by university managers and lecturers for
creating of Master of Science (MSc) program in engineering and science faculties,
developing entrepreneurial skills:

 TECHNOLOGY ENTREPRENEURSHIP AND INNOVATION (TEI)
CURRICULA – provide a valuable and computational set of courses to guarantee
the competence of graduate students in the turbulent environment;

 TEI MSc PROGRAM – create the road map for successful implementation of the
technology entrepreneurship graduate education;

 TEACHERS TEAM – when the human capital is scarce, focus the stress on
attracting and retains the best professionals in the fields.

The authors experimented with the MSc graduate Technology Entrepreneurship curriculum
design and implementation of the program in the university master level teaching, and used
a mix of methods and observation techniques to assess its feasibility and applicability for
developing the winning strategy.

Keywords: Patterns, Technology Entrepreneurship Curricula, Education Strategy

()*$%+,-'$.+*

Providing citizens and employees with a new set of competences turned out to be in the
middle of all changes in public life and economy. Therefore, Information and
Communication Technology (ICT) subjects were introduced in school curricula, a lot of
initiatives were implemented for educating trainers, establishing computer labs in schools
and connecting them to the global networks. While the e-skills necessary for all European
citizens are generally solved by educational systems, a lot of challenges remain for
building the competences required by industry. In the last few years the issue of e-skills
was put on the agenda at different fora all around Europe – ICT Skills Monitoring Group,
Career Space industry-led initiative, European e-Skills Forum, e-Skills and e-Learning
expert groups at EC, ICT Task Force, etc. The general conclusion coming out of these is
that present employees need more than just technical skills and knowledge. The need to
equip employees with interdisciplinary skills, combining e-skills with entrepreneurial
competences, innovativeness and creative thinking, turned out to be among the highest
challenges for businesses, educational institutions and policy makers nowadays [5].

A4-2

The Entrepreneurship and innovation education process is a management process, not an
individual characteristic [3]. As a process it can be described, modeled, analyzed,
understood and taught. The core elements of the entrepreneurship process are the evolution
and identification of a business opportunity and the recruiting and aggregation of the
necessary resources (technology rights, people, money) to pursue the opportunity [16].

Some universities tend to be rather conservative institutions, not eager to change.
Therefore, developing a MSc program is not something that happens fast and often. The
introduction of major changes within a university faculty, as elsewhere in the world, starts
by changing the organizational culture and adopting a new way of thinking and philosophy
that will guide staff toward new faculty goals [12, 15, 18].

As a result of analysis and observation of the practice in creating an entrepreneurship
program, the paper describes TEI Education Program as a set of patterns [11]. This MSc
education follows closely the new technologies change and their impact on industrial
practice. In order to remain competitive, scientific and engineering faculties should apply
innovation in all its types and practices – organizational, technological, process, etc. They
need to closely monitor labor market needs and establish close cooperation with the main
users of their services in education and research [13].

The paper introduces three patterns for use by university managers and lecturers for
creating of Master of Science program in engineering and science faculties.

Audience

Many innovative universities are trying to reengineer their curricula in response to the
dynamic global environment and the socio-economic changes. Only some faculty
managers have the luxury of stopping or delaying the educational processes at the
universities in order to redesign them. In present dynamic world, no time remains for such
stop-overs, and the costs would be dreadful.

These patterns systematize the long-term education management experience and
observation of the authors and combine it with recent strategic management approaches.
These patterns can be useful for scientific and technology faculties’ managers for design,
development and implementation of entrepreneurship education in engineering MSc
program.

/ 012 3&$$2%*#

The benefits of graduate education practice are communicated through the concept known
as a pattern. The concept of patterns was widely described in many industries, papers and
books [2, 4, 7, 9, 10, 12, 19]. There are many patterns that deal with specific issues in the
strategic management loop of the education and training process - creation and execution
of a program for technology entrepreneurship and innovation education programs. This
paper presents the following patterns (Fig. 1):

 TEI MSc PROGRAM;

 TEI CURRICULA;

 TEACHERS TEAM.

A4-3

How should I create New TEI
Edu Program?

Curricula of TEI
MSc

Teachers Team

Extracurricular
Programs

for TEI

The
Entrepreneurship

Ecosystem

IP of knowledge &
courses

Recent graduates
need TEI education

Ty
pe

 o
f s

tu
de

nt
s

Business Professionals &
Professional Scientists

Various professionals
with needs of LLL in TEI area

Various professionals -
Potential entrepreneurs

Curricula of
Postgraduates/

Minor TEI

How should I statisfy business needs? /
how to run TEI education program for LLL

(business needs)?

$

University

$

Non University
education organization /

business unit

TEI
MSc Program

TEI
Postgraduates

program or Minor

Need of education
in TEI

Legend:

Pattern
elsewhere

Faculty and senior
administration manager

Pattern in this
paper

Strategy
Development of
TEI Academic

Program

Mix of teachers for
TEI Executive

Program

TEI Executive
Program

Strategy
Development of
TEI Executive

Program

Business-Specific
Curricula of TEI

Executive
Program

Executive
Program
execution

Program
execution

Fig. 1 Development of TEI education program pattern sequence

A4-4

/4(056789:9;< 580=53=585>=?7)3 !8@)889A!0)98B?' 3=9;=!BC

Educational
Organization

Increasing
awareness for

Technology
Entrepreneurship

Embedding
Technology

Entrepreneurship
courses within

curricula

Building-up /
Increasing the

amount of ”techno-
starters” entering

student companies

Introducing
students to
people who

might be able to
facilitate
success

Showing students
how to behave

entrepreneurially

Fig. 2 TEI education program

/4(4(6+*$2D$
Students are the main target of any educational program. They could be recent graduates,
business professionals and professional scientists, professionals with needs of life-long
learning (LLL), or various professionals - potential entrepreneurs. They all might need TEI
education (Fig.1).

New technologies and organizational innovations affect the transmission and generation of
knowledge. It is generally accepted that the collaboration between businesses and
universities can accelerate the rate of innovation and the economic growth in key markets
around the world and to facilitate overcoming the following difficulties [6]:

 weak links between science and businesses
 not sufficient measures to develop innovation infrastructure, support services,

technological brokerage, intermediary services, etc.
 not involvement of university students in scientific and technological activities
 low innovative culture and weak innovative culture of businesses
 low level of investment in new products and processes
 slow implementation of measures and not systematic and transparent evaluation, etc.

At the same time, it is widely discussed that future employees need not only technology
skills, but they need also a set of interdisciplinary skills which traditional education
programmes do not provide. There is an obvious need for educational programmes
focusing on various scientific disciplines and across traditional university faculties [5].

A key reason for describing a TEI MSc pattern is that strategy management, learning
design experience and curricula of the MSc program education can actually be reused.
Reinventing the wheel for every new MSc program makes only the faculty increasingly
unmanageable and slows down the programme delivery.

A4-5

/4(4/ 3%+"E2F
What actions should a decision maker undertake in the process of developing a new
TEI MSc program in its own university / department?

/4(4G H-#.*2## I&E-24
The TEI MSc PROGRAM pattern allows academic managers to improve the process of
education and to grow the efficiency and efficacy of the education.

/4(4J K+%'2#
There are many forces in the area. Below are summarized the most important ones.

Force 1: Meeting labour market and student needs: On the one hand, universities provide
strong education for students with a specific major, e.g. technical/engineering, scientific,
etc. and as a result, students are well skilled in technology. But on the other hand, the
students need to commercialize their knowledge. Besides, companies are seeking
employees not just with technology skills, but most demanded are employees with
interdisciplinary skills and knowledge.

Force 2: Bridging the gaps of the university environment and the Entrepreneurship
Ecosystem. Universities need to establish stronger links with businesses, but also to focus
on research and teaching. Unfortunately, their services not always are adequate to business
needs. This leads to the fact that very often university environment is not aligned with
entrepreneurship ecosystem. Besides, universities experience serious problems closely
related to the general socio-economic and research environment [13]:
 Migration to industry of highly skilled professionals
 Insufficient research funding
 Lack of sufficiently stimulating research environment
 Lack of stable and multiple bridges between research, development, education and

training
 Lack of traditions in university-industry-government cooperation.

Force 3: Conservative and separated university environment: Universities are very
conservative institutions, not eager to change. Every faculty has a strong knowledge and
experience in a specialized field(s). In order to teach management and entrepreneurial
skills to professionals in a technical field, there is a need of strengthening faculty’s
capacity, and integrate researchers and experts in different fields than its core research and
teaching areas. The faculty should undertake several activities in order to determine its
future strategy in research, technology development and innovation (RTDI) [13].

/4(4L ?+E-$.+*
Match the MSc programme to local educational ecosystem and deliver benefits to the
stakeholders – students, business, government and community.

A project for development of TEI MSc program should be launched and conducted by a
faculty team leaders focused on the design and implementation of a new academic
educational program.

Some efforts are needed to change the stakeholders’ mindset and the model of thinking
about MSc degree education. There is a need before launching the program to:

• Increase the awareness for TEI ;
• Increase the number of technology entrepreneurship courses for researchers of the

Faculty, and for all stakeholders.

A4-6

Faculty should gain and enhance its knowledge in the area of TEI and participate in
research projects in various areas closely linked to the new program core subjects.
University/departments should establish stronger links with businesses and government.
Students should have a chance for learning by doing on-the-spot.. Here the strong
academia-industry collaboration could facilitate the MSc program as a whole.

Specific objectives for the TEI educational program can be summarised as follows:

• Provision of a mix of competences needed for future entrepreneurs, including
technology, business and personal/organisational competences

• Providing students with practical experience and self-confidence in a risky and
dynamic environment

• Showing students how to behave entrepreneurially
• Introducing students to people who might be able to facilitate success

After launching a MSc programme on TEI, it is essential to consider some follow-up
activities:
• Embedding TEI Education courses within curricula of all university faculties;
• Building-up / Increasing the amount of ”techno-starters” entering student

companies;

/4(4M 6+*#2N-2*'2#
Studying entrepreneurship could be an important positive force on students’ career
development. Whether students are studying entrepreneurship with the definite intent of
turning into an entrepreneur or to be a business executive or a more informed stakeholder
in general, they will all need entrepreneurial skills, once entering business settings.

Many students will come across of working closely with entrepreneurs in new and small
enterprises. These enterprises will have to manage innovation for long-term growth and
compete with other similar enterprises.

/4(4O A&%.&$.+*#
Depending of the Entrepreneurship ecosystem, specific strategy can be developed and
implemented for building TEI education program. The process of particular adoption of
patterns in Fig. 1 can lead to variations in adoption of TEI MSc PROGRAM.

The program can propose a teaching curriculum, classroom and external exercises on site,
for teaching the entrepreneurship to engineers and scientists, creating innovative business
people with cross-disciplinary skills, technical expertise, and the ability to grasp market
opportunities.

/4(4P 5D&FQE2#
The awareness on the importance of entrepreneurship and management skills was build
within several years work at European RTD projects among researchers of the Faculty of
Mathematics and Informatics (FMI). The awareness on the business needs for
interdisciplinary competences of their future employees resulted in launching in the
autumn of 2007 by FMI a new MSc program on TEI. The program turned out to be very
successful as the students in school year 2008/2009 increased more than twice.

The Bulgarian format of TEI graduate program has been created due to the transfer of
knowledge and support provided by the Intel and UC Berkeley initiative. Due to that
initiative a new way of thinking and working was introduced. The teaching methods
changed and became more interactive, applying the Intel-UC Berkeley education patterns.
New different courses about TE were introduced, in line with the UC Berkeley curriculum.

A4-7

Only a year after its launching, the program became the most demanded MSc program at
Sofia University. Tangible signs of success of this program are already observed as some
of the graduates of this program started their own businesses as a result of it [16].

/4(4R =2E&$2, S+%T U ?+-%'2#
Galabova L,. Ruskov P.,"Analysis of the Status and Opportunities for further Development
of Bulgarian Entrepreneurial Education in Universities, Proceedings of the International
Conference for Entrepreneurship, Innovation and Regional Development ICEIRD 2008,
Skopje&Ohrid, Macedonia 8-12 may 2008, pp. 237-245 [20].

/4/ 056789:9;< 580=53=585>=?7)3 !8@)889A!0)98 6>==)6>:!

Researsc
h

Theory

Excellent set of
core courses Practical

experience

One strong core
course Technology
Entrepreneurship

A pool of elective
courses

Fig. 3 Curricula of TEI MSc program

/4/4(6+*$2D$
One of the biggest challenges facing every economy is how to develop more skilled and
productive workforce. Entrepreneurship Education is a key part of the solution to several
pressing policy challenges, including university dropout rates, workforce readiness, and
country’s economic competitiveness. Countries assumed entrepreneurship as a means of
growing their markets, and creating jobs in order to be more competitive and with stable
economy.

As a whole, engineers and scientists do not know enough about entrepreneurship and
innovation in order to successfully translate an idea into business. At the same time, current
practice needs a mix of technology and interdisciplinary skills. Therefore, the curricula in
TEI shall provide to professionals with scientific and engineering background knowledge
in economics and innovation. Its goal is to teach potential entrepreneurs how to
commercialize their knowledge, and turn it into new technologies and innovations.

A4-8

/4/4/ 3%+"E2F
What type of competences need to gain scientific and engineering graduated students
and how to ensure them with the TEI curricula?

/4/4G H-#.*2## I&E-24
The pattern helps university managers and lecturers to enrich the quality of courses
content. The pattern also allows flexibility of the curricula courses. It addresses the time to
market of the program and decreases cost of development.

/4/4J K+%'2#
Force 1: Motivated Leadership: There are many basic curricula which universities have
created in different scientific fields. TEI is an interdisciplinary program and the faculty
leaders need best practices in order to be able to create it faster according to the local
circumstances. The personal motivation and dedication of the leaders is essential for
developing the curriculum and overcoming all possible barriers as well as encourage others
to grasp the ideas of the new curriculum.

Force2: Determining proper mix of courses. The curriculum should find the appropriate
balance between the different courses in order to ensure the required technology, business
and personal/organizational competences of the students. At the same time, the courses
need to be developed with a focus on harmony between theory and practice.

Force 3: Ensuring potential teachers. By designing the curriculum it is of utmost
importance to consider potential teachers and bridge the gaps between different faculties.
Finding motivated talented teachers is an important factor for the success of the new MSc
program and the curriculum should be designed taking the best available expertise.

Force 4: Involving stakeholders in the education process: It is well-known that
contemporary society and economy need fast implementation of innovation and
commercialization of research results and new knowledge, but traditional curricula do not
provide the necessary interdisciplinary competences and risk taking abilities. In order to
face this problem it is important that the curriculum involves at an early stage stakeholders
as guest lecturers in order to share their experience, provide guidance to students as well as
opportunities for internship.

Force 5: Ensuring a critical mass of potential applicants: Students in technical subjects
need new state–of–the–arts competences in the area of TEI, but such curricula exist only in
a small number of universities. There is a need by designing a new curriculum to consider
how to reach potential students and encourage them to choose it.

Force 6: Challenges with IP of knowledge and courses. Universities own the intellectual
property rights (IPR) of their knowledge. There is worldwide ranking of the universities
and their products. At the same time, there are many issues related to using and teaching
entrepreneurial knowledge, inviting guest speakers - professors from other universities and
real leaders - entrepreneurs, and reusing their knowledge.

/4/4L ?+E-$.+*
Investigate the curricula best practices of world leading universities (AS_IS),
benchmark the leaders in implementing the desired solution (TO_BE) .

Each new initiative needs strong leadership in order to succeed. This is especially
important for a new educational curriculum in order to overcome resistance and
administrative barriers and motivate followers.

By designing the curriculum should be considered the following:

A4-9

 Developing one strong first core course with two parts – Technology Entrepreneurship
and Technology Entrepreneurship in IT. An excellent set of four to five core courses
focused on provision of technology, business and organizational competences. A pool
of elective courses adding specific competences for meeting individual needs of the
students;

 Theory, research, and experiential learning should merge into one another within the
education process and extra curriculum courses by ensuring a proper mix of theory,
interactive and practical content;

 Different and complementary teaching materials should be delivered for the courses;

 The teachers team should be formed following the TEACHERS TEAM pattern.

 Engaging the stakeholders as lecturers – leading managers with practical experience in
entrepreneurship .

 The new MSc program and the core courses in its curriculum should be widely
advertised, as well as the expected results in competence building and the new
approach for more practical orientation and stakeholders’ involvement in the
educational process.

Finally, the ENTREPRENEURSHIP ECOSISTEM should be considered and along with its
INTELLECTUAL PROPERTIES (IP) OF KNOWLEDGE AND COURSES , the decision-
maker (faculty and senior administration manager) should carefully design the curriculum
of the MSc program on TEI.

/4/4M 6+*#2N-2*'2#
Faculty leaders have knowledge and best practices for rapid design of new curricula in
TEI. Applying the pattern will allow universities to be more competitive.

Graduated students in TEI will fill in the gaps in the fast changing market economy and
will speed up new innovative technology products or processes commercialization.

Entrepreneurs educated on this curriculum will have more knowledge and practical
experience in decision making and risk taking. This leads to faster and competitive
implementation of innovative technologies, products or processes.

The time limitations, due to the large competition at higher students education, require fast
reengineering of curricula and creating of new curricula in TEI. But applying the pattern
will shorten the time and decrease the efforts needed for development of TEI curricula.

/4/4O A&%.&$.+*#
Depending of the needs of stakeholders, the background of the student, and the type of the
university (engineering, scientific, economic, etc.), this pattern can be adapted with various
specific compulsory or elective courses included in the curricula.

/4/4P 5D&FQE2#
Example 1.

As an effort of many of the full-time and adjunct faculty members within the Lester Center
for Entrepreneurship at UC Berkeley, the Entrepreneur Curriculum was developed.

The Entrepreneur Curriculum is projected to be a full academic year of courses. It can be
offered at the last year of an undergraduate program or in a master’s program. It is best
implemented where there are local entrepreneurs who can mentor students or be guest
speakers and provide insight into the real experiences. This curriculum is intended to target

A4-10

high technology start-up companies and will appeal to entrepreneurs in both, the
engineering and business disciplines.

Fig. 4 Entrepreneurship Curriculum at Lester Center for Entrepreneurship and Innovation,
Haas School of Business, UC Berkeley

Example 2– Adapted curricula for Technology Entrepreneurship and Innovation at Faculty
of Mathematics and Informatics, Sofia, Bulgaria

Following many discussions in Sofia concerning preparation of curriculum and structure of
the Master of Science program “Innovation and Technology Entrepreneurship”, the main
topics were selected [19]. As in the curriculum of the Berkley University entrepreneurship
program, it is identified:

• One core course with two parts – Technology Entrepreneurship and Technology
Entrepreneurship in IT (10 academic credits, 120 hours lectures and practical
seminars), based on the curricula from Intel of which ~30% derived from the
original UC Berkeley “core” curricula, and 70% were created based on the needs of
Western and Central Eastern Europe.

• Four basic courses – Innovation Management (7,5 academic credits, 60 hours
lectures and practical seminars), Financial management and venture capital (7,5
academic credits, 60 hours lectures and practical seminars), Strategic management (5
academic credits, 60hours lectures and practical seminars) and Marketing
management (5 academic credits, 60 hours lectures and practical seminars).

• A pool of elective courses each by – 5 academic credits, 60 hours lectures and
practical seminars: Commercial legislation in Bulgaria and Internet and law;
Organizational Behavior; e-Business, e-Governance; Knowledge Management,
Customer Relationship Management; Project management; Project financing of
innovation, Entrepreneurship (Student Company - practical simulation of venture
creation - localized for Bulgaria), etc.

/4/4R =2E&$2, S+%T U ?+-%'2#
The curriculum process is described in book:

Engel J. , Charron D. (2006), Technology Entrepreneurship Education, Theory to Practice,
Lester Center, UC Berkeley 2006.

A4-11

/4G 05!675=? 05!BC

TEACHER TEAMTechnological expertise to

engage in e- com
m

unication

Stra
tegic a

nd innovation

management co
mpetences

Project management

competence

External teachers
from government
or business invited
as guest speakers

Faculty teachers

At least one external
teacher should be real-life

entrepreneur leader

Synergy mix of faculty and external teachers

Behavioural skills for

cooperation and

collaboration

Fig.5 The teachers team

/4G4(6+*$2D$
Teachers are not just important contributors to the education process, but they have become
for their universities the most valuable capital. Capable professors are not just hard to find,
but faculties are waging a war for talents. Teaching experts do not just bring their
background and experience to their classes, but contribute their human capital. A key
reason for describing a TEACHERS TEAM pattern is that curricula design experience and
execution of the MSc program can actually be effective and efficient only when it is
completed with the most talented professors. Nowadays, the greatest risk faced by teachers,
especially those in Technology Entrepreneurship area for which the latest technical
knowledge is their most critical human capital, is not the loss of a job, but rather the
devaluation of the assets and the hard satisfaction of the smartest students’ demands.

It should be taken into account how to motivate and keep employees, and the following
human capital value chain provides an insight into this issue: [1]:

“1. In addition to being fairly compensated, people place high value on:
 Being in an environment where they can grow and learn and advance
 The managerial skills/abilities of their immediate supervisor
 Being treated fairly, appreciated and acknowledged
 Doing work that makes a contribution

2. These determinants of employee satisfaction drive employee retention
3. The retention rate among key employees drives customer satisfaction
4. Customer satisfaction drives customer retention
5. Customer retention drives profitability and other measures of financial performance
including total stockholder return.”

A4-12

/4G4/ 3%+"E2F
What kind of teachers should faculty managers recruit, source and select to form
teacher’s team for technology entrepreneurship education?

/4G4G H-#.*2## I&E-2
TEACHERS TEAM pattern allows academic managers as an owner and investor of human
capital to effectively manage the professors and the positions, and measure this asset where
it will generate the highest return of investments. The pattern also increases the teachers’
satisfaction because a more transparent process is easier to share and communicate.

/4G4J K+%'2#
These are common problems typical for academic human capital. The most important
driving forces include:

Force 1: A “critical mass” of talented teachers: There is a big gap between existing
teachers and a need to find the right faculty, to attract top teaching and research talent. On
the one hand, there are some candidates for faculty positions, but on the other, universities
experience serious problems closely related to capable teachers [13]:

 Lack of sufficiently stimulating research environment;

 Migration to industry of highly skilled professionals and of experts;

 Increase diversity of hiring

 Lack of youth applicants

Force 2: Team strategic management: Need of dynamic strategy planning and
implementation and real measurement in order to take competitive decisions and to lead
changes. The academy is tradition-keeping organization and the academic culture is very
conservative. But the dynamic globalization and the market economy open the academic
processes and change the capabilities of the professors. The brain drain requires creating
and updating a strategy for learning and growing in the universities environment.

Force 3: Teachers mind set change management: Fundamental shifts in the way teachers
think — and speak — about working life management. The Internet, professional and
social networks are strong tools for dissemination of information and practices. At the
same time, ICT introduce big changes in the teaching environment – new methodologies,
new tools and practices which face teaching staff with enormous challenges to change and
adapt rapidly.

Force 4: Synergy mix of faculty and external teachers: Every faculty has strong knowledge
and experience in a specialized field(s). But in order to teach management and
entrepreneurial skills to professionals in a technical field, there is a need of strengthening
faculty’s capacity. The teachers abilities associated with e-literacy, innovation, and
entrepreneurship are expected to be crucial for strategic success, but are considered
insufficient in today’s professors.

/4G4L ?+E-$.+*
Model and develop a dynamic strategy loop cycle about human capital development
and execute it as quick as possible. Do real measurement to take competitive decisions
and to lead changes.

University should have a synergy mix of faculty and external teachers. External teachers
might be invited as guest speakers, part time lecturers etc. At least one external teacher
should be real-life entrepreneur leader.

A4-13

Faculty team members in the new TEI program must have:

• Technological expertise to engage in e-communication;
• Project management competence that extend to handling joint ventures programs

and strategic partnerships;
• Strategic and innovation management competences and wide knowledge to

understand present technology environment and business demands;
• Behavioural skills that permit successful cross-functional, inter-company, and multi-

regional cooperation and collaboration.
/4G4M 6+*#2N-2*'2#

Studying entrepreneurship could be an important positive force on students’ career
development. Whether students are studying entrepreneurship with the definite intent of
turning into an entrepreneur, or of growing to be a business executive or a more informed
stakeholder in general, once students enter into the business, they will all need
entrepreneurial skills.

Many students will come across of working closely with entrepreneurs in new and small
enterprises. These enterprises will have to manage innovation for long-term growth and
compete with other similar enterprises.

/4G4O A&%.&$.+*#
Depending on the ecosystem, this pattern can be adapted with various specific positions,
full or part time. Different forms of cooperation between university, business and
governance can be implemented.

/4G4P 5D&FQE2
MSc program TEI in Information Technology at FMI is very successful as the students
applying for the second year after launching increased more than twice and new candidates
for teaching position appears. The position for PhD education becomes more attractive and
applicants grow.

Due to the synergy of the teaching team a new way of thinking and working was
established. The TEI team leaders succeed to attract the best teachers from leading
Bulgarian universities and well-known experts from business and governance. The
teaching methods changed and became more interactive. Teachers wrote many papers and
share positive experience between Bulgarian and European Technology Entrepreneurship
educators.

/4G4R =2E&$2, S+%T U ?+-%'2#
PATTERN FOR GRADUATE STUDENT COMPANY LIFE CYCLE (Petko Ruskov,
Milena Stoycheva, Yanka Todorova 2009) [17].

!"#$%&'("#

The pattern thinking and approach are well suited to encourage university managers to
expand their perspectives, and also to communicate and to develop the strategic skills and
behavior required. Patterns idea is an entirely new approach for TEI education and
supporting a 21st century human capital competences. The patterns way of managing the
lifecycle and the presented techniques for identifying opportunities and creating action
plans in order to ensure education efforts, is proofed to be successful. TEI MSc
PROGRAM; TEI CURRICULA; AND TEACHERS TEAM patterns answer many
questions concerning graduates’ education.

A4-14

The value of the patterns described in this paper is in integrating knowledge, experience,
best practices and tools within one new strategy live-cycle for master program technology
entrepreneurship. The described patterns show how to reuse design and implementation of
the TEI MSc program.

In the future authors intend to continue the description of more patterns of MSc education
in Technology Entrepreneurship and Innovation.

)$*#"+%,-.,/,#0'

The authors express their deep appreciation to Dr. Michael Weiss for shepherd this paper
to EuroPLoP 2009. His contributions were just superb.

The work on this paper has been supported by:

 Intel and UC Berkeley Project <entrepreneutship.berkeley.edu> that is funded by
the Intel. <http://www.intel.com/education/highered>

 UC 7FP Project SISTER: “Strengthening the IST Research Capacity of Sofia
University”, Grant agreement no.: 205030

1,2,3,#$,'

1. Davenport T., The Human Capital Metaphor: What's in a Name LineZine,
http://www.linezine.com/7.2/articles/tdthcmwian.htm

2. Elssamadisy A. 2007, Patterns of Agile Practice Adoption, Crafting an Agile Adoption Strategy,
InfoQ, 2007.Engel J., Charron D.,(2006), Technology Entrepreneurship Education, Theory to
Practice, Lester Center, Berkeley 2006.

3. Engel J., Charron D. (2006), Technology Entrepreneurship Education, Theory to Practice, Lester
Center, UC Berkeley 2006.

4. Galic M., and all, Academic Edition: Applying Patterns Approaches Patterns for e-business Series,
IBM Redbooks publication, 2007, SG24-7466-00.

5. Gourova E.. Antonova A. Nikolov R.. Building skills for the knowledge society, Proc. of Third
International scientific conference ‘Computer Science’, Istanbul, 12-15 October 2006, pp.107-113

6. Gourova E., Antonova A., Todorova Y., Industry-academia collaboration in Bulgaria – the case of
Sofia University, Proc. of International Conference for Entrepreneurship, Innovation and Regional
Development ICEIRD 2009, Thessaloniki, 24-25 April 2009, pp. 157-166

7. Kelly A. 2005a, Business Strategy Design Patterns, The Porter Patterns, http://www.allankelly.net

8. Kelly A.2005b, Business Strategy Patterns for Technology Companies, The Porter Patterns,
http://www.allankelly.net

9. Kelly A.2005c, Business Strategy Patterns for the Innovative Company, The Porter Patterns,
http://www.allankelly.net

10. Kelly A.2008, Business Patterns for Product Development, (EuroPLoP 2008),
http://www.allankelly.net

11. Masters of Science Degree Program of Sofia University http://www.fmi.uni-
sofia.bg/education/magisters/informatika-07-08/elektr_biz_el_uprav.pdf

A4-15

12. Miles I., Patterns of innovation in service industries, IBM Systems journal, vol.47, No 1, 2008,
pp.115-128

13. Nisheva, M., E.Gourova, P.Ruskov, Y.Todorova, A.Antonova, ‘Strategic framework for IT
education and research at Sofia University’, International Journal of Education and Information
Technologies, Issue 4, Volume 2, 2008, pp. 213-225

14. Radenski A., Patterns for active e-learning in CMS environments. Serdica Journal of Computing,
Vol. 2, No 3, 2008, pp. 277-294.

15. Robertson B., Sribar A., The Adaptive Enterprise, IT Infrastructure Strategies to Manage, Change,
and Enable Growth, Intel Press IT Best Practices Series, 2002.

16. Ruskov P., Harris M., Todorova Y., Strategic Model for Master of Science program “Innovation and
Technology Entrepreneurship”, 3rd Balkan Conference in Informatics (BCI'2007), 27-29 September
2007, Sofia, Bulgaria, ISBN:978-954-9526-41-7, vol.1, pp. 501-512.

17. Ruskov P, Stoycheva M., Todorova Y., Pattern for Graduate Student Company Life Cycle,
EUROPLoP 2009, Bavaria, Germany (under review)

18. Strategy as Practice: Research Agenda, http://www.s-as-p.org/agenda.htm

19. Ogrin M., Mashup Patterns, Addison Wesley, 2009, 9780321579478.

20. Galabova L,. Ruskov P.,"Analysis of the Status and Opportunities for further Development of
Bulgarian Entrepreneurial Education in Universities, Proceedings of the International Conference for
Entrepreneurship, Innovation and Regional Development ICEIRD 2008, Skopje&Ohrid, Macedonia
8-12 may 2008, pp. 237-245.

���������	�
��
����
���	�
�����	���

��������	��

��������������
����������������

���

�
�������������

�

 �������	����

���������
������
���������
�����������
������������������������
������

�����������������
���
�

���
������������
��������������� �
�������������
�������������������

��
����!�������	�������
���������������
����������������������
��

�����
���
����������
��������������������"�������������!�������������

��
�
���������
�������
���������������������������������������
���
�

����������������#�!���
 ����
$����������
��

�����������������
�

�������������������
�������
��������������
��������%�������!��
������

������� ��!������������!���������
�������������������������������

�������
����������������������
�������������������������������������

�����
�����������������������������������&
��'����������
�����������

��
������������
���������%��
��������������
���������������������

��
����������!�������
���������%���

�

 ��������

(�������
���������%�����
�
������������������������������������
����

��������������������������
������������!����������������
�����������������

���%�������
���������
�������������������������)��������*�+�����������

���������%�����!������
�����
�����

�����������������������)��� ����

,��������������!�����������
���������
��������������������������������
�

���������%���
����������������������
����������������������������������
�
�����
�������������������
��
��������������
��
��-�����������
��
������

��
������������'��������
������������
����!������!���������)������

�������������������������������

��������������������������������������

���%����������%���
���!����!�
��������
������������������
��,��
��!���������
������������

��������������
�������
������%���������������!�������������)���������������

��� ��������
�.��
��
��������������
������������
�.���!�!�����������

���%�������������������������� ���!����"��#���/����������������
�
���

����
�����������������������������(����
�������������������������
�

����������!���������%����������
������
����!���
��/��������
�����������

��������'������������������
�����������!����
�
����������������0������

���������!�$��� ������%%���������
����������
����������������!��������

����������'���������������
�
�������
�������%���

� �������	
�����
����������
	���������������������
��
���������������������������������
	������

���	��������������������������������
	�������������������
�

� ����������!�
��
	������
��

���
���������
	���������������
�
	�����
������
��"����
	�
�#��
��

����������������
���$%���
�
	����
�
�������
	����!�
���������" ���%��&&'$�

()*�

(����������������
�
�����!�������������
���
��
�
��������+�!����1��

2��
�������������
�3�����4�
��������������������
�5�����������3�

����������
���
��������46��7����
�������
���#8$������������������
��

���������
������
�������
�����������������(������'�(�

()*�

 ������+���

��������
	�������������������������������

���
 ��������
�������

&��������� ��'�
���������$��(���������������������������������� ���������
 ������)�*��� �������(��� ����	���
���
���������
����(�������(���������
(���������������������������
����"�
�������	���'��������"��"+�	��,�����$�����
��
���������(�,�����$��"�)����(���,����
�����	���������-���������$��� ����
�����������
���������������������.���(����-����(�����/���0����	����+�%##1�

������� 4�������
����!���������
���������%����"��������������������

��� ��!����������%����������
�����4���������������������
���

%��������������!�����������������
���!����������%���

������� ���
��
���
��������
�� �������
��
	���������
��
����
�����	�!

�����������
���
����������
� ������
����!�������������0��!���

���!���
�����!�������������������������0��������������������

���
�����������
�����������������!��������������������9�����!����

����
���������������!��������
�

"��	�� �����������%������
��

���������
������������������!����������
���%������������%���

/��������!�������������������������������� �
�����

4������&��

���������������
���������
�������������!�
�

	�������������
�%����������������� ���������
������������

���%����
������!�������
�������������%�������
�

"������
���������������������������������
���
�������������

����������������������������!��������
���������������

�����
����������������
��������������'���������������
���� �

�����������������������������&�
����������
������������

����������

������� #����
�
	����	��
����
��
���	���������
�����
��
����
�����	�
�$��

������������
�$��
�$�
�����	�
��
������
���
$��
������

(���'�����������
�������
�������%��
�������������!����������

��������������
�����������������
����������!�����������

�����%���	�� (�����������

�����������������
����������������������������
�

�����
����������������!��������������������������������
�������

������������%����
���������
�������
���!�����������0��������

������
���
������
 :������������
����������!�����!�������������

�

������������������������'�����������������
����������������!�

������%������������������������������
���������5
�� 6�

()*,

	������������
���
������

��������������!��!����������������������������
�

������
 ��
�������������
�����%������������%�������������������

�����������%�����������!������������������������
�

������!���������
���
���������%��������'�����
�������0��������

��������������
�����������
�������������
����������

&������� +������������2���'������������'�����
�,������������
���

;�!;���;�����
���������
���������������������!�
�
������
��

��������������
�
�������������������!����������������
�
���������

������������������
��������
��
�����������!������������

������
�#�!���������!������������ ������
 ���
�����!$�

"�����
��������������������������!��������
����������������������

�
��������
�������������������
��������<"����
�����!�
�
���

'������

��������

	����
����!���������
���������%��������������������
��,�����

���������!�����������
���������
�������������������������������

��������������������������
������
�������������������
��
���������

�
�����������-�����������
��
��������
����
�����������������'�

�������
������������
����!������!���������)������

���
��������������
���������

���)��������������������������

��

��,��
��!�
��������
��������������������������
�������
������%�����������

����!�������������)��������������#�����������)�������������$�

=�!�!��!�����
������������%�����)����
����� ���!����"��#�)

������"�#0��
 ��>�,������*??@$������������������������������

��
���
�����������������������������������
���!�

;�����
�������

�������������!���������������������������
�

������
����������2������(��������3���	�#	��

��*??@$�

���	�� 2��������#2������>���������*??*-�+�!����*??A-�0�����!����������*??B$�

������������&
���
��������

()*-

���
 "��%����
'�������

�����������������
	
���������������
������������������")�����(����
��$��� ��������
������"���/������� ��
����������������)�*�����(�������������
��$��� ��������,��(����������� "������������������)��4��(���+�566��

������� 4����������������������� ��!�
�
���������

������� ���
��
���
�� �
��
����
����	�
�����	�
����(
%��)��!

"��	�� (����
�����������%�����)�������
�������������������	������

�
���
��
���������������������������������������

/����
�������������������������������
�
��������)�����=����

�����
���������
������������������������� �

��!�����!��������������
�����������
���������
�����
��
�

�������!���������!���������������
���
���������%������������

�������!��!��������������
������!����

,����
�
������������������������
���������������������
������

�
��
�����������������
 �������������
�������!����
�

	�������������
�
��������������!�
������)���������������

������������������
&������
����
�����!����
������������

��� �
���������������������

��� ���������������!�
��

����������

������� '������
	���
��
�����*
%��)
��	��������

/��&�����������������
�����������������������
��������������� ��

����!�
����������������������
�
�����
����������
�������������

��������������
������'����
��=��������������������
����
������!
�

���
�
������
������������������������

�

�����%���	�� ,����
��!���
�
���������)������������
������
������!���
�

������
�!���=���������
���
������������������������������� ������

�
��
��������
�����
��������������������������%���

����)���������������%���������
�
�����������
��������������������

0�!����)����������
��������
�������

�������'��!���!
�

�
����'�������
�������������������������!����,����
�
��������

�������������
�
������������������������
�
�

+��)���������
�
���������������
����!�������=�������!������

����
�
�������������!��������
������)��� ���������C���

/��������
��������
������������������
�
������������
�!����������

��
�

(
�����!�
�����
������������������������
������������������
������
�

()*)

�����������������
���� ��!�������������������

���!����!����)���������
�
����������������������������
����!��

4�������������
 ���
�������������������!�
�

&������� 2���'��(�������������C�����������������)���������
�
�

	�����;�!;���;�������������������������������
�
����)������

����!��
���
�����'���C�����������������������������������
�

�������������������������
����

����������#�����

�
��

$�

'������

��������

	�� ��!������'���������������
�������������
������������!���
�

����������
�������������
������������%������)����
����������
��

��������������!��������
�������������'���������������
�
������

���������������������
���
���
�������������������!�$��� ������%%�)

2�
���������2���"�������#0�����
���>����������*??A$���
���
����

��
�
��
���� �������!���������������!�
����������
������� �

��!�������������������������
����������
��
�
��
���

�����������������������
�������)���������
�
�#������
����������
$�

������
��������������������2���"�������#=�

�����
���*??@$�

���	�� 2��������#2���>�������*??B-�+�!����*??A-�0����
���>����������*??A-�

D�������>�D��������*??E$��������������&
���
��������

()*'

��+
 #����
��
�$�
$�������
��
��$���

&�������� �������
���/�����$��	��������
���������������7�8�����6)�&��
��$�����
�� ������������(������$��� ����	��
��$��
���������������
������	�������	����)�9))):�&��
����������� ����
����������������������
(������(���������
��+�
�� �������������� ����
��������-��"� �� ������	�
����(���)�2�������
�+�� �������
������������������
������$��"���������������
������	��$��������
�� ���������������	�����+��$����������$��� ���+�����
����
��$����$��� ����������)��;���8�+�566<�

������� 4����������������������������

����������������

4����������������������� ��!�
�
���������

������� ���
��
���
(���
�
	����	��
����
��
���	���������
%��)��!

"��	�� ������
���

��
�

,��
�������
���������!���������������'����������������
�������

� �
�������
����������������
�����'�����������

9���������������#9�0$�������
��
��������� ��!���
�����

7��
����������������������������������
��

���������������
���
����
��������������������%���!���
�

4����������������������������������#�7$���������������������

����
��������������������
���������'����������������

���������!����������������
����������!������������!��'������

���������������������������)�������������������������

9�����������
���������
�
��������)����������������;������!�����

�����
�����
��������
��������������������
�������������������!�

�������������������������������
�������
�������

����������

������� ����(����
������
����
��$��
����
����	�
�����	���

4��������������������
������������������!��!����������������

�������������'�
��!�����������������!�����'�
��!���
�!�
��4����

������
 �������
�������������!�5!���6������������
���
�������

�

�
���������������������!������������������������!���������

()*.

�����������������
�����������������������
����������
��������
��

0��������������������������������
��������
�:�(7�
�#������

��������������������'�
��!�(7�$���'����!�������
�#�����!���

����������!�������'�
��!������
$��
������
�#���� ��!����������
�

��
�����
������$����)�������
�#������!����������
�!�$�������
�

���
�#�������������������'�
��!�
�����������$�

�����%���	�� 4���
�����������������������������������

�����������������

�������������
���������������������
���%������������%���

;�����
��!������������������������
��������������������!����

)�������
�������0����������
���������
��������������:������

���%�������������
���������������������%��
��������&���������

	���������������������%��
�������������������!�
�������������

������������������ �������������%����������
�����������������

���������������������!���'�
����������
�����%��
�

4����������������
��������
�������������������������������

�������������
���,��
��!��'�
��!������
��������������
��
����

����

������5
�����������6�����������������
���������������

�� �����
������������������!��������!��������

�������������

��
���
����)��� ��������
������
������������������'�
��!�

��������
��������!��F����
����������������%���

4����������5��!!�!�6�������'�
��!��

�
�����������&�����������

��
��

(�
����
��������
���������������������
���������������
�������

�����������������������
�
��

�������������
������

4��������������������
�� ����
�������������
��������������

����
��;����
���
�������
�����������
���������������
������ ��

�������
 ��������!��!����
�� �#��������
��� ��,��0�$�

,��
�������
�����������
����������
������� ������� ��������

������������
���������������������!��'�
��!���������
��������

���
������������

����������

������
��!�������������������

&������� ��������������
�������;�!;���;������
�������������������
����

��������!�������'�
��!������
�������������������������!�,��E�����

�����
���������
����������+��
��������"�����-�(
���
 ����������

������7;3-���������������������7����7����
����
���7/+-�����

(������(�����G����������
��������

�!����� �������������������

����������������
������
�������������1?H�����
���������

��������%��
�#����
������������!�$�������������=����
����������

������������!������������������
����=����
�����!��������������

�����������1???����!��
���
���������=����
��7��!����������
����

������������������������!��
��
�������������=����
��

������������
���������'�����������)�������
�������!��������
��

����'����!�������
���������������������
���
��������������
��

��������
���������������������������������	�����������
�

'������

��������

2�����!��!��'�
��!��������
��������������������
�
�!!�
������

������	 ���������.�����!���"��#+����>����� ���1IIJ$��

����������������������
������������!������
��������������7����
�

�����������������������������
��!�����������������������

���	�� 2��������������
����������
������#0�����!����������*??B$��
�������

������!�#2���>�������*??B$��������������&
���
��������

()*/

��, ����
-����(

*���� ��.����
��� ���
�������(����=������8+��� �
����	� ����
�	�
���
�����"���(���������)�2��������8���
����������������������"���������������+�
����(����$����8��������������+�����������(��������������>� ?������ ���
����
��������������������� ����
�������"�������������(����������$��� ����)@�
��)�!�
����+�>� ?�������
���
�����
����
��+��������������
���566��

������� 4��������
��
�������������������
����������������������%���

������� ���
��
���
��(�(�
��$���
��
����
�����	�!

"��	�� 4������������
�����������
��
-���������!���
������F����

4������&����������������� ����
�����!��������!���!�����
����

�����

����������!��������!����
�������
� �
�

���
������������!��

������
��
���������������������
 ����������

������������������������������������
�

�
��
������'���������������
��������������������

4������&���������������!�����
����

������
��
��������������
���
�����������������������!�

����������

������� �����	�
�$�
�����	�
��
�$�
����*
����������(
�
���.���
�����(

���$
�����	�
�����	������
/�����
���
��������
�� �������0�

D�����
��
������'���������������
�����

��������
������������

(�����
���
������������������������
����������
������
�����

�������
�#�
�����������$�������
�����
��(�������
����
���

���������������������%�������
���
������
��

��!����%�������
����

���� ����������%���������!���
������������������
���������
���

��������������������!���������'���!
���������������
��

�����%���	�� �
��
�������������������������������������� �����
������
�������

�����������������
��
����������������5��6��������������
�K

�� ��!����������
���������

����
�����������
���
������������

������������%������������
��

	��������
��������������
���
�����������
��
������������������

����������������
��������
����������������

������

��������!�
����������������������"�����!���������
������

, 0����
��������������	�������������
	����	
����
��"�
����#�����
����
�
���1�����
�$�����

���������
	����
�����	
�"�
����
	����
�
���1�����
��������%�����
$�

()*2

���
�������������������� �����������%���

4��������������������������������������
��!���
��������������
�

������
������������������������
�!������������������������

���

&������� �������������
������;�!;���;�������%����������������
������

����������F�����������������!����������������
����
������������

���������
���#����������
��������
��
�������
�
��$������������
�

�����������
���

�
������������������!��������������������
��

���������%�������
���
�������
���!
��������������)��

�����
������

�����
��!�������%������D��!�������������������������!�
�����

������������������������)��������������%���

���D����������
���������%������(����
 �)�����������

0�
��!�
��
�
�����
�"�����+��!�����D��!������������������
�����

���
��������������
�����!��������������������
���������%���

'������

��������

���������!��������������!���)����
���
�������!�2��������
�����
�%���������
�
�����
��� �
��������!���

����!���� ��
�����

����
�����
�

(
������%���!���
���

�
�����
���������!���������!���
���)�����

�����������
�����
��������
�����
���������7�(��������%���

���������
��!�
��
��� ��D��!�����������������������������������

2��������
����������������������������!�����
��
��
����������

�����������������
�����
���� �
��������!���

��������!���� ��!�

���
���������
���������������������������
��������%���
��
��
�

3�"�"����������#0����
���>����������*??A$���
���
����������
���

����������'����!�
�����������������
�������
����
�

?���8�� �����������(����#0����
���>����������*??A$�������������

�

��
�������
����!������������!��'���������������
�

���	�� 2������������������������������������
���������%��
�#D�������

>�D��������*??E$�������������&
���
��������

()*�&

��,
 ��������
-� ��������

*���
������� ����
�����$�������������	�����5)<)5������	������)6)%)�A���
���������������������	���(��������������	�����������	���(�������������
�������$�������)�7���������������	�����5)<������)6�����
�����������������
 ����
�������������+��������	������,��8��(�(��
��$�������������+�������(����
�	�����5)<����
��������/�����"������� ���	�����(�������
�� �������(����
�	�����5�������	���������"�����()���	���������(��������������+�566#�

������� 4��������������!������'�������
����������
��
�

������� ���
��
���
�����	�
�$�
����
��
�����
���
���������
���$
�$�
����

��
�������
���
����	�����
���
����
�����	�!

"��	�� 	��������������!����������������
����������
�
����������
�������

������������ ��!��������������
����������������
�
�

='���������������
��������
������������!���
���������������

���������������4����������!�����������������
���������
���!�

����������

����������������!���������������������
�

����������

������� 1�������
��������
�������
�������*
�$���
���$
�$�
����	���
������

��������*
���
��$���
���
������������
�� ���������

��������������������������
����
�������#
�����
���!���������
��

��� ��������
�
������
�������������
���
$�

�����%���	�� ���
�
������������

�
��������
����������������������������

#��������������$���
�������
���
������'���������������
������

��������
���
������������%�����������
�������
����������
������

�'�������������
���
��������������'������������������
��(
�����

��
��

������������������������!���
������������
�

0�����������������
���������������������������������������

���������������
���
�������������������
�������������������+���

�'����������������!��
���'���������
��������
�����������
������

������������������'�������������
���
��
������

&������� ����;�!;���;�������%�����
�
�������
����
������������������

���
������������
��
��������������������

�
����������������)����
�

������������������
�
��������
����������
����
����������������

��
�����
�����

����=����
�����%�����
���������������
��������7��%��
������

��������������������
��������������������
���������F��������

()*��

��)�������
�#
�����
�
�!���F��������
���
$�

����7��������%��������������
����
����������
�
�#
���)���$�

'������

��������

��������!�����%�������!��!������������������
�
���)����
����������

�����
������!��
�������'���������7�(�������

7���������������������#0����
���>����������*??A$������������������

���������������!�����!�
������������
�

��������������������
�
�����
�;���C� �#*??K$������������������

�
���
���������!�����������!�����#������
����������
$�

���	�� 2���������������������������������������
������#+�!����*??A-�

��������*??A-�/����
��*??I$��������������&
���
��������

()*��

+

 ���	������

�����
�������������
����������
�
����������
���������
������

��!������������!��!��������
�
��

�������
�����������
�������������
��������������������������������

���%��������
������������!���
���������
�����
������������������������

���)�����������������������
������������
���������%���

����������
���������������
�������������
�����������!���������������

�������
��
���������2���>������#*??B$�����D�������>�D�������#*??E$�����
�

���������
��������������������
��� ������������������������������������ �
!�$��� ������%%���������)����������
����������������������������
�C�
�

����� �����
����������������
������������!���������������
����������

�� ��!���������������
����������������!�����������������
�����������

!��������������
������������������0������������������������
�������

��
��
���
����)������������'���������
�����������������

+����������
�������������������
�������������
������
���������
������

����������������������������������
���
����������������������
���

������������
�������
���!����
����������
������#�����������������

��������������$�������
������������������������#�����������
��

�����
����������$����������������������#�������������
������
�
��
�

�����������������!������������
$�������
��!��
���
�#��������������
��

������
$������!������������������
���������%��
�#��!���C����$�

2)������(������

����� ���������0�
 ��
�����
���������!���
�����������
������������ ���������

�����������
�!�
����������
�����������������������
����������

����������!���
�������
�����������������
������������������(�����

H�������
��
��������
������
������������������������

2�������
2
3
�������
��������

0��������
��������
������������
������
������������
�������

�����
������ 0����������
��������%�������
���
�����������L�2�����

���������������
���������������

�������������%���

���������
�����
����������������!���

����

�!��!�������

����
�����
����!���� ��!����
�������� �
�

9���,���
 	���������%���!�
�������!������������������������

����������
L�/�����������������
��������������
�#
����

�
��

�������!��$�����������������������������

2�������
#
3
�������������
��
�$�
��������

���
������
������C�
�������������
���
������������
����������������

��������������
���
����������������#�������
������)�����$�����
��

�������
���
��������������������
�
������
�����������
�
�������������

����������������������������
����
����������������������
�

()*�,

3�����4�

5��

3�����4

���

3�#���4�

0����
�

������������� 6

 �1��
������ 7 "7$ 6

8��������
	�9	����������:
	�� 7 "6$ 6

:���;����� "7$ 6

��������;������
 7 "7$ 6

'������	��

������������������������������������
�����������
��������������������

!���������������������H������������
�������!���!����������#8$�

;�������������������� ��H��#*??A$��(������������������������:����
������

��������������!�������������!������������
����������������������L��

����!�����"��������E*#@$��111AF11*@�

;���C� ��"��#*??K$��"������������!�����������!�����7����
:�=��������

������� ��7�����������!�������(���
���	�
����

;�!;���;����#*??I$����:MM�����!��!������M�M��!���������

;������N��#*??@$�����D����������"�����:�7��%�����
�!�
�����7��������

(���������
��(�!�
��D�����������

/����
�����#*??@$�������������!��������)���������
�
��

��:MM����
�!������ M�����!ML�OK@�

=�

�����
���(��#*??@$��7����
����(!����7�������(������������G�

8�+�!����H��#*??A$��7�������!������"������"������:�0�����,�����

"����

����+����"�������7��%�����&,������

+�����;���>����� ���	��#1IIJ$��2����������������������!������
����

����������������������
���7��7�������������������N����>�"�������/��#1IIE$��

7�����2��!��!�
����7��!����/�
�!��1��(���
���	�
�����

��:MM�������������!M���������M��������������

8�D��������,���>�D��������,��#*??E$������������0�����
�=�
������:������

"�������
�;�
���

�"���!������!���H��������

8�0�����!����"�������H��!���D���>�"������"��#*??B$����������
����������
������

������������!�����"��������EJ#1$:�1B?F1IK��

8�0����
����9���>����������N��#*??A$����!���C�������7����
����(!����

"�������/�����������(���
���	�
����

N��
 ���(��#*??A$��;������!����
�����������
����������
�������2���'�

/�����
��/������:MM��������'������
����M������
M(�@A*1@A1?AA�����

N���
����,��#*??@$���
�������������������������������������"����!�"������

���!����
������/���*J��*??@����:MM���!�
����!
���������M*??@M1*M*JM�
F

�F�F����F��F��F�������F��F��F�����

2�������N���>���������N��#*??*$��"����
��������������
���������
�������N�������

�������
�����=�������
��E?#*$:�1I@.*KJ�

()*�-

8�2����H�����>�������H���"�������/����������,����
:�0����

��!�(!����

7������
�����"����!���	�����

����� ����������#*??B$��(�����������&
�!����������
�
���������������

�����"������;�
���

�,���������������������
�������

8������������#*??A$�������"�����:�(�������
����������(������������������

�����!��7��

�

,��������=��#1IIB$����������������+��������������������"�������

0��
 �������>�,������(��#*??@$��7��������!��!����������������������
��

=���72�7�

	��

�����#*??@$�����������������������=���72�7�

�$���
	������

7��!���
�����������������������=���
�����
�����������������F;4F9�������
���

��:MM�������� �����M����
M��P����
M*AKA?IJJ

0�����������������
���������
�)�������
����������������F;4F"(�

�����
�����:MM�������� �����M����
M
���������
�)�����MKBIB*J@EBB�

"��������C������
����%������������������!�
��������������

��:MM�������� �����M����
M
����%�MKJ1@ABIA1J

��������������/��"��!��
�����
����������������F;4F9�F"(������
�����:MM

�������� �����M����
M
��!��
M1B?E?JEK@I

�������2����;������
����������������F;4������
���

��:MM�������� �����M����
M1K?*EJA*�9?BM*I?EAIB?B1

()*�)

Patterns 2.0: a Service for Searching Patterns∗

Aliaksandr Birukou†

DISI - University of Trento, Italy
Michael Weiss

SCE - Carleton University, Canada

January 22, 2010

Abstract

With ever-increasing number of patterns in the literature and online repositories, it can
be hard for non-experts to know about new patterns and select patterns appropriate to their
needs. We argue that a systematic way for searching patterns is required and we present
the Patterns 2.0 service, a composite software service for facilitating pattern search and
selection. The service combines several pattern-related services with a recommendation
service that allows users to share their experiences in using patterns. The contributions of
the paper are: the overview of existing services related to the problem of pattern selection,
the definition of Patterns 2.0 service, and description of its possible uses.

1 Introduction

Given the steadily growing number of patterns in the literature and online repositories, it can
be hard for non-experts to select patterns appropriate to their needs, or even to be aware of the
patterns that exist. In this paper, we present an overview of existing software services related
to pattern selection and propose a composite software service that facilitates pattern selection.
The service can combine existing pattern retrieval services with a recommendation service
that allows users to share their experiences in using patterns. We also provide different usage
scenarios of that composite service.

Almost fifteen years ago, the GoF stated the problem of selecting patterns: “With more than
20 design patterns in the catalog to choose from, it might be hard to find the one that addresses
a particular design problem, especially if the catalog is new and unfamiliar to you” [8]. As time
passed, patterns have become an integral part of many development approaches. However, the
problem of selecting patterns still exists. If anything, it has become more critical, as the number
of documented patterns has continually increased: for instance, Rising’s Pattern Almanac [17]

∗Copyright retain by authors. Permission granted to Hillside Europe for inclusion in the CEUR archive of
proceedings and for Hillside Europe website

†This research is partly supported by the EU FP7 projects COMPAS and LiquidPub

B2 – 1

lists more than 1200 patterns. In the past nine years since the publication of the almanac, many
new patterns and books on patterns have been published. The domains containing more than
ten patterns, the problem of choosing the appropriate pattern is particularly hard to solve for
inexperienced programmers [18]:

Only experienced software engineers who have a deep knowledge of patterns can
use them effectively. These developers can recognize generic situations where a
pattern can be applied. Inexperienced programmers, even if they have read the
pattern books, will always find it hard to decide whether they can reuse a pattern
or need to develop a special-purpose solution.

This quote also suggests that experienced software engineers rely on their knowledge to
select patterns to apply in a given context. Over time, they build up a good understanding of
which patterns apply to their domain. However, they also tend to be less aware of more recently
documented patterns. (This becomes very clear when we consider that for many developers the
notion of patterns still stops at the GoF book.) Developers with less experience may also ask
for advice from friends or colleagues. However, such interactions are highly personalized and
rarely documented, that is, this knowledge remains tacit. May [14] observes that patterns have
made design knowledge explicit, the process of applying patterns has become itself new tacit
knowledge. Several tools for assisting in the process of pattern selection have been developed
to make the knowledge underlying the application of patterns explicit.

Although the problem of pattern selection can be considered a particular instance of the
general problem of retrieval of relevant information from large document collections [5], it re-
quires specialized tools for a number of reasons: (i) patterns are structured documents where
different parts express very different types of information; (ii) they are often linked to each
other in a pattern language; and (iii) design patterns accumulate the experience of developers
in dealing with design problems. Therefore, besides search engines for patterns such as Pat-
ternSeer1, tools for managing pattern catalogs (see Deng [4] for an overview) and wikis such
as PatternForge2 and Planet3, existing approaches for supporting pattern selection include case
tools [9], expert systems [13], recommendation systems [3], and formal frameworks that help
reuse knowledge about patterns (see Weiss [19] for an overview of several such systems).

However, existing approaches that support pattern users in the selection of patterns have
several shortcomings: (i) they usually require additional effort during the authoring and selec-
tion process (e.g. authors need specify metadata about their patterns); (ii) pattern repositories
require effort in maintaining and updating information; (iii) they often targeted at develop-
ers, helping them to select architectural or design patterns, while there are also patterns on
organizing conferences or meetings, computer-mediated interaction patterns, which are used
by non-developers4; (iv) they rarely support collaboration and personalized recommendations.

1http://doc-it.fe.up.pt/aaguiar/space/Projects/ PatternSeer
2http://www.patternforge.net/wiki
3http:// patternlanguagenetwork.org
4Therefore in the following we use a more general term “pattern user”

B2 – 2

Thus, as May [14] says, much of the information how patterns are selected by users remains
tacit despite the existence of these tools.

In this paper we present an overview of existing services for pattern search and selection
and propose the Patterns 2.0 5 service, a composite service for facilitating pattern selection.
The service combines existing pattern retrieval, tagging, and recommendation services. The
core contribution is improving pattern search and providing assistance for pattern selection by
combining the services and integrating the recommendation service for tracking pattern usage
history. The latter provides support for social factors (tacit knowledge about how patterns are
used within an organization), collaboration (potential for linking users) and personalization
(who prefers which patterns or domains).

The proposed service address the outlined shortcomings in existing solutions for pattern
selection in the following ways: (i) it improves searching by using tagging, usage history; (ii)
using community-generated content allows for minimizing the effort in maintaining and updat-
ing information in pattern repositories; (iii) the service is orthogonal to the format and domain
of patterns, and can be used by different communities either collaboratively (sharing usage data
between different communities), or in isolation (each community consumes recommendations
based on its own usage data).

The primary audience for this paper are developers of pattern repositories and pattern re-
trieval systems, as well as researchers on the application of patterns.

The paper has the following structure: in Section 2 we review existing approaches for
pattern search and selection. In Section 3 we describe the proposed service and requirements
on the services it invokes, while in Section 4 we discuss limitations and possible extensions of
our approach. We conclude the paper in Section 5.

2 Approaches to pattern selection

Recently, there have been several efforts in making patterns available in online pattern reposi-
tories, where they can be browsed and searched by various criteria. An early example was the
Pattern Almanac [17], which is also available in electronic form6. More recent examples are
the PatternShare7 site hosted by Microsoft between 2006-2007, Yahoo Design Pattern Library8,
Sun collection of J2EE patterns9, and computer-mediated interaction patterns10. In this section,
we review existing approaches for selecting patterns stored in such repositories.

In order to store patterns in a repository, a structured pattern representation must be adopted.
There have been several proposals for structural pattern representation, most notably the Pattern
Language Markup Language (PLML) [6] and Entity Meta-Specification Language (EML) [20].

52.0 in the name is from Web 2.0, because the service uses tagging and other community-generated content
6www.smallmemory.com/almanac
7patternshare.org
8http://developer.yahoo.com/ypatterns/
9http://java.sun.com/blueprints/patterns/

10http://www.cmi-patterns.org/

B2 – 3

Existing online repositories rarely contain personalized features, although they can provide cus-
tomizable pattern properties for enhancing search [10]. To the best of our knowledge, most of
them remain oblivious to the advent of Web 2.0 and list content defined by the repository cre-
ator and provide no tagging, bookmarking and other social features. The sad thing about this
is no matter how heavily the repository is used for searching patterns, it does not change and
improve over time, if not maintained. However, several wiki-based repositories such as Pat-
ternForge were created recently trying to overcome such shortcomings and to use the power of
the community in order to enrich repositories with tags, links and other user-generated content.

There are several search engines for patterns. PatternSeer is an ongoing project that aims
at delivering a system that crawls and indexes pattern descriptions on the Internet and makes
them accessible to users via keyword-based search. The problem with current solutions is their
limited coverage of patterns. This reminds one of the problems early Internet had – just eleven
years ago it was better to use several search engines to get more different results for a query.

Several approaches exploit past user experience in order to suggest suitable patterns. The
ReBuilder [9] framework adopts a case-based reasoning approach, where cases represent sit-
uations in which a pattern was applied in the past to a software design. ReBuilder supports
the retrieval and adaptation of patterns. Cases are described in terms of class diagrams. Cases
are retrieved based on a combination of structural similarity between the current design and a
pattern, as well as the semantic distance between class names and role names in the pattern.

The authors developed a recommendation system for pattern selection [3] which is com-
plementary to systems like ReBuilder: in this system, patterns are selected on the basis of
previous actions by other users. Also, while the use of the relations in a class diagram provides
additional information about the desired pattern, such diagrams are not always available. How-
ever, since our system uses textual descriptions, and does not require an object model, it has
a wider range of potential applications. However, it probably cannot compete with ReBuilder
in domains where class diagrams are available. Finally, our system implements a collaborative
approach to pattern selection, facilitating experience sharing among users.

Several approaches propose adding formal semantics to pattern descriptions (see Weiss [19]
for an overview). As most patterns are organized in pattern languages, some approaches target
the selection of pattern(s) from such languages, thus handling relations between patterns, not
only individual pattern descriptions. Zdun [21] proposes an approach for pattern selection
based on desired quality attributes and pattern relations. The approach requires formalizing the
pattern relationships in a pattern language grammar and annotation of the patterns with their
effects on quality goals. As a result, the search space is narrowed down and the time spent
evaluating alternatives is decreased. Mussbacher et al. [15] present a goal-oriented requirement
language that formalizes the forces of patterns and relations between patterns.

Most of the existing approaches require additional efforts, such as specifying additional
information about patterns or their relations, creating a knowledge base, or organizing the col-
lection in a specific way. On the contrary, our system can handle different repositories and
pattern engines and provide recommendations and other social features. As we show in the

B2 – 4

sections below, our pattern recommendation service addresses some of the shortcomings of
existing approaches for pattern selection by combining several pattern-related services and en-
hancing them with social features such as recommendations and tagging. The only additional
(and optional) effort required is that of providing feedback, but, as we show, in some cases this
can be automated.

3 Patterns 2.0: a composite service for pattern selection

The Patterns 2.0 service composes other existing services for delivering pattern-related content
to the user. It is intended to be used by pattern users (including developers) and pattern writers.
In the following subsections, we present the architecture and use cases of the Patterns 2.0
service.

3.1 Architecture

The Patterns 2.0 service is essentially a combination of existing services related to pattern
selection. It takes as input user queries, forwards them to the appropriate services and integrates
the results. The aim of the service is to improve search of patterns and to provide assistance
for pattern selection. The nature and the purpose of the services composing the Patterns 2.0 is
explained in this section.

The Patterns 2.0 service combines the following services as shown in Figure 1:

• Pattern retrieval service. A service that provides such functionalities as searching and
retrieving patterns from a pattern repository that stores pattern descriptions. Planet is an
example of such a service. It is wiki that allows authors to contribute patterns.

• Pattern engine service. A service with functionalities similar to those of a pattern re-
trieval service, but with the key difference that the system only maintains a meta-index to
patterns described in full elsewhere. PatternSeer is an example of such a service.

• Pattern recommendation service. A service that provides recommendations11 about pat-
terns using a database of pattern usage history collected from past user interactions with
the service. An example of such service is IC-Service, a general-purpose recommenda-
tion service [2], whose application to the problem of pattern selection is described in [3].
Other examples are described in [9, 13].

• Pattern tagging service. A service with functionalities similar to those existing on many
pattern wikis: users can annotate patterns via tags, and patterns can be retrieved by an
external service based on tags. Examples include PatternForge and Planet.

11By recommendations we mean hints on patterns that may be on interest to the user, considering the submitted
query, something the user may (as opposed to must) find relevant

B2 – 5

Figure 1: Architecture of the Patterns 2.0 service. The arrows denote the invocation flow and
the labels denote information passed

Note, that we do not restrict pattern repository to GoF patterns. Instead, we assume that
several repositories that use different pattern representation formats (PLML, etc.) and
domains (patterns about security, organizing meetings, architectural patterns [12]).

Let us define possible API for the described services, in order to give more details about
what is expected from them. The API are defined using pseudo code.
Patterns 2.0 service:
Pattern[] getPatternsByProblem(problemDescription:String, context:Context)

- this function returns patterns relevant to the specified problemDescription possibly in a given
context.
Pattern[] getPatternsByKeywords(keywords:String, context:Context) - this func-
tion returns patterns relevant to the specific keywords, possibly in a given context.
saveFeedback(pattern:Pattern, keywords:String, accepted:Boolean) - this func-
tion saves feedback: which pattern was accepted/rejected for a set of keywords.
Patterns retrieval service:
Pattern[] getPatterns(keywords:String) - this function returns patterns relevant to the
specified keywords.
Patterns engine service:
URL[] getPatterns(keywords:String) - this function returns URLs to patterns relevant to the
specified keywords.
Patterns recommendation service:
Pattern[] getPattern(keywords:String) - this function returns URLs to patterns relevant to
the specified keywords.
saveFeedback(pattern:Pattern, keywords:String, action:Action) - this function
saves feedback: which pattern was found relevant for a set of keywords. Here action refers to the
feedback action, which depends on the type of user. For instance, in case of a pattern user, such actions can
be applying pattern or marking it as not relevant. In case of writer, an example of feedback action could be
rating the pattern.
Patterns tagging service:
Pattern[] getPatternsByTags(tags:String) - this function returns tagged with all speci-
fied tags.

The goal of the Patterns 2.0 service is to process the query submitted by a pattern user or a pattern writer

B2 – 6

and transform it into several ad-hoc queries that will be forwarded to the appropriate service. For instance,
to get results from the pattern tagging service, the query should be transformed into relevant tags and the
getPatternsByTag function should be invoked. Furthermore, the feedback provided by the user is
propagated to the recommendation service, to be stored in the usage history.

A query user submits to the Patterns 2.0 service includes a description of the problem and an optional
context. The problem is described by a set of keywords, optionally restricted to specific elements of the
pattern description, e.g. context or problem statement. An example of such a description could be “improve
access control”, or, in case of restriction: “improve access control, CONTEXT, SOLUTION”. An example
of the context could be the set of patterns already deployed in the project where the problem is encountered,
e.g. “Authorization, Authenticator, TrustedProxy”. The use of context can be used by the recommendation
service in order to improve recommendations. For instance, to find in the usage history the situation, which
is the most similar to the current search, the IC-Service calculates the similarity between users in terms
of their past actions (queries and feedback). We believe that the personalization and contextualization
of the query should allow for providing more relevant results than when only the simple keyword-based
search already supported by pattern engine and pattern retrieval services is used. However, since the
recommendation service does not host pattern descriptions, but only actions users performed on patterns,
one or several other services (pattern retrieval service, pattern engine service, and pattern tagging service)
are required for answering user queries.

There are three types of recommendations supported by the recommendation service:

– Recommending patterns. Recommending patterns suitable for solving a specific problem. Patterns
matching a specific problem are returned in response to a query.

– Recommending key patterns in a specific area. Suggesting a list of patterns essential to a certain
class of problems, or to the understanding of a particular repository of patterns (i.e. what is the best
order to read the patterns in order to learn to use them).

– Recommending pattern sequences. Similar to recommending patterns, but recommendations con-
sist of sequences of patterns to apply in a given situation. This takes relations between patterns into
account. Sequences can also be mined from pattern usage.

The algorithms used for producing the recommendations are outside the scope of this paper and can be
found elsewhere [3]. The purpose of this paper is to describe an architecture that embeds the recommen-
dation service as part of an integrated system for pattern selection and application.

3.2 Use cases

The Patterns 2.0 service can be used in different ways: as a component of an ad-hoc pattern management
system within an organization, on online pattern sites, as a plug-in into an IDE for developers, and so on.
In the following, we describe general use of Patterns 2.0, classify potential users of the Patterns 2.0 service,
and discuss example scenarios.

3.2.1 General description of use of Patterns 2.0

Figure 1 depict the invocation flow, described in this subsection. A user accesses the service by submitting
a query via the user interface. We assume that the Patterns 2.0 service can be accessed in a number of ways:
from a browser, from a plug-in to an IDE, or similar. After the Patterns 2.0 service receives a query, the
service forwards it to the recommendation service. The problem description part of the query is forwarded

B2 – 7

to the pattern engine and pattern retrieval services. Tags extracted from the query are forwarded to the
pattern tagging service. Each invoked service responds to the Patterns 2.0 service with a list of patterns,
which the Patterns 2.0 service combines in the results sent back to the user. In case of a pattern user, i.e. is
searching for patterns to solve a specific problem, they can also get descriptions of situations where other
users have used the pattern or a list of those users so that it is possible to discuss the problem with them.

At some point after getting the results, the pattern user applies one or several patterns. We provide the
possibility for submitting this information to the Patterns 2.0 service as part of the usage history, i.e.
feedback actions in connection with the previously submitted query. Such feedback is passed to the pattern
recommendation service. In case a writer performs a search, the feedback contains relevance of the results,
i.e. whether returned patterns are indeed related to the queried topic. In case of pattern user, the feedback
contains information about which patterns were applied to which queries. Obviously, the key problem
lies in the “observability” of the users’ feedback actions, i.e. actions of using a pattern for a problem, or
finding it relevant to the topic. In case of the pattern user, they can explicitly indicate that the pattern X
has been selected for the problem A, where the problem corresponds to a search in the history of searches.
The key challenge is providing them with motivation of doing this additional action. However, learning
from Web 2.0 lessons, there should be a way for convincing users to provide feedback if they see value in
recommendations they get as the result of this collaborative effort.

In case of the developer, the following two options can be also considered for observing feedback actions:

1. A pattern detection service (such as [1]) processes project documents and code, but in this case it is
still non-trivial to link the detected patterns back to the query.

2. A case tool which supports (semi-)automatic implementation of patterns (such as [16]) could be
used. The actions of the tool would provide the required trace. However, this case is limited to
widely known patterns, such as GoF patterns.

In case of the writer, implicit relevance feedback (i.e. the feedback not requiring additional actions from
the writer), such as clickthrough rate, time spent reading pattern description, and how the search session
ended (see [7] for an overview) can be used.

3.2.2 Users of Patterns 2.0

Potential users of the Patterns 2.0 service can be classified in several groups:

– Pattern users who lack experience in applying patterns such as students, trainees or interns, people
who are on their first architect/developer job, or have rarely used patterns before.

– People who have experience in using patterns, and, for instance, know how and when to apply the
GoF patterns, but are unfamiliar with a specific pattern collection.

– Pattern writers who would like to find patterns related to patterns they are authoring.

Concerning the first and second group of users, the proposed tool could be very effective for organizations
who maintain a pattern repository and infer which patterns are most useful under which conditions from
the users’ interaction with the repository.

With respect to the general architecture, users can play several roles when interacting with the various
services:

– Admin. Configures services for a specific group of users.

– Repository manager. Defines the collection of patterns in a pattern repository.

B2 – 8

– Pattern user. Interacts with the Patterns 2.0 service to get recommendations.

– Pattern writer. Interacts with the service to find patterns on a specific topic.

3.2.3 Possible uses of Patterns 2.0

To clarify the main uses of the Patterns 2.0 service, we consider the following specific “profiles” of the
proposed architecture:

– Poogle12. In this profile, Patterns 2.0 is used to search patterns using pattern engine and pattern
retrieval services.

– Plickr13. The use of Patterns 2.0 for tagging patterns and searching them using tags.

– PatternLens14. The use of Patterns 2.0 as a recommendation system, where users get recommenda-
tions about patterns to apply for solving a specific problem.

3.3 Example

In this section, we use an example to illustrate a possible use of the Patterns 2.0 service.

Let us assume that the Patterns 2.0 service uses a repository of security patterns, as configured by the
Admin. The patterns in the repository defined by Repository Manager and are from the collection of
security patterns previously hosted in patternshare.org [11]. Let us consider a developer who needs to
improve access control in a system that offers multiple services. Suppose that for an experienced developer
it is apparent to use the Single Access Point pattern.

However, our user does not know this, and therefore submits a query with the following problem descrip-
tion: “complex security control”. The Patterns 2.0 service obtains the Single Access Point and Role Based
Access Control patterns as results from the other services, discovers that other users previously used Single
Access Point for similar problems and sends this information to the user. The developer then submits the
feedback on the recommended patterns to the system.

Let us now consider a pattern Writer, who is preparing a pattern language on security in mobile applica-
tions, and would like to find related patterns and pattern languages. The user can submit a query on “secure
mobile applications” to the Patterns 2.0 service and it will search for related patterns in pattern repositories
and pattern search engines. The developer can browse through the list of results to see if there are related
patterns to cite in his language. One can imagine an extension of this scenario, where query consists of
patterns already present in the language, similarly to query-by-example approach.

4 Discussion

Since the Patterns 2.0 service does not store pattern descriptions, there is no copyright issues involved.

12This name combines “patterns” and “Google”, one of the most popular search engines
13This name combines “patterns” and “Flickr”, one of the most popular services for sharing (and tagging)

photos
14One of the first systems for recommending movies was named “MovieLens”, followed by several systems

with similar names in different domains

B2 – 9

Figure 2: Using Patterns 2.0 for applying and detecting patterns in code.

The quality of Patterns 2.0 results obviously depends on the quality of its component services. One of
possible future work directions can be investigation if Patterns 2.0 can perform better than the component
services.

We can consider one additional use case for Patterns 2.0, shown in Figure 2. In this case, ad-hoc tools are
adopted for automation of applying patterns and detecting them in the code. This Figure introduces two
new services:

– Code generation service. A service that can generate code templates implementing the selected
pattern. An example is described by O’Cinneide and Nixon [16].

– Pattern detection service. A service that analyses code to determine instances of patterns that occur
in the code. The PTIDEJ tool [1] provides such functionality.

Such services can be also used by the Patterns 2.0 service for gathering feedback on chosen
patterns and for providing pattern usage history, correspondingly. However, in the architecture
of the Patterns 2.0 service, described in this paper, we leave out the description of tools that
automatically generate code implementing patterns (code generation services) and of tools that
automatically detect patterns in the code. The reasons why we do not include these tools are:
(i) Even though several approaches for automatic detection and code generation have been pro-
posed, the tools remain at the stage of prototypes and were not taken by the mainstream of IDE
tools; (ii) such tools are usually limited to GoF patterns, while our solution is more general
and does not depend on the repository; (iii) we would like to beyond software patterns, rec-
ommending also other types of patterns (e.g., patterns for organizing meetings or conferences),
and such patterns are not related to code.

In this work we do not consider pattern languages that organize patterns in collections. The
use of such languages can provide additional information for improving pattern selection, es-
pecially in the case of recommending sequences of patterns. The inclusion of pattern languages
can be one of future work directions.

B2 – 10

5 Conclusion

We presented the architecture and use cases of a composite service for facilitating the selection
of patterns. A unique aspect of this service is its use of different types of services and shar-
ing experiences among pattern users. The service composes other existing services (such as
existing pattern repositories or pattern tagging services) for delivering pattern-related content
to the user. Future work will include the definition of standard APIs for the services compos-
ing Patterns 2.0 and implementation of the service. This goal requires a collaborative effort
of the creators of pattern management tools, and progress towards this end has been made
over the last year. Information about the further development of this work will be available at
http://disi.unitn.it/˜birukou/pattern_selection.

Acknowledgement

We would like to thank our shepherd Klaus Marquardt for his many insightful comments.

References

[1] H. Albin-Amiot, P. Cointe, Y.-G. Gueheneuc, and N. Jussien. Instantiating and detecting
design patterns: Putting bits and pieces together. In International Conference on Auto-
mated Software Engineering, pages 166–173, 2001.

[2] A. Birukou, E. Blanzieri, V. D’Andrea, P. Giorgini, N. Kokash, and A. Modena. IC-
Service: A service-oriented approach to the development of recommendation systems. In
Proceedings of ACM Symposium on Applied Computing. Special Track on Web Technolo-
gies, 2007.

[3] A. Birukou, E. Blanzieri, P. Giorgini, and M. Weiss. A multi-agent system for choosing
software patterns. Technical Report DIT-06-065, University of Trento, 2006.

[4] J. Deng, E. Kemp, and E. G. Todd. Managing UI pattern collections. In ACM SIGCHI New
Zealand Chapter’s International Conference on Computer-Human Interaction, pages 31–
38, New York, NY, USA, 2005. ACM.

[5] W. Fan, M. Gordon, and P. Pathak. On linear mixture of expert approaches to information
retrieval. Decision Support Systems, 42(2):975–987, November 2006.

[6] S. Fincher. PLML: Pattern language markup language. report of workshop held at CHI,
Interfaces, 56 (pp. 26-28). Technical report, 2003.

[7] S. Fox, K. Karnawat, M. Mydland, S. Dumais, and T. White. Evaluating implicit measures
to improve web search. ACM Trans. Inf. Syst., 23(2):147–168, 2005.

B2 – 11

[8] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements of Reusable
Object-Oriented Software. Addison-Wesley Longman Publishing Co., Inc., 1995.

[9] P. Gomes, F. C. Pereira, P. Paiva, N. Seco, P. Carreiro, J. L. Ferreira, and C. Bento. Using
CBR for automation of software design patterns. In European Conference on Advances
in Case-Based Reasoning, pages 534–548, London, UK, 2002. Springer-Verlag.

[10] S. L. Greene, P. M. Matchen, L. Jones, J. C. Thomas, and M. Callery. Tool-based deci-
sion support for pattern assisted development. In CHI 2003 workshop on HCI Patterns:
Concepts and Tools, 2003.

[11] M. Hafiz, P. Adamczyk, and R. E. Johnson. Organizing security patterns. Software, IEEE,
24(4):52–60, 2007.

[12] N. Harrison, P. Avgeriou, and U. Zdun. Architecture patterns as mechanisms for capturing
architectural decisions. IEEE Software, July-August 2007.

[13] D. C. Kung, H. Bhambhani, R. Shah, and G. Pancholi. An expert system for suggesting
design patterns: a methodology and a prototype. In T. M. Khoshgoftaar, editor, Soft-
ware Engineering With Computational Intelligence, Series in Engineering and Computer
Science. Kluwer International, 2003.

[14] D. May and P. Taylor. Knowledge management with patterns. Communications of the
ACM, 46:94–99, 2003.

[15] G. Mussbacher, M. Weiss, and D. Amyot. Formalizing architectural patterns with the
Goal-oriented Requirement Language. In Nordic Pattern Languages of Programs Con-
ference, September 2006.

[16] M. O’Cinneide and P. Nixon. Automated software evolution towards design patterns. In
International Workshop on Principles of Software Evolution, pages 162–165. ACM, 2001.

[17] L. Rising. The Pattern Almanac. Addison-Wesley Longman Publishing Co., Inc., 2000.

[18] I. Sommerville. Software engineering. Addison-Wesley, Boston, MA, USA, 7th edition,
2004.

[19] M. Weiss. Patterns and their impact on system concerns. In European Conference on
Pattern Languages of Programs, 2008.

[20] L. Welicki, J. M. C. Lovelle, and L. J. Aguilar. Patterns meta-specification and cataloging:
Towards a more dynamic patterns life cycle. In International Workshop on Software
Patterns: Addressing Challenges at COMPSAC 2007, 2007.

[21] U. Zdun. Systematic pattern selection using pattern language grammars and design space
analysis. Software: Practice and Experience, 37(9):983–1016, 2007.

B2 – 12

Applying Architectural Patterns for

Parallel Programming

Solving the One-dimensional Heat Equation

Jorge L. Ortega Arjona∗

Departamento de Matemáticas

Facultad de Ciencias, UNAM.

jloa@ciencias.unam.mx

Abstract

The Architectural Patterns for Parallel Programming is a collection of
patterns related with a method for developing the coordination of parallel
software systems. These architectural patterns take as input information
(a) the available parallel hardware platform, (b) the parallel programming
language of this platform, and (c) the analysis of the problem to solve, in
terms of an algorithm and data.

In this paper, it is presented the application of the architectural pat-
terns along with the method for developing a coordination for solving the
One-dimensional Heat Equation. The method used here takes the infor-
mation from the Problem Analysis, proposes an architectural pattern for
the coordination, and provides elements about its implementation.

1 Introduction

A parallel program is the specification of a set of processes executing simulta-
neously, and communicating among themselves in order to achieve a common
objective [16]. This definition is obtained from the original research work in par-
allel programming provided by E.W. Dijkstra [4], C.A.R. Hoare [7], P. Brinch-
Hansen [2], and many others, who have established the main basis for parallel
programming today. Practitioners in the area of parallel programming recognize
that the success of a parallel program is able to achieve –commonly, in terms of
performance– is affected by three main factors: (a) the hardware platform, (b)
the programming language, and (c) the problem to solve.

Nevertheless, parallel programming still represents a hard problem to the
software designer and programmer: we do not yet know how to solve an arbi-

∗Copyright retain by author. Permission granted to Hillside Europe for inclusion in the
CEUR archive of conference proceedings and for Hillside Europe website.

B3 - 1

trary problem efficiently on a parallel system of arbitrary size. Hence, parallel
programming, at its actual stage of development, does not (cannot) offer univer-
sal solutions, but tries to provide some simple ways to get started. By sticking
with some common parallel coordinations, it is possible to avoid a lot of errors
and aggravation. Many approaches have been presented up to date, proposing
descriptions of top-level coordinations observed in parallel programs. Some of
these descriptions are: Outlines of the Program [3], Programming Paradigms
[8], Parallel Algorithms [5], High-level Design Strategies [9], and Paradigms for
Process Interaction [1]. These descriptions provide common overall coordina-
tions such as, for example,“master-slave”, “pipeline”, “work-pile”, and others.
They represent assemblies of parallel software components which are allowed to
simultaneously execute and communicate. Furthermore, these descriptions are
expected to support the design of parallel programs, since all of them introduce
common forms that such assemblies exhibit.

The Architectural Patterns for Parallel Programming [10, 11, 12, 13, 14, 15]
represent a Software Patterns approach for designing the coordination of par-
allel programs. These Architectural Patterns attempt to save the transforma-
tion “jump” between algorithm and program. They are defined as fundamental
organizational descriptions of common top-level structures observed in parallel
software systems [10], specifying properties and responsibilities of their sub-
systems, and the particular form in which they are assembled together into a
coordination.

Architectural patterns allow software designers and developers to understand
complex software systems in larger conceptual blocks and their relations, thus
reducing the cognitive burden. Furthermore, architectural patterns provide sev-
eral “forms” in which software components of a parallel software system can be
structured or arranged, so the overall coordination of such a software system
arises. Architectural patterns also provide a vocabulary that may be used when
designing the overall coordination of a parallel software system, to talk about
such a structure, and feasible implementation techniques. As such, the Archi-
tectural Patterns for Parallel Programming refer to concepts that have formed
the basis of previous successful parallel software systems.

The most important step in designing a parallel program is to think carefully
about its overall coordination. The Architectural Patterns for Parallel Program-
ming provide descriptions about how to organize a parallel program, having the
following advantages [10, 11, 12, 13, 14, 15]:

• The Architectural Patterns for Parallel Programming (as any Software
Pattern) provide a description that links a problem statement (in terms of
an algorithm and the data to be operated on) with a solution statement
(in terms of an organization or coordination of communicating software
components).

• The partition of the problem is a key for the success or failure of a parallel

B3 - 2

program. Hence, the Architectural Patterns for Parallel Programming
have been developed and classified based on the kind of partition applied
to the algorithm and/or the data present in the problem statement.

• As a consequence of the previous two points, the Architectural Patterns for
Parallel Programming can be selected depending on characteristics found
in the algorithm and/or data, which drive the selection of a potential
parallel structure by observing and studying the characteristics of order
and dependence among instructions and/or datum.

• The Architectural Patterns for Parallel Programming introduce parallel
structures or coordinations as forms in which software components can
be assembled or arranged together, considering the different partitioning
ways of the algorithm and/or data.

Nevertheless, even though the Architectural Patterns for Parallel Program-
ming have these advantages, they also present the disadvantage of not describ-
ing, representing, or producing a complete parallel program in detail. Other
Software Patterns are still needed for achieving this. Anyway, the Architectural
Patterns for Parallel Programming are proposed as a way of helping a software
designer to select a parallel structure as a starting point when designing a paral-
lel program. For a complete exposition of the Architectural Patterns for Parallel
Programming, refer to [10], and further work on each particular architectural
pattern in [11, 12, 13, 14, 15].

2 Problem Analysis – The One-dimensional Heat

Equation

The present paper attempts to demonstrate the use of the Architectural Pat-
terns for Parallel Programming for designing a coordination that solves the
One-dimensional Heat Equation. The objective is to show how an architec-
tural pattern can be selected and applied so it deals with the functionality and
requirements present in this problem.

2.1 Problem Statement

Partial differential equations are commonly used to describe physical phenomena
that continuously change in space and time. One of the most studied and well
known of such equations is the Heat Equation, which mathematically models
the steady-state heat flow in a region that exposes certain dimensionality, with
certain fixed temperatures on its boundaries. In the present example, the region
is represented by a one-dimensional entity, for example, a wire of homogeneous
material and uniform thickness. The surroundings of the wire are perfectly
insulated, and on the extremes, each point keeps a known, fixed temperature. As
heat flows through the wire, the temperature of each point eventually reaches a

B3 - 3

value or state in which such a point has a steady, time-independent temperature
maintained by the heat flow. Thus, the problem of solving the One-dimensional
Heat Equation is to define the equilibrium temperature u(x) for each point x
on the one-dimensional wire. Normally, the heat is studied as a flow through an
elementary piece of the wire, a finite element. This element is represented as a
small, one-dimensional segment of the wire, with a length of ∆x (Figure 1).

Δx

Figure 1: A small one-dimensional element.

Given the insulation surrounding the wire, there could only be a flow through
its only dimension. At every point x, the velocity of the heat flow is considered
to have a horizontal flow component, vx, which is represented in terms of its
temperature u(x) by the equation:

vx = −k
∂u

∂x

This equation means that heat flow is proportional to the temperature gra-
dient, towards decreasing temperatures. Moreover, in equilibrium, the element
holds a constant amount of heat, making its temperature u(x) a constant. Thus,
in the steady-state, this is expressed as:

∂vx

∂x
= 0

Combining this equation with the previous equation for the velocity of flow,
thus Laplace’s law for equilibrium temperatures arises:

∂2u

∂x2
= 0

Known as the one-dimensional heat equation or equilibrium equation, this
equation is abbreviated and expressed in general terms (and dimensions) as:

∇
2u = 0

A function u(x) that satisfies this equation is known as a “potential func-
tion”, and it is determined by boundary conditions. By now, for the actual
purposes, the One-dimensional Heat Equation allows to mathematically model

B3 - 4

u = 0 u = 100
u = ?

Figure 2: A wire with fixed temperatures at each extreme.

the heat flow through a wire. Nevertheless, in order to develop a program that
numerically solves this equation, it is still required to perform a series of further
considerations. Let us consider by now a thin wire, for which temperatures are
considered fixed at each extreme (Figure 2).

In order to develop a program that models the Heat Equation, first it is
necessary to obtain its discrete form. So, the wire in Figure 2 is divided into
segments, each segment with a size of h. This size is relatively very small
regarding the size of the whole wire, so the segment can be considered as a
single point within the wire. So, this results on a segmented wire, in which two
types of segments can be considered (Figure 3).

E I I I I I I I I I I I I EI

h

Figure 3: A segmented wire with two types of elements: interior (I) and extreme
(E).

1. Interior segments, which require computing their temperatures, each one
having to satisfy the heat equation.

2. Extreme segments, which have fixed and given temperatures.

The discrete solution of the Heat Equation is based on the idea that the heat
flow through interior elements is due to the temperature differences between an
elements and all its neighbors. Let us suppose the temperature of a single
interior element u(i), whose two adjacent neighboring elements are u(i− 1) and
u(i + 1) (Figure 4).

Notice that for the case, h should be small enough so each neighboring
element’s temperature can be approximated in terms of a Taylor expansion. So,
the discrete heat equation is reduced to a difference equation. Rearranging it, it
is noticeable that for thermal equilibrium, the temperature of a single element
u(i) in time, from one thermal state to another, is:

u(t + 1, i) ≈ u(t, i) +
1

h2
(u(t, i − 1) + u(t, i + 1) − 2u(t, i))

B3 - 5

This is the discrete equation to be used in order to obtain a parallel numerical
solution for the One-dimensional Heat Equation.

2.2 Specification of the Problem

From the previous section, it is noticeable that using a wire segmented into n
segments, the discrete form of the Heat Equation implies a computation for
each discrete segment of the wire. Moreover, taking into consideration the time
as another dimension so the evolution of temperatures through time can be ob-
served, and solving it using a direct method on a sequential computer, requires
something like O(n3) units of time. Suppose a numerical example: for a wire
with, for example, n = 65536, it is required to solve about the same number of
average operations, involving floating point coefficients. Using a sequential com-
puter with a clock frequency of about 1MHz, it would take about eight years
for the computation. Furthermore, notice that naive changes to the require-
ments (which are normally requested when performing this kind of simulations)
produce drastic (exponential) increments of the number of operations required,
which at the same time affects the time required to calculate this numerical
solution.

• Problem Statement. The One-dimensional Heat Equation, in its discrete
representation, and for a relatively large number of segments in which a
wire is divided, can be computed in a more efficient way by:

1. using a group of software components that exploit the one-dimensional
logical structure of the wire, and

2. allowing each software component to simultaneously calculate the
temperature value for all segments of the wire at a given time step.

The objective is to obtain a result in the best possible time-efficient way.

• Descriptions of the data and the algorithm. The relatively large number
of segments in which a wire is divided and the discrete representation of
the One-dimensional Heat Equation is described in terms of data and an
algorithm. The divided region is normally represented as a long wire in
terms of a (n+2) array of segments which represent every discrete element
of the wire, and encapsulate some floating point data which represents

u(i−1) u(i) u(i+1)

h

Figure 4: An element u(i) and its two neighboring elements.

B3 - 6

temperature, as shown as follows. Thus, a whole wire consists of n interior
segments and 2 extreme segments.

class Segment implements Runnable{
...
private int i = -1;
...
private Segment(int i){

this.i = i;
new Thread(this).start();

}
...

}

Each Segment object is able to compute a local discrete heat equation
as a single thread. Thus, it exchanges messages with its neighboring seg-
ments (whether interior or extreme) and computes its local temperature,
as follows:

class Segment implements Runnable{
...
private int i = -1;
...
public void run(){

double temperature, received, total;
for (int i = 0; i < iterations; i++) {

// Here the actual segment exchanges data with
// its neighboring elements
total = 0.0;
for (i = 0; i < 2; i++) {

// Receive from neighboring elements
// and put it in the variable ‘received’
total += received;

}
temperature += temperature + (1/h^2)*(total - 2*temperature);

}
}
...

}

Each time step, a new temperature for the local Segment object is ob-
tained from the previous temperature and the temperatures of the neigh-
boring segments (whether interior or extreme). Notice that the term “time
step” implies an iterative method in which the operation requires four co-
efficients. The algorithm described takes into consideration an iterative so-
lution of operations, known as relaxation. The simplest relaxation method
is the Jacobi relaxation, in which the temperature of each and every inte-
rior segment is simultaneously approximated using its local temperature

B3 - 7

and the temperatures of its neighbors (and it is the one presented here).
Other relaxation methods include the Gauss-Seidel relaxation and the suc-
cessive over-relaxation (SOR). Iterative methods tend to be more efficient
than direct methods.

• Information about parallel platform and programming language. The par-
allel system available for this example is a SUN SPARC Enterprise T5120
Server. This is a multi-core, shared memory parallel hardware platform,
with 1× 8-Core UltraSPARC T2, 1.2 GHz processors (capable of running
64 threads), 32 Gbytes RAM, and Solaris 10 as operating system [17].
Applications for this parallel platform can be programmed using the Java
programming language [5, 6].

• Quantified requirements about performance and cost. This application ex-
ample has been developed in order to test the parallel system described in
the previous point. The idea is to experiment with the platform, testing
its functionality in time, and how it maps with a domain parallel applica-
tion. So, the main objective is simply to test and characterize performance
(in terms of execution time) regarding the number of processes/processors
involved in solving a fixed size problem. Thus, it is important to retrieve
information about the execution time considering several configurations,
changing the number of processes on this parallel, shared memory plat-
form.

3 Coordination Design

In this section, the Architectural Patterns for Parallel Programming [10] are
used along with the the information from the Problem Analysis, in order to
select an architectural pattern for developing a coordination that solves the
One-dimensional Heat Equation.

3.1 Specification of the System

• The scope. This section aims to describe the basic operation of the paral-
lel software system, considering the information presented in the Problem
Analysis step about the parallel system and its programming environment.
Based on the problem description and algorithmic solution presented in
the previous section, the procedure for selecting an architectural pattern
for a parallel solution to the One-dimensional Heat Equation problem is
presented as follows [10]:

1. Analyze the design problem and obtain its specification. Analyzing
the problem description and the algorithmic solution provided, it is
noticeable that the calculation of the One-dimensional Heat Equa-
tion is a step-by-step, iterative process. Such a process is based on
calculating the next temperature of each segment of the wire through

B3 - 8

each time step. The calculation uses as input the previous tempera-
ture, and the temperatures of the two neighbor segments of the wire,
and provides the temperature at the next time step.

2. Select the category of parallelism. Observing the form in which the
algorithmic solution partitions the problem, it is clear that the wire
is divided into segments, and computations should be executed si-
multaneously on different segments. Hence, the algorithmic solution
description implies the category of Domain Parallelism.

3. Select the category of the nature of the processing components. Also,
from the algorithmic description of the solution, it is clear that the
temperature of each segment of the wire is obtained using exactly the
same calculations. Thus, the nature of the processing components of
a probable solution for the One-dimensional Heat Equation, using
the algorithm proposed, is certainly a Homogeneous one.

4. Compare the problem specification with the architectural pattern’s
Problem section. An Architectural Pattern that directly copes with
the categories of domain parallelism and the homogeneous nature
[10] of processing components is the Communicating Sequential
Elements (CSE) pattern [11]. In order to verify that this architec-
tural pattern actually copes with the One-dimensional Heat Equation
problem, let us compare the problem description with the Problem
section of the CSE pattern. From the CSE pattern description, the
problem is defined as [11]:

“A parallel computation is required that can be performed as
a set of operations on regular data. Results cannot be con-
strained to a one-way flow among processing stages, but each
component executes its operations influenced by data values
from its neighboring components. Because of this, compo-
nents are expected to intermittently exchange data. Com-
munications between components follow fixed and predictable
paths”.

Observing the algorithmic solution for the One-dimensional Heat
Equation, it can be defined in terms of calculating the next tem-
perature of the wire segments as ordered data. Each segment is
operated almost autonomously. The exchange of data or communi-
cation should be between neighboring segments of the wire. So, the
CSE is chosen as an adequate solution for the One-dimensional Heat
Equation, and the architectural pattern selection is completed. The
design of the parallel software system should continue, based on the
Solution section of the CSE pattern.

• Structure and dynamics. Based on the information of the Communi-
cating Sequential Elements architectural pattern, it is used here to describe
the solution to the Heat Equation in terms of this architectural pattern’s
structure and behavior.

B3 - 9

1. Structure. Using the Communicating Sequential Elements architec-
tural pattern for the One-dimensional Heat Equation, the same oper-
ation is applied simultaneously to obtain the next temperature values
of each segment. However, this operation depends on the partial re-
sults in its neighboring segments. Hence, the structure of the actual
solution involves a regular, one-dimensional, logical structure, con-
ceived from the wire of the original problem. Therefore, the solution
is presented as a one-dimensional network of segments that follows
the shape of the wire. Identical components simultaneously exist and
process during the execution time. An Object Diagram, representing
the network of segments that follows the one-dimensional shape of
the wire and its division into segments, is shown in Figure 5.

:Channel :Segment :Channel :Segment :Channel

Figure 5: Object Diagram of Communicating Sequential Elements for the solu-
tion to the One-dimensional Heat Equation.

2. Dynamics. A scenario to describe the basic run-time behavior of the
Communicating Sequential Elements pattern for solving the One-
dimensional Heat Equation is shown as follows. Notice that all the
segments, as basic processing software components, are active at the
same time. Every segment performs the same temperature operation,
as a piece of a processing network. However, for the one-dimensional
case here, each segment object communicates with its previous and
next neighbors as shown in Figure 6.

The processing and communicating scenario is as follows:

– Initially, consider only a single Segment object, segment(i).
At first, it exchanges its local temperature value with its neigh-
bors segment(i-1) and segment(i+1) though the adequate
communication Channel components. After this, segment(i)
counts with the different temperatures from its neighbors.

– The temperature operation is simultaneously started by the seg-
ment(i) component and all the other components of the wire.

– In order to continue, all components iterate as many times as
required, exchanging their partial temperature values through
the available communication channels.

– The process repeats until each component has finished iterating,
and thus, finishing the whole One-dimensional Heat Equation
computation.

3. Functional description of components. This section describes each
processing and communicating software components as participants

B3 - 10

segment(i+1):Segment:Channelsegment(i):Segment:Channelsegment(i−1):Segment

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

temperature

obtainNextTemperature()obtainNextTemperature()obtainNextTemperature()

Figure 6: Sequence Diagram of the Communicating Sequential Elements
for communicating temperatures through channel components for the One-
dimensional Heat Equation.

of the Communicating Sequential Elements architectural pattern, es-
tablishing its responsibilities, input and output for solving the One-
dimensional Heat Equation.

– Segment. The responsibilities of a segment, as a processing
component, are to obtain the next temperature from the temper-
ature values it receives, and make available its own temperature
value so its neighboring components are able to proceed.

– Channel. The responsibilities of every channel, as a communi-
cation component, are to allow sending and receiving tempera-
ture values, synchronizing the communication activity between
neighboring sequential elements. Channel components are de-
veloped as the main design objective of a following step, called
“Communication Design”, which is not addressed in this paper.

4. Description of the coordination. The Communicating Sequential El-
ements pattern describes a coordination in which multiple Segment
objects act as concurrent processing software components, each one
applying the same temperature operation, whereas Channel objects
act as communication software component which allow exchanging
temperature values between sequential components. No temperature
values are directly shared among Segment objects, but each one
may access only its own private temperature values. Every Seg-

B3 - 11

ment object communicates by sending its temperature value from
its local space to its neighboring Segment objects, and receiving
in exchange their temperature values. This communication is nor-
mally asynchronous, considering the exchange of a single tempera-
ture value, in a one to one fashion. Therefore, the data representing
the whole one-dimensional wire represents the regular logical struc-
ture in which data of the problem is arranged. The solution, in terms
of a segmented wire, is presented as a network that actually reflects
this logical structure in the most transparent and natural form [11].

5. Coordination analysis. The use of the Communicating Sequential El-
ements patterns as a base for organizing the coordination of a parallel
software system for solving the One-dimensional Heat Equation has
the following advantages and disadvantages:

– Advantages

(a) The order and integrity of temperature results is granted be-
cause each Segment object accesses only its own local tem-
perature value, and no other data is directly shared among
components.

(b) All Segment objects have the same structure and behavior,
which normally can be modified or changed without excessive
effort.

(c) The solution is easily structured in a transparent and natural
form as a one-dimensional array of components, reflecting the
logical structure of the one-dimensional wire in the problem.

(d) All Segment objects perform the same temperature oper-
ation, and thus, granularity is independent of functionality,
depending only on the size and number of the elements in
which the one-dimensional wire is divided. Changing the
granularity is normally easy, by just adjusting the number of
Segment objects in which the wire is divided, thus obtaining
a better resolution or precision.

(e) The Communication Sequential Elements pattern can be eas-
ily mapped into the shared memory structure of the parallel
platform available.

– Liabilities

(a) The performance of a parallel application for solving the
One-dimensional Heat Equation based on the Communicat-
ing Sequential Elements pattern is heavily impacted by the
communication strategy used. For the present example, the
threads available in the parallel platform have to take care
of a large number of Segment objects, so each thread has
to operate on a subset of the data rather than on a single
value. Due to this, dependencies between data, expressed as

B3 - 12

communication exchanges, could be a cause of a slow down
in the program execution.

(b) For this example, load balancing is kept by allowing only a
fixed number of Segment objects per thread, which tends
to be larger than the number of threads available. Never-
theless, if data would not be easily divided into same-size
subsets, then the computational intensity varies on different
processors. Even though every processor is virtually equal
to the others, maintaining the synchronization of the paral-
lel application means that any thread that slows down should
eventually catch up before the computation can proceed to
the next step. This builds up as the computations proceeds,
and could impacts strongly on the overall performance.

(c) Using synchronous communications implies a significant amount
of effort required to get a minimal increment in performance.
On the other hand, if the communications are kept asyn-
chronous, it is more likely that delays would be avoided. This
is taken into consideration in the next step, “Communication
Design” (not described here).

4 Implementation

In this section, all the software components described in the Coordination De-
sign step are considered for their implementation using the Java programming
language. Once programmed, the whole system is evaluated by executing it on
the available hardware platform, measuring and observing its execution through
time, and considering some variations regarding the granularity.

Here, it is only presented the implementation of the coordination structure,
in which the processing components are introduced, implementing the actual
computation that is to be executed in parallel. Further design work is required
for developing the channel as communication and synchronization components.
Nevertheless, this design and implementation goes beyond the actual purposes
of the present paper.

The distinction between coordination and processing components is impor-
tant, since it means that, with not a great effort, the coordination structure
may be modified to deal with other problems whose algorithmic and data de-
scriptions are similar to the One-dimensional Heat Equation, such as the Wave
Equation or the Poisson Equation.

4.1 Coordination

Considering the existence of a class Channel for defining the communications be-
tween Segment objects, the Communicating Sequential Elements architectural

B3 - 13

pattern is used here to implement the main Java class of the parallel software
system that solves the One-dimensional Heat Equation. The class Segment is
presented as follows. This class represents the Communicating Sequential Ele-
ments coordination for the One-dimensional Heat Equation example.

class Segment implements Runnable{
private static int M = 65536, iterations = 10;
private static Channel[][] segment = null;
private int i = -1;
public Segment(int i){

this.i = i;
new Thread(this).start();

}
public void run(){

double temperature, received, total;
temperature = random(10*M);
for (int iter = 0; iter < iterations; iter++) {

// Send local temperature to neighbors
if (i < M-2) send(segment[i+1][0], temperature);
if (i > 1) send(segment[i-1][1], temperature);
total = 0.0;
// Receive temperature from neighbors
if(i > 0 && i < M-1){
received = receive(segment[i][0]);
total += received;
received = receive(segment[i][1]);
total += received;

}
// Insert processing here

}
}
public static void main(String[] args){

segment = new Channel[M][2];
for(int m = 0; m < M; m++){

for(int i = 0; i < 2; i++){
segment[m][i] = new Channel();

}
}
for(int m = 0; m < M; m++){

new Segment(m);
}
System.exit(0);

}
}

This class only creates two adjacent, one-dimensional arrays of Channel com-
ponents and Segment components, which represents the coordination structure
of the whole parallel software system, developed for executing on the avail-
able parallel hardware platform. Channel components are used for exchanging
temperature values between neighboring Segment components, each one first

B3 - 14

sending its own temperature value (which is an asynchronous, non-blocking op-
eration), and later retrieving the temperature values of the two neighboring wire
components. Using this data, now it is possible to sequentially process to obtain
the new temperature of the present component. This communication-processing
activity repeats as many times as iterations defined.

The utility of the coordination presented here goes beyond the One-dimensional
Heat Equation application. By modifying the sequential processing section,
each wire component is capable of computing the discrete versions of other one-
dimensional differential equations, such as the Wave Equation or the Poisson
Equation.

4.2 Processing components

At this point, all what properly could be considered “parallel design and im-
plementation” has finished: data is initialized (here, randomly, but it can be
initialized with particular temperature values) and distributed among a collec-
tion of Segment components. It is now the moment to insert the sequential
processing which corresponds to the algorithm and data description found in
the Problem Analysis, This is done in the class Segment, where it is commented
Insert processing here, by simply adding the following code, and consider-
ing the particular declarations for its computation:

temperature += temperature + (1/h^2)*(total - 2*temperature);

The simple, sequential Java code allows that each Segment component ob-
tains a local temperature based on the One-dimensional Heat Equation. Modi-
fying this code implies modifying the processing behavior of the whole parallel
software system, so the class Segment can be used for other parallel applications,
as long as they are one-dimensional and execute on a shared memory parallel
computer.

5 Summary

The Architectural Patterns for Parallel Programming are applied here along
with a method for selecting them, in order to show how to select an architec-
tural pattern that copes with the requirements of order of data and algorithm
present in the One-dimensional Heat Equation problem. The main objective of
this paper is to demonstrate, with a particular example, the detailed design and
implementation that may be guided by a selected architectural pattern. More-
over, the application of the Architectural Patterns for Parallel Programming
and the method for selecting them is proposed to be used during the Coordi-
nation Design and Implementation for other similar problems that involve the
calculation of differential equations for a one-dimensional problem, executing on
a shared memory parallel platform.

B3 - 15

6 Acknowledgements

The author wishes to thank Neil Harrison, my shepherd for Euro Plop 2009, for
his encouraging comments about the present paper.

References

[1] G.R. Andrews Foundation of Multithreaded, Parallel and Distributed Pro-
gramming., Addison-Wesley Longman, Inc., 2000.

[2] P. Brinch-Hansen Distributed Processes: A Concurrent Programming Con-
cept., Communications of the ACM, Vol.21, No. 11, 1978.

[3] K.M. Chandy, and S. Taylor An Introduction to Parallel Programming.
Jones and Bartlett Publishers, Inc., Boston, 1992.

[4] E.W. Dijkstra Co-operating Sequential Processes, In Programming Lan-
guages (ed. Genuys), pp.43-112, Academic Press, 1968.

[5] S. Hartley Concurrent Programming. The Java Programming Language.,
Oxford University Press Inc., 1998.

[6] Herlihy, M., and Shavit, N., The Art of Multiprocessor Programming. Mor-
gan Kaufmann Publishers. Elsevier, 2008.

[7] C.A.R. Hoare Communicating Sequential Processes. Communications of
the ACM, Vol.21, No. 8, August 1978.

[8] S. Kleiman, D. Shah, and B. Smaalders Programming with Threads, 3rd ed.
SunSoft Press, 1996.

[9] B. Lewis and D.J.. Berg Multithreade Programming with Java Technology,
Sun Microsystems, Inc., 2000.

[10] J.L. Ortega-Arjona and G.R. Roberts Architectural Patterns for Parallel
Programming, Proceedings of the 3rd European Conference on Pattern
Languages of Programming and Computing (EuroPLoP98), Kloster Irsee,
Germany, 1998.

[11] J.L. Ortega-Arjona The Communicating Sequential Elements Pattern. An
Architectural Pattern for Domain Parallelism, Proceedings of the 7th
Conference on Pattern Languages of Programming (PLoP2000), Allerton
Park, Illinois, USA, 2000.

[12] J.L. Ortega-Arjona The Shared Resource Pattern. An Activity Parallelism
Architectural Pattern for Parallel Programming, Proceedings of the 3rd Eu-
ropean Conference on Pattern Languages of Programming and Computing
(EuroPLoP98), Kloster Irsee, Germany, 1998.

16

[13] J.L. Ortega-Arjona The Manager-Workers Pattern. An Activity Paral-
lelism Architectural Pattern for Parallel Programming, Proceedings of
the 9th European Conference on Pattern Languages of Programming and
Computing (EuroPLoP2004), Kloster Irsee, Germany, 2004.

[14] J.L. Ortega-Arjona The Parallel Pipes and Filters Pattern. A Functional
Parallelism Architectural Pattern for Parallel Programming, Proceedings
of the 10th European Conference on Pattern Languages of Programming
and Computing (EuroPLoP2005), Kloster Irsee, Germany, 2005.

[15] J.L. Ortega-Arjona The Parallel Layers Pattern. A Functional Parallelism
Architectural Pattern for Parallel Programming, Proceedings of the 6th
Latin American Conference on Pattern Languages of Programming and
Computing (SugarLoafPLoP2007), Porto de Galinhas, Pernambuco, Brasil,
2007.

[16] J.L. Ortega-Arjona Architectural Patterns for Parallel Programming:
Models for Performance Evaluation, PhD Thesis, Depart-
ment of Computer Science, University College London, UK, 2007.
http://www.sigsoft.org/phdDissertations/theses/JorgeOrtega.pdf

[17] Sun Microsystems. Sun SPARC Enterprise T5120 Server.
http://www.sun.com/servers/coolthreads/t5120/.

B3 - 17

Towards Formalized Adaptation Patterns for
Adaptive Interactive Systems

Matthias Bezold

1 University of Ulm, Institute for Information Technology, Ulm, Germany
2 Elektrobit Automotive Software, Erlangen, Germany

matthias.bezold@uni-ulm.de

Abstract. A design pattern provides a general and proven solution for
a recurring problem. Design patterns are an established approach in the
domain of software engineering. Collections of such patterns also exist
for graphical interfaces and adaptive hypertext. However, a collection
of patterns for adaptive interactive systems does not exist. This paper
presents such a collection to provide structured knowledge about apply-
ing adaptations to interactive systems. In addition, a formalization of
these patterns using semantic technologies is presented as well as the
application of these formalizations in an adaptation framework.

1 Introduction

Adaptive interactive systems describe user interfaces that change based on the
user-system interaction to better reflect the requirements of an individual user.
Adaptation has been recognized as a means for improving the usability of user
interfaces and studied accordingly [13]. For instance, one possible adaptation
highlights frequently used values in a list or another one emphasizes interface
elements that might be of increased interest to the user. However, there is no
structured work so far that lists and categorizes different kinds of adaptations
for adaptive interactive systems. At the same time, tool support and frameworks
facilitate a wide-spread use of adaptations in interactive systems.

This paper proposes an approach for adapting multimodal interactive sys-
tems, such as automotive dashboard systems, personal navigation devices, or
home entertainment systems, which can also be speech-enabled. Two contri-
butions are presented. First, an adaptation architecture employs an abstract
definition of adaptation patterns to define adaptations for interactive systems.
These definitions can be reused between different systems, but at the same time
adjusted to the requirements of specific systems. The approach is based on a se-
mantic description of the interactive system and the adaptations are integrated
into a model-based development process. Second, we describe a set of adapta-
tion patterns for interactive adaptive systems. These patterns define successful
adaptations that have been used in different systems.

This paper is organized as follows. After a review of related work in Sec-
tion 2, the application of formalized adaptation patterns in the development of

B4 – 1

interactive systems in demonstrated in Section 3. Section 4 introduces a set of
adaptation patterns that can be used with the presented framework. After an
overview of a prototype implementation and a use case in Section 5, Section 6
concludes this paper.

2 Related Work

This section introduces the concept of patterns, reviews patterns from related
work, e.g. interface patterns, and presents approaches for the formalization of
design patterns. Design patterns are an established method in software engineer-
ing that collects solutions for recurring problems. A design pattern consists of a
proven solution and a discussion of a problem it solves. Moreover, the context
of the pattern further refines the circumstances under which this pattern is ap-
plicable. One problem can be addressed by different patterns and the context
determines which pattern is used best.

The most well-known use of design patterns are the software design patterns
by Gamma el al. [7]. These patterns are widely adopted and taught in classes.
Similarly, Buschmann et al. [4] present a set of patterns for software architecture,
which deal with a more high-level view on software design.

Originally, patterns only existed in textual, narrative form. However, research
on the formalization of patterns aims to increase their utility. A formalized
description is a representation using a well-defined structure and vocabulary,
thus providing a standardized and machine-processable representation. Differ-
ent levels of formalization exist for patterns. The first level is to write down the
narrative pattern descriptions in a formalized pattern format, which enforces
special markings to label the different sections (e.g. motivation or solution) of
a pattern description. This ensures consistency and allows referencing between
different pattern collections by providing a machine-readable structure in which
the patterns are filled in. The Pattern Language Markup Language (PLML) [6]
follows this approach and provides an XML document type definition (DTD) for
specifying patterns. PLML is however a very high-level definition that aims at
describing pattern collections in a uniform way and the semantics of the patterns
are not formalized.

A more formal notation of patterns can serve as a basis for intelligent tool
support, for instance by providing support when refactoring existing projects to
patterns (e.g. Zannier and Maurer [20]). Other approaches even formalize the
semantics of the adaptation patterns. Mikkonen [16] presents an approach for
formalizing patterns based on a custom notation for defining objects formally,
with the focus being on the temporal behavior of design patterns. Hallstrom
and Soundarajan [9] present an approach that enables validation and reasoning
with patterns. Another example is the work by Henninger [11], who proposes a
meta-model for software patterns based on an Web Ontology Language (OWL)
infrastructure for applying the patterns in the software development process.
This model conceptually builds on PLML, but extends it considerably by in-
cluding a more formalized representation of the patterns using description logic

B4 – 2

to add further semantic knowledge about the patterns. Henninger presents inter-
face patterns as an example of this approach. Our approach provides tool sup-
port for adaptation patterns and includes a semantic description of parts of the
patterns, but does not fully formalize the precondition for patterns. Therefore,
our approach is located between simple tool support and fully formal pattern
systems.

Whereas design patterns are mostly used in the domain of software engineer-
ing, patterns were also applied by different researchers to the domain of user
interface design. For instance, van Welie and van der Veer [19] and Borchers [3]
have compiled extensive pattern collections of reusable interface design knowl-
edge, which can be used by designers and system developers in creating graphical
interfaces. Tidwell [18] presents an extensive structured catalog of interface de-
sign patterns, which covers a wide range of topics, such as the general structure
of a graphical application, form input, and aesthetics. However, these patterns
do not cover adaptive user interfaces.

A basic set of abstract adaptation patterns, which are descriptions of proven
adaptations, was presented for adaptive hypertext systems by Danculovic et al.
[5], introducing Link Personalization, Content Personalization, Structure Person-
alization, and Remote Personalization, which all are very general. These patterns
were extended by Koch and Rossi [14] by adding more detailed patterns such as
Adaptive Anchor Selection or Adaptive Sorting of Anchors. However, the adap-
tation of hypertext is focused on content and the linking of different documents
rather than the user interface, as required for adaptive (graphical) interfaces.
Moreover, more information can be extracted from the user-system interaction
of an interactive system, since the observation by an interactive system is richer
than tracking the list of visited pages in hypertext systems. Therefore, adaptive
interactive systems have their own adaptation patterns and defining such pat-
terns can aid developers in deciding under which circumstances to apply which
adaptations to improve an interactive system.

3 Formalization and Execution of Adaptation Patterns

This section describes how a description logic-based, semantic definition of adap-
tation patterns is used to enable adaptivity in interactive systems. In order to
apply these patterns to an interactive system, we introduce a semantic model of
the interactive system.

Whereas the domain of the design patterns by Gamma et al. [7] is source code,
the domain of these adaptation patterns are interactive systems. Therefore, the
abstract description of interactive systems used in this work corresponds to an
abstract description of source code that is required by tool support for design
patterns. For this purpose, the interactive system is described by a semantic
layer. This layer is based on an ontology defined in the Web Ontology Language
(OWL) [17] format and consists of a number of classes and individuals of these
classes. For instance, each graphical element or speech output prompt in the
interactive system is represented by an instance of a “button” or “prompt” class

B4 – 3

and further described by a set of properties, such as color and size in case of the
button. The semantic layer is derived automatically from a description of the in-
teractive system, but annotation contributes further information. The advantage
of this approach is that all parts of the interactive system, e.g. the interactive
system, information about the user, and a description of the adaptations, are
represented using the same formalism. In addition, OWL allows for an automatic
inference of additional information (cf. Horrocks et al. [12]).

An adaptation pattern is a description of a common problem of interactive
systems and a solution of this problem that is based on adapting the interac-
tive system to the behavior of a user. The formalized definition of adaptation
patterns in this work consists of two parts: a declarative description that can be
reused between different systems and a functional description of the adaptations
that defines how an adaptation is performed in a certain system. The formal-
ization facilitates an inclusion in the tool chain, thus enabling a tool-supported
development of adaptive interfaces.

3.1 Declarative Description of Adaptation Patterns

The declarative description of patterns consists of three parts: a trigger of the
pattern, a selection that determines which part of the interface the adaptation
should be applied to, and the name of an abstract adaptation. The declarative
description is called adaptation selector in the adaptation framework, because
it selects an interface element and an adaptation. Adaptation selectors can be
reused between different systems, since they only rely on abstracted information
in the semantic layer to define the declarative part of the adaptation. For in-
stance, graphical elements are addressed as “graphical button” or “list”, which
can support a variety of different implementation and flavors of actual inter-
face elements. The declarative description of an adaptation pattern consists of
a number of adaptation selectors.

The adaptation trigger is connected to the user modeling component [2],
which observes the user and derives information from the user-system interface.
For instance, the user modeling component can predict future user actions (e.g.
opening a certain sub-menu) or the user’s favorite values (e.g. favorite names in
an address book). When the user modeling component provides new information,
the respective adaptation selectors, which are triggered by this information, are
activated.

Interface elements are selected by an adaptation executor through a query
that returns all elements from the semantic layer that match the given query.
For instance, if the user modeling predicts that a certain action called “A” will
be performed next by the user, the selection could load all elements from the
semantic layer that trigger action “A”. A simplified version of SPARQL 3 is used
for the notation for the queries.

3 SPARQL Protocol and RDF Query Language: http://www.w3.org/TR/rdf-sparql-
query/

B4 – 4

����������	
������	������������
�
��������

�������� �����	
����������	
��������

��������������	�������

������
� ����	
�������	����

��
��

������
������	
���	
������

������� !�������
�
���"

����
�
���� ���������	
���

Fig. 1. An adaptation selector selects all graphical buttons that trigger an action that
was predicted. In addition, an abstract adaptation (“Component Emphasis”) is chosen
for the selected elements.

Finally, an abstract adaptation is recommended for the selected elements.
For example, the selected button that triggers action “A” could be emphasised
to draw the user’s attention to it by enabling the “ButtonEmphasis” adaptation,
which is an instance of the “Component Emphasis” pattern (to be introduced
in Section 4).

Fig. 1 shows an adaptation selector that was used as an example throughout
this section: Based on a prediction of a user action “A” by the user modeling
component, the adaptation selector picks all graphical buttons from the seman-
tic layer that trigger action “A” and recommends the “Component Emphasis”
adaptation for these elements.

3.2 Functional Description of Adaptation Patterns

In order to enable the interactive system to apply an abstract adaptation rec-
ommended by an adaptation selector, a functional description of the pattern is
required, i.e., instructions on how to execute this pattern on a specific inter-
face element. Adaptation executors can be system-specific and therefore not be
reused between different systems in every case. The reason is that the execution
of adaptations depends on the specific implementation of the interface element.
However, default implementations have been defined that can be used on a wide
range of elements by changing only basic properties (such as the position or the
size).

The functional definition of patterns specifies the effects of an adaptations
by defining which properties of the individuals are changed. Fig.2 shows an
adaptation executor of the “Component Emphasis” pattern that changes the
color or the size of a graphical button, which are represented by properties of
the corresponding individual. One adaptation pattern is not represented by a
single adaptation executor, but by a set of adaptation executors for different
interface elements, since the same adaptation manifests itself very differently for
different elements. For instance, the Emphasis pattern has a different functional
description for a graphical button than it has for a graphical list.

B4 – 5

���������

���������

��	
������	
�����

�����
��������
����

��
��������������������

����������	
�
����	����������������
�����

����������	 ��

����������

���������������	 ���������� �

��

����������������	

Fig. 2. Example of an adaptation executor, which perform the Emphasis adaptation
on a button.

3.3 Application of the Adaptation Patterns in an Interactive

System

The previous section discusses how adaptations are defined, but not how the
adaptive system decides whether to execute a suggested adaptation. This section
introduces two approaches for defining which adaptations to execute: selection
by the system designer and an automatic procedure in which the adaptation
component decides automatically which adaptations to execute.

Specification by the System Designer An integration of formalized adap-
tation patterns into the model-based development process thus facilitates the
development of adaptive interactive systems. At design time, the formalized
adaptation patterns provide tool support to the designer of the adaptive system.
For this purpose, the system designer can decide when the individual adapta-
tions should be executed by enabling or disabling adaptations for certain parts
of the system.

Adaptations can be enabled on three levels: globally, for an interface con-
text, or for an individual element. First, if an adaptation is enabled globally,
it is executed whenever it is recommended by an adaptation selector. Second,
adaptations can be enabled for interface contexts. An interface context is for ex-
ample a graphical screen or a speech component, which is a set of speech output
prompts and speech input grammars that are enabled together. When an adap-
tation is enabled for an interface context, it is executed in the respective context,
but not in others where the adaptation was not enabled. Third, adaptations can
be enabled on a per-element basis.

In addition, conditions can be added these definitions. For instance, an adap-
tation should only be executed when the user is a beginner, based on information
stored in the user model or the semantic layer. Therefore, the system designer
can decide in a very flexible way which adaptations should be executed, without
the need of defining the adaptations manually.

Automatic Execution by the Adaptation Component In addition to the
developer deciding about which adaptation to apply, an adaptation component

B4 – 6

can decide automatically at runtime about the execution of adaptations. This
decision is based on the semantic representation of both the interactive system
and the adaptations. The overall procedure is similar to the specification of
adaptations, but decisions taken at design time are instead performed by the
adaptation component at runtime.

The adaptation component can automatically decide about the level of adap-
tivity, based on the proficiency of the user in general or with respect to individual
parts of the system. For example, adaptive help can be used for parts of the sys-
tem that the user has not used extensively, while no adaptations are used in
parts that the user knows well.

4 Adaptation Patterns

This section presents a set of adaptation patterns for interactive systems. These
adaptation patterns change the user interface of the system, but do not directly
depend on the application logic. Certain adaptations are outside of the scope
of this paper, because they do not address general problems, but specific algo-
rithms, such as for instance an adaptation of the route generation algorithm of a
navigation device by the Adaptive Route Adviser [15]. Instead, this paper deals
with general adaptations for user interfaces of interactive systems. Since multi-
modal adaptive systems are the subject of the adaptations, their applicability
to speech-based interfaces is also considered.

The patterns presented in this section are more general in their nature than
patterns in other pattern collections, which make them applicable to a broad
range of interface components. Unobtrusiveness is a main principle of these adap-
tations to comply with usability principles such as consistency and learnability.
Adaptations that reconstruct the whole interface thus interfere with such usabil-
ity principles.

Adaptations are executed based on an observation of the user-system inter-
action. This observation of user behavior, called user modeling, creates a repre-
sentation of the user that serves as a basis for decisions about adaptations. For
this purpose, a user modeling component observes the user (e.g. from log data)
and constructs a model using different algorithms, such as the ones presented
by Zukerman and Albrecht [21], thus providing information about user actions
and preferences. The user modeling phase, which is therefore a crucial part of
adaptive interfaces, is not explicitly part of these pattern descriptions. However,
the “Adaptation Trigger” section of the patterns describes which observations
of the user modeling component trigger the respective adaptation.

Adaptation selectors and a set of generic adaptation executors, as introduced
in Section 3, were defined for the patterns presented in this section. In order to
make an adaptation fit into a specific system seamlessly, custom adaptation
executors can be defined in addition to the existing ones.

B4 – 7

4.1 Component Emphasis

Intent Guide the user by emphasizing certain elements of the interface. Limit
the changes to the part of the interface that requires emphasis. In doing so,
enable users to reuse their acquired knowledge of the interactive system and
avoid distracting the user through fundamental changes of the interface.

Motivation During the interaction with an interactive system, a user has a goal
and is looking for interface elements that can help in fulfilling it. For instance,
the user might look for a graphical button triggering an action. The system
provides support by guiding the user to the respective interface elements.

Forces

– The user follows a certain goal when using the system and might spent
considerable time looking for interface elements that facilitate reaching this
goal.

– Performing major changes to the system can confuse the user and distract
from the current task. Subtle guidance instead supports the user.

– Emphasizing wrong elements can impede the user, therefore a sufficiently
good user modeling prediction is crucial for this adaptation.

– The adaptive emphasis should be conceived in a way that the user does not
confuse it with a regular selection in the user interface.

Solution Make the adaptive system change properties of interface elements in
a way that they draw the user’s attention. Use assumptions of a user modeling
component, such as a prediction of the most likely next action or an action the
user has not used yet. Help the user reach the current goal by emphasizing inter-
face elements that are related to the respective assumption of the user modeling
component.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the Component Emphasis adaptation:

– Prediction of the next user action.
– Actions that the user has not used yet, but which others have used.

Related Patterns The “List Item Emphasis” pattern emphasizes elements in a
list and is therefore related to this pattern, which emphasizes arbitrary elements
related to triggering actions.

The “Prominent ’done’ button” pattern [18] statically emphasizes a button
that finishes a task associated with a graphical view, but the emphasis is not
performed based on the current user’s behavior.

B4 – 8

�����������	
	��	����

����������	
	��	����

Fig. 3. Emphasis of a button in an interactive TV system. The “Start search” button
is emphasized compared to the non-emphasized “Rec. list” button. The reasoning is to
provide non-intrusive and subtle hints, in this case by increasing the size of the button
and changing the text color.

Example Consider an electronic program guide, where the user specifies filter
criteria, such as channel or time, to filter the list of TV shows. After a number
of criteria was selected, the user has to press a “Show results” button to see
all shows that match the selected criteria. Increasing the size of the button and
changing colors (see Fig. 3) emphasizes the button, thus supporting the user in
finishing the current task.

The Emphasis pattern is also applicable to voice interfaces. If a user enters
a state where the system reads the possible utterances, saying a phrase as the
first or the last one draws a user’s attention to this phrase.

4.2 List Element Selection

Intent Support the user in selecting similar-looking elements from a list, for
instance by highlighting frequently used entries from the list.

Motivation When selecting elements from a list, users often select some ele-
ments frequently and others not at all. The selection process can be improved
by emphasizing frequently selected elements from the list.

Forces

– Selecting frequently used items in a list should take less time for the user
than selecting others.

– If a list is longer than one screen, highlight the interesting items also in the
scrollbar to enable the user to quickly scroll to the interesting elements.

– Emphasized list elements should be highlighted in a way that the user does
not confuse them with elements the cursor is placed on.

– Emphasizing wrong elements can impede the user, therefore a sufficiently
good user modeling prediction is crucial for this adaptation.

B4 – 9

������������

	
�����	�

�����	�	
	���

�����������

����	���

�	�	�����

�
�����	�

�����	�	
	�����

����	�����	

Fig. 4. Three elements are emphasized in a selection list by the List Item Emphasis
pattern. The emphasized elements are supposed to be selected more frequently by the
user than others.

Solution Emphasize these elements in the list that have been selected more
often before than others. In doing so, let the user more quickly see these elements
which are of increased interest. For instance, change the text or background color
of these elements or add markers to differentiate interesting elements from others.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the List Item Emphasis adaptation:

– List entries that have been selected more often than others either by the
current user or by other users.

– Elements in a list that the user has not yet selected, but which should be
interesting based on the user’s previous behvior.

Related Patterns The “Element Emphasis” adaptation pattern also empha-
sizes interface elements, but these elements are not necessarily similar, as are
list elements, and are mostly used for navigating within the system.

The “Annotated scrollbar” pattern [18] recommends adding information to
the scrollbar, which is also proposed by this pattern to mark the position of
recommended elements in the list. Moreover, the “Adaptive Anchor Annotation”
[14] pattern describes how to annotate links in a hypertext system, and this
pattern can be considered as a sub-set of the anchor annotation pattern by
annotating emphasis.

Example Selecting elements from a list is a very common action when inter-
acting with interactive systems. For instance, selecting a name from the address
book is one of the fundamental functions of interactive systems that support
phone calls, such as mobile phones or automotive dashboard systems. Since users
call a small number of people from their phone book frequently, the selection
of these names from the address book can be quickened by highlighting these

B4 – 10

names. An example of such a system is given in Fig. 4, which shows an address
book that emphasizes the three most frequently selected elements.

Different visualizations of the “List Item Emphasis” pattern are possible and
have been examined by research projects. One example are fisheye menus [1]
that assign a different font size to different elements; this kind of visualization
can be employed for adaptations as well.

4.3 Alternative Elements

Intent Provide a set of configurations for different interface components or
screens and select the appropriate configuration to better support the require-
ments of an individual user.

Motivation Since the demands as well as the skills of users of interactive sys-
tems vary, different system configurations can better reflect the needs of an
individual user. Instead of providing one configuration that tries to consider
all possible users, the adaptation selects the version which is best suited for
the needs of the current user. A user modeling component provides informa-
tion about the proficiency of the user, which it derives for instance from the
interaction speed and the number of user errors.

Forces

– Different configurations of interface components or graphical screens better
reflect the needs of individual users.

– Automatically generated alternatives can break with existing usability prin-
ciples.

– Additional time has to be spent developing the different alternatives, but
the user can benefit from an improved user-system interaction.

Solution Provide different versions of a certain part or component of the inter-
active system to the adaptation component, for instance of a graphical screen,
a speech output prompt, or a property (e.g. font size). Support users by select-
ing the appropriate alternative for the respective entity. Use information from
the user modeling component at runtime to derive the most suitable configura-
tion for the current user. By providing a set of alternatives to the adaptation
component, which were created by the system designer, it is ensured that the
interactive system adheres to design principles.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the Alternative Elements adaptation:

– Preferences or properties of the user, such as the knowledge level or experi-
ence of the user.

B4 – 11

Related Patterns The “Alternative views” pattern [18] lets the user decide
among alternative views, for instance of a web page. However, the most appro-
priate view is not selected automatically.

Example The Alternative Elements pattern can be employed at different levels.
For instance, when a user has to enter different values in an input screen, such
as selecting the destination in a navigation device or selecting criteria in an
interactive TV program guide, a simple version of the screen is provided to
novice users and a more powerful version to advanced users. On a lower level, a
larger font size improves the readability for visually impaired users.

On the other hand, a speech interface can provide different levels of speech
output prompts. Novice users receive extended prompts when they enter a new
part of the system. These prompts explain the most important functions to them.
Intermediate users only require shorter prompts, which list the commands, but
do not necessarily explain them. Finally, expert users, who could be annoyed
by long and repetitive speech output, only hear a short prompt explaining the
current state of the system and receive more explanation on request. A system
that employ this kind of adaptation is for example presented by Hassel and
Hagen [10].

4.4 Adaptive Help Presentation

Intent Present adaptive help for the current situation of the user.

Motivation Help in interactive system is often static or only considers the
currently active screen, but different people are likely to have different problems
in different contexts. Providing help to the user is more valuable if it covers the
current task of the user. By not only taking into account the current context,
i.e., the graphical screen or speech state, but also the user’s interaction history,
help is more specific and can thus support a user more precisely in the current
task.

Forces

– Help tailored to the current task of the user is more valuable than static
help.

– Static help can be too advanced for beginners and at the same time too
superficial for expert users.

– Providing help can be assistive for beginners, but annoying for expert users.

Solution Provide specific help for the current situation of the user. Observe the
user-system interaction to determine the situation and the context of the user.
Present the help either on a separate area of the screen, or use an icon (or an
acoustical “earcon”) to indicate the availability of help. Give the user an option

B4 – 12

����������	
	��	���� ����������	
	��	����

Fig. 5. Adaptive help supports the user by showing a text message that fits the current
situation of the user. If a user is sufficiently proficient in working with the system, help
messages are no longer shown.

to open this help once it is available. But ensure at the same time that the user is
not distracted by the provided help. Therefore, avoid messages that fully engage
the user’s attention, as for instance modal help messages. Provide an acoustic
signal instead of a graphical hint for speech interfaces or visually impaired users.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the Adaptive Help Presentation adaptation:

– Prediction of the next user action.
– Detection of user problems.
– Preferences or properties of the user, such as the knowledge level or experi-

ence of the user.

Related Patterns The “Multi-level help” pattern [18] suggests using different
help techniques. Adaptive help is one kind of help that provides information
adjusted to the current situation of the user.

Example In an interactive TV system, the user can browse the TV program in
an electronic program guide and for this purpose specify different filter criteria,
such as channel or time. Help is presented to the user by fading in a yellow
message box on the top of the screen. When the user enters the selection screen
for the first time, the help explains how to select filter criteria. After some criteria
were selected, the help text on the screen tells the user to open the result screen
next. Fig. 5 gives an example of the adaptive help feature in a digital TV system.

4.5 Shortcut Area

Intent Present shortcuts for executing actions or selecting values to the user on
a separate part of the interface. In doing so, accelerate the execution of frequent
actions or sequences of actions and selection of the user’s favorite values.

B4 – 13

Motivation Users often select the same values repeatedly, for instance when
selecting elements from a list, such as a list of fonts, or by executing the same
actions over and over again. The interaction is simplified by presenting these
items to the user as shortcuts. By employing a special area for the shortcuts,
the decision whether to use shortcuts is left to the user.

Forces

– Finding frequently used elements and executing actions repeatedly can be
very time-consuming for the user. Shortcuts can therefore simplify the user-
system interaction.

– Shortcuts that automatically pop up on top of the interface interfere with
the user interface and distract the user. A separate area that is always visible
instead allows the user to decide whether or not to use shortcuts and limits
the distraction of the user.

Solution Employ a separate area of the screen – called shortcut area – to
present shortcuts to the user, thus avoiding a distraction of the user. Make this
list either part of one interface element (e.g. of a list) or make it a separate part
of the whole screen for presenting global shortcuts. In doing so, enable the user
to find frequently used elements more quickly by selecting them from a distinct
area of the screen. Use the output of a user modeling component to create the
list of shortcuts.

Adaptation Trigger The following observations of the user modeling compo-
nent trigger the Shortcut Area adaptation:

– Prediction of the next user action or a sequence of user actions.
– Prediction of a user preference, such as a TV channel.

Related Patterns The “Streamlined repetition” pattern [18] suggests consider-
ing repeated operations when creating an interface. The Shortcut Area provides
a solution for this recommendation. The “Action panel” pattern [18] presents a
list of available actions to the user, which is similar to an Shortcut Area that
contains user actions. If the Shortcut Area presents a sequence instead of single
items, the adaptation is similar to the “Autocomplete” pattern [18], since the
adaptation anticipates user behavior.

Example In a selection list, a separate area on the top of the list presents the
most frequently selected entries of the list to the user. By selecting them, the
user does not have to scroll through the whole list. One example of such a list is
the font selection list in Microsoft Word (2000 and later), which shows the most
recently used fonts in a separate area on the top of the list.

B4 – 14

��������

	
������

�������	�
�����

�	�����������

Fig. 6. A separate adaptation area presents a list of buttons based on a prediction of
the user’s next actions. These actions are executed by pressing the respective buttons.

A different application of the Shortcut Area pattern is to provide navigation
shortcuts. A user modeling component recognizes user actions and predicts a se-
quence of possible next actions, with each action being represented by a button
in an adaptation area. If the user presses one of these buttons, the action associ-
ated with the button and all actions before the pressed button are executed, thus
reducing the number of required interactions. An example of an interface that
provides navigation shortcuts to the user is shown in Fig. 6: In addition to the
regular interface (shown on top), the interactive system presents a list of likely
next actions to the user on the bottom of the screen. If the user presses one
of these buttons, the interactive system automatically executes the respective
actions.

5 Implementation and Sample Use Case

This section gives an overview of an implementation of the adaptation approach
presented in Section 3, which includes a definition of the adaptation patterns
introduced in Section 4. In addition, a sample use case further illustrates the use
of this approach.

5.1 Implementation

In order to investigate the approach presented in this paper, an adaptation frame-
work was developed within a model-based development environment called EB
GUIDE Studio [8]. The tool comprises a simulation component that executes
a specified application. A semantic layer was added that uses an OWL-based
ontology to describe the system, but also the user-system interaction. The se-
mantic layer is implemented using the Jena framework4 and is available both at
design time and at runtime.

The framework comprises an adaptation component, which works as dis-
cussed in Section 3. Moreover, it includes a set of adaptation selectors for the

4 Jena Semantic Web Framework: http://jena.sourceforge.net/

B4 – 15

adaptations presented in Sect. 4. Since these selectors are defined on the abstract
level of the semantic layer, they can be reused between different interactive sys-
tems. In addition, the framework includes a set of default adaptation executors
that only change properties common to all graphical elements. In doing so, these
can also be used for different systems, but a better integration into the specific
style of a certain system can be achieved by defining custom executors for a
specific system.

The prototype implementation includes a user modeling component that
models user behavior from low-level events, such as key presses by the user
and system reactions to these inputs. Based on these low-level events, informa-
tion such as the most likely next interaction step or a user preference, such as
a favorite TV channel or font, are computed and forwarded to the adaptation
component and makes these user modeling events available as triggers.

To show the feasibility of this approach, adaptations were implemented in two
different interactive systems. First, an adaptive version of a interactive TV proto-
type application was created. Among the implemented adaptations are Adaptive
Help Presentation, which guides novice user through the system, and Compo-
nent Emphasis, which emphasizes buttons the user is most likely to use next.
The latter adaptation is discussed in detail as a use case in Section 5.2. Second,
an adaptive version of a system resembling an automotive dashboard system
was created. It includes the Alternative Elements adaptation, which in this sys-
tem selects between a beginner and an expert version of a route guidance entry
screen, and the List Item Emphasis adaptation, which highlights frequently se-
lected names in an address book.

5.2 Sample Use Case

This section presents a use case of applying an adaptation pattern to an in-
teractive system. In addition to the application of the adaptation pattern, the
preparation of the user modeling component is also discussed. As an example,
the Component Emphasis adaptation is applied to a TV system, which includes
an electronic program guide (EPG). After selecting a set of filter values, such
as channel, time, or genre, the user can open the results screen by pressing a
button labeled “Show Results”. Since novice users could not be aware that the
“Show Results” button has to be pressed, emphasizing it can help the user in
browsing the EPG.

The user modeling component has to be set up in a way that it observes
the user’s behavior and predicts user actions. In this framework, an algorithm
based on Markov chains is used for action prediction and an adaptation trigger
is emitted when such a prediction was made.

Most of the semantic layer is generated automatically from the model-based
description in the development tool. However, some manual annotation was still
required. In this case, the information that the “Show Results” button triggers
the “OpenResultList” action is annotated to the button and loaded into the
semantic layer.

B4 – 16

Finally, a custom adaptation executor could be defined for this interactive
system. The behavior of the default generic adaptation executor, which simply
increases the size of the interface element, might not fit in well with the design
of the system, and therefore, a custom adaptation executor, which increases the
size through an animation and make the background color slightly lighter, was
defined.

The execution of the adaptation then works as follows. First, the user model-
ing component emits an event that a user action was predicted and thus triggers
“ButtonEmphasisSelector” selector, which is part of the framework and selects a
button that triggers the predicted user action. This selector then recommends the
abstract “Component Emphasis” adaptation for execution and the adaptation
component tries to find an appropriate executor. Two executors are available:
the default executor, which is part of the framework, and the custom executor
defined for this system. In this case, the adaptation component gives priority to
the custom executor and executes the custom adaptation executor accordingly.

6 Conclusion

In this paper, we presented a definition of adaptation patterns that can be in-
tegrated into the model-based development process. A set of general adaptation
patterns for adaptive interactive system was defined. A sample implementation
of the presented framework was presented to show the feasibility of this ap-
proach. The adaptation patterns defined in this paper were integrated into the
framework and the adaptations were applied to two sample systems. A detailed
use case further illustrated the approach.

Acknowledgements

The author is indebted to Paul Adamczyk, the shepherd of this paper for Euro-
PLoP 2009, for his time, comments, and observations, which allowed the paper
to evolve during the shepherding process. Many thanks also for the insightful
and encouraging comments from the discussion group at EuroPLoP 2009.

Copyright retained by author. Permission granted to Hillside Europe for in-
clusion in the CEUR archive of conference proceedings and for Hillside Europe
website.

References

1. B. Bederson. Fisheye Menus. In ACM Conference on User Interface Software and
Technology (UIST), pages 217–226. ACM Press, Suracuse, NJ, USA.

2. M. Bezold. User Modeling from Basic Events in Interactive Systems for Intelli-
gent Environments. In International Conference on Intelligent Environments (IE),
pages 319–326, 2009.

3. J. Borchers. A Pattern Approach to Interaction Design. Wiley, Chichester, UK,
2001.

B4 – 17

4. F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-
oriented Software Architecture. Wiley, Chichester, UK, 1996.

5. J. Danculovic, G. Rossi, D. Schwabe, and L. Miaton. Patterns for Personalized
Web Applications. In European Conference on Pattern Languages of Programs
(EuroPLoP) 2001, pages 423–436, 2001.

6. S. Fincher, J. Finlay, S. Greene, L. Jones, P. Matchen, J. Thomas, and P. J. Molina.
Perspectives on HCI patterns: Concepts and Tools. In Extended Abstracts on
Human Factors in Computing Systems (CHI), pages 1044–1045. ACM, 2003.

7. E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns: Elements
of Reusable Object-Oriented Software. Addison-Wesley, Upper Saddle River, NJ,
USA, 1995.

8. S. Goronzy, R. Mochales, and N. Beringer. Developing Speech Dialogs for Mul-
timodal HMIs Using Finite State Machines. In 9th International Conference on
Spoken Language Processing (Interspeech), CD-ROM, 2006.

9. J. O. Hallstrom and N. Soundarajan. Formalizing Design Patterns: A Compre-
hensive Contract for Composite. In Proceedings of the 7th FSE Workshop on the
Specification and Verification of Component-Based Systems, pages 77–82, 2008.

10. L. Hassel and E. Hagen. Adaptation of an automotive dialogue system to users
expertise and evaluation of the system. Computers and the Humanities, 40(1):67–
85, 2006.

11. S. Henninger and P. Ashokkumar. An Ontology-Based Metamodel for Software
Patterns. In K. Zhang, G. Spanoudakis, and G. Visaggio, editors, Conference
on Software Engineering & Knowledge Engineering (SEKE) 2006, pages 327–330,
2006.

12. I. Horrocks, P. F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and M. Dean.
SWRL: A Semantic Web Rule Language Combining OWL and RuleML. Technical
report, World Wide Web Consortium, May 2004.

13. A. Jameson. Human-computer Interaction Handbook, chapter Adaptive Interfaces
and Agents, pages 305–330. Erlbaum, Mahwah, NJ, USA, first edition, 2003.

14. N. Koch and G. Rossi. Patterns for Adaptive Web Applications. In European
Conference on Pattern Languages of Programs (EuroPLoP) 2002, pages 179–194.
Universitätsverlag Konstanz, 2002.

15. P. Langley. User Modeling in Adaptive Interfaces. In Conference on User Modeling
(UM) 1999, pages 357–370. Springer-Verlag, New York, NY, USA, 1999.

16. T. Mikkonen. Formalizing Design Patterns. In Proceedings of the 20th international
conference on Software engineering (ICSE), pages 115–124, Washington, DC, USA,
1998. IEEE Computer Society.

17. M. K. Smith, C. Welty, and D. L. McGuinness. OWL Web Ontology Language
Guide. Technical report, W3C, 2004.

18. J. Tidwell. Designing Interfaces. O’Reilly Media, Sebastopol, CA, USA, first
edition, 2005.

19. M. van Welie and G. C. van der Veer. Pattern Languages in Interaction Design:
Structure and Organization. In Interact 2003. IOS Press, Amsterdam, The Nether-
lands, 2003.

20. C. Zannier and F. Maurer. Tool Support for Complex Refactoring to Design Pat-
terns. In M. Marchesi and G. Succi, editors, Extreme Programming and Agile Pro-
cesses in Software Engineering (XP), volume 2675 of Lecture Notes in Computer
Science, pages 123–130. Springer, Heidelberg, Germany, 2003.

21. I. Zukerman and D. W. Albrecht. Predictive statistical models for user modeling.
User Modeling and User-Adapted Interaction, 11(1-2):5–18, 2001.

B4 – 18

A Pattern-based Approach Against Architectural Knowledge Vaporization

Uwe van Heesch
University of Groningen,

Fontys University of Applied Sciences
Venlo, The Netherlands
u.vanheesch@fontys.nl

Paris Avgeriou
University of Groningen

Groningen, The Netherlands
paris@cs.rug.nl

Abstract

Architectural documentation is often considered as a tedious and resource intensive task, that is usually skipped or per-
formed inadequately. As a result the rationale of the architect’s decisions gets lost. This problem is known as architectural
knowledge vaporization. We propose a documentation approach for architectural decisions concerning the application of
software patterns. Based on the assumption that patterns and pattern languages incorporate generic architectural knowl-
edge, we recommend reusing this documented knowledge in application specific architecture documentation to preserve an
important part of the rationale, that went into the architect’s decisions, while saving time compared to other documentation
approaches.

1. Introduction

The documentation of architectural knowledge (AK) in software development often consists of design models and other
artifacts recording the outcome of a design process, if at all, but misses the design decisions, the context and the rationale of
a specific solution [11]. This is partially because comprehensive documentation is considered a resource-intensive task that
interrupts the natural design flow and does not have an immediate benefit for the running project. By skipping it, some of the
important details that a decision is based on, such as the decision context, assumptions, decision drivers, consequences and
considered alternatives, get lost. This phenomenon is known as architectural knowledge vaporization [2, 15, 9]. It becomes
particularly problematic when software systems have to be maintained and adjusted to changing requirements or execution
contexts, because we often fail to understand the architect’s original motivation for a specific design construct. Consequently
design rules and constraints may be violated during system evolution [9].

AK is multi-faceted. [12] makes the distinction between application-generic and application-specific knowledge. The
former consists of expertise that can be generally used in many different software projects. Architecture patterns and styles
are some examples. The latter concerns knowledge of a specific application, gained during its development or evolution.
Application-specific knowledge includes all decisions made during the architecting process as well as information about the
problem and solution space of a concrete project. In this paper we will primarily address the vaporization of application-
specific AK.

Additionally application-specific knowledge is further subdivided into context knowledge, reasoning knowledge and de-
sign knowledge according to [14]. The first involves information about the problem space, for example architecturally
relevant requirements, forces and the problem context. Reasoning knowledge incorporates the rationale behind decisions
including considered alternatives and trade-offs. Finally design knowledge is a collection of system designs like component
and connector models or other architectural models. In [14] one more category of AK is identified, namely general knowledge
which is the same as the aforementioned application-generic knowledge.

Architectural knowledge vaporization occurs with all three kinds of application-specific AK. For instance, although con-
text knowledge is represented in requirement documents, specific requirements are seldom explicitly related to architectural
decisions. It remains unclear which part of the problem is solved by an architectural decision. Reasoning knowledge is
usually neither represented in requirements, nor in design documents. The rationale behind design decisions, including the

B5-1

design alternatives, trade-offs, assumptions and consequences gets lost if it is not explicitly documented. Design knowledge
is normally represented in design documents, but the latter are often incomplete, out of date or incorrect.

In this paper, we propose a lightweight approach to support software architects in systematically documenting application-
specific architectural knowledge by reusing existing, codified application-generic AK encapsulated in software architecture
patterns1. We focus on recording decisions made when applying patterns and make the concrete drivers that motivated
the decisions explicit, by reusing the different types of AK that patterns incorporate. This allows to uncover alternatives,
trade-offs and consequences.

The remainder of this paper is organized as follows: In section 2 patterns and pattern languages are discussed with respect
to their architectural knowledge aspects. Section 3 presents a conceptual model of application-generic and application-
specific architectural knowledge that supports our documentation approach. In section 4 we explain, how our approach
can be used to document and analyze application-specific AK. Section 5 presents an example based on a pattern story that
describes a real world architecting project. Section 6 derives some basic use cases for tool support and finally, in section 7
we conclude and give an outlook to future work.

2. Patterns and Pattern Languages

Patterns describe the solution to a problem in a certain context [1, 6]. Therefore they capture reusable knowledge providing
a design to a specific, recurring design problem arising in a particular context and domain [13]. Architectural patterns capture
knowledge that is not specific to a certain project, but application-generic. They contain information about the context and the
problem space in terms of forces, as well as concrete implementation advice for the solutions they propose. Finally pattern
descriptions reason about design rationale, alternatives, consequences and trade-offs that are performed when applying them.
This knowledge is applicable in infinite cases. When the pattern is applied in a project and all its details are finalized, the
pattern’s knowledge becomes application-specific for that specific project.

A pattern language incorporates patterns from a particular domain or area of concerns and combines them to form a web
of related patterns. It describes a whole system of patterns, including their interrelationships and dependencies. Patterns from
a pattern language can be applied one after another in an incremental process of refinement to form a whole. Therefore each
pattern defines its place in possible pattern sequences [16]. By concentrating more on the various relationships of patterns and
the synergetic effects of their combination, pattern languages complement the AK captured in single patterns with additional
knowledge of their relationships.

3. A Conceptual Model of Architectural Knowledge related to Architectural Patterns

To support the effective documentation and analysis of AK, we have developed a conceptual model that identifies the
types of application-generic AK provided in the documentation of patterns and pattern languages and links this knowledge to
application-specific AK. The model shown in figure 1 is divided in two parts: application-specific AK elements in the upper
section, and generic AK elements in the lower section.

3.1 Application-generic Architectural Knowledge

The central concept in the application-generic section is architectural pattern. Patterns have a name and are applicable
in a context. In addition, we provide a short description, the documentation date and the source of the pattern. One of the
interesting relationships between patterns is the variant. Variants of patterns describe solutions to very similar, but different
problems, that can vary in some of the forces [4]. The application of a variant potentially has different consequences. Variants
are considered as independent patterns, with their own problem and solution descriptions.

The relationship type alternative means that patterns can be alternatively applied in a specific context. Pattern languages
sometimes explicitly mention alternatives. The Layers pattern for instance can be seen as an alternative for the Microkernel
pattern (both [4]) concerning the structural decomposition of a system.

Another type used to capture the relationship between patterns is combination. This type encapsulates all other interde-
pendencies between patterns. Pattern combinations can be very rich and complex and many subtypes exist, that are not made
explicit in our model. A simple example for the combination relationship type is the Model-View-Controller pattern [4] that

1In the remainder of this paper we will also refer to software architecture patterns as patterns.

B5-2

Figure 1. A conceptual model of AK related to Architectural Patterns

uses the Publisher-Subscriber pattern [4] for state change propagation. The Broker pattern [4] is another example. It can be
combined with many other patterns to realize distributed systems.

The relationship between two patterns is a potential reason for applying a pattern. Consider a situation where multiple
patterns have already been chosen and applied. When searching for additional patterns that address open requirements, it
makes sense to choose a pattern that is known to work well with the previously selected ones, if multiple alternatives exist.
By modelling the different types of relationships between patterns, we conserve reasoning knowledge that architects and
stakeholders can revert to when analyzing architectural decisions later.

The context knowledge of patterns is described in terms of a problem consisting of multiple forces, while their design
knowledge is incorporated in the representation of the solution. The application of architectural patterns has an impact on
the quality attributes (QAs) of the target architecture by resolving related forces [10, 7, 16]. Therefore quality attributes are
linked both to the forces and the consequences. The impactIndication field in the consequence and force classes can be used
to express, whether a quality attribute is impacted positively or negatively. The terms force and consequence refer to the
format for pattern descriptions used in [4]. Some pattern description formats explicitly describe forces and consequences;
others like [5] do not mention them explicitly, but nevertheless contain the same information in other parts of the description.
Forces and consequences are potential drivers for the selection of an architectural pattern, as they denote requirements and
desired properties of the target architecture.

3.2 Application-specific Architectural Knowledge

The upper section of our model is concerned with the documentation of application-specific AK, and specifically architec-
tural decisions. We are not aiming at capturing all decisions that need to be made in a software project, but those concerning
the application of architectural patterns.

B5-3

Patterns are abstract and generic (often called “half-baked”), and have to be finished off when they are applied in a
project. We do not consider that the architecture of a system is composed only of patterns; however a fundamental part of
the architecture can be constructed using architectural patterns. If so, then the AK encapsulated in the patterns is transformed
into application-specific. For documenting the design decisions related to applying the patterns, the relevant parts of the
pattern documentation can be reused.

In the AK model presented in figure 1, a decisions addresses an issue. This can be the specification of a concrete problem to
be solved, or something that needs to be decided without directly solving a problem, for instance the choice of a programming
language. A decision can be related to zero or more requirements. Besides functional and non-functional requirements, a
constraint is also seen as a requirement that reduces the number of possible outcomes of a decision. A non-functional
requirement concerns a specific quality attribute.

An architectural decision can also be related to other architectural decisions. As an example, if the shared repository
pattern was chosen to share data between two subsystems, then a related decision could concern the choice of a database
access strategy like the one provided in the Table Data Gateway pattern [5]. The concrete types of relationships between
architectural decisions are subject to further research.

Decisions are personalized by also documenting the decision-maker and the date when the decision was made.
The notes in architectural decision should give hints on where the chosen pattern was applied in the architecture. The

same pattern can be applied in different places for different reasons.
Often, architectural decisions concern the choice of a solution among alternatives. Therefore the model explicitly considers

alternative patterns along with the reasons for their rejection.
The AK behind the decision is captured by referencing an architectural pattern along with the relevant drivers for the

selection of the pattern. As mentioned earlier, forces, consequences and pattern relationships may be referenced as relevant
drivers. By doing so, the rationale behind the decision that the architect made is recorded. The resulting documentation
of the architecture not only explains which patterns were applied, but also why they were applied, by explaining which of
all the potential drivers were decisive for the architect. This does not replace application-specific design and requirements
documents. It is in the application-generic nature of patterns that they are abstract and have to be adjusted and modified
to fit in a concrete design situation. Referencing their pure form in an application-specific context however has the benefit
that the concept of the pattern is much clearer and easier to understand in this representation than the concrete design of the
architecture after the pattern was applied. Nevertheless we also tried to find an effective way of documenting the real design
outcome of a decision. We suppose that ADs affect many different documentation artifacts, for example UML component
or class diagrams or textual documentation. Our assumption is also that the most software projects make use of versioning
systems like Mercurial2 or Subversion3. By documenting the version numbers of all relevant versioning repositories before
and after an AD was enforced, we conserve the architectural delta. This is the part of the architecture that the architect
actually changed to apply the chosen pattern, be it textual documentation, or UML diagrams or other artifacts.

2see http://mercurial.selenic.com
3see subversion.tigris.org

B5-4

4. Documentation and Analysis of Architectural

Knowledge

Our approach is complementary to existing architecting
processes [8]. It can be used at the time when architects
apply architectural patterns to satisfy architectural require-
ments. The patterns described in the generic part of the
model should be managed in a repository that can be used
from software development projects. We will describe some
basic use cases for tool support in section 6.

4.1 Documentation of AK

Figure 2 shows the process of documenting architectural
decisions concerning architectural patterns. The process
starts when the architect decides to apply a pattern in the
architecture. Subsequently the core of the decision (i.e. a
unique identifier, the issue, the status, the documentation
date) is documented, along with the stakeholder who made
the decision. If applicable, related decisions and related re-
quirements are linked to the current decision. Then a snap-
shot of all relevant project artifacts is taken. This can be
done capturing version numbers of artifacts managed in ver-
sioning systems like Subversion or Mercurial for instance.

Every pattern that has been applied or considered in the
software project should be documented in a pattern reposi-
tory. This repository can be reused in many different soft-
ware projects. Hence the patterns have to be added to the
repository once, if they do not exist yet.

Once the pattern is chosen and eventually documented,
the architect links the chosen pattern and the considered
alternatives to the current decision. Finally the concrete
drivers that lead him in choosing the pattern are also linked
to the decision. The last aspect is very important. A pat-
tern potentially has many benefits and liabilities expressed
in terms of consequences but also in terms of forces. But
perhaps not all of them were relevant when the architect de-
cided to choose the pattern. This information is valuable
when the decision is analyzed later, e.g. during the mainte-
nance process. It clarifies why the architect chose the pat-
tern.

4.2 Analysis of the documented AK

In this section we will explain how the different types
of architectural knowledge map to the elements in the pre-
sented conceptual model, and consequently to the AK doc-
umented using our approach.

Figure 2. Documenting Architectural Deci-
sions

B5-5

4.2.1 Context Knowledge

Context knowledge is spread across different parts of the conceptual model. The issue field, which is part of the AD, gives
a first impression of the decision context. The relation to specific requirements explains which constraints, functional and
non-functional requirements are addressed by the decision. Finally the forces and problem description of the related pattern
can be browsed to understand the decision context.

4.2.2 Design Knowledge

We suppose that large parts of the design knowledge are documented in design artifacts like box-and-line or UML diagrams.
The documented patterns, however, also contribute to understanding the design.

One the one hand, the design presented in the solution part of a pattern is generic and incomplete; it has to be adapted to
fit in concrete design situations. On the other hand, the design documentation of a project is more concrete and complete than
the design snippets presented in pattern descriptions; but it is also more complicated and harder to understand. The pattern
solution presents a very clear view that is reduced to the essentials of the respective pattern and thus easier to understand.
This clear view is complemented by the architectural delta, which can be gained by comparing the artifact snapshot taken
before an architectural decision was enforced to a snapshot of the same artifact after it was enforced. This allows to analyze
the influence of a decision on the system design and documentation. Stakeholders can use both, the clear pattern design and
the actual realization in the architecture to understand the design behind an architectural decision. In section 6 we give two
examples.

4.2.3 Reasoning Knowledge

Making reasoning knowledge explicit, particularly the rationale behind the decisions is the most challenging part. We make
use of the concrete drivers that were documented along with the chosen patterns. The drivers explain why the architect chose
a specific pattern. The considered alternatives, which were also documented, correspond to the ‘paths not taken’ during
the decisions making process. Additionally, the pattern descriptions of the chosen and considered patterns contain valuable
information about consequences and trade-offs that were made when applying the pattern.

5. An example

To exemplify our approach we will use parts of a pattern story describing the design of a real-world warehouse manage-
ment system presented in [3]. We focus on the part of the story that addresses the architecture of the warehouse system.
The story is suitable for explaining our approach, because it describes architectural decisions concerning the application of
architectural patterns taken in a real software project. The complete presented set of decisions and patterns is taken from [3].

5.1 A Pattern story

The pattern story concerns a control system for warehouse management. The functional requirements cover stock man-
agement, order management, shipping, receiving, material flow control and the warehouse topology management.

The following non-functional requirements were identified by the authors:

• Distribution: The functionality of the system must be accessible by clients remotely.

• Performance: The system must ensure that all orders are performed efficiently without visible interruption.

• Scalability: The system must be scalable in the number of warehouse “bins” and computational devices connected to
the warehouse.

• Availability: The system demands a minimum availability of 99.999%.

• Persistence: Most state information maintained by the warehouse system must be persistent.

• Portability: The warehouse must run on different hardware platforms and operating systems.

• Dynamic configuration: The system must be runtime configurable.

B5-6

• Human-computer interaction: A wide variety of user interfaces must be supported.

• Component integration: The system must integrate useful third-party products.

• Generality: The system must provide a general solution that is usable in a variety of cases in the warehousing domain.

The listed system requirements are reduced to information needed to show the applicability of our approach. Please refer to
[3] for detailed descriptions.

5.2 Architectural Decisions made in the story

The following architectural decisions made in the story concern architectural patterns: Layers (AD1), Domain Object
(AD2), Explicit Interface and Encapsulated Implementation (AD3), Broker (AD4), Model View Controller (AD5), Half-
Object Plus Protocol (AD6), Actice Object (AD7), logging Domain Object using Leader/Followers (AD8), Database Access
Layer (AD9), Component Configurator (AD10).

To exemplify our approach we show its use in documenting AD1 and AD5. Then we will explain how to analyze the
application-specific architectural knowledge behind the decisions. Remember that one of the goals of the presented approach
is to keep the documentation effort for the architect low. The form of documentation is derived from the model presented in
figure 1. Additional to the information in the tables presented in the following subsection the decision maker, status and time
would have been documented in a real project, but this information was not available in the pattern story. Besides, according
to the model, a reference to artifacts would exist that shows the resulting design in UML diagrams for instance. The design
that resulted from the decisions here is taken from the pattern story as well.

We documented all patterns that are mentioned in the example according to our conceptual model as well, based on the
descriptions in [4]. In this example we will only refer to excerpts of the documented patterns. We focus on the documentation
of the actual architectural decisions.

5.2.1 AD1 - Layers

Architectural decision 1 is documented in Table 1. It concerns the usage of the Layers architectural pattern. The following
parts of the application-specific architectural knowledge behind this decision can be made explicit using the pattern descrip-
tion.

• Context knowledge: The documented context refers to the partitioning of the warehouse system into coherent parts.
The general context of the Layers pattern refers to the decomposition of a large system. The problem description of the
Layers pattern in the generic part of the conceptual model leads to further insights. The Layers pattern is applicable if
the system consists of a mix of high-level and low-level functionality, where the high-level operations rely on low level
operations. This is the case here, high-level functionality such as order management and shipping rely on low-level
functionality such as material flow control and warehouse topology management. This application-specific knowledge
can be derived from the general description of the Layers pattern without explicitly being documented during the
architecting process. It puts the decision in the right context. The architect was searching for a way to decompose the
whole system into coherent parts while taking the specific characteristics of the warehouse system into account.

• Design knowledge: Although the information in table 1 does not contain any design information, a decent part of the
design knowledge behind the decision can be inferred from the pattern description. First the general description of
the Layers pattern includes a design template depicting the structure of the Layers pattern. It gives a clear view of
the involved components and their connectors. The whole system is structured into multiple layers. Starting at the
bottom, each layer contains components at the same level of abstraction. Services provided by one layer are used by
components in the above layer. Note that this short description is very general in nature. It is derived from the solution
documented along with the Layers pattern in out conceptual model and has no reference to the concrete case of the
warehouse management system. It gives a first impression of the design that resulted from the architectural decision.
More concrete information can be gathered from the reference to impacted artifacts that is part of our conceptual model.
It is a pointer from the decision to the resulting design. Here, the system was actually partitioned into five layers. A
presentation layer, a business process layer, a business object layer, an infrastructure layer and an access layer. In this
example the information as well as any other information about the warehouse system is taken from the pattern story
in [3]. There we can also find the components that reside in the respective layers.

B5-7

Seq. No 1
Issue The warehouse system needs to be

partitioned into coherent parts.
Specific Requirements

• Portability

• Generality

Arch. Pattern Layers
Sel. Drivers

• D1 (Force): Complex compo-
nents need further decomposi-
tion.

• D2 (Force): Support change-
ability.

• D3 (Force): Support grouping
of components along responsi-
bilities.

• D4 (Force): Support task divi-
sion between programmers.

• D5 (Consequence): Support
for standardization

• D6 (Consequence): Dependen-
cies between components are
kept local

• D7 (Consequence): Separation
of concerns

Table 1. Architectural Decision 1

• Reasoning knowledge: Table 1 mentions a couple of forces and consequences that were decisive for choosing the
Layers pattern. They indicate why the pattern was chosen. Note that there are other, unmentioned forces and conse-
quences concerning the Layers pattern. One of the key advantages of the Layers pattern is support for reuse of system
layers. This factor implicitly plays a role when applying the Layers pattern, but in this case it was not relevant for
the architect. This information can help a lot in understanding the decision and its consequences. The application of
the Layers pattern has some potential liabilities. It might lead to communication overhead when upper layers have to
pass multiple intermediate layers to use functionality of low layers. This might lead to lower efficiency compared to
a non-layered system where components may access each other freely. This is a trade-off the architect made when
choosing the Layers pattern.

5.2.2 AD5 - Model-View-Controller

The documentation of architectural Decision 5 is shown in Table 2. It concerns the usage of the Model-View-Controller
(MVC) Pattern.

• Context knowledge: The documented context refers to the separation of the warehouse’s user interfaces from the
warehouse functionality. The general context of the Model-View-Controller pattern taken from [4] is providing flex-
ible user interfaces for interactive applications. The problem section of the MVC pattern includes more information.

B5-8

Seq. No 5
Issue The warehouse’s User Interface

needs to be separated
Specific Requirements

• Human-computer interaction

• Generality

Arch. Pattern Model-View-Controller
Sel. Drivers

• D1 (Force): The user interface
must reflect data changes im-
mediately.

• D2 (Force): Support for
changeability.

• D3 (Force): The functional
core of components needs to be
separated from the user inter-
face.

• D4 (Consequence): Views are
synchronized.

• D5 (Consequence): System
parts are exchangeable.

Table 2. Architectural Decision 5

User interfaces are likely to change more often than system functionality. Different users have different requirements
regarding the user interface and often several different user interfaces must be incorporated. This also describes the
specific problem the architect wanted to solve for the warehouse system by applying the MVC pattern.

• Design knowledge: The description of the MVC pattern explains its general design. The user interface is divided in a
model containing the data, Views that display the information to the user and controllers that manage user input. Views
and controllers act as observers of the model and are informed automatically if data in the model is updated. This is
the application-generic solution that the MVC pattern proposes. Again, the artifact reference adds application-specific
design knowledge. Here we could see, that the views and controllers reside in the presentation layer, while the model
is represented in the business process layer. Change propagation components were introduced for providing messaging
functionality that is used to inform controllers and views if an update occurs. Please refer to [3] for more details. This
example shows, that the straightforward design that is proposed by the MVC pattern description helps to understand
the application-specific design solution. In the real design the involved components have more than one functionality
and names that refer to the respective application domain. This makes it harder to find out, that the MVC pattern has
actually been applied and even harder to understand how the solution works.

• Reasoning knowledge: Table 2 shows the selection drivers that let the architect choose the Model-View-Controller
(MVC) pattern [4]. They indicate why the pattern was chosen. There are other potential drivers for choosing MVC.
For example the possibility for presenting the same information differently in multiple views. Although this possibility
is automatically given when applying MVC it was not decisive for the architect. Some negative consequences come
along with the MVC pattern. MVC introduces a very close coupling between view and controller. When porting the
user interface it is very likely that both have to be changed. MVC also leads to more complexity and the potential for
excessive updates of multiple views resulting in a large communication overhead. These are liabilities that the architect
accepted for getting the advantages of the MVC pattern.

B5-9

6. Tool support

To tap the full potential of the presented approach, comprehensive tool support is indispensable. We have started to elicit
some basic high-level use cases for a tool supporting our approach.

The following two use cases support the management of the application-generic AK from the conceptual model in figure
1. Essentially, there has to be create, retrieve, update and delete (CRUD) functionality to manage all entities in this part of
the model:

• UC1: Manage architectural patterns: This use case includes adding, updating and deleting architectural patterns.
According to our conceptual model, every pattern must be described in terms of a context, a category, a problem
statement, forces, a representation of the solution and consequences. Additionally technologies supporting the patterns
can be managed.

• UC2: Manage pattern relationships: Maintain the various relationships between the patterns in the repository. Basic
types of relationships are variant, combination and alternative. Each of them should be refineable.

To support the architectural documentation process presented in section 4, the following use cases are applicable:

• UC3: Document architecture relevant requirements: Functionality is needed to select and document architecture
relevant requirements from existing project documentation.

• UC4: Add architectural decision: When the architect decides to apply a pattern in the architecture, it needs to be
recorded as an architectural decision. Every documented decision references the relevant drivers for choosing the
concerned pattern, as well as a set of requirements that the decision satisfies. Additionally it must be possible to link a
decision to a repository version in versioning systems like CVS or Subversion. By this it is possible to document how
existing design documents or generally all versioned project artifacts have been affected by the decision.

• UC5: Explore decision rationale: Additionally to the chosen pattern, the satisfied requirements and the relevant
drivers, it must be possible to explore the consequences of the chosen pattern, alternative patterns, variants and other
patterns, that are related to the chosen pattern. This information can be taken from the data captured in the application-
generic part of the conceptual model. It should also be possible to visualize the change in design documents and other
artifacts that the decision caused.

Some of the presented use cases reference existing project artifacts like requirement documents and versioning systems.
Therefore it would make sense to develop the documentation tool as an extension to existing Computer Aided Software
Engineering (CASE) tools that are used to create analysis and design documents. We are going to implement these use cases
in prototypes to validate our concepts. One of our goals is to provide lightweight tooling, that supports our approach and
easily integrates with existing CASE tool chains to keep the barriers for its usage low.

7. Conclusion and Outlook

In this paper we presented an approach to address architectural knowledge vaporization by documenting decisions con-
cerning the application of architectural patterns. A part of application-specific architectural knowledge comes from instanti-
ating application-generic architectural knowledge in the form of architectural patterns. We make use of this by referencing
chosen patterns, considered alternatives and specific decision drivers when documenting architectural decisions. This keeps
the documentation effort that an architect has to spend during the architecting phase low, while preserving great parts of the
rationale that went into the decisions. The patterns that are referenced do not have to be documented during the architecting
phase or by the architect himself. As they are general in nature, they can be easily documented in advance and then be reused
in many different software projects. We proposed a conceptual model of AK that supports our approach.

The process of documenting ADs as well as the analysis of the specific knowledge can easily be supported by tools. We
described some basic use cases for that.

Our approach needs to be extended. Patterns do not cover the whole problem space of applications. Not every architectural
problem can be solved by applying a pattern. If no suitable pattern exists, then the current approach cannot be used. Addi-
tionally, not all architectural decisions concern the usage of architectural patterns. Some architectural decisions concern the
selection of technologies instead of patterns. Existing software systems, frameworks, middlewares and application platforms

B5-10

are some examples. These decisions cannot be documented using our model yet. However, we assume that technologies can
be described similarly to architectural patterns. We are currently looking into documenting architectural decisions concerning
the use of technologies in the same way as decisions concerning patterns.

One might argue that documenting patterns in a repository is actually a high effort that interrupts the architect’s design
flow, but this is not necessarily the case. First, the patterns in the repository do not have to be documented by the architect
himself. There’s not much expertise needed to add a pattern to the repository based on a pattern description in a book or an
article. Second the patterns do not necessarily have to be documented during the architecting phase. It would be even better
to have a repository of potentially applicable patterns before the architecting phase starts. Ideally such a repository would
even be publicly available for use and contribution.

We proposed a documentation approach that allows architects to record architectural decisions related to patterns. By
referencing chosen patterns, considered alternatives and the concrete drivers that induced the architect to choose the pattern,
we implicitly preserve the rationale behind the decision including variants, consequences and related patterns. Effort has to
be spent once to document the patterns. They can then be reused by referencing them in different software projects. The
documentation of the decisions does not require extra effort.

8. Acknowledgement

Thanks to Neil Harrison for giving good advice and providing useful feedback during the shepherding of this paper for
EuroPLoP 2009.

9. Copyright

Copyright retains by authors. Permission granted to Hillside Europe for inclusion in the CEUR archive of conference
proceedings and for the Hillside Europe website.

References

[1] C. Alexander, S. Ishikawa, and M. Silverstein. A Pattern Language: Towns, Buildings, Construction (Center for Environmental
Structure Series). Oxford University Press, August 1977.

[2] J. Bosch. Software architecture: The next step. Software Architecture, pages 194–199, 2004.
[3] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architecture Volume 4: A Pattern Language for Distributed

Computing. Wiley, May 2007.
[4] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal. Pattern-Oriented Software Architecture Volume 1: A System of

Patterns. Wiley, August 1996.
[5] M. Fowler. Patterns of Enterprise Application Architecture. Addison-Wesley Professional, November 2002.
[6] E. Gamma, R. Helm, R. Johnson, and J. M. Vlissides. Design Patterns: Elements of Reusable Object-Oriented Software. Addison-

Wesley Professional, November 1994.
[7] N. Harrison and P. Avgeriou. Leveraging architecture patterns to satisfy quality attributes. In Proceedings. First European Conference

on Software Architecture. Springer LNCS, 2007.
[8] C. Hofmeister, P. Kruchten, R. Nord, H. Obbink, A. Ran, and P. America. A general model of software architecture design derived

from five industrial approaches. Journal of Systems and Software, 80(1):106–126, January 2007.
[9] A. Jansen and J. Bosch. Software architecture as a set of architectural design decisions. In Proceedings. WICSA 2005. 5th Working

IEEE/IFIP Conference on Software Architecture, 2005, pages 109–120, Washington, DC, USA, 2005. IEEE Computer Society.
[10] A. Jansen, J. Bosch, and P. Avgeriou. Documenting after the fact: Recovering architectural design decisions. Journal of Systems and

Software, 81(4):536–557, April 2008.
[11] A. Jansen, J. van der Ven, P. Avgeriou, and D. K. Hammer. Tool support for architectural decisions. In Proceedings. Working

IEEE/IFIP Conference on Software Architecture, 2005, volume 0, pages 4+, Los Alamitos, CA, USA, 2007. IEEE Computer Society.
[12] P. Lago and P. Avgeriou. First workshop on sharing and reusing architectural knowledge. SIGSOFT Softw. Eng. Notes, 31(5):32–36,

2006.
[13] D. C. Schmidt and F. Buschmann. Patterns, frameworks, and middleware: their synergistic relationships. In Proceedings. 25th

International Conference on Software Engineering, 2003., pages 694–704, May 2003.
[14] A. Tang, P. Avgeriou, A. Jansen, R. Capilla, and M. Ali Babar. A comparative study of architecture knowledge management tools.

Journal of Systems and Software, September 2009.
[15] J. Ven, A. Jansen, J. Nijhuis, and J. Bosch. Design decisions: The bridge between rationale and architecture. In Rationale Manage-

ment in Software Engineering, chapter 16, pages 329–348. 2006.

B5-11

[16] U. Zdun. Systematic pattern selection using pattern language grammars and design space analysis. Software: Practice and Experi-
ence, 37, 2006.

B5-12

1

Albena Antonova1, Elissaveta Gourova2

1Sofia University, Faculty of Mathematics and Informatics, Sofia, Bulgaria, a_antonova@fmi.uni-sofia.bg
2Sofia University, Faculty of Mathematics and Informatics, Sofia, Bulgaria, elis@fmi.uni-sofia.bg

!"#$%&'$

In the last decades, Knowledge Management has gained momentum as an important tool
for competitiveness of organizations. A number of Knowledge Management approaches
are described in the literature. Some authors focus in particular on the importance of
Knowledge Audit, first, as a start point for any Knowledge Management initiative, and
second, as a regular base for the measurement of Knowledge Management progress and
effectiveness. Knowledge Audit aims to investigate the company status at a given moment
regarding the knowledge availability and needs, its flow and usage in processes, by
employees, etc.

The present paper aims to introduce business patterns for the implementation of
Knowledge Audit. These patterns describe the process of taking decisions for Knowledge
Management implementation and the first step toward it – auditing knowledge. After an
overview of the concept, objectives and results of Knowledge Audit, some practical
recommendations for successful Knowledge Audit practice are suggested and a
systematized approach for the Knowledge Audit process is presented.

Keywords: Knowledge Audit, Knowledge Management, Patterns

()*$%+,-'$.+*

Today, the information overload raises new challenges to individuals and organizations.
Global networks provide access to an enormous quantity of information and knowledge
coming from a great variety of sources. At the same time, the mobility of knowledge
workers, and the increased value of information and knowledge have significantly raised
the importance of knowledge assets and their proper usage for higher competitiveness and
growth. Subsequently, Knowledge Management has gained momentum as an important
tool for competitiveness of organizations. Its successful implementation, however, depends
on a number of interrelated factors, including technology, human beings, organizational
culture and leadership, etc. The Knowledge Audit if properly carried out contributes to
building a Knowledge Management strategy based on extended knowledge of the company
status, its internal and external environment, and thus, enables the organization to take
appropriate decisions to overcome existing gaps and possible drawbacks.

Linking organizational strategy with the Knowledge Management strategy is the first step
towards Knowledge Management in organizations [6]. Here, a clear understanding is
necessary of the existing knowledge gaps coming out of the recognized strategic gaps.
Therefore, a need emerges to make an analysis of the available knowledge assets, their
usage, the knowledge processes and flows in the organization, etc. The Knowledge Audit is

2

the appropriate tool for answering all these issues, and at the same time, it is an important
tool for monitoring of Knowledge Management effectiveness [1, 2]. Knowledge Audit, like
other audit processes and methodologies, aims to investigate the company status at a given
moment regarding the knowledge availability and needs, its flow and usage in processes,
by employees, etc. In fact, Knowledge Audit is a repetitive process aiming to clarify
whether knowledge resources are properly managed and what Knowledge Management
strategy, tools and solutions could contribute to gaining maximum benefits [1].

The concept of patterns is widely described in literature [12, 13, 14, 15]. The authors were
involved in a project for developing business cases and studied the eXperience
methodology for case studies development [16]. Application of case studies was
considered very suitable for the teaching process for Knowledge Management at
University of Sofia. At the same time, after studying several Knowledge Management
cases, as well as getting to know the patterns approach, the authors came to the idea to
capture and apply patterns for Knowledge Management purposes. Subsequently, the aim of
this paper is to introduce business patterns for Knowledge Audit implementation. These
patterns describe the process of taking decisions for Knowledge Management
implementation and the first step toward it – auditing knowledge. The paper captures the
following patterns:

1. Knowledge Audit Plan
2. Knowledge Audit Team
3. Knowledge Audit Methodology
4. Knowledge Audit Questionnaire
5. Knowledge Audit Report

Audience

These patterns are intended to codify business practices in the area of Knowledge Audit
implementation in a pattern language so that they may be better understood,
communicated, applied and studied.

The patterns are intended for Knowledge Management practitioners and Knowledge
Management enthusiasts, for Small and Medium Enterprises (SMEs) managers and
entrepreneurs, for students, experts and consultants. The patterns may be applied in the
context of SMEs or knowledge-intensive public or private organizations.

3

/ 012 3&$$2%*#

This paper considers the main phases and processes of Knowledge Audit implementation
(Fig. 1) and each process links to a pattern to be followed by practitioners. From the
Knowledge Audit road-map will be presented the patterns 1, 2, 3, 4 and 7:

1. Knowledge Audit Plan: Planning of Knowledge Audit scope, activities and time
schedule

2. Knowledge Audit Team: Selecting the right Knowledge Audit Team plays an
important role for the Knowledge Audit outcomes

3. Knowledge Audit
Methodology:

Methodology how to perform and implement
successfully specific Knowledge Audit tasks and
activities.

4. Knowledge Audit
Questionnaire:

How to select, compose or adapt Knowledge Audit
Questionnaire according to specific company needs

5. Knowledge Audit
Questionnaire Distribution:

Methodology for Knowledge Audit distribution (via e-
mail, paper-based questionnaires, conducting inteviews,
on-line questionnaire, mixed approach), and notification
of the target audience.

6. Knowledge Audit
Analyses of Results and
Feedback:

Analyses of the Knowledge Audit results, testing and
verifying hypothesis based on the collected quantitative
and qualitative data. First feedback of the results.

7. Knowledge Audit
Reporting:

Preparation and presentation of meaningful Knowledge
Audit Report as major outcome of the Knowledge Audit
process

8. Knowledge Management
Roadmap Definition:

Knowledge Management Roadmap consideration

Figure 1 Knowledge Audit phases and processes

Phase Knowledge Audit
Implementation

1. Knowledge
Audit Plan

2. Knowledge
Audit Team

3. Knowledge
Audit

Methodology

Knowledge Audit
Preparation phase

7. Knowledge
Audit Report

8. Knowledge
Management
Roadmap
Definition

Knowledge Audit
Finalization phase

6. Knowledge
Audit results’
analysis

5. Knowledge
Audit distribution

4. Knowledge
Audit
questionnaire

4

/4(567785596: ;<=>:8?@8 !6?)0 3:!<

/4(4(7+*$2A$

An organization wants to implement Knowledge Management or needs to monitor
Knowledge Management effectiveness and improve it by taking new knowledge-related
initiatives. It needs to prepare a detailed Knowledge Audit plan, and report it to the
company management as a preliminary step for approval of the Knowledge Audit
implementation. The organization delegates the Knowledge Audit Plan preparation to
external consultants or to internal staff such as the Chief Knowledge Officer, the
Knowledge Management team, or experts from the Human Resources and/or the
Information Technology (IT) department.

/4(4/ 3%+"B2C

How do you prepare a successful Knowledge Audit Plan for an organization?

/4(4D 9+%'2#

The Knowledge Audit plan needs to identify and clarify the principle hypothesis expected
to be justified in the audit process. The forces influencing the Knowledge Audit Plan can
be grouped around 4 main areas:

Force 1: Companies are aware of the importance of measuring innovation and knowledge
creation results, but often they do not measure the right things, do not measure enough,
and, in some cases, do not measure at all. The measurement of intellectual capital, and in
particular knowledge assets, creates large difficulties and there is a lack of a generally
accepted methodology for valuing intangible assets. However, the increasingly complex
environment, the fast changing technologies and increasing customers' expectations, as
well as the evolving new complex relationships with employees (part-time, free-lancers),
contractors, external experts etc., force companies to rethink the overall Knowledge
Management strategy (what in fact they know and how they can use it), and thus, regularly
undertaking Knowledge Audit.

Force 2: Knowledge exists in explicit and tacit form in organizations, but it is hard to
identify and measure it. Knowledge can be embedded in various forms: documents,
procedures, methodologies, routines, organizational culture, group practices, IT systems,
databases, people heads, lessons learned, best practices, social networks and social
interactions and many others.

Force 3: Knowledge Audit is a time- and resources-consuming process, but companies are
not eager to invest much in such initiatives. It is essential to properly clarify the scope of
Knowledge Audit, its main objectives and expected deliverables, to prepare a time
schedule and allocate resources for its implementation.

Force 4: Knowledge Audit implementation needs a team of experts with in-dept
knowledge of its processes, but also aware of the business processes, strategic goals and
assets of the organization. The knowledge gaps can be discovered only after sophisticated
analyzes of the existing knowledge resources and assets, so experts involved need to have
access to them and to understand the strategic goals of the company, as well discovering
the driving forces in the environment.

5

/4(4E 5+B-$.+*

Be clear for the purpose of Knowledge Audit and balance organizations’ needs with
available resources

The Knowledge Audit Planning should be performed like a company project aimed at
identifying, analyzing and tracing knowledge assets in the company. It is essential to
identify first the basic requirements for the Knowledge Audit, and the purpose of doing it –
if it is initial auditing process or will be a repetitive process in a Knowledge Management
initiative, or exceptional audit aimed at supporting decision making in the organization.

Second, determine what will be measured, e.g. internal or external knowledge resources,
knowledge gaps in a specific area, tacit and/or explicit knowledge, IT Systems and
applications used for knowledge management, social network analyses and knowledge
sharing, or organizational culture, etc.

Third, ensure management support by setting clear, measurable and achievable objectives
for Knowledge Audit, and showing the expected impact on company management and the
benefits of investing time and efforts in this process. The planning document should state
which results are expected, which will be the project size – a pilot audit or involving the
whole staff and departments, or if it will focus on permanent staff and/or part-time staff,
etc. There is a need to balance the competing demands for quality, scope, time and cost of
the Knowledge Audit. Thus, set scope, expected time framework and cost for the
Knowledge Audit in efforts (working hours) and show how will be guaranteed the quality
of the results by management supervision and active participators feedback.

Finally, clarify who will be in charge of the project, choosing between available internal
resources or external consultants or a mix of both. For the Knowledge Audit team should
be determined the main expertise needed, the responsibilities and tasks to be
accomplished. Leadership is essential, and senior staff should be involved in the overall
Knowledge Audit process. This will ensure the Knowledge Audit visibility, and that no
important knowledge assets, processes and skills forming company competitive advantage
are missed.

The organization can choose between two main approaches for Knowledge Audit
implementation – outsourcing the Knowledge Audit activity to a consulting company or
designating a team within the company to carry out the Knowledge Audit. It is possible to
combine both approaches, involving external experts in the Knowledge Audit team or to
elaborate the own Knowledge Audit methodology collaborating with external consultants.
Some stages of the Knowledge Audit can be implemented internally and others –
externally. At the time of planning should be considered the advantages and disadvantages
for both methods:

 Choosing a Consulting company: Consultants can provide unbiased assessment of
organizational knowledge assets, not taking into account personal experience,
prejudges gossip, etc. However, consultants can miss some important sources of
knowledge, not getting deeply into details of operations or ignoring corporate culture,
competitive advantage etc. Besides, they usually follow their own methodology for
Knowledge Audit that is more general and not company-specific.

 Internal team: Company team knows very well the operational activity of the
organization; knows employees and principle knowledge flows. Often the Knowledge
Audit team members become the most serious Knowledge Management champions.
However, employees often have a narrow view of the company activity, so they can
overestimate or underestimate important knowledge opportunities and strengths.

6

Assessment can be biased by personal attitude and emotions of the team members.
They normally have less expertise in the methodology of Knowledge Audit.

/4(4F 7+*#2G-2*'2#

You have laid the foundation for a clear and meaningful Knowledge Audit that can be
easily performed and reproduced. You are now ready to perform the Knowledge Audit.
The Knowledge Audit planning provided you the Knowledge Audit requirements and
context, the knowledge assets to be measured, the goals and tasks to be performed, the
organization of the Knowledge Audit process and its main risks, the resources needed and
the project time framework, and last, but not leased determined how the Knowledge Audit
team will be composed in order to overcome the limitations.

/4(4H I&$.+*&B2

Knowledge Audit Planning is crucial step towards better Knowledge Management
implementation. Better understanding of organizational knowledge processes and assets
and the knowledge life-cycle is substantial for its better exploitation. The Knowledge
Audit Plan ensures a well performed Knowledge Audit process and guarantees clear
standards and procedures.

/4(4J 8A&CKB2

The planning of Knowledge Audit processes is discussed in a number of case studies and
research projects. Detailed planning was performed during the project TRAINMORE-
KNOWMORE [11], as the overall requirements and objectives of the Knowledge Audit
process were set up. As a project outcome, a Knowledge Audit self-evaluation tool with
detailed instructions for further use was designed. Overall 14 pilot Knowledge Audits were
performed following the proposed methodology and comparable results are reported. The
Knowledge Audit Planning guarantees the Knowledge Audit process and results and
improves the Knowledge Audit implementation in practice.

7

/4/ ;<=>:8?@8 !6?)0 08!L

/4/4(7+*$2A$

The company decided to implement Knowledge Audit and approved a plan for implementing
it using internal resources and expertise. As the Knowledge Audit is a complex instrument to
identify the knowledge assets’ state-of-the-art and future trends, it has to be performed
carefully by knowledgeable and experienced staff. The company should select a well-
balanced team of experts to carry out all Knowledge Audit processes and analyses. It is
important to identify the necessary expertise and choose among company experts.

/4/4/ 3%+"B2C

How to form a good Knowledge Audit Team?

/4/4D 9+%'2#

The proper composition of the Knowledge Audit Team determines how successful will be
the Knowledge Audit and the Knowledge Management processes.

Force 1: The team has an important role to identify and analyze the knowledge within the
company and to perform the Knowledge Audit process. Having motivated, open-minded
and educated team members will guarantee well performed Knowledge Audit processes
and outcomes. The selected team should identify knowledge assets and perceive the
important knowledge and communication flows, taking into account that a big part of the
knowledge is informal, tacit, personal and fuzzy. However, it is not easy to find a proper
mix of skills, both personal and expert in only one company unit.

Force 2: Team members need to understand the strategic vision and the global business
processes of the organization and its environment, but they should also know in details the
business processes and core knowledge assets of the company, as well as how technology
is used to support organizational performance.

Force 3: Team members should understand the Knowledge Management and Knowledge
Audit principles, Knowledge Audit goals and processes, specific Knowledge Management
tools and techniques, but also have leadership skills and be able to motivate people and
involve them in the Knowledge Audit processes.

/4/4E 5+B-$.+*

Make a mixed team of experts from different functional areas of the organization

The Knowledge Audit Team should be composed of experts coming from several
departments within the company in order to ensure the necessary mix of expertise and
skills. Ideally, the team should include people from different levels of the organization in
order to ensure the knowledge of strategy and company mission, as well as the awareness
of company customers and suppliers and operational daily tasks (knowing well the
product, technology, service). In order to equip the team with knowledge of technology,
human resources, research methodology or accounting, the team should include also
representatives of different functional areas within the company. It will be wise to invite
persons with substantial vision about the tacit knowledge within company and people with
good social (informal) networks.

8

Ideally, the Knowledge Audit team is composed of:
 Corporate strategist: Sets goals, determines optimal performance levels, brings the

big picture perspective into the analysis.
 Senior management, company visionary, or long-term planner: Brings long-term

KM vision, aligned with the business strategy of the corporate strategists.
 Financier: Brings the ability to value and attach a fair-dollar figure to knowledge

assets.
 Human resource manager: Brings good understanding of employee skills and skills

distribution within the organization.
 Marketing specialist: Provides a fair picture of actual market performance of the firm

and the possible implications of its knowledge assets on the marketability of the
company products and services at new price-service function points.

 IT expert: Brings in knowledge, skills, and expertise for mobilizing the technology
implementation aspects of your knowledge management strategy. Also has intimate
knowledge of existing infrastructure.

 Knowledge manager, CKO, or knowledge analyst: The middle role that integrates
inputs from all other participants on the knowledge audit team in a consensual, and fair
manner. The analyst contributes a reasonably accurate market valuation of proprietary
technology and processes based on perspectives elicited from other team members.

/4/4F 7+*#2G-2*'2#

The successful Knowledge Audit Team identifies the main Knowledge Audit forces and
takes principle considerations about knowledge assets in organization. The Knowledge
Audit Team has to overcome the basic limitations of the Knowledge Audit approach,
preventing it from focusing only on people (tacit knowledge) or only on documented and
codified knowledge and IT. The Knowledge Audit Team determines the main hypothesis
of the knowledge within company and it organizes and implements the Knowledge Audit
processes. The heterogeneous team will overcome successfully the personal (biased) look
and understanding for organizational knowledge, and will build complex and dynamic
model of organizational Knowledge Management.

After appointing the Knowledge Audit Team, you should train it and motivate it how
important is Knowledge Audit and Knowledge Management for the company. In principle
you are now ready to perform the Knowledge Audit processes. The Team has the
necessary set of expert knowledge to accomplish successfully the Knowledge Audit.

9

/4D ;<=>:8?@8 !6?)0 L80M=?=:=@N

/4D4(7+*$2A$

An organization decided to conduct Knowledge Audit, elaborated a Knowledge Audit Plan
and appointed the Knowledge Audit Team. It scoped the Knowledge Audit project and
took general decisions about the Knowledge Audit implementation resources and
schedule. It needs to decide how to carry out its tasks in order to achieve the results
considered in the Knowledge Audit Plan.

/4D4/ 3%+"B2C

How to choose the right sequence of Knowledge Audit actions in order to accomplish
successful Knowledge Audit within the specific organization?

/4D4D 9+%'2#

The Methodology for implementing Knowledge Audit should be adapted to the specific
situation in the organization. It should reflect not only the company status and profile, but
also some constraints like cost, time, and staff. At the same time, it should produce and
guarantee the desired Knowledge Audit outcomes. The Knowledge Audit team has to
discover the most convenient among the existing Knowledge Audit methodologies,
depending on the desired outputs and management practice.

Force 1: The Knowledge Audit Team needs a proper methodology and sequence of tasks
and activities in order to perform successfully the Knowledge Audit, but there is a big
choice of Knowledge Audit approaches in research and practice [5, 6, 7, 8]. It is important
to make a good choice out of available methodologies or develop its own approach.
Normally, consultant companies and Knowledge Audit experts come with their own
methodology for Knowledge Audit. Thus, this could be an optional step if the Knowledge
Audit project is outsourced.

Force 2: The Knowledge Audit Plan has provided the scope and objectives of the project,
but there is a need to elaborate more working details and choose the proper tools for
measurement of knowledge assets and flows. In order to plan and allocate properly the
necessary efforts and time, some further details should be taken into consideration:
 The company staff status profile /number, education, age, experience, expertise,

turnover rate/
 The level of knowledge codification, IT infrastructure and knowledge available in

electronic form (in data warehouses)
 The way of the processing knowledge coming from clients/suppliers, third parties
 The value of tacit knowledge (and know-how), value of social networks,

informal/formal knowledge sharing in the company value-creation process
 How knowledge-intensive is the industry/sector and what are the general trends among

main competitors
 How will look the expected Knowledge Audit outcomes.

Force 3: A large variety of knowledge audit tools are proposed in research and practice,
but it is important to choose those of them which are easy to implement and will help to
gain the needed results and meet the objectives. The Knowledge Audit team should choose
if it needs to make a full Knowledge Assets map and Intellectual Capital Inventory,
Knowledge Flowchart and Analysis, carry out a Competitive Knowledge Analysis, Critical
Knowledge Function Analysis or Knowledge Management Benefit Assessment, etc., and if
it should focus the measurement on qualitative or just quantitative approaches.

10

O/4D4E 5+B-$.+*

Find the right balance between activities to be performed and tools to be used, and
the necessary resources for achieving the best results

Figure 2: Knowledge audit processes details

In practice, companies adapt the methodology for Knowledge Audit to their specific needs
after studying the well-known approaches and tools. In order to better guide the
Knowledge Audit processes (Fig. 2), assess and evaluate the company knowledge status,
and produce the expected Knowledge Audit outcomes, the following approach could be
followed:

1. Identifying state-of-the-art – making an overview of documents (explicit
knowledge) about organizational knowledge assets, processes, workflow procedures and
internal structures. This is an important step for Knowledge Audit Team to acquire an
overview of operations and workflow, and to get a strategic vision for Knowledge
Management roadmap development. The Knowledge Audit Team has to estimate the value
of tacit knowledge, tacit knowledge sharing practices, organizational culture and
motivation.
2. Focus setting – choosing the target group for Knowledge Audit – the overall
company, specific department/s or teams and work groups
3. Adjustment of inventory – customizing the audit tools (questionnaires, interview
scope) to the company/audit objectives and requirements
4. Conducting survey – gathering data (sending questionnaires to the selected target
group and/or conducting face-to-face interviews with the process owners). Sometimes it
can be useful to organize a workshop to explain the Knowledge Audit goals and objectives
encouraging employees to participate, and thus, increasing the feedback rate.
5. Analyzing the results – evaluate data, verify Knowledge Audit consistency
(response rate, level of participation) and draw general Knowledge Audit conclusions;
6. Preparing a Knowledge Audit report, presenting the Knowledge Audit
conclusions and suggesting list of suitable actions facilitating Knowledge Management
implementation – as modeling of business processes, improvement of existing Knowledge
Management policies and procedures (for example review of HRM policy, adapting
remuneration policy, improve motivation culture for knowledge sharing), creating a
roadmap with recommendation for further actions;
7. Organizing feedback workshop – by means of workshop, the results are reported
back to the management and public and the suggested measures are prioritized –
establishing a detailed Knowledge Management roadmap and Knowledge Management
action plan;

In-house knowledge

Explicit KA (IA)

Tacit KA
(questionnaires, staff
surveys, etc)

Assessment
of
Knowledge
Strengths,
Weaknesses,
Threats and
Opportunities

Knowledge map

Identification of
KM enablers, KM barriers,
KM instruments, KM initiatives,
implementation roadmap

Environmental knowledge

- Industry knowledge
- Porter analyses
Research level
Technology level
Market analyses

KA report

11

8. Preparing a Knowledge Management implementation project, based on the
approved Knowledge Management roadmap and action plan

The Knowledge Audit process needs strong support from organizational leadership and
commitment and engagement of all employees. Therefore, it is recommended that before
initiating any Knowledge Audit activities to inform all employees about their objectives
using suitable form and tools (workshop, presentation, public discussions and debates,
company newsletter, or organizing information kiosk). In order to achieve successful
Knowledge Audit results, all employees should understand and support it (and thus
minimizing internal opposition and misunderstanding).

/4D4F 7+*#2G-2*'2#

The Knowledge Audit Team is now equipped with a methodology and has better
understanding of all tasks to be performed and tools to be applied, as well as how to
implement in practice all Knowledge Audit processes. The company is well prepared for
the next steps, and will achieve better Knowledge Audit performance.

The specification of Knowledge Audit details will ensure clear implementation procedure
and guarantee better performance. Thus, the company will be able [5]:

 to uncover strengths and weaknesses within the actual corporate management of
knowledge assets and business processes;

 to analyze circumstances, barriers and enablers of the Knowledge Management as
corporate culture, leadership, human resources management (HRM), information
technology (IT), process organization and control;

 to increase awareness of Knowledge Management within the company;
 to design a roadmap for Knowledge Management implementation and measure;
 to collect measurable data for controlling purposes.

/4D4H I&$.+*&B2

All Knowledge Audit approaches have a common feature – their focus on the current status
of the company knowledge – locating it throughout the organization, and examining
knowledge flows and processes. The real Knowledge Audit should, however, go beyond
the company internal status and deliver a broader picture of the global processes and
stakeholders, and the knowledge position of the company against its competitors. It should
include, in addition to the competition or industry branch analysis, an analysis of the level
of technology development, current research state, available resources and macroeconomic
perspectives, customer demands and requirements, industry growth trends, leading industry
experts and human factors. This analysis will guarantee more successful level of
Knowledge Management implementation and better action plans, while designing
Knowledge Management tools, IT systems or HRM techniques.

12

/4E ;<=>:8?@8 !6?)0 P6850)=<<!)I8

/4E4(7+*$2A$

The Knowledge Audit Plan, Team and Methodology are in place. The company decided to
use a questionnaire as a reliable tool to carry out the analysis and investigate the state-of-
the-art of knowledge assets, knowledge exploitation and knowledge flows.

/4E4/ 3%+"B2C

How to prepare the questionnaire in order to ensure detailed inputs on
organizational knowledge assets? How to compose, customize, adapt, or select it?

/4E4D 9+%'2#

When composing and using questionnaires in Knowledge Audit process it should be taken
into account form, content and methodology of the Questionnaire process:

 Obtained Knowledge Audit Results: The main problem of composing and using
questionnaires is that they reflect not the real facts, but personal opinion about these
facts. If formulated not properly, questions could mislead the respondent and provide
biased results. On the other hand, tacit knowledge could not be easily recognized,
and thus, cannot be easily reported by employees. Questionnaire has to be adapted to
the Knowledge Audit purposes, focusing on specific objectives and goals stipulated
in the Knowledge Audit Plan.

 Questionnaire Form: The Knowledge Audit aims at gathering more information
and knowledge from the employees. However, the sequence of the questions and the
length of the questionnaire can influence the responses and the return rate.

 Limitations and Constraints: It is important to obtain personal data for gaining
maximum information and tracing it to the source for further clarifications, if
needed, but the legal limitations and privacy should be respected. At the same time,
often people will avoid responding frankly if anonymity is not guaranteed.

 Questionnaire Content: It is important to consider what type of questions to
include in the Knowledge Audit Questionnaire and how to balance the content using
both open-ended and closed questions. Open-ended questions could provide more
information and insights from employees, but their processing is more difficult and
time-consuming.

O/4E4E 5+B-$.+*

Ensure balance between the objectives of the questionnaire and its length and content
while respecting legal and personal constraints

The Knowledge Audit Questionnaire should respond to the purpose and objectives of
Knowledge Audit. It should be composed carefully, taking into account the best practices,
available in literature [11]. The derived solution should be considered from some general
points of view:
 Knowledge Audit Results: The Knowledge Audit Questions should mainly focus on

facts, while some sections can ask for personal opinion ("what do you think
will/should…"). It is important to determine in advance the quantitative and qualitative
output data needed for further analyzes, and to optimize the number of questions. It is
advisable to have a short overview of the questions and make revision of style,
terminology and language of the Questionnaire in order to be clear and unbiased.

 Questionnaire Form: The Knowledge Audit Questionnaire should differ depending
from the media and delivery method used – face-to-face interviews, online
questionnaires or paper-based form. The questionnaire length should reflect the way of
distribution. It is advisable to make a concise questionnaire that could be filled within
5 - 10 minutes while it is sent by e-mail, post or electronic form. More detailed

13

questionnaires could be used in face-to-face interviews and group discussions. Inform
people in advance about the time needed to fill in the questionnaire or to conduct the
interview.

 Questionnaire Limitations: Avoid questions that could be treated as unethical or are
asking for sensitive personal information. Select appropriate scale for response
(yes/not, scale of 3/5 positions, open response). Always give an option for answering
"I don't know" and "other". Clearly identify that responses will be treated
anonymously, but personal information is needed for further clarifications and details.

 Questionnaire Content: Begin by determining the basic sections of the questionnaire.
The questions within the sections can be formulated later depending on how deep and
a detailed analysis is needed.

/4E4F 7+*#2G-2*'2#

The Knowledge Audit Questionnaire has identified and provided first-hand raw data about:
 Core knowledge assets and knowledge flows – who create knowledge and who use it
 Gaps in information and knowledge needed to manage the business effectively
 Areas of information policy and ownership that need improvement
 Opportunities to reduce information-handling costs and to improve coordination and

access to commonly needed information
 A clear understanding of the contribution of knowledge to business results
 IT use and application for Knowledge Management in business
 Measurable outcomes for the company culture
 Understanding of social relationships and network analyzes
 Motivation techniques that could best fit to the organization

/4E4H I&$.+*&B2

The Knowledge Audit Questionnaire is a critical instrument for collecting first-hand raw
data, adapted to the focus of the Knowledge Audit. It should complete the other sources of
data, available in the company, as company records, data bases, documents, workflow
analyses, etc. The best picture of the overall knowledge combines both – the explicit
knowledge overview with documents and procedures and the Knowledge Audit results
covering tacit knowledge and company culture.

/4E4J 8A&CKB2

A detailed questionnaire was developed during the Leonardo da Vinci project
TRAINMOR-KNOWMORE [11]. It is adapted especially for SMEs and public
organizations. The questionnaire was tested in organizations in partners’ countries. It
included several sections which could be adapted to the organizations’ specific needs, and
the questions could be deepened according to the goals of the analyses:

 Demographic analyses
 Knowledge Profile Analysis
 Work Nature Analysis
 Strategy and management style
 Knowledge and Information Sources
 Information Technologies use
 Social Network Analyses
 Corporate Culture and Staff fit
 Motives and salaries

14

/4F ;<=>:8?@8 !6?)0 I83=I0

/4F4(7+*$2A$

The organization implemented successfully the Knowledge Audit methodology using the
most appropriate tools for gaining maximum inputs. The process should be finalized with a
document describing the results and providing inputs to a further decision-making process
linked to Knowledge Management strategy, systems, tools and instruments, improvements,
etc. The research and analysis outcomes are needed for Knowledge Management
evaluation and progress measurement, as well as for determining a Knowledge
Management roadmap and further steps to take use of Knowledge Management enablers
and overcome potential barriers [1].

/4E4/ 3%+"B2C

How do you compose a good Knowledge Audit Report?

/4E4D 9+%'2#

The Knowledge Audit Report role is to present the final outputs of the Knowledge Audit
process and to address the next steps for Knowledge Management implementation. The
main challenge of preparing this report is that it is a complex document, proposing a
roadmap and Knowledge Management action plan.

The Knowledge Audit Report preparation – The Knowledge Audit Report should
overview the main outcomes of the Knowledge Audit process. A complete, useful and
focused on the company needs Knowledge Audit Report should include multiple sources
of information about the organization and its knowledge assets, analyzed in a proper and
detailed manner. It must examine, analyze, assess, verify, validate, review and report the
findings about the current state, but also provide recommendations for future steps for
developing new knowledge assets in the organization [9].

The Knowledge Audit Report presentation – The Knowledge Audit Report should be
properly presented, discussed and accepted in the organization. Its real value is not the
written document, but the process of creating it, discussing it and gaining deeper
understanding about the existing knowledge in the company and necessary for its survival.

O/4E4E 5+B-$.+*

The good Knowledge Audit Report should put emphasis on explicit and tacit
dimensions of knowledge, including internal and external factors for knowledge
development.

The Knowledge Audit Report starts with in-house knowledge overview and general
information audit, including knowledge resources, people, key organizational knowledge
assets – patents, trademarks, experts; then business processes (innovations, learning,
sharing) and knowledge flows, IT systems, social aspects and culture. The second part
comprises tacit dimensions of company knowledge or assessment of individual and group
knowledge. Finally, analyses of the company environment provides a short description of
the industry knowledge (global aspects, demand and supply curves, fluctuations, main
players), Porter analyses (for knowledge possessed and acquired from customers, partners,
suppliers, competitors and substitutes), research achievements (university and research
centers, key achievements, key researchers working in the area, recent inventions and
publications, conferences), technology level (technologies in the sector, trade fairs and
events, publications, PR).

The Knowledge Audit Report finally identifies the organization’s readiness to adopt a
Knowledge Management initiative – pointing out the Knowledge Management enabling

15

factors and persons, what are potential barriers, suitable Knowledge Management
instruments and initiatives to start with, and finally – implementation roadmap.

The Knowledge Audit is presented usually as:

 Printed hand-out Report. It can be used as a reference document and for internal
communication. It is advisable the Knowledge Audit Report to be concise, well balancing
the content, including multiple charts, figures and images, while applying user-oriented
terminology and design.

 Electronic version of the Knowledge Audit Report. It could be published on the
company website, where a public discussion could be organized, reflecting the major
issues and outcomes of the Knowledge Audit process.

 Knowledge Audit Workshop – Usually, the Knowledge Audit team prepares a
short workshop, where it reports the Knowledge Audit outcomes. The resulting
discussions and feedback could be taken into consideration when Knowledge Management
roadmap and Knowledge Management Plan are assessed.

/4D4F 7+*#2G-2*'2#

The Knowledge Audit Report outlines the state-of-the-art and the Knowledge Management
needs and gaps and on basis of the information collected, identifies and assesses the
knowledge strengths and weaknesses and knowledge opportunities and threats. The
Knowledge Audit Report provides sound recommendations for further Knowledge
Management initiatives assessing the current state-of-the-art and scenarios for future
development. It ensures better understanding of Knowledge Management strategy and
investments needs. The Knowledge Audit Report plays a role for achieving a better
success rate of any Knowledge Management program, saving unnecessary efforts,
resources and time and customizing the Knowledge Management approach to the concrete
needs of the organization.

16

!" #$%&'()*

A knowledge Audit was carried out in 14 organisations in Europe within the Leonardo da
Vinci project TRAINMOR KNOWMORE. One of the pilot studies was a knowledge audit
carried out in the Centre of Information Society Technology (CIST) – a dynamic research
unit of Sofia University [2].

In the Knowledge Audit survey of TRAINMOR-KNOWMORE took part 15 persons from
CIST permanent staff (almost 90% of the permanent employees). Multiple relationships
and attitudes of the employees, relevant to Knowledge Management were identified.

Some of the main findings are related to time spending of the employees for knowledge
gathering, information flows in CIST, organizational climate, knowledge-related problems
(Fig. 3) and Knowledge Management activities needs (Fig. 4).

27%

40%

53%

73%

53%

47%

33%

13%

13%

7%

13%

13%

7%

7%

0%

0%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Know-What

Know-How

Know-Who

Know-Where

Rarely
Sometimes
Usually
Very often
Always

Figure 3: Frequency of knowledge-related problems

7%

14%

7%

0%

7%

14%

21%

21%

14%

0%

14%

7%

14%

21%

21%

14%

14%

14%

21%

38%

79%

79%

79%

79%

71%

71%

64%

64%

64%

62%

0% 10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

I would aim at the organization and classification of the information

I would support access of all staff to the business electronic files

I would give emphasis on the transfer of experience

I would put emphasis on the exploitation of knowledge external to the
company

I would improve the quality of communication

I would motivate the personnel to share knowledge

I would aim at more targeted information flow internally

I would try to change personnel's attitudes

I would try to change top management's attitudes

I would support informal and relaxed meetings

Not at all A little Extensively

Figure 4: Knowledge Management activities that have to be performed in CIST,

according to staff

Following the Knowledge Audit of CIST was proposed an action plan, and on this base the
main characteristics of a Knowledge Management System that will enhance Knowledge
Management processes in CIST were identified. Subsequently, a prototype of the
Knowledge Management system is designed and developed, responding to the identified
problem areas (Fig. 5). The Knowledge Management system is designed as a single entry-
point to the knowledge assets and resources of CIST, accessible anywhere and anytime via
an Internet – based Knowledge Management portal. The main functionalities of the

17

knowledge portal include the following principles – all information is uploaded in
standardized templates, which include information about the context, purpose and
metadata for any document are created. All information uploaded on the portal can include
personal comments (tacit knowledge); can be linked to other files or templates, can be
described by keywords, etc.

Figure 5: Knowledge Management system of CIST – Section knowledge assets

I2B&$2, Q+%R &*, #+-%'2#

TRAINMOR KNOWMORE Consortium, http://www.trainmor-knowmore.eu/

+" ,-./(0*1-.

The Knowledge Audit is a critical step for Knowledge Management in organizations, as it
supports the initial Knowledge Management implementation, the evaluation of its results,
and thus the decision making process in the organizations for making greater use of
knowledge strengths and the competitive advantages of the organization [1]. In fact, a
wider understanding of company interests, global situation and processes could facilitate
all employees to contribute better to the competitive position of the company and the
management of its knowledge. This means not only better acquiring (learning) and
generating (innovating and experimenting) knowledge, sharing it (communicating) and
storing it (codifying) but also better anticipating the future, and finally, better preparing for
it [1].

As the Knowledge Audit represents a process which could be applied in all knowledge-
based organizations, it is important to create guidelines for its proper implementation
based on study of real cases. In order not to reinvent the wheel, business patterns for
Knowledge Audit could be applied in organizations. The paper presents five different
patterns corresponding to the main steps needed in the Knowledge Audit-implementation
chain - Knowledge Audit Plan, Knowledge Audit Team, Knowledge Audit Process,
Knowledge Audit Questionnaire and Knowledge Audit Report.

18

21*3-45

First draft 14 February 2009
Second draft 20 April 2009
Third draft 24 May 2009
Fourth draft 29 June 2009

6/7.-8()9:)&).3*

The authors express their deep appreciation to Lise Hvatum for shepherd this paper to
EuroPLoP 2009, and to Allan Kelly for all suggestions during the writers workshop.

The authors gratefully acknowledge the results obtained during the pilot project under the
EU programme Leonardo da Vinci “TRAINMOR KNOWMORE” (2005-2008), and the
support provided under the FP7 project SISTER.

;)<)4)./)*

1. Antonova, A., E. Gourova, An extended Knowledge Audit Approach, Proc. of International Scientific
Conference ‘Business Informatics’, 11-12 October 2007, pp. 151-159

2. Antonova, A., E Gourova, Knowledge Management in Universities – the CIST case, 9th European
Conference on Knowledge Management Southampton Solent University, Southampton, UK, 4-5
September 2008, pp. 27-34

3. Dalkir, K., Knowledge management in theory and practice, Elsevier, Butterworth Heinemann, US, 2005
4. Hylton, A., A Knowledge Management Initiative is Unlikely to Succeed Without a Knowledge Audit,

2002, available: http://www.annhylton.com
5. Mertins, K., P.Heisig, J.Vorbeck, Knowledge Management – Concepts and Best Practices, Springer

Verlag, Berlin-Heidelberg, 2003
6. Liebowitz, J., Knowledge management Handbook, CRC Press LLC, 1999
7. Bukowitz, W., R.Williams, The knowledge management fieldbook, Prentice Hall, 1999
8. Pfeifer, J., Sutton, R., The Knowing – Doing Gap, Harvard Business School Press, 1999
9. Hylton, A., The knowledge audit is first and foremost an audit, 2004, available:

http://www.annhylton.com
10. A Guide to the Project Management Body of Knowledge, Third Edition (PMBOK Guides) by Project

Management Institute
11. Organizational Knowledge Management Handbook, TRAINMOR KNOWMORE, March 2008,

available: http://www.trainmor-knowmore.eu
12. Galic M. et. all, Academic Edition: Applying Patterns Approaches Patterns for e-business Series, IBM

Redbooks publication, 2007, SG24-7466-00.
13. Kelly A., Business Strategy Design Patterns, The Porter Patterns, 2005, available:

http://www.allankelly.net
14. Kelly A., Business Strategy Patterns for the Innovative Company, The Porter Patterns, 2005, available:

http://www.allankelly.net
15. Schubert P., R.Wolfe, eXperience-Methodik zur Dokumentation von Fallstudien, in: Wolfe, R.,

P.Schubert, Wettbewerbsforteile in der Kundenbeziehungen durch Business Software, Munchen: Carl
Hanser Verlag, 2008, pp. 17-24

Applying Distributed Development Patterns

Stories and Pattern Sequences

Lise B. Hvatum

The experience reflected in these patterns comes from years of working for an
international technology company with product development centers in Europe, North
America and Asia, and through interaction with people from other companies practicing
distributed development. The patterns were initially built on observing internally
established practices, and later influenced by learning through reading, conference
participation, and discussion.
Despite the effort of capturing over thirty patterns to create a solid foundation of
knowledge, it is not enough to make the material really useful to an organization. The
manager or team member of a distributed team faced with all these knowledge pieces must
feel like a kid opening a large box of Lego just to find that the instruction manual is
missing. There are lots of parts, but no beginning or end. It may look overwhelming, and
if he or she needs all the parts depends on the complexity of the system they are building.
This paper follows the stories of three projects as a way to illustrate the use of the patterns
in the context of a small, medium and large project. Alternatives and possibilities are
explored, while making it clear what needs to be prioritized, or even practiced to the level
of “must-do”.

Background
A distributed team is not a new invention. People have collaborated on research and
product development projects internationally for decades if not more. Several years ago I
worked as the manager for projects split between Norway and England, without
considering that to be a problem. Traveling was easy and inexpensive. The project
members would visit on a regular basis, and communicate frequently by phone and e-mail.

Then a few years ago I got involved in projects running between the US and Asia. What
had been small, manageable issues now escalated to become major obstacles. The Asian
location hired several young developers with little knowledge of the business domain. In-
depth business and technology expertise was mainly with people in the US locations.
Cultural differences as well as language problems were hurting communication. The time
zones allowed no overlapping work time, which meant full day delays in exchanging e-
mails, and caused very early/very late presence for video conferences and phone
conversations. Travel was time consuming and expensive.

Luckily the people involved were enthusiastic and wanted to make it work. Although
stumbling from one problem to the next, the teams eventually found ways to collaborate
and be productive. As managers and key engineers moved on to other activities, their
experience was captured to benefit future teams.

Introducing the Patterns
The patterns themselves are not included in this paper as it would make it far too
extensive. Most of the patterns are presented in papers at PLoP conferences [EuroPLoP
2004, PLoP 2004, EuroPLoP 2005], and they are all represented by thumbnails in the
appendix. Here is an overview to aid the readability of the paper. After reading the
following two pages, the reader should have enough knowledge about the patterns to be
able to appreciate the stories and pattern sequences following this introduction.

Figure 1: Distributed Teams Patterns Overview

The patterns are sorted into three overlapping levels. The first set of patterns applies for
the whole organization. Some are independent of the project: One Class of Citizenship,
Relocation and Rotation, Balance of Nationalities and Minorities, and International
COP’s. These patterns focus on creating an organizational culture that will enable the
organization to succeed with distributed teams.

Other top-level patterns are needed to create an organizational structure that will support a
distributed project: Commitment from All, Benefit Target, Single Point Organization,
and Accounting Model. The purpose of each of these patterns is given in figure 2.

Figure 2 Patterns applied for the overall organization

Additional patterns are applied on the particular distributed project: One Project,
Communication Strategy, Common Information Infrastructure, and Conflict
Management to set up the project properly for a distributed setting. These patterns are
typically applied by the Project Manager.

Figure 3 Patterns applied for the project

Finally there are a large number of patterns that are applied by the team to enable the team
for distributed development. The more control the team is taking in adapting and

implementing these practices the better is the chance of successful implementation. The
patterns on this level are practices that apply on a team level only, although some of them
require financial and organizational acceptance from the organization.

Figure 3 Patterns applied internally by the team

Introducing the Projects
In the following sections, we will look at projects requiring an increasing level of
formality and organizational structure. The project stories build on real experience and
reflect real projects. For confidentiality reasons actual names and project details have been
somewhat modified, although in a way that should not affect the understanding of why
and how a pattern is applied.
The first project is a small activity running for a few months, and the focus of the story is
team communication and collaboration. The second team is larger and requires some
support from the organization. The third project is large and involves multiple locations
resulting in the need to establish practices and workflows far outside the project itself. The
essential characteristics for each project in relation to distributed teams are summarized in
the table below:

Project Visualization Tool Asset Management System Control System

Size Small Medium Large

Budget (USD) 0.3M 5.9M 32M

Effort 1.3 my/7 people 27 my/27 people 120 my/55 people

Locations 3
2 in China, 1 in the US

3
US, France, India

6

2 in US, UK, France, Italy,
India

Time Difference China: Same time zone
China – US: 13 hours

US – France: 7 hours
US – India: 11 hours

US – UK: 6 hours
US – France/Italy: 7 hours

US – India: 11 hours

Complexity Low Medium High

Innovation No No Yes (new)

Throughout the project stories the following formatting and structure is used:
1) Pattern names are written in bold.

2) Throughout the stories text in italics headed Exploration explain and suggest
alternative implementations to better understand the use of the patterns.

3) Side effects and negative results of applying the patterns are included in the
exploratory text under Issues.

4) A few external patterns are mentioned in the exploratory text. These are
represented with underscored font. They are listed with references on page 23.

At the end of the paper there is a short discussion of other patterns and pattern languages
that complement the patterns in this paper. The reader looking for more detail will benefit
from reading the actual patterns (see references).

Picture Source: Google Images
(sample picture for illustration purposes)

Project #1 – The Data Visualization Tool

Company A sells measurement data to customers.
The data by itself is meaningless unless you
know how to represent it graphically in a way
that makes sense to analysts in the client
company. So it is customary to provide a viewer
tool with the data. The behavior of the viewer
tool depends on the physics of the measurement
which is already well known. It is developed on a
software framework which is mature and stable.
The developers have made several similar
viewers for other measurements before. This is a
low-risk project estimated to take about 3 months
(15 man-months of effort) including testing, with
a USD 250k budget.

The resources assigned to the project are a manager (Mark) and three developers in China
(Yuan, Chen, and Feng), and a domain expert (Alfredo) and a physicist (Linda) in the US.
There is also a qualification engineer in China (Li), but in a different location. They are all
experienced and have worked together before.

Figure 4: Team organization for the Data Visualization Tool team

The company has learned to always establish a Single Point Organization which
establishes well-defined roles and reporting on each level of the organization to ensure
clear decision making and responsibilities. It creates the new project as a part of the
Chinese project portfolio under the program manager (Richard) who is in charge of a
family of viewers for similar products. This is natural as this is the location of the project
manager. Mark makes sure to run the development as One Project with shared team

objectives, and to get Commitment from All especially for the external resources.
Alfredo is assigned full time to the project for its duration, but Linda has another project to
deal with as well.
Exploration: It is important to ensure that there is a clear, communicated and simple
reporting structure for the project. In such a Single Point Organization, decision at each
level and in each entity in the organization is sitting with a single role to remove
confusion. Roles and their assigned authority are clearly defined.
Team focus is also made clear through applying the One Project, having only one
manager and team world-wide with common objectives and goals. The project manager is
the only interface to the customers and upper management in the company when it comes
to defining the scope of the product, change management throughout development, and all
other major decisions. The stakeholders can directly collaborate with team members in
discussing the product (requirements discussions, demos, acceptance testing), but no
decisions are made without the project manager in charge.
The up-front Commitment from All involved locations supports the project with the
resources needed throughout the development. The resources are definitely people with
particular skill sets and knowledge, but may include other support like facilities, access to
test systems etc.
Issues: There is an assumption in the above exploration that the organization is structured
in projects. That may not be the case for your company, and so the implementation of the
above will need to take another shape. What is important to achieve is the clear structure
and responsibilities for decision making in respect to the developed project, but also for
the utilization of resources. In particular it is necessary that an individual engineer
assigned has enough time available and that priorities (and possible priority conflicts) are
taken care of by management and not left to the individual to deal with.
Even though his team is experienced, Mark decides to fly over the two people from the US
for one week so they can start the project Together. The team starts planning the product
and creates the initial project plan. The qualification engineer Li is also coming to the
development location in China for the same week so that the whole team is there. Mark
enforces the Early Bonding by using Social Funds for some teambuilding. The team
members already have a good level of Culture Awareness and are well Prepared
through earlier experience with distributed teams, but their week together enforces this.

Exploration: The most important time for a team to physically be Together is at the start
of a project. Even for larger systems, a good foundation both for the system architecture
and the team collaboration (trust) can be done in a two-week boot camp. The goal is to
establish a common understanding of the product, and of the main principles of the system
architecture. Several possibilities should be discussed, and an initial framework agreed
on. This is a first achievement for the team, and by tightly sharing the evolution of this
framework each individual will feel the ownership and enforce the Early Bonding that
builds trust in the team that they will benefit from throughout the development. By
including all resources in the event, they are on the same level, share the terminology and
the understanding of the product, and can plan for their own tasks in the project early.
Having a customer representative present as in this case is very beneficial. Many mistakes
and misinterpretations of requirements can be avoided by the customer being heavily
involved at this stage.

One good effect of early collaboration is the Early Bonding between team members from
the beginning. By observing each other during team interactions, all get a better
understanding of the individuals, their communication style and their knowledge. Social
Funds should be used to invest in good people relations through social activities. This can
include team dinners, an outing to visit a local attraction, an evening at a local go-cart
track, etc. Strong team interrelations and trust is invaluable on a project. Although hard
to quantify directly, most problems on software projects can be traced back to
communication problems within the team or with the stakeholder.
When talking with developers who have experienced multi-cultural teams, they often point
out the importance of understanding the body language and communication style of other
nationalities. Unless all team members are familiar with the main cultures represented it
may be a good investment to send the team members to training to build up their Culture
Awareness. The same goes for training on distributed development to ensure the team
members are well Prepared. An investment in training the team members on issues and
solutions for multi-site software development will surely pay off, although it may be hard
to find this kind of training offered yet.
Issues: All of the above patterns require that the company is willing to do the financial
investment in travelling and training. If this is not possible in your company you need to
emulate the effect of together-time. You still need the effort on architecture and product
vision, and a virtual workshop may be a way forward. This means that team members at
each location run local workshops, with limited sessions run with the complete team using
collaboration tools (Live Meeting, phone, video conferencing etc.). For team members to
better know each other you could create a gallery where team members can post pictures,
stories and personal statements, or even link up with tools like MySpace. The manager
must make sure that people are comfortable with using these methods, and that what is
posted is not offensive to any of the team members.
The team agrees on short iterations of one week. They have a Common Development
Environment that makes their collaboration easy. A full integration test on completed
functionality (Use Cases) is done by Li on every integration baseline. The team also has a
collaboration space (their Common Information Infrastructure) where they post all
their documents, but that also includes chat options and live meeting capabilities.
Exploration: The importance of a common development process and a common
development environment is often not understood by a company. Most fundamental is the
shared code base, especially if the development is truly one product and the developers
need to share/modify some of the same files. Iterative development with frequent
integration into a common baseline, and automated testing based on full unit test
coverage is giving the team the benefits of good control of progress, and early detection of
problems. This way of working really means that the team must be using the same
development tools.
Common space like a wiki, SharePoint or using a collaborative development tool like
VersionOne ensures that each team member always has access to the latest version of
important project documents. You may also decide to share the history of your chat
sessions since a discussion thread may have information valid for other team members.
Issues: For historic reasons, locations may be using and have experience with different
development tools. The organization must be willing to invest in common tools for
development and team collaboration and train people on the use of these.

During the development the team has frequent Smart Meetings, meetings that emulate a
Daily Scrum in a distributed setting, to keep each other up to date on the progress.
Attending these meetings is mandatory for all team members, but except for that time
there is a lot of Flexibility for the individuals in work hours. Mark pays special attention
to Linda to make sure her dual assignment is properly managed.
Exploration: For a short development it may not be necessary to have more session where
the whole team is on one location, but the best is if the teams can meet face-to-face about
every 6 weeks. If traveling budgets are too restrictive, or the team members know each
other well from earlier development activities, face-to-face meetings may be less essential.
But the Smart Meetings emulating the daily Scrum are totally necessary, and all team
members participates each time unless there is a very strong reason they cannot make it.
In these meetings the team members keep each other up to date with individual status, any
changes, and any dependencies they have to each other. Because meeting hours may be at
odd hours for some team members (in the Data Visualization Tool project the majority of
the team sits in China, and the meetings take place in the morning as they get to the office,
meaning the team members in the US need to attend late in the evening local time), work
days are kept flexible for the individual as long as they work enough hours and participate
in any common events.
Issues: This loyalty must work both ways between the company and the employee. The
focus must be on progress rather than work hours, and respect the Flexibility for each
person in when they work.
At the completion of the project Mark decides in agreement with the team to do a partial
Completion United by bringing in the stakeholders and the qualification engineer Li only.
He and Li travel to the US, where they have a weeklong workshop with stakeholders.
With Linda and Alfredo as support, Li is teaching the users to use the new viewer, and she
is tracking any defects and improvement requests during the day. One developer in China
is on call during the US work hours to fix any major defects should they find any, but the
other two are working normal hours fixing problems during regular Chinese work hours.
They make sure a new baseline is built and working before the start of a new work day in
the US. In this way they sort out any problems in the system within a few days. The test
users from the key clients are happy with the product, and it is ready for shipment.
The team is confident that the project has fulfilled the requirements and that the new
Visualization Tool is completed. The stakeholder has a couple of small requests that are
sorted out in two days, and the project is at its end. Mark makes an open report back to his
management pointing out the effort of the team members and crediting them with their
achievement making sure that all team members get Full Credit for their involvement. He
and Li celebrate with the US team members before leaving, and again with the China team
members when back in China. He buys all a small gift to show his appreciation of their
contributions.
Exploration: The completion phase brings the extended team together for a very efficient
closing of the project. This activity can be done as a combination of testing and training of
the beta user community. Being Together for the final phase is also an opportunity to get
retrospect and get closure for the team. It is important to make sure that all members of
the extended team are recognized for their contributions.
Issues: It may be hard to get the financial support in your company to bring the team
together at the end of the development. Combining it with training users may make it

easier, since it will be cheaper for a small development team to travel to many users than
the other way around. Maybe it could even be possible to get the clients to pay for this
training, but do manage the customer expectations of quality by making it clear that they
are getting trained on a Beta version and they will likely find issues with this system.
The sketch below shows the patterns sequence from the above story. If patterns are
deemed necessary they are marked in bold with a thicker line around the shape. Note that
each of these patterns can be applied independently, although they mostly benefit by being
used with other patterns that they relate to in the sequence diagram (like Early Bonding
and Social Funds).

Figure 5: Patterns sequence for the Data Visualization Tool team

Picture Source: Google Images
(sample picture for illustration
purposes)

Project #2 – Asset Management System Update
Company B is developing an asset management system for an
important client. The current system is having some severe
problems caused by use of outdated 3rd party technology, and
because some of the implemented business logic is unstable. A
new project is started to re-factor parts of the system and
replace an Access database with Oracle. The projected
development time for this project is one year (27 man-years)
with a budget of USD 5.9M.

The existing team is expanded with an Oracle DBA (data base administrator) and several
developers. Team members are located in the US, in France and in India. The developers
in India have less experience with the technology, and are new to the company. The most
experienced people (the architect and the system developers) and the project manager are
located in France, while the DBA team sits in the US. The stakeholder representative is
also located in the US. A testing team of three people are co-located with the application
development team in India. Note that only the team with the project manager is part of the
budgeted effort of 27 man-years. The other roles are part of the organization but
manage/support several projects and are budgeted otherwise. The team structure looks like
this:

Figure 6: Team organization for the Asset Management System team

This is clearly an organization that is more challenging than Project #1, with dependencies
and need for good collaboration between multiple sites both within the team and within
the management levels.
Celia, the project manager, works on two levels when starting up the project. She
collaborates with the involved development centers to make sure there is One Project
organization where all team members share the team objectives with the same priority.
With her own management located in France it is natural that this project is added to the
French project portfolio. She also makes sure there is a Single Point Organization for all
decision making needed in the organization to support the project, and she ensures
Commitment from All for team allocation and local resources at each location. This
includes Team Space to accommodate visits, and an Accounting Model to make sure the
project can deal with budgets and financial reporting in a uniform and consolidated
fashion. Finally she agrees a Communication Strategy with the stakeholders and the
center management at the different locations to keep all informed the way they desire.

Note! The exploration text will not repeat what has already been explored in previous
project examples, but rather focus on what is introduced in each project.
Exploration: Creating the Single Point Organization is highly important to enable the
operation and performance of the team. This will provide a clear direction and faster
decision making as all team members are clear on who needs to be involved and how
decisions are made. With multiple projects the organization needs to balance the project
ownership between entities to even this out in the bigger picture, and ensure credit to all
involved at project completions.
Accounting needs to include both what part of the budget is allocated to each location,
and how local spending gets rolled up into a global project account. How to handle
deviations in planned spending needs to be included, usually overspending is taken at the
location that has the project in its portfolio (for the Asset Management System this would
be the location in France where the Project Manager is located). The project status
communicated according to the project’s Communication Strategy will include spending
and resource issues at the various locations, as well as progress on system functionality.
A part of the commitment from each location must be how to accommodate visiting team
members, and any needs for system testing and acceptance. Local Team Space should be
designed to accommodate visiting team members and also allow for virtual meetings (no
need to find free meeting rooms elsewhere in case of urgent meetings that are not pre-
planned).
Commitment from All also comes in the form of supporting the project objectives, and
allowing for the project team objectives to take priority over local objectives for the
location. For the global team to share objectives is totally necessary for the joint focus on
the One Project.
Issues: The first time a large organization is faced with the challenges of a distributed
team it will most likely be a difficult and time consuming process to apply the patterns as
described in the above paragraphs. The demands on the organization will challenge
established and hard to change internal workflows and authority distributions. With
multiple locations and organizational entities involved this can be a political challenge as

the supporting centers may feel that they do the work but lose the influence and the credit
at delivery.
Celia focuses on her team from the start. She interviews her assigned team members and
decides to substitute two people: one because he has problems with travelling and flexible
working hours, the other because she seems to be overly negative about working across
locations. This way Celia starts with a team where the members are Selected to increase
the probability of a well-functioning team. Since distributed development is new to almost
all her team members, Celia decides to ensure that her team is well Prepared by sending
them to an intensive training program on distributed development, as well as an internally
developed session on Culture Awareness to improve respect and team communication.

Exploration: With the extra challenges a distributed team has, it is important that all the
team members are positive to this way of working, and that they are given all the support
possible to succeed. A well-known pattern in agile development is Self-selecting Teams
where the team shares common interests and addition of new team members is a team and
not a management decision. This pattern applies well for distributed development with the
high level of commitment and team loyalty needed from every team member.
Issues: Even with all these preparations it is not a given that all team members will
function well together, and Celia needs to keep an eye on team chemistry as well.
In the initial phase, the team decides to use SharePoint for their collaboration and to store
their documents, serving as their Common Information Infrastructure. They also select
tools to be part of their Common Development Environment: source control system,
requirements management tools, IDE, issue tracking system etc. There are some
discussions and disagreement about some tools because of previous experience, but Celia
makes sure that the team reaches an agreement in a friendly way.

Exploration: This is another area where the Commitment From All must apply. License
costs will likely be taken by the project itself, but local resources are needed to ensure that
the development tools are installed and operating locally.
Issues: In addition to the tools, the project team needs to have clear rules for how to
manage and use the tools. This will include how requirements are managed (who can add
new requirements, how are requirements traced in deliverables, who is signing off that a
requirement is fully implemented etc.), how documents are managed (always check out
from the repository before modifications, who can modify what), and the process around
accepting new code into the main developer baseline. As an alternative to SharePoint the
project documents can be stored in the source control system using the same check-
out/check-in mechanism, and with for instance a wiki page as portal into the documents
for easy access/overview.
Just like Mark, Celia kicks off the project with their first Together event, and combines it
with team activities for Early Bonding spending some of the teams Social Funds. Since
they spend 10 days together near Paris it is not hard to find social activities, including a
trip to Château de Versailles in the weekend. Celia is creating a very special memory for
the team by taking them to a beautiful historic location, and of course including a good
dinner with lots of conversation. It will be hard not to create friendships during this week
for the team.
Exploration: Some of the time the team is Together should be spent on pure social activity
as this gives team members time to get to know each other personally, creating bonds

across locations that will strengthen collaboration for later. With multiple locations and
team members visiting locations in some kind of rotational order, there is opportunity for
each hosting part of the team to expose visiting team members to some of their local
culture.
Issues: Social activities must be planned with respect to other team members. Bull fighting
would be a valid example of an activity that people may find it difficult to enjoy.
The team decides to have 3 week iteration cycles, and get Together every 3rd cycle (every
9 weeks) and so to do a 5 day Iteration Connect every 3rd iteration. Again the team has
Smart Meetings during the 8 weeks that they work at their respective locations, and
remember to apply Flexibility in the work style.

Exploration: Doing the end of an iteration and the planning of the next when the team
meets face-to-face has turned out to be a practice that teams find to be very powerful. This
is the time of the project where the communication is most intense. The team will run the
system together and align their understanding of the desired operation, as well as of how
to proceed and what changes may be needed for the underlying architecture. It can be a
good idea to walk through all Use Cases (or other requirement representation) for the
next iteration together as a team to make sure there are no unclear points and that all
team members understand the requirement details the same way.
Issues: Meeting physically with the whole team is usually not possible for each iteration
(unless iterations are made long which is generally a bad idea).
A few weeks into the project some tension is starting to build in the team. The architect is
upset because he feels that some of the team members in India are ignoring his directions
on the architecture. The DBA team in the US seems to be out of sync with the
development team in France, and these teams are accusing each other for delays in the last
iteration. It becomes clear to Celia that what is going on needs more specific attention than
what can be done in the Smart Meetings, and it is still more than 5 weeks until the team
is due for another Together session. As she is frustrated as well, she decides to bring in a
facilitator and another senior project manager to discuss with team members and analyze
the problems.
After a couple of days interviewing various team members the facilitator and project
manager have a pretty good understanding of the problems, which all have their root cause
in communications problems. Since it is not possible for this large team to meet more
often, they decide for other means to improve communication within the team. Celia
manages to transfer an experienced colleague (Tom) to India for the duration of the project
who takes on the role of Mr. Mentor for the Indian team members. Since Tom also has
experience with the technology used for the development he becomes a core asset for the
team. Celia also assigns somebody at each location in the role of Mr. Connector to
reduce the risk of miscommunication between the locations. Finally the team decides to
establish the set-up with the external facilitator and second project manager as a
permanent Conflict Management solution; each time team members are frustrated they
know they can contact this “crisis team” for help. The next time the team is together Celia
makes sure to spend some of the Social Funds for the team to have fun together and get
over any personal conflicts.
Exploration: It is unrealistic to think that a team of this size even without being distributed
will function without any conflict for several months, especially as the pressure to deliver

increases. Using outside resources to help resolve differences ensures an impartial
approach, and having an established procedure will likely mean that conflicts are
managed earlier and before they get time to deepen. To have a Mr. Mentor involved who
has experience with distributed development and can anticipate problems and who
understands the team members frustrations is invaluable, and this role will pay off for the
team from the beginning.
Very often conflicts are caused by misunderstandings and different perceptions of the
system to be built. By identifying individuals that serve as the knowledge hubs locally any
team member knows where to go with questions. Mr. Connector does not necessarily
know the answer to every question, but he or she must know how to get to the answer
within reasonable time. These roles at the various locations must keep in close contact
with each other, and update each other whenever a local question is resolved. It would be
beneficial to use a tool to capture these issues, as many questions may be valid for other
developers as well (FAQ database, accessible and searchable by all team members).
Issues: For small teams it may be hard to find the right people for the Mr. Mentor or Mr.
Connector assignments. It may be possible to get help from other people in the locations,
for instance having multiple teams sharing the resource for these roles.
Finally after 13 months, the full team and the stakeholder representatives get together for a
final Completion United event scheduled to last 4 weeks. Extensive acceptance testing is
done, and although the event has to be extended for additional 2 days, the project is
successfully completed and delivered. The final evening, the full team goes out to
celebrate; spending what is left of their Social Funds and some more. Celia makes sure
her team members get Full Credit for their work on the project. She extends her thanks to
all locations involved in the project to enable local management to take credit for the
contribution of the location.
Exploration: Bringing the team and the stakeholders Together for the final tuning is
usually very efficient for a project. Preferably the testing activity should be done in a team
room with continuous communication between testers, developers and stakeholders. The
team can use Information Radiators[18] on the walls of the team room to show the list of
bugs and needed modifications, plus the status on correcting these. For distributed teams,
it is important to avoid the delays that would normally arise if the testing and customer
input is at one location and corrections have to be done by developers at other locations.
Valuable time will be lost in misinterpreting customer feedback when time zone
differences mean that the attempted correction is only checked by the customer the next
day.
As for any other project, to celebrate success (even if the project was slightly delayed) and
to give credit to everybody involved is important. For a distributed team of this size there
have been many people involved in addition to the core team, and a good project manager
will make sure the local management of these people are informed of their contribution
(not least to ensure support on future projects). One should remember the support of
functions like accounting, personnel, local administrators etc.
Issues: If the team cannot be physically at one location for the final work, they should try
to emulate the Completion United as much as possible by using collaboration tools and
flexible work hours (so they are actually working simultaneously for this period even if it
means working nights at some locations).

Below is a sketch of the patterns sequence from this story. If patterns are deemed
necessary they are marked in bold with a thicker line around the shape. Note that each of
these patterns can be applied independently, although they mostly benefit by being used
with other patterns that they relate to in the sequence diagram (like Early Bonding and
Social Funds).

Figure 7: Patterns sequence for the Asset Management System team

Picture Source: Google Images
(sample picture for illustration purposes)

Project #3 – New Control & Monitoring System
Company C is developing a major new control &
monitoring system for internal use. The project has about
120 staff years and a budget of USD 32M. It is distributed
on 6 locations from the US to India, and is expected to take
3 – 4 years to complete. It is completely new development,
and although there are senior team members and managers
with experience from earlier generation systems (i.e. they
understand the problem domain well), the technology
chosen is new to most of the team members. This is clearly
a major undertaking for the company, and the success of this
development is core to the survival of the company.

An undertaking of this size is really more of a program than a project, and in this case it is
split in a number of sub-projects each with a project manager and an architect. A core
team is developing the system framework, another team the graphics, a third team works
on the data management part, and several teams are working on control and monitoring
applications. The overall organization is shown below:

Figure 8: Team organization for the Control & Monitoring System team

Each of the sub-projects may again be a distributed team similar to the stories in project#1
or #2 (depending on its size) and the patterns sequences from these stories would apply. In

this case the focus is on managing the large team, and so the individual team practices are
not repeated here.

The development of this large system (about 3M lines of code) is still organized as One
Project (or program) with high-level objectives shared by all. On the sub-project level this
is broken down into more detailed objectives for the individual project manager or
developer. In this case the Commitment From All is coming down from the CEO level as
the future of the company depends on this project succeeding. A multi-level Single Point
Organization is defined as is seen in the organization chart above. Although there are
functional reporting lines as well, there is never more than one direct reporting line for any
individual, and the authority is clearly defined along this.

Exploration: For a complex organization like this it is even more important to pay close
attention to a clear definition of roles and responsibilities, communication of shared
goals, and distribution of authority for decision-making. Some of the patterns mentioned
in the comments section at the end of this paper aim at organizing the work with the
geographical organization in mind. Conway’s Law, Divide and Conquer, Loose Interfaces
and Organization Follows Location are all patterns that will further improve the work
situation for a distributed team and (most likely) lead to better performance and a higher
quality architecture.
This organization decided to go beyond having a defined Communication Strategy by
introducing dedicated resources assigned to facilitate frequent communication between the
different entities (information champions). These resources support the program manager
and the various project managers in their effort to keep the development synchronized. As
part of this communication there is a published Team Terminology to ensure that the
problem domain terms are well understood.

Exploration: Recognizing the importance of knowledge and communication within the
team from the start, the Program Manager actually decided to invest in having a few
individuals with team communication as their primary focus. Information was managed
on wiki’s, through small newsletters, and by presentations. Unfortunately, this team
missed an opportunity in not providing a mechanism for bottom-up information from
individuals. They focused too much on the leaders need to inform the troops, and lost
some of the knowledge from individuals to managers that could make their decisions even
better. These information champions had some collaboration with the Mr. Connector
roles, but their coverage tends to be more on project status, requirements/functionality
status and feedback from testing and stakeholders, while Mr. Connector focus is more on
the technical aspects of the system.
The emphasis on frequent communication through use of information champions and the
Mr. Connector people was not only needed to keep the development team focused, but it
was an important means to manage stakeholder expectations. Major delays and
difficulties were communicated on a regular basis to the stakeholders, and this early
notification meant that there were few bad surprises at the later part of the project. Delays
were agreed when they actually happened, rather than optimistically believing that the
development could catch up later. This is not to be interpreted as the stakeholders being
happy about delays, as they were not… but at least they got to know early and could plan
accordingly.
A Living Process is evolving and discussed frequently, and kept documented in the
Common Information Infrastructure. By re-visiting/updating the core principles of the

development process every iteration, all tem members keep their understanding of the
collaboration up to date as well. The fundament of the development is agile on the level of
the individual teams, while for the program level it is rather the Unified Process[19]
flavored with a strong focus on iterations and frequent integration into a common and
verified baseline.
As can be seen from the patterns diagram below, most of the team patterns related to
development process are still used on the program level, although on a sub-system level. It
is not possible to bring the whole team Together, but representatives from each sub-
system will meet at major integration points and run a meta-level iteration transition,
including demonstrations of completed functionality to the stakeholders.

Exploration: Running an iterative process with major iterations every month on the
system level, and additional smaller iterations within the teams turned out to work really
well. A major challenge with a large and distributed team is that sub-teams deviate over
time from each other, so forcing the system together on a monthly basis avoided major re-
work and delays.
Another part of team communication is through the levels of assigned architects. They are
supported in their effort by the Common Information Infrastructure allowing all team
members to keep up to date across locations as the architecture is evolving; and not the
least through the Common Development Environment where frequent code integration
is supported. The system architecture is a constant focus. The initial architecture was used
to structure the development assigned to each sub-project team (by applying Conway’s
Law; each part of the system is assigned to a project team). Interfaces between the system
components are well-defined and any changes must be approved by the team of architects.
Exploration: The role of the architects and the system architecture cannot be
underestimated in distributed development. An architecture with clear interfaces and few
interdependencies lends itself more easily to distributed teams, and the development team
assignment should map to clearly bounded system modules, which again reduces the
communication need between sub-teams.
Going into details on what happened on this large project would make this paper too long.
The core categories of challenges experienced throughout the development were:

• Architecture and Design consistency – keeping the architecture and design quality
throughout the long development time, and communicating enough details to all
developers for them to understand the framework they were developing within, and
finally making sure code was not breaking architecture and design principles. This was
an ongoing battle for the architects, but their presence combined with frequent
integration and good communication (Together and Smart Meetings) through the
Common Information Infrastructure and the Common Development
Environment contributed to keeping these problems under control.

• Requirements to framework – as application work increased it became harder to
prioritize and complete functionality in the framework needed to support the
application. Framework changes led to needing to change applications that were
believed to be completed. Eventually a formal process was put in place as part of the
Living Process to manage interdependencies in the development which helped to
decrease the frustration and reduce delays caused by rework or waiting for framework
functionality.

• Stakeholder Management – not least because of the importance of this project for the
company, stakeholder interest and expectations were very high, and the team had to
incorporate frequent visits from upper management, project audits, presentations etc.
The Communication Strategy and the information champions were of great help, but
it still meant that the Program Manager and his staff spent a lot of their time managing
out, and gave them less time to focus on the project.

• Knowledge Transfer – people coming on during the project who needed training in
how to develop on this framework, tasks being redistributed, people leaving for
multiple reasons, all meant that there was an ongoing need for internal training and
supervision. The Mr. Connector and Mr. Mentor roles were very valuable in this
context, as was the Common Information Infrastructure where new team members
could find historic/background information as well as easy access to current status and
plans and architectural modifications to understand their task in relation to the overall
system.

To some surprise very few people issues surfaced on this project. It may be that the
diversity and heterogeneity of the team made each team member more open to other
cultures and ways of working. It seemed like the bigger challenges of delivering a system
of this size contributed to bond the team members very strongly against the “common
enemy” of delivering on time.
When this project finally completed after more than 5 years and a budget overrun of 20%
it was still seen as a huge success by Company C. Certainly some people had left the
company during this time, and a few not voluntarily. There had been difficult periods
where everybody had severe doubts if this project would succeed, and the initial product
scope had been somewhat reduced. But the clients were positive after the first teething
problems, and the company was still solid. In the retrospective the practices around team
communication and trust-building stood out as practices never to forget.

A possible patterns sequence for this story is:

Figure 9: Patterns sequence for the Monitoring & Control System team

Other Patterns in this Collection
There are seven patterns from the thumbnails that are not used in the three stories in this
paper. Most of these patterns are patterns that can be applied long-term in an international
organization to create a culture that more easily would support distributed development:
an international workforce with one class of citizenship independent of nationality, and
global communities of practice for sharing of knowledge.

Relationship to Other Patterns
Note that the focus in this paper is on distributed development, and the stories and
discussions are not extensively covering other aspects of project management or
development.
As mentioned in the introduction, there are other patterns outside this collection that are of
great value to distributed teams, too many to explicitly mention here. I have selected a few
collections to elaborate on here, and can just suggest to interested reader to explore more
pattern collections for useful practices.
The book by James C. Coplien and Neil Harrison “Organizational Patterns for Agile
Software Development” has one hundred patterns that will help the performance of a
software project team. Below is a short list of patterns that are especially important for
distributed teams sorted into organizational focus (how to structure the team and the work)
and people focus (communication and mentoring):

- Conway’s Law that promotes aligning the organizational structure with the
structure of the business domains reflecting the structure of the architecture

- Divide and Conquer to partition a larger organization into parts with mutual
interest/focus

- Loose Interfaces to limit the number of explicit, static interfaces to allow for more
rapid development

- Organization Follows Location to organize work so that people who are co-located
work on the same subjects

- Subsystem by Skill recommends organizing sub-teams based on their skills
- Form Follows Function to create domains of expertise
- Size the Organization to balance good communication and the ability to mentor

new people joining (start with about 10 people on the team)
- Producers in the Middle to make sure the producer roles are at the center of

communication as they need to have necessary information to ensure the right
product is being developed

- Named Stable Bases promotes having stable code bases for people to work against
to give more stability for their development; needs to be carefully applied in
combination with Conway’s Law and Organization Follows Location, as well as
the attitude to continuous integration

- Community of Trust that aims to build a foundation of trust and respect to benefit
effective communication

- Face to Face Before Working Remotely as emphasized in this paper as well,
- Unity of Purpose to make sure all agree on the purpose of the team from the start
- Day Care where one person is assigned the role of mentoring the novices because

this is more effective than distributing the task among all the experienced staff
- Compensate Success is the basis for the Full Credit pattern in this paper,

emphasizing on the importance of rewarding any success for the team
- Team Pride which is important for any team but even more when the team is

particularly challenged which is usually the case for distribution

- Self-Selecting Teams where the team members share common interests also
outside work, and where the selection process is a team effort and not a manager
decision

Acknowledgements
A big thank you to Till Schümmer for his very thorough work as a shepherd for EuroPLoP
2009! I also want to thank Amir Raveh for his initial shepherding of this paper for
EuroPLoP 2008, for giving me good feedback and surviving my slow progress. I am
grateful to shepherds of earlier work that has led up to the patterns in the thumbnails (Jens
Coldewey, Mary Lynn Manns, Neil Harrison, Didi Schütz and Joe Bergin), and of course
all the workshop participants giving valuable feedback to the patterns.

Related Reading
1. “Organizational Patterns of Agile Software Development” by James O.

Coplien and Neil B. Harrison, ISBN 0-13-146740-9, Pearson Prentice Hall
2005

2. “Using an Agile Software Process with Offshore Development” by Martin
Fowler, http://www.martinfowler.com/articles/agileOffshore.html

3. “Global Software Development Handbook” by Raghvinder Sangwan, Matthew
Bass, Neel Mullick, Daniel J. Paulish, and Juergen Kazmeier, ISBN 0-8493-
9384-1, Auerbach Publications, 2007

4. “Can absence make a team grow stronger?” by A. Majchrzak, A Malhutra, J.
Stamps and J. Lipnack, Harvard Business Review, May 2004

5. “Interaction Patterns of Agile Development” by Jens Coldewey, 2004
6. “Capable, Productive and Satisfied” by Paul Taylor, PLoP 1998.
7. “201 Principles of Software Development” by A.M. Davis, McGraw-Hill, 1995
8. “Culture Clash – Managing the Global High-Performance Team” by Thomas

D. Zweifel, ISBN 1-59079-051-0, Swiss Consulting Group 2003
9. “Global Teams – How Top Multinationals Span Boundaries and Cultures with

High-Speed Teamwork” by Michael J. Marquardt and Lisa Horvath, ISBN 0-
89106-157-6, Davies-Black Publishing 2001

10. “Mastering Virtual Teams – Strategies, Tools, and Techniques that Succeed”
by Deborah L. Duarte and Nancy Tennant Snyder, ISBN 0-7879-5589-2,
Jossey-Bass 2001

11. “Trust within Global Virtual Teams” by Olivier Chavaren, ISBN 0-595-27577-
X, iUniverse, Inc 2003

12. “Virtual Teams – Reaching across Space, Time, and Organizations with
Technology” by Jessica Lipnak and Jeffrey Stamps, ISBN 0-471-16533-0,
John Wiley & Sons 1997

13. “The Manager’s Pocket Guide to Virtual Teams” by Richard Bellingham,
ISBN 0-87425-615-1, HRD Press, Inc 2001

14. “Global Software Development – Managing Virtual teams and Environments”
by Dale Walter Karolak, ISBN 0-8186-8701-0, IEEE Computer Society 1998

15. “Managing Virtual Teams – Practical Techniques for High-Technology Project
Managers” by Martha Haywood, ISBN 0-89006-913-1, Artech House 1998

16. “Working Virtually – Managing People for Successful Virtual Teams and
Organizations” by Trina Hoefling, ISBN 1-57922-032-0, Stylus Publishing
2001

17. The Distance Manager – A Hands-on Guide to Managing Off-Site Employees
and Virtual Teams” by Kimball Fisher and Mareen Duncan Fisher, ISBN 0-07-
13065-4, McGraw-Hill 2001

18. http://alistair.cockburn.us/Information+radiator
19. http://en.wikipedia.org/wiki/Unified_Process

Appendix: Pattern Thumbnails
The short descriptions below are based on the author’s earlier papers at EuroPLoP and
PLoP conferences, but include some that are not yet published or submitted (ongoing
work). A major revision is planned for some of the earlier work.
1. Relocation and Rotation

You need an international workforce with a strong common identity that collaborate
well and that is not having a “them” and “us” mentality.
Relocate a part of your workforce on a rotational basis to other engineering centers.
This will build relationships and trust across locations, and enforce common work
methods.

2. Balance of Nationalities and Minorities
You want a workforce that is representative of your business involvement worldwide,
and where individuals are equally respected independently of their background.
Hire with a clear goal that the different nationalities represent the amount of
involvement in a country or region. The distribution of nationalities must be reflected
in the management organization all the way up to the CEO.

3. One Class of Citizenship
You want a workforce with a strong common identity, where individuals are equally
respected and feel equally valuable to the organization.
Make each location comply with the overall company policies and give all employees
the same opportunities and the same benefits within what is possible given local laws
and regulations.

4. International Communities of Practice
You need to fully benefit from the knowledge and creativity of your whole workforce
to stay competitive. You want the participation of every individual, and that they
actively participate and collaborate with other experts within their application domain.
Grow and support technical communities of practice on the global level. Provide
means of networking through blogs and wikis, and enable workshops and conferences
where members can physically meet.

5. Benefit Target
The success of distributed teams is heavily discussed. Results are often questionable,
and the drawbacks often by far outweigh the achieved benefits.
To be able to keep the focus on the expected benefits and to determine achieved
improvements, define 3 major targets for the expected benefits that are not in conflict
with each other. The benefits must be specific to the organization and allow the
organization to determine afterwards if each targeted benefit was reached.

6. Commitment from All
Even if the project is distributed over several locations, the management interest and
attention may be stronger in some locations. This may lead to lower priority and lack
of resources in the other locations.
Any engineering center involved must have a clear commitment to the project. In the
initial phase, a clearly defined involvement must be agreed between the involved
centers.

7. Single Point Organization
Running projects in a distributed way often results in confusion and frustration for the
involved parties. Conflicting objectives and unclear authority and responsibility
distribution are just examples.
The complexity can be reduced and controlled by a clear and communicated
organization. This is more than defining the roles and responsibilities: it is key to
ensure that the decision-making authority lies with only one manager at each level in
the organization.

8. One Project
The daily life of team members will be influenced by the location. Developers may
find conflicts between local objectives and what is expected as product deliveries.
Create a clear project identity across the centers. All team members share the same
team objectives.

9. Communication Strategy
Distributed teams may have a more complex set of management and stakeholders, and
how/when/whom to keep informed may be a challenge.
The team needs to work out a clear communication strategy that lists who to inform,
what each are expecting, and the communication means.

10. Accounting Model
A project team depends on efficient accounting “services” in the organization to keep
track of spending versus funding. These services are rarely set up to support a team on
multiple locations.
Set up a meta-level model of the accounting that defines how to manage the project
financial status, and assign a clear owner within the accounting organization.

11. Common Information Infrastructure
A project team must share information across the complete team, not based on
physical location.
Set up an information structure for the global team that enable consolidated reporting
of status and easy sharing of information.

12. Common Development Environment
Distributed teams have the same needs for baseline management as co-located teams.
Keeping the code-base in sync requires immediate updates at all locations.
Carefully identify, select and implement one single common development
environment for the project team to use regardless of their location. All components of
this common development environment must support multiple locations with different
time zones, and come with worldwide 24/7 support.

13. Culture Awareness
All cultures have their unwritten rules, and there are many examples of collaboration
problems that stem from a lack of understanding of ethical and behavioral code. Note
that the culture aspect includes organizational culture!

Since we are not all born social anthropologists, some specific training may be
necessary to learn to “read” team members from a different culture, and to ensure
respect and good working relations.

14. Selected
Working on a distributed team is demanding, and requires flexibility in work hours,
ability to travel and stay at other locations, and good social skills for the collaboration
within a very heterogeneous team.
Team members should be screened for personality and the team carefully built over
time for maximum cohesion.

15. Prepared
Distributed teams have some added challenges, especially related to communication.
The negative effect of not being co-located can be made significantly smaller by
applying good practices from the start of the project, so make sure all are trained on
distributed development from the start.

16. Social Funds
Team members cannot be expected to privately pay for social team events. These
events are important for the bonding and thereby for team efficiency.
Make sure funding is allocated to build personal relations between the team members
(team building, celebration of achieved milestones etc.).

17. Mr. Mentor
There is much to learn from colleagues that have managed distributed teams before,
but this learning may need some support from the organization. Each individual does
not necessarily know who to ask, or feel that they can “bother” colleagues repeatedly
for advice.
By assigning a mentor with experience in distributed development to a new team,
ongoing and on-the-job learning is made possible.

18. Mr. Connector
Distributed teams struggle with keeping on the same page between locations.
Instead of everyone on the team trying to be on top of all ongoing issues, designate a
team member at each site to manage the flow of information, and who knows how to
get answers to different kinds of questions.

19. Living Process
A shared development process adapted to the team’s needs becomes even more
important with the increased challenge and need for formality.
Spell out the fundamental values, methodology and techniques used and keep it up-to-
date for all team members (revisit at each iteration).

20. Early Bonding
Trust and personal connections need to be built early and are key to have a functional
team.
Emphasize on building the team from the start of the project, and include social
events.

21. Smart Meetings
If co-located, you can do frequent progress meetings, and have spontaneous get-
togethers when needed. In a distributed setting meetings need to be organized up front.
But your communication needs are still there.
By allocating common time and making team members available to each other at

agreed times during the week, you can mimic spontaneous contact (with a delay), and
you ensure frequent communication in the team (several times per week) to avoid
locations drifting apart on issues.

22. Together
Even with Smart Meetings, communication suffer by not being co-located.
Make sure the team physically meets frequent enough during development. For 1-2
year software projects, we have come to believe a 6-8 week frequency is the best
compromise between all effects of traveling and the need to meet, each time staying
together for about 10 days.

23. Iteration Connect
The most busy communication phase in a project is at the end of an iteration cycle,
plus during the iteration assessment and the start of a new iteration.
By synchronizing the length of the iteration (or a multiple of iterations) with the
frequency of the physical team meetings we found the meeting time was spent most
effectively.

24. Completion United
The final phase of a project is again a time where good and fast communication is
important. System testers doing the final verification face significant problems when
the team is distributed.
We have found it amazingly effective to bring the development team together with all
the testers and stakeholder/user representatives on a single site for completion.

25. Flexibility
The load of communication with other locations that frequently have to happen outside
work hours is a big load on employees and on their families. The workday often gets
very long, in reality working one normal day plus an extra shift early or late in the day.
To balance the effort and get closer to a normal workload, redefine the team’s work
hours and give the team members flexibility outside common team time.

26. Short Engagements
Short-term assignments at the other location will enable team members to get to know
other team members better.

27. Conflict Management
Choose and publish a pre-defined way of managing conflicts, possibly involving an
independent party outside the core team.

28. Full Credit
It is amazing that this one needs to be written down, but experience tells us to do it:
Make sure all team members get credited for success.

29. Team Space
Local team rooms need to accommodate visiting team members, VC equipment need
to be easily available etc.

30. Team Terminology
Make sure you do not get local “dialects” and that everyone understand the lingo of
the problem domain.

31. Pilot Solutions
Many of the practices we recommend have a certain cost associated, although we
firmly believe they pay back multiple times over. But, there is management to
convince.

To gain experience, try out a new solution on one team first. Be sure to record the
results well.

C4 - 1

Business Plan Conception Pattern Language

Wim Laurier, Pavel Hruby

, Geert Poels

Department of Management Information and Operational Management, Faculty of Economic and Business Administration,
Ghent University, Tweekerkenstraat 2, 9000 Ghent, Belgium

wim.laurier@ugent.be, geert.poels@ugent.be

CSC, Denmark

phruby@acm.org

Abstract. This paper provides generic guidelines for starting entrepreneurs. First, the basic features of a good business plan
are addressed in a pattern language for creating an innovative business plan. Second, soft skills for starting entrepreneurs are
discussed in a pattern language for interactions with ‘outside’ people, as these interactions are crucial for a validation and
realization of a business idea. Together, these two pattern languages create a pattern language for business plan conception.
This pattern language for business plan conception should provide a stable conceptual basis that supports starting
entrepreneurs in adapting the business plan templates they find to the needs of their business idea instead of adapting their
business idea to the templates they find, which should support a successful penetration of new ideas and entrepreneurs into an
innovation requiring market.

Keywords: Patterns, Entrepreneur, Business Plan, Soft skills

C4 - 2
1 Introduction

Topic Content
Problem How to start a business?
Context When someone (e.g. you) has an innovative business idea.
Forces Entrepreneurs that want to start a new business initiative often have the required technical expertise

but not the money (i.e. funding), financial expertise and expertise in the section to get the business
up and running.

Solution Start writing a business plan and take care of your soft skills when interacting with other people.
Resulting
Context

A business plan helps the entrepreneur to gain more relevant expertise and might convince people
to support the entrepreneur financially or with additional expertise. Polished soft skills support this
convincing process. (fig. 1)

Design
Rationale

Markets require innovation, therefore new ideas and entrepreneurs should be able to penetrate the
market successfully. In this process, interactions with new ‘outside’ people are crucial. A business
plan is the ideal tool to assess the feasibility of such new ideas.

Related
Work

BUSINESS PATTERNS FOR PRODUCT DEVELOPMENT [1] discriminate four generic kinds of product
setups.
PATTERNS FOR BUILDING A BEAUTIFUL COMPANY [2] provide insight in the development of a
business.
A DEVELOPMENT PROCESS GENERATIVE PATTERN LANGUAGE [3, 4] addresses organization design
and project management.
Additionally, DESIGN PATTERN FOR CREATIVITY [5] can help to invent and evolve innovative
business ideas. Online creativity portals (e.g. www.creax.net) and creativity consultants (e.g.
www.creax.com) can also provide such help.

Fig. 1. Interaction between two pattern languages

C4 - 3
2 Create an Innovative Business Plan

Topic Content
Problem How to create a good business plan for an innovative idea?
Context Bringing a product to the market first implies high development costs and potentially high returns,

whereas copying an existing business idea implies lower development costs lower returns but more
certain returns as the market potential has been proven (i.e. if they buy the ‘real deal’, they will buy
the copy also).

Forces 1. When inexperienced business plan writers develop a business plan, they are inclined to adapt
their idea to a business plan template they found, instead of adapting the template to fit their
idea. (As has been demonstrated for other engineering disciplines [6])

2. The collection and presentation of detailed technical information (e.g. manufacturing methods,
logistics) for the real startup process is mostly supported and heavily influenced by third
parties just like the business process itself.

Solution Collect, create (re)structure all information that is needed to create a realistic image of the future
venture and its implementation process. Reiterate this information collection and creation process
to keep the information up to date and improve on the idea and plan.

Resulting
Context

1. Regardless of business plan templates, the patterns in this section guide the entrepreneur in
collecting all relevant information for the creation of a business plan. (fig. 2)

2. The reiteration of the information collection and structuring process helps the entrepreneur to
identify the influence of third parties and provide a good basis for negotiating with them.

Design
Rationale

Although many good business plan templates1

Related
Work

 exist for proven business idea’s (e.g. starting a
baker’s shop or hairdresser’s salon), it is hard or even impossible to find guidance for creating
business plans for unique and innovative business ideas.
The US Small Business Administration2

 provides guidance, templates and workshops for writing
business plans.

Fig. 2. Structure of the pattern language for creating an innovative business plan

1 http://www.bplans.com/sample_business_plans.cfm
2 http://www.sba.gov/smallbusinessplanner/plan/writeabusinessplan/index.html

C4 - 4
2.1 Unique Selling Proposition (USP)

Topic Content
Problem How to demonstrate to potential investors that your venture deserves a place in the market.
Context When you have an innovative idea, and want to CREATE AN INNOVATIVE BUSINESS PLAN.
Forces Truly innovative selling propositions are unique by definition but the returns they will generate are

highly unpredictable, which makes convincing potential investors tough.
Solution List the benefits of your venture for each of your stakeholders and demonstrate or motivate why

they will accept your offer and not that of a competitor. Identify the strengths and weaknesses of
the idea, foresee the opportunities and threats in the market and mitigate for potentially negative
effects.

Resulting
Context

Motivating why customers will prefer your offer substantiates the expected returns. The mitigation
scenarios compensate for the unpredictability.

Design
Rationale

To attract investors, a venture needs to demonstrate or at least argument that it will be able to earn
and defend its place in the market.

Related
Work

The following patterns describe how to construct USP’s:
- BUSINESS PATTERNS FOR PRODUCT DEVELOPMENT [1]
- DESIGN PATTERNS FOR SOFTWARE COMPANIES [7, 8]
- DESIGN PATTERNS FOR TECHNOLOGY COMPANIES [9]
- BUSINESS STRATEGY DESIGN PATTERNS FOR TECHNOLOGY COMPANIES [10]
- A FEW MORE BUSINESS DESIGN PATTERNS [11]
- BUSINESS STRATEGY PATTERN FOR THE INNOVATIVE COMPANY [12]
- THE PORTER PATTERNS [13]

2.2 Business Model

Topic Content
Problem How will you use your limited resources to execute and realize your unique selling proposition?
Context When you have developed a UNIQUE SELLING PROPOSITION.
Forces The amount of funding that can be attracted is determined by the returns a business process can

generate. Conversely, the scale of a business process, and consequently the returns it can generate,
are constrained by the amount of funding that it can attract.

Solution 1. Check whether everything is legal (e.g. do not violate intellectual property rights)
2. Make or Buy

a. Determine the things that are specific for your USP, protect them against competitors
(e.g. profit from first mover advantage, create confidentiality agreements, intellectual
property rights, patents) and keep the execution of those activities under your control.

b. Try to find partners for all non-USP-specific activities (i.e. outsourcing).
Resulting
Context

1. Legal activities mostly do not affect the investor’s image negatively, which influences their
motivation to lend money positively.

2. Make or Buy
a. Performing activities in house requires specific equipment and expertise. The scale of

these activities largely determines the need for funding.
b. Performing activities out house reduces the amount of funding needed, since these

activities can mostly be categorized as variable costs.
Design
Rationale

Resources are scarce by definition [14] therefore they cannot be generated easily and disbursed
without a proper motivation.

Related
Work

The e3-value [15] tool (www.e3value.com) provides help for visualizing business models and
making a first profitability analysis.

C4 - 5
2.3 Distribution

Topic Content
Problem How to reach your stakeholders and customers?
Context When you have developed a USP and BUSINESS MODEL.
Forces 1. The chosen venture location, virtual (e.g. market) or real (e.g. site), also determines the

uniqueness of your proposition and the appropriateness of distribution strategies.
2. Using other distribution channels than competitors may create competitive advantage, but may

also prove to be risky (e.g. failure to profit from economies of scale, poor distribution quality)
and expensive. However, choosing the same distribution channels as your competitors may
constrain the uniqueness of your USP.

3. Maintaining existing distribution channels is often more cost-efficient than finding new ones
and keeping existing customers (informed) is cheaper than finding new prospects (or informing
them about your product).

Solution Elaborate an adequate acquisition and distribution strategy for products and information, which
stands out in the ‘noise’ that is created by competitors.
1) Targeting a market (niche) in which you can stand out.
2) Select communication and sales strategies that are appropriate for the target market (niche).

Resulting
Context

Narrowing your USP towards a particular target audience, increases the potential market share but
reduces the size of the targeted market.

Design
Rationale

Your products and relevant information about them do not automatically reach your target
audience.

Related
Work

A PATTERN VOCABULARY FOR PRODUCT DISTRIBUTION [16] lists distribution strategies for products,
not for information.

C4 - 6
2.4 Window of Opportunity

Topic Content
Problem How to take maximum advantage of an opportunity?
Context Innovative business ideas (i.e. USP and BUSINESS MODEL) create an opportunity.
Forces 1. Customers are not always susceptible for the advantages your idea has to offer or the

advantages may be bound to a specific time window (e.g. ice cream in the summer)
2. Investors are happy to have their cash back as soon as possible and with the highest possible

return, but what’s in it for the entrepreneur?
Solution Determine the window of opportunity meticulously. When there is no natural window of

opportunity create one with a proper marketing strategy (e.g. media campaign).
When the window of opportunity opens, saturate the market sufficiently fast to prevent

competitors from entering the market (i.e. penetration pricing strategy), which would decrease your
market share and hence volume.

Maximize your profit by using the skimming technique (i.e. start with a high introduction price
and lower your price over time) when competitors are not able to enter the market (e.g. product
cannot be copied) before the window of opportunity closes.

Resulting
Context

1. When customers are/have been made susceptible (i.e. awaking latent need) for the advantages
your product has to offer, competitors can also take advantage of this susceptibility.

2. Penetration strategy (Low price, High Volume), which requires extra funding for a longer
period as the product volume that needs to be prefinanced is larger and the profit margin is
lower. Skimming (High price, Low Volume), on the other hand, requires little funding and can
be self-sustaining relatively early.

Design
Rationale

The net present value of revenues generated by an innovative idea needs to be maximized over the
entire product lifecycle. [17]

Related
Work

The TAKE NO SMALL SLIPS [4] pattern tackles how a project should be scheduled, not to miss the
market window.

C4 - 7

2.5 Critical Path

Topic Content
Problem How to plan, coordinate and control the implementation of your business idea.
Context When you have identified the WINDOW OF OPPORTUNITY and do not want to miss it.
Forces 1. Working fast leads to large negative cashflows (i.e. costs), on the other hand, working slow

leads to a longer the critical path, which delays positive cashflows (i.e. revenue).
2. The longer it takes to put your product in the market, the higher the chance competitors or

copycats will bring a similar or better product to the market. The shorter the time to market, the
larger the chance your product still has (minor) flaws.

Solution 1) Determine the sequence in which the implementation steps need to be executed, plan the
process such that steps that can be executed in parallel are planned in parallel and discriminate
process steps that are crucial for the timely execution of the project from the process steps that
are not.

2) Visualize the process and its constituting steps (e.g. PERT [18] and Gantt [19-21] chart)
3) When the sequence of process steps that is crucial for the timely execution of the entire

sequence (i.e. the critical path) has been identified; plan and monitor the execution of the
critical path elements meticulously and prevent parallel path elements from interfering with
critical path elements (i.e. plan them and limit the delay in their execution such that they do not
delay the execution of critical path elements).

Resulting
Context

1. A proper visualization of the process allows representing the trade-off between project cost and
timing.

2. The minimal length of the critical path indicates how fast competitors can catch up with the
venture if they possess sufficient resources.

Design
Rationale

Time is money: Missing the window of opportunity (i.e. being too early or too late) likely means
failure.

Related
Work

The DE-COUPLE STAGES [4] and SIZE THE SCHEDULE [4] pattern present an approach for
(re)designing a critical path.

C4 - 8
2.6 Know your Friends and Enemies

Topic Content
Problem How to cope with parties that (will) have stakes in your business and opposing or common

interests.
Context When you need to interact with third parties (e.g. suppliers, customers, investors, neighbors, etc.) to

execute your DISTRIBUTION strategy and CRITICAL PATH.
Forces 1. Most entrepreneurs are only aware of the stakeholders they (plan to) interact with on a regular

basis (e.g. suppliers, customers, debtors and creditors), while largely neglecting other
stakeholders (e.g. neighbors, which can prevent the plant from expanding or force the
enterprise to relocate their activities).

2. Although entrepreneurs are aware of their stakes in other parties, they are mostly unaware of
the stakes other parties have in their business.

Solution Make an exhaustive list of your (future) competitors (i.e. enemies) and collaborators (i.e. friends)
and identify their stakes in your activity. Pay special attention to those that are both friend and
enemy (e.g. suppliers, customers).

Resulting
Context

1. Making an explicit and exhaustive list of friend and enemies helps to identify en monitor the
forces that may influence your strategy.

2. Making the list of friends and enemies makes entrepreneurs aware of the stakes other people
have in their business.

Design
Rationale

Being profitable (i.e. generating your own ROI) through value creation, is at the same time a
collaborative and a competitive process [22], which makes an organization’s relation to its
environment ambiguous.

Related
Work

IN BED WITH THE ENEMY [23] shows how opposing interest can become common interests.
CUSTOMER INTERACTION PATTERNS [24] address how a specific kind of stakeholder (i.e.
customers) should be dealt with. Porter’s Five Forces model [25] identifies the major categories of
enemies.

C4 - 9

2.7 Reference Models and Frameworks

Topic Content
Problem How to identify structure and assess all internal, external, positive, negative, future, current and

historical influences that concern your business?
Context When you have identified the factors that may influence your business. (cf. KNOW YOUR FRIEND,

KNOW YOUR ENEMY)
Forces The information you collect about your environment is usually incomplete unstructured, but

unstructured information is difficult to process and incomplete information gives an unprofessional
impression.

Solution Use existing frameworks and reference models to structure the information you collect and identify
the lacunas in the information gathered.

Resulting
Context

Structured information is easier to process and using well-known frameworks and reference model
to structure the information amplifies this advantage. The structure of the frameworks and reference
models also provides a blueprint for the information search process.

Design
Rationale

An enterprise is not an island that operates independent of its environment [26]; therefore, the
enterprise’s influence on the environment and the environment’s influence on the enterprise need to
be addressed.

Related
Work

Well-known reference models and frameworks are:
 SWOT [27] provides a template for representing all internal and external factors that influence

the business’ performance positively and negatively, in an efficient visualization where every
kind of factor has a fixed location in the diagram [28].

 Porter’s Value Chain [29] gives a generic overview of business activities.
 Porter’s Five Forces [25] list the main threats a business faces.
 McKinsey’s 7-S Framework [30] list 7 critical success factors that a business needs to achieve

its goals.
 Product Lifecycle [17, 31] shows that the real value of innovation lies in a future adaptation by

the market.
These and other reference models and frameworks that are also applicable when a business has
been established (e.g. BCG [32], GE Model[33], Ansoff matrix [34]) are collected in Kotler’s work
[35, 36].

C4 - 10

3 Soft Skills

Topic Content
Problem How to be convincing?
Context When you have CREATED AN INNOVATIVE BUSINESS IDEA for which you need support and

additional expertise or when such an idea has evolved into a business plan for which you need
investors, customers and suppliers.

Forces A sector mostly overlaps with a closed social network of peers. Therefore, occasions to meet the
right people are rare if you are not part of the network of peers.

Solution Take care of your soft skills when you have the opportunity to enter the network of peers that
overlaps with the market you want to enter.

Resulting
Context

When the peers perceive your presence as valuable, other opportunities to meet the network of
peers will be offered to you. When your soft skills are taken care of, the chance that your presence
will be perceived as comforting and valuable increases.
The EYE CATCHER pattern addresses how to be noticed and remembered, the DREAM TEAM pattern
supports the creation of a valuable team image and the CASH IS KING pattern helps to demonstrate
the value of business ideas. The support and expertise of the network of peers should then make
FINDING FUNDING easier. (fig. 3)

Design
Rationale

When inexperienced entrepreneurs have a business idea it proves difficult to give their developing
business sufficient momentum to turn it into a real business.

Related
Work

PATTERNS FOR LEADING EFFECTIVE AND EFFICIENT MEETINGS [37, 38] addresses other soft skills
for entrepreneurs that are not considered in this paper. LEARNING PATTERNS: A PATTERN
LANGUAGE FOR ACTIVE LEARNERS [39] features one of the most important skill of an entrepreneur.
The BUSY PERSON PATTERNS [40] then address the features of personal effectiveness and time
management that are also crucial for entrepreneurs.

Fig. 3. Structure of the soft skills pattern language

C4 - 11
3.1 Eye Catcher

Topic Content
Problem How to make sure that people remember you?
Context The opportunities to meet important people are scarce. As they probably meet many people and you

are not their priority, they tend to forget about your encounter.
Forces It is hard to balance a professional image, which results from a good practice, with standing out in

the noise, which requires something exceptional or surprising.
Solution Choose a company name and design a logo that is easy to recall and unique at the same time, and

use your logo in every document (e.g. name card, business plan), drop the company name in every
conversation (e.g. when you introduce yourself) and do not economize on business carts.

Resulting
Context

A good company name and logo do not affect you professional image negatively like eye-catching
clothing or behavior can do.

Design
Rationale

People need to remember who you are and what you stand for, before they will contact you.

Related
Work

AIDA (i.e. Attention-Interest-Desire-Action)[41] and related [42] models, like the diffusion of
innovation [31], see attention or awareness as a first step and condition sine qua non for
communication or action.

C4 - 12
3.2 Dream Team

Topic Content
Problem How the create a team that can make the venture flourish in an uncertain environment?
Context When you need to convince people that your business plan is realistic and sustainable.
Forces 1. Managing a venture requires a large amount of energy, motivation and dedication, and many

different types of skill, knowledge and experience.
2. Nobody is perfect.

Solution Create a team that incorporates as many desired skills and as much relevant knowledge, experience,
motivation and energy as possible, but also recognize the shortcomings of the management team
and develop strategies to mitigate the consequences.

Resulting
Context

1. As many hands make light work, a team is more than the sum of its members (i.e. synergy),
has access to more information and a larger and more divers social network. A TEAM IMAGE
convinces outsiders that the synergy between the members will work.

2. A well-designed management team that knows its own qualities and shortcomings and knows
when to look for external expertise. A CURRICULUM VITAE is an instrument to make these
qualities and shortcoming explicit. The DOOR OPENER describes an essential quality that
should be present in a venture starting team. (fig. 4)

Design
Rationale

No matter how meticulously a business initiative is planned, its predestined interactions with an
uncertain environment will effect in uncertain outcomes. Therefore, a venture should have a
management team that is able to cope with environmental changes.

Related
Work

The 3 TO 7 HELPERS PER ROLE [4] addresses group dynamics. The REVIEW [4] pattern highlights
one of the advantages of teamwork. The BEAUTIFUL PEOPLE [2] pattern can help to find the right
team members.

Fig. 4. Structure of the Dream Team pattern language

3.2.1 Curriculum Vitae

Topic Content
Problem How to convince people that you are the right person for the job?
Context When you want to be part of the team.
Forces No matter which diplomas you have or knowledge and skills you demonstrate, people tend to be

reserved about your qualities in real life situations.
Solution Present them your curriculum vitae
Resulting
Context

A CV/resume shows prior experience in real life situations. Potential stakeholders value prior
experience in the sector extremely high. Also prior success in other sectors might be valued, as
your ‘refreshing’ outside view might compensate for the lack of experience in the sector.

Design
Rationale

If people are not convinced that your team can handle the job, they will not support the initiative.

Related
Work

Digitalized curriculum vitae’s (e.g. [43]) are hot. Also many tips and tricks for writing CVs can be
found on the net and in magazines [44-46].

C4 - 13
3.2.2 Team image

Topic Content
Problem How to make obvious that a group works as a team?
Context When other people (e.g. potential stakeholders) judge your team on its coherence and team spirit.
Forces 1. People’s judgment is mainly subjective.

2. Different roles in a team might make it difficult to create a noticeable unity in the group.
Solution Use Gestalt principles [47, 48] to appear as a unit:

 Similarity: Wear similar clothing or a uniform (e.g. T-shirt with company logo)
 Proximity: Stay relatively close to each other, do not scatter throughout the entire room

and frequently consult each other (briefly) so that see that you know each other, without
losing too much time that can be used for meeting new people.

 Common-fate: Enter/leave a room simultaneously and use the same entrance/exit
 Closure: Even when your team is scatters in a room and every team member is talking

to a different person, team members should try to stay within each other’s field of
vision, so that they never turn their back on each other.

Resulting
Context

1. Gestalt laws describe the rules that govern human perception.
2. For the DOOR OPENER, following these guidelines (e.g. proximity) might be difficult (e.g. a Door

Opener needs to talk to everyone in the room irrespective of his/her proximity to the team).
Consequently, he/she might be perceived as an outsider. However, the DOOR OPENER’s deviant
behavior and appearance might make it easier for the other group members to build a team
image (e.g. stick together).

Design
Rationale

People take team appearance as a proxy for team spirit.

Related
Work

Chaturvedi [49] discusses how teams operate in practice in his pattern TEAM WHERE PEOPLE
MATTERS – A PROJECT MANAGEMENT PATTERN.

C4 - 14

3.2.3 Door opener

Topic Content
Problem How to get in touch with the right people?
Context When you have been able to penetrate the right social network.
Forces 1. The right people might come to you for the wrong reason.

2. Wrong people might come to you for the right reason.
3. Interesting people might not speak to you because you are already involved in a conversation.
4. Interesting people might not speak to you because they do not know what your expertise and

goals are.
Solution Select one team member as a contact person. Make obvious to others who is the contact person:

 Make him/her wear brighter colors than other team members.
 Take advantage of conspicuous physiognomic and other characteristics that make a contact
person stand out in a crowd (e.g. select and attractive and/or tall contact person).

 When the team enters a room, building or other location, the contact person walks up front,
and the contact person is the first to greet people (e.g. shake hands) or start a conversation.

Dedicate the contact person to having short conversations with as many persons as possible, after
which interesting contacts are introduced to team members with the right expertise to continue the
conversation.

Resulting
Context

1. When people start a conversation with the contact person, the contact person has de opportunity
to introduce you properly and start the conversation on topic.

2. Since the contact person is the first one to talk to people, he/she has the opportunity to bounce
people that cannot contribute to your initiative, without damaging the image of the other team
members.

3. As the contact person is the first one to talk to people, he/she knows who you are talking to and
has the opportunity to interrupt ongoing conversations and introduce more interesting people,
while luring the less interesting people away (e.g. by introducing them to other people he/she
met).

4. The contact person serves as a kind of ‘table of content’ for the team’s expertise.
Design
Rationale

Getting in touch with the right people can help to speed up the maturation process of your venture.

Related
Work

The GATEKEEPER [4] pattern shows the other side of the DOOR OPENER (i.e. bouncing irrelevant
people with a smile).

C4 - 15
3.2.4 Beauty Queen

Topic Content
Problem Who should play the DOOR OPENER role?
Context As DOOR OPENERS are dedicated to short conversations, the might be perceived as superficial

people.
Forces 1. During social events, DOOR OPENERS should be entirely dedicated to their role.

2. If the DOOR OPENER role is combined with expert roles, the person that combines these roles
dominates the conversations and makes the other team members look unimportant.

Solution Avoid combining the DOOR OPENER role with other roles by engaging a team member with these
specific skills (e.g. beauty contest finalist and professional sales people are typically skilled DOOR
OPENERS).

If the DOOR OPENER role needs to be combined with an expert role, make sure that another team
member can take over this role and only needs support from the DOOR OPENER/expert in
exceptional cases.

Resulting
Context

1. If a dedicated DOOR OPENER is engaged or the expert role can be fulfilled by another team
member, the DOOR OPENER can focus on his/her role.

2. If a dedicated DOOR OPENER is engaged, he or she does not have the expertise to dominate the
conversation. If another team member can take over the DOOR OPENER’s expert role, the team
roles will look more balanced.

Design
Rationale

The roles of the team members need to be balances so that all team members are perceived as
equally relevant.

Related
Work

The BEAUTY QUEEN pattern is a special case of the DOOR OPENER pattern.

C4 - 16
3.3 Cash is King

Topic Content
Problem How to express benefits using one unifying measure?
Context When your plan needs to be compared to other (competing) plans.
Forces Finding the appropriate means to motivate people and expressing the benefits of your

proposition is difficult, as different people might have different objectives.
Solution Express the benefits of your proposition to stakeholders in monetary units and create financial

projections (e.g. cashflow statements, annual accounts).
Resulting

Context
Money (i.e. cash) is a good measure since can be exchanged for virtually every other type of
resource. However, the monetary zone in which your stakeholders reside determines the
monetary unit (e.g. €, $, £) in which benefits should be expressed, and taxes and exchange
rates affect the benefits stakeholders actually receive (i.e. net benefit).
The INCENTIVE pattern demonstrates how cash can be used to convince people. The ROADMAP
THROUGH DEATH VALLEY identifies how much cash is needed to start a venture and the BEST-
BASE-WORST CASE SCENARIO addresses volatility in both outcomes. (fig. 5)

Design
Rationale

Investors often like to assess the benefits of totally different business initiatives; therefore they
require a unifying measure.

Related Work Financial prognoses in business plans. (e.g. determining projected sales and acquisition
cashflows by means of projected sales and acquisition volumes (e.g. market share) and
projected market prices) [50]

Fig. 5. Structure of the Cash is King Pattern Language

C4 - 17

3.3.1 Incentive

Topic Content
Problem How to convince people to contribute to your initiative?
Context When you have CREATED AN INNOVATIVE BUSINESS PLAN and built a DREAM TEAM.
Forces 1. The larger the time interval between the contribution and the reward the more intense the

reluctance is, but for the distributor, the cost of the recompense decreases over time.
2. People prefer certain over uncertain outcomes (i.e. risk aversion). The perceived risk is

determined by the available information (e.g. the experience of the assessor, the information in
the business plan).

Solution Show every contributor that you will give him/her something he/she values more in return for
his/her contribution, and make sure the aggregate of your trades (i.e. contribution for recompense)
is sustainable (i.e. the aggregated value of the contributions is higher than the aggregated cost of the
recompenses). Reward contributors that need to wait longer and bear more (perceived) risk with
higher returns (i.e. risk premium).

Resulting
Context

1. Stakeholders that know what returns they may expect are more inclined to provide and spend
money and take the ‘risk’. As long as they value their reward higher than their contribution,
their reluctance to contribute will diminish. If they decide to contribute, win-win situations will
occur (i.e. each participant will benefit from the cooperation).

2. A higher expected return balances the risk. However, there is a limitation to the power of
money since business initiatives with a considerable financial return on investment might be
considered unrewarding when they endanger the sustainability of the investor’s earnings by
damaging his/her image.

Design
Rationale

When you know people that have the assets (e.g. expertise, means) that you need to make your
business a success, cooperation needs to be achieved. Although cooperation is often required to
create successful initiatives, people are reluctant to contribute (i.e. spend/invest
energy/effort/time/money) to an initiative that is not theirs. Therefore, all participants in/
contributors to an initiative need to be rewarded. Consequently, the question “What’s in it for me?”
needs to be addressed for every single participant (e.g. investor, customer, supplier, team member,
employee).

Related
Work

The logic of the INCENTIVE pattern is also applied in the COMPENSATE SUCCESS pattern. [3] Risk
aversion is the motivation for risk management (e.g. [51], [52]). Maslow [53] wrote a standard
work on motivation of people in general (i.e. including non-financial incentives). So did Herzberg
[54-56], in an economic context. Gossen posed saturation laws for stimuli. [57]

C4 - 18
3.3.2 Roadmap through Death Valley

Topic Content
Problem How to avoid illiquidity when a business is growing?
Context Since (fixed) assets have a payback period, newly founded and fast growing (i.e. rapidly

increasing assets) businesses temporary consume more cash than they can generate. Even
existing projects can grow so fast that they cannot provide their own funding.

Forces New business initiatives often require more funding than the entrepreneur can provide.
Solution To prevent insolvency, the project should also attract external funding, estimate the amount of

cash that is required to implement the business plan properly and look for investor funding
with the right maturity (i.e. match the average lifespan of your assets with that of your
liabilities). Find a solid base (e.g. existing data) and a logical buildup for your prognoses, and
compare the outcomes of different estimates using different methods and data sources.

Resulting
Context

1. Cash that has been obtained from investors needs to be returned augmented with an ROI
(i.e. an additional cash outflow). Consequently, external funding increases the amount of
cash available at one moment, but decreases the potential amount of cash in the future, as
the ability of a business process to generate (more) cash in the future is constrained by the
amount of cash it has generated in the past and additional cash it can obtain from
investors.

2. When the average maturity of the assets and liabilities match, the debt structure is
sufficiently stable to support the venture and sufficiently flexible to follow the changing
need for funding during the different lifecycle stages of the venture. A planning that is too
optimistic burns money too fast and makes stakeholders lose confidence, while a planning
that is too pessimistic creates liquidity constraint when the enterprise grows faster than
expected and gives competitors the opportunity to provide the products that you cannot
deliver.

3. The sensitivity analysis for financial milestones (e.g. break-even, reimbursement period,
internal rate of return) serves as an implicit contract between investor and entrepreneur.

4. Throughout the organization’s lifecycle, potential returns on investment decrease
considerably, while the level of certainty increases.

5. In existing organizations, new business initiatives are solely evaluated in terms of
generated cashflows (i.e. the contribution to the organization) when no external funding is
required, whereas projects that require external funding (e.g. ventures) need to be
complemented with projected annual accounts.

Design
Rationale

Illiquidity means the end of the venture; therefore, solvency & liquidity (i.e. make sure you
will be able to pay the bills in the long and short term) are prerequisites for business
continuity.

Related Work A typical death valley curve, which shows the effect of initial losses on the finances of new
ventures, can be found in [58].

C4 - 19
3.3.3 Best-Base-Worst Case Scenario

Topic Content
Problem How to let potential investors deal with the uncertainty that is inherent to the future?
Context When a business plan has been created and the financial returns (i.e. INCENTIVES) for investors

need to be estimated.
Forces Volatility of outcomes is hard to asses since not all volatility causing factors are known beforehand.
Solution Identify as much volatility causing factors as possible and estimate their aggregated potential

positive and negative effect on the financial returns the venture can generate. Use these estimates to
create a best, base and worst case scenario and if possible, calculate an expected return with these
scenario outcomes and their respective likeliness.

Resulting
Context

One cannot account for unknown factors; therefore it is sufficient to account for all factors that can
be identified, as investors know that the financial outcomes are uncertain and want to know in the
first place whether the entrepreneur has carefully thought the plan and its potential implications
through.

Design
Rationale

No matter how meticulously a business initiative is planned, its predestined interactions with an
uncertain environment will effect in uncertain outcomes.

Related
Work

Typical use of financial scenarios is demonstrated in [59].

C4 - 20

3.4 Finding Funding

Topic Content
Problem How to convince investors to contribute to the success of your business?
Context When starting an enterprise, you make a lot of cost before you can start reaping the benefits.

The team member can probably not provide sufficient funding themselves.
Forces Several investor profiles exist, each with objectives (e.g. expected return, duration and scale

of participation) and expertise. But be aware that every investor is in the business for its own
profit.

Solution Create a clear and attractive document (i.e. business plan) that can serve as an implicit
contract (e.g. concerning expected returns, management style) between investor and
entrepreneur.

Resulting
Context

The liability mix (i.e. equity capital vs. debt), which is largely dependent on the origin of the
funds (e.g. banks, professional investors, stock market, friends, fools and family) is mainly
determined by the business lifecycle (i.e. seed, start-up, expansion, exit):

Initial funding (e.g. seed money, start-up money) is often provided by the initiators,
‘friends, fools and family’ and potentially venture capitalists and business angels. Once a
business is more established, professional investors (e.g. banks, leasing companies, venture
capitalists, stock markets) play a more important role providing expansion and exit money. In
specific cases, authorities can also provide money.

Professional investors (e.g. banks) often require collateral securities or high risk premiums
and sometimes joint management. Relatives provide money at favorable conditions but mostly
have limited resources. Business angels can provide additional support and relevant
experience. The longer the history of the enterprise, the lower the risk premium.

Matching investor profile with the information provided in the business plan, will avoid
unnecessary reiterations of the business plan or unnecessary rejections because the plan is
deemed unsatisfying.

The underlying pattern language for FINDING FUNDING then addresses techniques to
address an AUDIENCE with ATTRACTIVE DOCUMENTS and ATTRACTIVE PRESENTATIONS. (fig.
6)

Design
Rationale

The balance sheet of an enterprise consists of assets and an equal amount of liabilities (i.e.
equity and debt). Consequently, an enterprise requires funding in each phase of its lifecycle.

Related Work The ROADMAP THROUGH DEATH VALLEY pattern provides the venture profile that can be
matched with investor profiles.
Timmons and Spinelli [58] provide an overview of the cost of capital and typical amount of
funding per type of investor and shows typical capital structures during an enterprise’s
lifecycle. Kotler [60] discusses a marketing approach to finding funding.

Fig. 6. Structure of the Finding Funding pattern language

C4 - 21
3.4.1 Audience

Topic Content
Problem How to find your audience?
Context When you have an idea of what you want to achieve and how to achieve it, but do not know who to

target to move your idea forward.
Forces 1. There is a competition to get in touch with people that can really help you, because they are

scarce and can also help others.
2. People that have managed to get in touch with them will fence their valuable connections off.

Solution Talk to as many people as possible, take your time to find out whether people are interesting, move
on when they are not and go back to places where you meet interesting people.

Resulting
Context

1. When you visit the right locations often, people will know your ideas and tell you who you need
to talk to.

2. When people think they know you, their motivation to fence of people decreases.
Design
Rationale

Inventors are often so preoccupied3

Related
Work

 with their idea that they do not value a wide and diverse social
network until they really need it.
The INTROVERT-EXTROVERT pattern [61] helps introverted people to find the right ‘tone of voice’
for addressing an audience, The DOOR OPENER introduces them to the right audience.
Social networks in cyberspace are a hot topic.[43, 62]

3.4.2 Divide and Conquer: Audience

Topic Content
Problem How large should an audience be?
Context When you have a message that you want to communicate to an audience.
Forces Finding an optimal size or granularity for groups of people is a complex task, since there is a trade-

off between economies of scale (larger audiences generally require fewer resources per capita) and
the specificity of your message, which follows your success rate (specific information has a higher
success rate but destined for a smaller audience, generic information has a lower success rate but is
destined for a larger audience).

Solution Match the required resources (i.e. cost) per capita with the expected value per capita, and make sure
that the expected value per capita exceeds the cost per capita.

Resulting
Context

Valuable audiences are divided in smaller groups and provided them with the specific information
they want. The higher cost per capita is compensated with a higher success rate.
Less valuable audiences are divided in larger groups and provided with more generic information.
The lower success rate is compensated with a lower cost per capita.

Design
Rationale

You cannot convince the entire world at once.

Related
Work

Kotler [36] lists several Market (i.e. audience) Segmentation criteria.
This pattern has a dual pattern (i.e. DIVIDE AND CONQUER: INFORMATION)

3 Some are convinced that good wine needs no bush; others are just shy or scared that someone will steal their idea.

C4 - 22
3.4.3 Essential & Details: Audience

Topic Content
Problem How to structure large groups of people?
Context When you have an audience that is too large to address at once.
Forces Large groups of people are hard to manage and address, as the diversity of the group and hence the

heterogeneity of its interests increases, which requires the generality of the information to increase,
with the number of members.

Solution Discriminate essential (e.g. most rewarding prospects) from peripheral people (e.g. least rewarding
prospects) and focus (your message) on the essential people (first).

Resulting
Context

This essentiality criterion defines a priority in which groups should be addressed.

Design
Rationale

Too little essential people may lead to inappropriate omissions, leading to missed opportunities.
Too many essentials may dilute focus and cause the message to be too generic.

Related
Work

This pattern has a dual pattern (i.e. ESSENTIALS AND DETAILS: INFORMATION)

3.4.4 Attractive Document

Topic Content
Problem How to motivate people to process as much of the information contained in your documents as

possible.
Context When you are creating documents (e.g. business plan, name card) that will be distributed among

your (potential) stakeholders (e.g. investors, customers, suppliers).
Forces 1. Reading your documents is often not the reader’s priority.

2. Many fonts look attractive but prove hard to read.
Solution Create well-structured documents with sober but efficient and consistent use of lay-out elements.

 Limit the number of fonts used in the document, use them consistently (e.g. one for titles, one
for text, one for captions, one for sidebars …)

 Be careful (and sparing) with the use of italic and bold.
 Use professional looking fonts (e.g. Arial, Times)[63]
 Use between 45 and 65 characters per line[64]
 Use left-justified text [64]
 Use serif fonts for text and sans-serif fonts for titles [64]
 Use sparse line spacing [65]
 Avoid having a short line (e.g. one word) at the end of a paragraph.[63]

Resulting
Context

1. When documents are attractive, the perceived effort of processing them is reduced, which means
that this attractiveness is a kind of intrinsic INCENTIVE.

2. When the body of the document uses fonts that are especially designed for readability, and fancy
fonts are used for highlighting certain parts of the document (e.g. titles, side boxes), the reading
efficiency will increase. However, dyslectic people seem to prefer sans-serif fonts [66].

Design
Rationale

You can improve your chances to get your message across by making your presentations superior.
It won't make your arguments better, but it will ensure that readers grasp and retain your points
more easily. That's a valuable advantage, which you should seize.[64]

Related
Work

Business Plan Templates [50] show examples of business plans with a structure and content that is
typical for a certain type of venture.

C4 - 23
3.4.5 Attractive Presentation

Topic Content
Problem How to motivate people to be attentive during the entire presentation?
Context When you are preparing presentations (e.g. business plan) for (potential) stakeholders (e.g.

investors, customers, suppliers).
Forces Although a business plan largely consists of detailed technical and financial information, an oral

presentation is not ideally fit for presenting detailed information.
Solution Sketch the plan in broad outlines (i.e. idea’s and bottom line) in the presentation, save the details

for the question round after the presentation and prepare (slides) for questions.
Create well-structured presentation with sober but efficient and consistent use of lay-out elements
[67] and manage your body language.
 Be enthusiastic
 Know your audience and highlight important points for them
 Limit the number of words per slide
 Tell people three times (i.e. tell them what you will tell, tell it, tell them what you have told)
 Remind the audience of the presentation structure and show the advances in the narrative

thread (e.g. by repeating the presentation outline and highlighting what which topics have been
addressed).

Resulting
Context

1. An enthusiastic presenter may motivate people to be attentive
2. Reminding people of the presentation structure and highlights may help to regain the attention of

people whose attention you have lost.
3. A sober presentation puts the emphasis on the content

Design
Rationale

The audience needs to be attentive, to be susceptible to your message.

Related
Work

PATTERNS FOR TEACHING SOFTWARE IN CLASSROOM [68] addresses a specific kind of presentation
skills (i.e. teaching software) for which certain guidelines (e.g. SHOW IT RUNNING) can be
generalized for other presentation types (e.g. presentation of a product). A PATTERN LANGUAGE
FOR SCREENCASTING [69] focuses on a particular type of presentation.

C4 - 24
3.4.6 Divide & Conquer: Information

Topic Content
Problem How communicate large amounts of (complex) information to an audience?
Context When you are creating a message that you intend to communicate to an audience.
Forces Finding an optimal size or granularity for information is a complex task as there is a trade-off

between the quality of the content and the size of the message, which influences the reception of
the message negatively.

Solution Use short and simple sentence structures, structure your information clearly (i.e. create a table of
content and use section and subsection titles), bring every message (i.e. piece of information) as
concise as possible without being incomplete and avoid messages that are too short (e.g.
half/double the size of the average message in the document) as they may indicate bad structure
(e.g. belongs is part of another message) or incompleteness (e.g. the idea is not fully developed).

Resulting
Context

A clear document structure allows you to represent all required information in the document and
divide it in small and effective messages. The structure also allows the reader to look for (or skip)
messages that are (not) relevant.

Design
Rationale

Transferring information is the essence of every type of communication.

Related
Work

This pattern has a dual pattern (i.e. DIVIDE AND CONQUER: AUDIENCE)

3.4.7 Essentials and Details: Information

Topic Content
Problem How to structure large pieces of information?
Context When you have a message that is too large to be communicated at once.
Forces Large messages are hard to communicate, as they require more effort from the recipient, which may

hamper communication through fatigue. On the other hand, it is hard to substantiate convincing
arguments in a short message.

Solution Discriminate essential from peripheral information and communicate the essential information first.
(e.g. bring the essential information in the first section of a text or the first sentence of a paragraph).

Resulting
Context

Bringing essential information first allows people to scan a document more easily, without losing
sight of the overall message of that document.

Design
Rationale

Large messages require more effort from the recipient; hence a larger incentive is required.

Related
Work

This pattern has a dual pattern (i.e. ESSENTIALS AND DETAILS: INFORMATION).
The executive summary (i.e. a 1-5 page summary of a document), which is an essential part of a
business plan [50], is a typical example of the bundling of essential information.

C4 - 25
3.4.8 Illustrate: A picture is worth 1000 words

Topic Content
Problem How to make documents and presentations visually attractive?
Context When you want your message to make a lasting impression.
Forces Documents that contain too much solid text may appear dull, whereas text that contains too many

pictures, diagrams and tables loses its consistency
Solution Include relevant diagrams, tables and pictures to illustrate your text, but try to avoid having more

than one illustration per page and having two facing pages of text without illustration.
Resulting
Context

Having graphics to illustrate a text is insufficient to increase attractiveness; the graphics also need
to be perceived as attractive and relevant.

Design
Rationale

Some information is hard to communicate with text and numbers (e.g. the design of your product).

Related
Work

The TURNING ME ON TURNING ME OFF pattern [70] provides guidelines for interactive graphics.
Moody [71] describes essential characteristics of good diagrams.

Acknowledgements
An earlier version of this paper was presented at the 14th

References

 European Conference on Pattern Languages of
Programs (EuroPLoP). We are grateful for the comments of the writing workshop participant. Especially, Allan
Kelly, Lise Hvatum, Nora Ludewig, Albena Antonova, Elissaveta Gourova and Lisa … We also like to thank
Andreas Fiesser for his efforts shepherding prior versions of this paper.

1. Kelly, A.: Business Patterns for Product Development. EuroPLoP 2008, Irsee, Germany (2008)
2. Rising, L., King, C.: Patterns for Building a Beautiful Company. (2002)
3. Coplien, J.O.: A generative development-process pattern language. Pattern languages of program design. ACM

Press/Addison-Wesley Publishing Co. (1995) 183-237
4. Coplien, J.: A Development Process Generative Pattern Language. PLoP/94, Monticello (1994)
5. Georgiakakis, P., Retalis, S.: Design Patterns for Creativity. 14th European Conference on Pattern Languages of

Programs, Irsee, Germany (2009)
6. Ball, L.J., Ormerod, T.C., Morley, N.J.: Spontaneous analogising in engineering design: a comparative analysis of experts

and novices. Design Studies 25 (2004) 495-508
7. Kelly, A.: Design Patterns for Software Companies (Product Development). VikingPLoP 2007, Bergen, Norway (2007)
8. Kelly, A.: Design Patterns for Software Companies (Product Development). EuroPLoP 2007, Irsee, Germany (2007)
9. Kelly, A.: Design Patterns for Technology Companies. EuroPLoP 2006, Irsee, Germany (2006)
10. Kelly, A.: Business Strategy Design Patterns for Technology Companies. VikingPLoP 2005, Espoo, Finland (2005)
11. Kelly, A.: A few more business design patterns. EuroPLoP 2005, Irsee, Germany (2005)
12. Kelly, A.: Business Strategy Pattern for the Innovative Company. VikingPLoP 2004, Uppsala, Sweden (2004)
13. kelly, A.: The Porter Patterns. EuroPLoP 2004, Irsee, Germany (2004)
14. Ijiri, Y.: Theory of accounting measurement. American Accounting Association, Sarasota, Fla. (1975)
15. Gordijn, J.: Value-based requirements Engineering: Exploring innovative e-commerce ideas. Exact Sciences, Vol. Phd.

Free University of Amsterdam, Amsterdam (2002) 292
16. Kelly, A.: A Pattern vocabulary for product distribution. 14th European Conference on Pattern Languages of Programs,

Irsee, Germany (2009)
17. Mahler, A., Rogers, E.M.: The diffusion of interactive communication innovations and the critical mass: the adoption of

telecommunications services by German banks. Telecommunications Policy 23 (1999) 719-740
18. Malcolm, D.G., Roseboom, J.H., Clark, C.E., Fazar, W.: APPLICATION OF A TECHNIQUE FOR RESEARCH AND

DEVELOPMENT PROGRAM EVALUATION. Operations Research 7 (1959) 646
19. Wilson, J.M.: Gantt charts: A centenary appreciation. European Journal of Operational Research 149 (2003) 430-437
20. Jones, C.V.: THE THREE-DIMENSIONAL GANTT CHART. Operations Research 36 (1988) 891
21. Gantt, H.L.: Organizing for work. Harcourt, Brace and Howe, New York, (1919)
22. Brandenburger, A., Nalebuff, B.: Co-opetition. Doubleday, New York (1996)

C4 - 26
23. Weiss, M.: In Bed with the Enemy. In: Hvatum, L., Schummer, T. (eds.): 12th European Conference on Pattern Lanuages

of Programs. Universitatsverlag Konstanz, Irsee, Germany (2007) 159-171
24. Rising, L.: Customer Interaction Patterns. (1997)
25. Porter, M.E.: THE FIVE COMPETITIVE FORCES THAT SHAPE STRATEGY. Harvard Business Review 86 (2008)

78-93
26. Gilman, G.: The manager and the systems concept. Business Horizons 12 (1969) 19-28
27. McNutt, K.: SWOT Before You Start. Nutrition Today 26 (1991) 48-51
28. Larkin, J.H., Simon, H.A.: Why a Diagram is (Sometimes) Worth Ten Thousand Words. Cognitive Science 11 (1987) 65-

100
29. Porter, M.E., Millar, V.E.: How information gives you competitive advantage. Harvard Business Review 63 (1985) 149-

160
30. Peters, T.J., Waterman, R.H.: In search of excellence : lessons from America's best-run companies. Harper and Row, New

York (N.Y.) (1982)
31. Rogers, E.M.: Diffusion of innovations. Free Press of Glencoe, New York, (1962)
32. Day, G.S.: Diagnosing the Product Portfolio. Journal of Marketing 41 (1977) 29-38
33. Kerin, R.A., Varadarajan, P.R., Mahajan, V.: Contemporary perspectives on strategic market planning. Allyn and Bacon,

Boston (Mass.) (1990)
34. Ansoff, H.I.: Strategies for Diversification. Harvard Business Review 35 (1957) 113-124
35. Kotler, P., Keller, K.L.: Marketing management. Pearson Prentice Hall, Upper Saddle River, N.J. (2009)
36. Kotler, P., Armstrong, G.: Principles of marketing. Pearson/Prentice Hall, Upper Saddle River, N.J. (2008)
37. Haase, M., Miedl, M.: Patterns for Leading Effective and Efficient Meetings. In: Hvatum, L., Schummer, T. (eds.): 12th

European Conference on Pattern Languages of Programs. Universitatsverlag Konstanz, Irsee, Germany (2007) 53-95
38. Haase, M.: Patterns for Leading Effective Meetings. 10th European Conference on Pattern Languages of Programs, Irsee,

Germany (2005)
39. Iba, T., Miyake, T., Naruse, M., Yotsumoto, N.: Learning Patterns: A Pattern Language for Active Learners. 16th

Conference on Pattern Languages of Programs, Chicago, Illinois, USA (2009)
40. Kile, J.F., Little, D.J., Shah, S.: Busy Person Patterns. 13th Confernce on Pattern Languages of Programs, Portland, OR

USA (2006)
41. Strong, E.K.: The Psychology of Selling and Advertising. pp. xi. 468. McGraw-Hill Book Co.: New York (1925)
42. Lavidge, R.J., Steiner, G.A.: A Model for Predictive Measurements of Advertising Effectiveness. Journal of Marketing 25

(1961) 59-62
43. Bardon, D.: online SOCIAL networking for business. Online, Vol. 28. Information Today Inc. (2004) 25-28
44. Williams, M., Kochhar, A., Tennant, C.: An object-oriented reference model of the fuzzy front end of the new product

introduction process. International Journal of Advanced Manufacturing Technology 34 (2007) 826-841
45. Tips on CV writing. Travel Trade Gazette UK & Ireland (2008) 95-95
46. DO IT RIGHT: JAZZ UP YOUR CV. Management Today (2009) 16-16
47. Ellis, W.D.: A Source Book of Gestalt Psychology. Prepared by W. D. Ellis, etc. [By various authors.]. pp. xiv. 403.

Kegan Paul & Co.: London (1938)
48. Smith, B., Ehrenfels, C.: Foundations of Gestalt theory. Philosophia Verlag, München (1988)
49. Chaturvedi, M.: Team where People Matters - A Project Management Pattern. In: Hvatum, L., Schummer, T. (eds.): 12th

European Conference of Pattern Languages of Programs. Universitatsverlag Konstanz GmbH, Irsee, Germany (2007) 149-
157

50. SBA: How To Write a Business Plan. U.S. Small Business Administration (2008)
51. Cockburn, A.: Toward a risk management catalog. Computer 29 (1996) 28-30
52. Myers, B.L., Melcher, A.J.: ON THE CHOICE OF RISK LEVELS IN MANAGERIAL DECISION-MAKING.

Management Science 16 (1969) B-31-B-39
53. Maslow, A.H.: Motivation and personality. Harper, New York, (1954)
54. Herzberg, F.: The managerial choice : to be efficient and to be human. Dow Jones-Irwin, Homewood, Ill. (1976)
55. Herzberg, F.: The motivation to work. Wiley, New York, (1959)
56. Herzberg, F.: One more time : how do you motivate employees? Harvard Business Press, Boston, Mass. (2008)
57. Riedle, H., Beckmann, M.: Hermann Heinrich Gossen, 1810-1858. Ein Wegbereiter der modernen okonomischen Theorie.

Econometrica: Journal of the Econometric Society 23 (1955) 223-224
58. Timmons, J.A., Spinelli, S.: New venture creation : entrepreneurship for the 21st century. McGraw-Hill/Irwin, Boston,

Mass. (2007)
59. Sahlman, W.A.: Note on Free Cash Flow Valuation. Harvard Business Publishing (1987) 43
60. Kotler, P., Kartajaya, H., Young, S.D.: Attracting investors : a marketing approach to finding funds for your business.

Wiley, Hoboken, New Jersey (2004)
61. Bergin, J.: Introvert-Extrovert. 7th European Conference on Pattern Languages of Programs, Irsee, Germany (2002)

C4 - 27
62. Athitakis, M.: The Right Connection. Associations Now, Vol. 5. American Society of Association Executives (2009) 22-

25
63. Smasal, C.: Graphic Design At Work. Office Pro 67 (2007) 11-14
64. Barth, S.: Digital Designs. EContent 31 (2008) 32-36
65. Moriarty Sandra, E., Scheiner Edward, C.: A Study of Close-Set Text Type. Journal of Applied Psychology 69 (1984)

700-703
66. Litterick, I.: Typefaces for Dyslexia. Vol. 2009. dyslexic.com (2003)
67. Tessler, F.N.: Polish Your Presentations. Macworld 23 (2006) 68-69
68. Schmolitzky, A.: Patterns for Teaching Software in Classroom. In: Hvatum, L., Schummer, T. (eds.): 12th European

Conference on Pattern Languages of Programming. Universitatsverlag Konstanz GmbH, Irsee, Germany (2007) 37-51
69. Chen, N., Rabb, M.: A Pattern Language for Screencasting. 16th Conference on Pattern Languages of Programming,

Chicago, Illinois, USA (2009)
70. Kohls, C., Windbrake, T.: Turning me on, turning me off. 13th European Conference on Pattern Languages of Programs,

Irsee, Germany (2008)
71. Moody, D.: What Makes a Good Diagram? Improving the Cognitive Effectiveness of Diagrams in IS Development.

Advances in Information Systems Development (2007) 481-492

C5-1

Software Design Reviews
December 31st, 2009

Nora Ludewig

(nludewig@gmx.de)

© 2009 Nora Ludewig. Copyright retained by author.

Permission granted to Hillside Europe for inclusion

in the CEUR archive of conference proceedings and

for Hillside Europe website.

Introduction
This paper describes patterns for software design reviews.

The experiences leading to these patterns were made in the context of software

development for embedded systems. However, they contain practices that can

be useful in every kind of software design review. I became aware of these

patterns while I was learning to apply the review method DRBFM to software

development. DRBFM stands for Design Review Based on Failure Mode and is

a review method invented by Toyota and now slowly spreading into other

organizations. Initially, it was developed for proving the robust design of

mechanical products. But it turns out that DRBFM is a powerful way to look at

software designs, too.

DRBFM focuses on the separation between functionality and solution. The

method helps you to check whether a product still fullfills the requirements in

a robust way when you implement changes in one or several parts of the

product. Interactions between different parts are looked at in particular.

Software for embedded systems typically is connected very closely to the �“real

world�”. There are sensor signals that have to be transformed into numerical

values, maybe the system has a processor working with integer arithmetics,

and the system always has time constraints because there are limited reaction

times specified. Due to this close connection of software and hardware there

are many constraints on the software such as accuracy of the conversion of

sensor signals or runtime and memory consumption. In the design review the

software must not be analysed as an isolated product but as one part of a

system.

In the field of embedded software development, reviews are often held after

every development phase. There are reviews of the specification, of the

functional design, of the code, of the software and system tests. All the

different review methods are based on the assumption that it is helpful if

someone different from the developer examines a product and brings in their

expertise. Therefore the main parameter defining the success of the review is

C5-2

the knowledge, the communication and the behaviour of the review

participants [1]. This paper describes how you as a developer can contribute to

the success when you are preparing, organizing and moderating a software

design review.

In some of the patterns, I talk about �“changes�” or �“modifications�”. This results

from the approach of DRBFM always comparing a product as it was before

with a new (�“changed�” or �“modified�”) solution. So I assume there is always

some basic version of a product, artifact or piece of code to start with. We are

not re-inventing the software from the beginning, but there is some comparable

product or some frame we can start our work from.

The thirteen patterns are divided into four groups:

Deciding what to review Risk over Size

Preparing the Review

Continuously Prepare the Review

Review the Final Design

Don�’t Think �– Describe your Solution!

Make Implicit Requirements Explicit

Look at the System

Free Requirements from Solution

Running the Review

You are the Entertainer

Every Question is Okay

Do not Justify, just Listen

Do it your Way �– Don�’t stupidly fill in

Templates

It is not about Form

After the Review Make the Outcome Concrete

With these patterns I would like to address developers, engineers and students

working in embedded software development. There is a strong focus on the

developer who is preparing and running the review. Nevertheless they can be

helpful to review participants, too. Also they could be interesting for managers

who want to improve the quality and the output of design reviews performed

in their organisation.

C5-3

Deciding what to review

Risk over Size

Context: You are designing a new software part or a change in an existing part

and a design review is required by the process.

Forces: In software development, not only the final product counts but also the

development time and effort. In most cases, developers have to make a trade

off between quality and adherence to deadlines. The availability of time and

expertise or the mere size of a software module determine the content and the

intensity of reviews. So a rather common algorithm might be looked at very

carefully while a very innovative software part might be more or less

neglected.

The developer of new software usually has some influence on the intensity and

the extent of the review that is done on the design. But if he sets the focus

improperly, maybe big risks will be overlooked.

Problem: When you have to focus your review effort due to time or capacity

restrictions, which parts of the development should you consider in the

review?

Solution: Find out where is the biggest risk and put most of your effort on

this part.

Implementation: A design resulting in a high number of lines of code is not

automatically riskier than a small change in an existing software part. You

should watch out for changes with a high degree of innovation or changes in

complex interfaces. [2]

If you have used a commonly known solution or you have developed a module

similar to one you have developed before, the risk is not as high as there is for

completely new algorithms or changes in interfaces with cross connections to

many other parts of the software.

Of course it is difficult to find an impartial technique leading to decisions

comparable to decisions in other reviews. It is hard to measure risk which does

not only depend on the properties of the software but also on the properties of

the developer and his or her environment. By discussions with colleages about

your development and how it impacts the system, you will develop a sense of

how intense the review should be.

Examples: 1. You are using a filter algorithm looking very complicated at first

sight. The code for it is rather big. But in fact you have a lot of experience with

this algorithm because you have used it many times before. Moreover the

algorithm does not have many boundary conditions or dependencies.

Therefore the review of this part of the design does not have to be elaborate.

C5-4

2. You are changing an interface used as an input for a timer from a 32-bit-

variable to a 16-bit variable. Maybe you have tested the new function in the

target environment and you have shown that the behaviour is the same as

before. Unfortunately you did not consider the fact that now there is a variable

overflow much faster and that then the timer will fail. This example shows that

especially when there are changes in interfaces it is good to review with a

rather high effort.

C5-5

Preparing the Review

Continuously Prepare the Review

Context: You are planning all the different tasks of the design phase, including

the design review. You want to allocate time for the review preparation.

Forces: The review often is perceived as a point in time. That is the point when

the review meeting takes place.

During the design phase, you have to keep in mind all the requirements and

constraints to your product as well as the process you have to follow.

Preparing for the review is another task you have to plan for during the design

phase. The review preparation will consume a certain amount of time and

energy in addition to the core design tasks. For this reason, review preparation

often is neglected.

If you take care of the review only very shortly before the review meeting, you

will prepare and organize the review in a hurry, forgetting about important

points, inviting the wrong people, neglecting presentation rules.

Consequences of these forces are unprepared reviews, unsatisfying results and

unmotivated participants.

Problem: When should you start to prepare the design review and how

should you allocate the preparation efforts?

Solution: Start preparing the review from the beginning of the design phase

and continue all through the design process.

Implementation: Take notes about concerns or questions you have. Talk to the

colleagues you would like to invite to the review. Prepare the information you

want to give to the review participants before or during the review.

Set the date for the review meeting as soon as you know when you will have

finished the design. REVIEW THE FINAL DESIGN and plan some time after the

review for doing some rework if necessary. Early planning will increase the

chance that you get the experts you want to have in the meeting and they will

have some time to prepare for the review.

Example: You design a software module for the control of a machine. This

module has the engine speed as an input variable. In fact there are two varia-

bles representing the engine speed available in the software. A raw signal

NEng_unfilt and a filtered signal NEng_filt.

At the beginning of the design you are not sure yet which signal is best for

your application. You are taking the raw signal for the first draft version. As

you have started to prepare for the review from the very beginning of the

design phase, you always have in mind that you need to clarify this point until

the design is finished. So there is no risk that the first choice for the draft

version will stay in the solution just by chance.

C5-6

Moreover, when you present the input values at the review meeting, you can

say which variable for the engine speed you have chosen and, very important,

why.

Review the Final Design

Context: You want to set the time for the review meeting.

Forces: A review meeting held at the wrong time can lead either to discussions

about what is really the concrete solution and by this to a kind of developers

workshop. Or it can lead to a hurried meeting where the developer tries to

dismiss as many points as possible in order to avoid rework.

If you hold the review meeting too early, there is a danger that not all the

necessary information will be available or some details even are not defined

yet. You will have to review alternatives or theoretical concepts. This can result

in endless discussions.

On the other hand, if the review meeting is held too late, you will not have the

time to implement the measures you have decided on in the meeting. Maybe

you will even try to avoid some findings in the meeting because you know that

will not have the time to do the rework identified to reduce the risks.

Problem: When is the best time to hold the review meeting?

Solution: Hold the review meeting only after you have collected all the facts

the review participants need to examine the design but keep enough time af-

ter the review to change the design where necessary.

Implementation: As you CONTINUOSLY PREPARE THE REVIEW, you can look for

the best time for the review meeting from the beginning of the development.

You can already talk with the colleagues you would like to participate in the

meeting so that you find out when persons that are very important for the re-

view success are on vacation et cetera.

As the delivery date normally is fixed, you can estimate how much rework will

be necessary after the review in the worst case and then you can calculate the

date when the meeting has to be held the latest [3]. The review participants

also need some time for the preparation of the review. Taking this into conside-

ration you know when your design has to be finished. So by calculating back-

wards from the delivery date you make sure that you have enough time for the

review and the rework and that you also go into the review with a real design

and not only a design idea.

Example: Here you can look at the same example as in CONTINUOUSLY PREPARE

THE REVIEW. Imagine you are still not sure yet whether you should take the

filtered or the unfiltered signal as an input value. Therefore you do not put

NEng_filt or NEng_unfilt into your design, you just write down NEng. If you

are doing the review now, there is a high risk that some of the participants will

have NEng_filt in mind and some will think about NEng_unfilt. They will be

talking about different things without noticing the problem. If they notice this

C5-7

open point, the risk is high that the review will not be a design review on the

complete design but a discussion about which of the two variables would be

the better one for your application. Of course this might be a helpful discussion

but it is not the goal of the review.

Don�’t Think �– Describe your Solution!

Context: You are preparing the information about your design you want to

give to the review participants before and during the review meeting.

Forces: When developing software, you do not just write code. You also define

new interfaces, your software consumes memory and clock cycles in the pro-

cessor, you might call library functions, maybe you use new development

tools. This is often overlooked. As a developer you tend to focus on the chan-

ges you consider to be important. Changes that do not affect the functionality

are easily ignored. However, things that seem unimportant to you might affect

the overall system or parts of the system interacting with your module.

But you want to avoid to drown important changes in unimportant �“stuff�” and

you think that a comprehensive list of changes might overwhelm the review

participants. So your idea is to make a selection of the most important aspects

in advance.

Problem: When collecting the information the reviewers need for analyzing

your development, how do you decide on the relevance of the information?

Solution: When preparing for the review, describe every part of your solu-

tion, even if it seems unimportant to you. Avoid any judgement on the im-

portance or the risks of individual aspects. Try to be as neutral as possible.

Implementation: A checklist can be really helpful to identify all the changes

that were made.

If you have filled out a checklist before, you can show this checklist to the

review participants. If there is a very high number of changes, you can, later in

the review meeting, make suggestions to put some details aside or summarize

some minor changes in one common heading. But you have to justify why it is

safe to do so to the review participants.

 If safety is a concern, you should rather err on the side of caution and mention

too many changes rather than too few.

Example: The precision of the output value of a function is increased while the

functionality itself remains unchanged. To the developer, this change seems to

be unimportant, as his function is now providing a more precise value than be-

fore. Unfortunately, there is another function which uses this value as an input

and performs a modulo operation on it. As now the resolution is higher, the

results of the modulo operation will be completely different. The function fails.

C5-8

If in the review this change had been mentioned, the potentially fatal

consequences could have been found.

Make Implicit Requirements Explicit

Context: You are preparing the information about the requirements to the

design you want to give to the review participants before and during the

review meeting.

Forces: When judging whether a product meets the requirements everybody

makes his own assumptions about implicit requirements

You have designed your new software module based on the specification of the

customer. The customer wrote the specification from his point of view. Often,

he has no information about the processes or constraints in your company. He

might not know all the technical details of the system your software will be

integrated into. But these details can have significant influence on your choices

of specific solutions during the design phase.

On the other hand, the customer has his own processes and constraints. His

company�’s philosophy might be completely different from the philosophy of

your company, a fact that you, both the costumer and the developer, often are

not fully aware of.

For these reasons you can almost be sure that the requirements are not com-

plete from your point of view. You will design the software based on the re-

quirements you got from the customer, completed with assumptions on what

the customer wants to have but did not say explicitely.

Problem: How can you make sure that you as the developer, the review

participants, and the customer have the same understanding of the require-

ments?

Solution: Specify clearly what you think are the requirements to the product

even if these requirements were not mentioned explicitely by the customer.

Implementation: Put yourself in the place of the customer and think of what

he or she wants the product to do or not to do. What are the different pos-

C5-9

sibilities of using the product and how can they be combined? List all the as-

pects and circumstances of use. Think about what might be obvious to the cus-

tomer but not to you. Then, think about what might be obvious to you but not

to the customer.

You can take these assumptions as a basis for discussion. Chances are high that

in the review meeting there is an expert who can confirm or correct these as-

sumptions.

When you are wondering which requirements are obvious to the customer but

not to you, of course it is a good idea to simply ask the customer. But even

then, there will be implicit requirements remaining implicit if you do not find

them and make them explicit.

When looking for implicit requirements it might be helpful to use checklists. In

DRBFM for example, you are invited to find, for each module, the �“basic func-

tion�” which describes the actual purpose of the module, �“additional functions�”

which focus on the on the look and feel of a product, �“harm prevention�” which

avoids that the product can cause harm to people, or the environment and �“self

protection�” which avoids that the module itself is damaged or destroyed.

Of course you should not wait until the design review to talk to the customer

about the requirements. If there is information missing at the beginning of the

design phase you should get answers to the open points as quickly as possible.

Still, the design review is a good opportunity to present and discuss the

requirements.

Example: The customer ordered a new application for a mobile phone: Photos

taken with the camera integrated into the phone can be sorted into different

albums. He has given you a specification where all the different possibilities of

sorting, opening and modifying the albums are described. As it seems obvious

to him, he has not specified the fact that the basic function of the phone,

namely the possibility to place and receive calls must not be disabled by the

new application. If you do not integrate this requirement into your review, you

might only find out that your design is good for sorting photos and so fulfilles

the requirements you limited the module to.

C5-10

Look at the System

Context: You are preparing the information about the environment of your

module you want to give to the review participants before and during the

review meeting.

Forces: When you are developing only a small part of a complex technical pro-

duct you tend to find a solution fitting this small part but maybe carrying risks

for the whole product. If you do not consider this in the review you will not

find these risks.

You know best about all the obstacles you had to overcome and about the

reasons why you have chosen this specific solution. Digging deeply into the

subject for a long time, you have probably lost an overall view on the product.

As a consequence, there is a risk that you have created a locally optimized

solution which works well if you regard it for itself but which does not really

fit into the greater context. [4]

In software development, especially in large projects, there is a risk that a

developer who is working on a specific part of the software for a long time

loses sight of the real function of the product.

Moreover, in embedded systems, software is not an end in itself. Often there

are many interfaces of one software function to other functions and to sensor

signals or device drivers. It is difficult to keep in mind all interactions all the

time during development.

Problem: Where should you make the cut when you have to decide how

much of your software module�’s environment you should keep in mind for

the review?

Solution: Ask yourself what is the function of your development for the

whole product and document this function during review preparation.

Implementation: When preparing for the review it is important to step back

and look at the whole system and at all the interfaces that your software mo-

dule has with the overall system. These are inputs and outputs as well as en-

vironmental conditions.

Find answers to the following questions:

1. Why was there a need for this development?

2. Why did the requirement come up right now?

3. Have there been other attempts to fulfill the requirements? Why were they

successful or why did they fail?

Example: The software is getting a sensor signal as an input and calculates

some output value based on it. In order to find out if the output value meets

the accuracy requirements you have to get some information about the accu-

racy of the input value. You read the technical data sheet of the sensor. But this

is not the only information you should take into consideration. You should also

ask yourself: Is it possible, in certain circumstances, that the sensor signal does

not have the specified accuracy, although the sensor works properly? When

might this be possible? For example, due to the signal processing from the raw

C5-11

signal to the signal received by your module. Maybe there is some filtering or

some hysteresis applied you did not take into your consideration. Also: what

do I do (in my module) if the accuracy is not as good as I expect it? Can my

module deal with that?

Free Requirements from Solution

Context: During review preparation phase, you are describing the require-

ments to your design.

Forces: When thinking about the requirements, a developer never is unbiased.

He or she always has the solution in mind. Thus there is a high risk that in the

review there will be no clear separation between solution and requirements

description.

The problem with this is that if you do not clearly state what your product

should do you cannot tell whether the design is applicable or not. Also, if you

and the other review participants think into a certain direction from the begin-

ning, you limit the chances that you will find the best possible solution. The re-

view should lead you back to the question what you really need this part of the

system for.

Also, boundary conditions are essential because they define the scope you have

to look at. Many designs work under certain conditions, but in the review, it

has to be checked if these are the conditions that will prevail in the real system.

Problem: When you have to describe the requirements the design is to be

reviewed against, how can you make sure that you are not biased by the

design work you have already done?

Solution: Ask yourself and your colleagues what your development should

really do. Why was it requested by the customer, what does he expect it to

do?

Implementation: When describing the requirements, make your product a

black box and describe its behaviours seen from outside. Divide your descrip-

tion into two parts:

First, describe the function. What is really the job of the module? How does the

customer want your module to behave? What does the system your module

will be integrated into �“expect�” from your module?

Second, describe the boundary conditions. This can be environmental condi-

tions the product still has to work correctly in. It can also be requirements on

precision, calculation speed or control quality.

If you have a rather complex design with different parts, it makes sense to

break down the requirements into smaller pieces. In other words, you have to

open the black box and make several smaller black boxes out of it. This sounds

contradictory to the the pattern itself, but it is not as long as you keep the boxes

black at each level of granularity you have chosen and you make sure that

there is one black box at the same level of your whole design. Having this

C5-12

highest level, you get the view on the complete design and the interfaces to the

system.

Example: You are describing the functions of a software part modelling the

temperature at a specific location of the system (virtual sensor). This software

consists of several subparts. So the overall function would be �“calculating

temperature at position x�”. Describing the function of one of the subparts you

might say �“signal range check of sensor input S1�”. That means you are looking

into your top-level black box �“temperature calculation�” and your are

delimiting the solutions to those solutions using S1 as an input. The key point

is that for this granularity level you must not say �“signal range check with

algorithm a�” but only �“signal range check with boundary conditions c1, c2 and

c3�”.

C5-13

Running the Review

You are the Entertainer

Context: You are moderating the review meeting.

Forces: Maybe some of the review participants see the review rather as an

inevitable evil and so they come into the meeting without any motivation and

without any expectation. They probably have attended a lot of boring review

meetings before.

There is a big risk that, when some people with this attitude meet, this will

turn into a self-fullfilling prophecy. They expect to have a boring meeting and

so they make the meeting boring. This blocks all the creativity and concentra-

tion and finally leads to nonsatisfying results.

Even if your colleagues come to the review meeting with positive expectations,

they can become unmotivated very quickly if you are presenting and

moderating the review in a boring or confusing manner.

If you are not able to arouse the review participants�’ interest for your work,

there will be not only a lot of time wasted, but there is also a higher possibility

that not all the risks and errors will be found.

Problem: How can you motivate the review participants to contribute to a

good review outcome?

Solution: Make the review fun! During the review meeting, you are the en-

tertainer! You are responsible to create an atmosphere where all the review

participants are comfortable and really want to contribute to the analysis of

the product.

Implementation: At the beginning, you should make sure that all the partici-

pants know each other and know you. This helps everybody to get some orien-

tation in the group.

Second you should give a short overview of the review so that everybody

knows how long the meeting will take, what will be the steps to take and, very

important, what should be the outcome of the meeting.

When you are presenting your work, tell a story to the audience. Give infor-

mation about the motivation, about your ideas for a solution, about which obs-

tacles you had to overcome, which actions you took in order to make the out-

come robust and what is the final result. It does not mean that you should

manipulate the information in order to create a breathtaking story or to show

what a great developer you are. The story does not have to be thrilling and it

does not need to have a happy ending. But is has to be clear, logic and com-

plete. By this you make sure that the review participants can follow. Also it

creates an open atmosphere and motivates people to account for the story in

order to make it a succesful one.

C5-14

Use the fact that IT IS NOT ABOUT FORM in order to arrange the meeting so that

the participants remember it as some very interesting and motivating hours.

Example: You have designed a software module for an automobile engine

control. For the development you had to do measurements at very low tempe-

ratures in a climate chamber in the middle of summer. So you came out of the

climate chamber with a complete arctic dress in July.

In the review meeting, show a photo of you in your winter dress to the

colleagues. Instantly they will pay attention and they will be inspired to be

creative.

Every Question is Okay

Context: During the review meeting, you get a lot of questions from the review

participants.

Forces: Maybe one of the participants asks a question you or a colleague

consider to be trivial or irrelevant. As always, the time for the review is

limited, and you want to get to the crucial points quickly. So you are maybe

not answering all the questions elaborately.

But there is a high chance that there are more review participants who do not

know the answer to the question and who just did not dare to ask.

If not every review participant gets the chance to understand the facts, they

will probably have problems to follow the remainder of the review. You will

not be able to benefit from their expertise. So you are wasting their time and

the outcome of the review will probably not be as good as it could be.

Sometimes, we also tend to declare questions irrelevant, because we uncon-

sciously know that we do not have a clear picture of that point in our mind.

Problem: How should you deal with questions you perceive to be super-

fluous?

Solution: Answer all the questions and do not (even not impicitely) declare

them as stupid or the answer as obvious.

Implementation: You should not make excuses when questions are coming up.

If you do not know the answer, be honest and suggest that you will find out

after the review meeting. You should mention this task in the action plan in

order to MAKE THE OUTCOME CONCRETE.

If you have the impression that the answer to the question is obvious to most of

the other review participants, invite them to give the answer.

Examples: It is often the basic questions that cannot be completely answered:

Are the assumptions made for defining the boundary conditions correct? Are

we really sure to have chosen the best algorithm?

C5-15

Do not Justify, just Listen

Context: You are in the review meeting and you are getting feedback about

your work from the review participants.

Forces: When you are doing the review, experts from different fields will look

on your work from many different points of view. Most of them will probably

know that they were invited to the review because they are considered experts

in their fields. So they will be proud to give their opinion and to ask you why

you did it this way and not that way.

You will have a different perspective on your work. You might think: �„How

easy is it to question my solution. I have spend long nights at the desk, strugg-

ling for finding a solution at all�“. In other words, you might feel offended. So

you prevent an open discussion and an open mind for the best solution.

Problem: How can you make sure that you get the maximum benefit out of

the review participants�’ feedback?

Solution: Listen to the feedback carefully and make sure you are getting the

point. Do not justify your work or presentation. Appreciate the questions

and the advice as they will improve your product and your future work.

Implementation: If it was so difficult to find a solution and many boundary

conditions have left you no choice, take the questions as a feedback. You

should have illustrated the problems and challenges more clearly in your

review presentation. Then the experts could have found out if their alternative

solution really would have been possible.

Explain as long as there are issues that need clarification for the reviewers, but

avoid discussing who is right or why you had no choice but had to do it that

way. When participants are starting to repeat remarks and you have the

impression that they just want to demonstrate their expertise stop the

discussion and continue with the next point.

Give the review participants the feeling that you have got their point. If you

have not, ask them to explain their question or remark again.

Keep in mind that, after the review, it is you who is deciding what to do with

the opinions of the experts. So you might say, �„This time, I won�’t change my

solution as it is still robust. For the next time, I will keep in mind what expert E

said.�“

So, a design review is not just a method to examine products for their

robustness. It is also a way of exchanging ideas, spreading knowledge,

building networks and improving communication skills.

Example: One of the review participants says, �“I don�’t think that you have

identified all the input parameters to your software model. In my opinion,

input IN243 has to be added.�”

Your answer could be �“Thank you for this idea! Could you please explain why

you think that this is an important input? Do you know if in model m95 which

is similar to mine this input is also used?�”

C5-16

Do it your Way �– Don�’t stupidly fill in Templates

Context: In your company, you have to follow a certain review process. Maybe

you have to take into consideration templates, checklists, or fill databases with

information about your design.

Forces: As you want to fulfill the requirements of the processes, you might

spend a lot of energy to force your review into the process.

A defined review process is necessary in larger companies, but it always

carries the danger that developers become annoyed about all the

administrative work they have to do. So the review participants will fill in all

the templates and forms, but not before they have switched off their brain. The

problem can also occur when template categories or questions do not match

your context.

When you are trying to stick to the rules slavishly you might not be able any

more to have a review where the real content and not the form is discussed. So

you won�’t find the risks.

Problem: How can you avoid to be paralyzed by your organization�’s review

rules?

Solution: Adapt the processes and the templates to your solution and not

vice versa. As long as you communicate this clearly and you can give clear

the reasons, this is okay.

Implementation: Maybe you can change the checklist or template categories,

insert new rows, or columns. Adapt the review and its templates to your needs

and not vice versa.

If you leave out process steps or some chapters in a template you have to give

reasons for this decision. If you add something this is usually not seen as lea-

ving the process but rather as an add-on, so you will not have any problems

with this.

This pattern is not an invitation to cheat. Of course you have to stick to the

rules. But if you bother to think about the templates and the meaning of the

process steps you will find your way to use them as helpful support tools.

Moreover you can give feedback to the process developers and help creating a

leaner and more useful process in the long run.

Example: In your company you have to use a template where you have to fill

out a chapter �“changes in logic�”. In fact you have changed something in a mo-

del representing the physical behaviour of the system. You do not really find a

category where this change fits into and you wonder if this should be put into

the chapter �“changes in logic�”. In order not to confuse anybody you add a

chapter �“changes in physical models�” and describe the change there. In the

chapter �“changes in logic�” you put a dash.

C5-17

It is not about Form

Context Preparing for the review, you have collected all the different pieces of

information about the requirements and boundary conditions. Together with

your solution, you want to present them to the other review participants.

Maybe you have also made some simulations or you even already have a

running prototype of the software you are developing.

Forces: As YOU ARE THE ENTERTAINER, you want to have something nice to

show to the review participants. You want to make sure that every review

participant can contribute to the outcome of the review. So you maybe try to

get as much information and demonstrations as possible to the review

participants.

Structures and relations in large software projects are usually complex and not

easy to understand. Even vizualisations which were very simple in the

beginning can become confusing very quickly.

When you present your work in a perfect form with a lot of �„special effects�“, it

is more difficult for the review participants to really understand what you did

and to get in a discussion. They have to �„believe�“ because they cannot retrace

your steps of work.

Problem: How should you present your work in order to facilitate a creative

and open discussion?

Solution: Limit technical means and �„show effects�“ to the really necessary.

Do not waste your time with creating perfectly designed presentations, put

the time into the SW design instead.

Implementation: It is good to give the audience a motivating start and to

visualise as much as possible throughout the review meeting. But although

YOU ARE THE ENTERTAINER, you should avoid making the design review a

design show. Keep it as simple as possible.

Make drawings on the white board as you explain things instead of letting a

power point slide suddenly pop up completely filled.

In many cases you can print out the facts and the figures you want to talk

about, hang the printouts to the wall and then discuss with the other review

participants while standing in front of them. This might seem to be old-

fashioned and requires a little more preparation than taking the laptop to the

meeting room, but it gives the review participants the possibility to really

interact with each other. If they want to know a number you have presented

ten minutes ago, they do not have to ask you to go back in the slides. They can

look it up themselves in the printouts. Another advantage is that everybody

can take out a pencil and show his ideas to everyone on the printouts. This can

be very useful if he or she suggests a small modification in one of the figures.

C5-18

Example:

C5-19

After the Review

Make the Outcome Concrete

Context: The review meeting is over. In the meeting you have found some

need for rework, for example you have to get more information on a specific

topic, you have to do some tests or measurement. You and your colleagues will

have to accomplish these tasks.

Forces: Once the review team gets to the point where the need for validation or

enhancement is identified, there is a great temptation to say �„Well, we have

found the critical point now, and we will think about what to do exactly about

it later.�“

Maybe, you are even defining the necessary actions in detail in the review

meeting, but you are only writing down some notes or keywords or you do not

decide on a responsible and a due date.

Even if everything is documented still somebody could miss the information

because he or she is not among the review participants.

Problem: How can you make sure that everybody can continue their work

with the review outcome?

Solution: Give a detailed and comprehensible description of all the actions

defined in the review. For each action, write down a due date and a respon-

sible. If the responsible is not present, write down who is responsible to give

the information to this person.

Implementation: If you are planning to do measurements or tests in defined

conditions write down not the measurements themselves but also all the

boundary conditions. Give success criteria of tests or measurements in ad-

vance, too.

Even when you think that you did not get any concrete outcome from the re-

view, you certainly have some outcome that can and should be made concrete

in order to allow an elaborate progress of the project. This could be anything,

even �“soft�” points like a common understanding of the problem or the

awareness about some missing information. Write down a responsible and a

due date for the communication of this outcome to the management or other

departments in your company.

If not all the actions decided upon are absolutely crucial agree on a priority of

the actions and also write it down.

Examples: Do not say, �„Maybe further evaluation of the SW behaviour in

extreme conditions necessary, �“ but

1. �„Testing of SW version 12.3.4 on processor SmCa3.5. Stimulate temperature

sensor input temp_1 with 50 and user interface input user_3 with 933 and

measure display output for 3 hours while increasing the environment

C5-20

temperature from -20 to +50 °C. Output has to be between 11 and 19.8.

Responsible: Peter. Due date: Oct 31st 2009.�” or

 2. �„Peter and Heidi will meet in order to define the exact measurements.

Responsible: Heidi. Due date: Sep 24th 2009.�“ or

3. �“Write down common understanding of temperature problem with SW

version 12.3.4 on processor SmCa3.5 and present it to management in next

team manager meeting. Responsible: Bob. Due date: Sep 10th 2009.�”

Acknowledgements
Many thanks to my sheperd Klaus Marquardt for his great support, his

patience with me as a patterns beginner and his concrete feedback with many

examples!

Also I would like to thank the members of EuroPLoP 2009 workshop C, namely

Allan Kelly, Albena Antonova, Lise B. Hvatum and Wim Laurier. Their

questions and feedback helped me a lot to improve my paper.

References
[1] Tom Gilb, Dorothy Graham, Software Inspection, Addison-Wesley, 1993

[2] Karol Frühauf, Jochen Ludewig, Helmut Sandmayr, Software-Prüfung �– Eine

Anleitung zum Test und zur Inspektion, vdf Hochschulverlag an der ETH

Zürich, 5. Auflage, 2004

[3] Mark Prince, Andy Schneider, Patterns for the End Game, Europlop 2004,

http://hillside.net/europlop/europlop2004/Papers/wwc/C3.pdf

[4] Jeffrey K. Liker, The Toyota Way, McGraw-Hill, 2004

D2a 1

PLITS: A PATTERN LANGUAGE FOR INTELLIGENT TUTORING SYSTEMS
Dina Salah, The American University in Cairo, Computer Science Department, dsalah@aucegypt.edu

Amir Zeid, The American University of Kuwait, Division of Sciences and Engineering, azeid@auk.edu.kw

Abstract

The design and implementation of Intelligent Tutoring Systems (ITS) is a very complex task, as it
involves a variety of organizational, administrative, instructional and technological components. In
addition, there are no well established methodologies or development tools for ITS implementation.
Therefore systematic, disciplined approaches must be devised in order to leverage the complexity of
ITS implementation and achieve overall product quality within specific time and budget limits
(Vladan Devedzic & Harrer, 2004).

The goal of patterns within software community is to provide software developers with solutions to
recurring software problems. However, the concept of patterns has received surprisingly little
attention so far from researchers in the field of ITS (Vladan Devedzic & Harrer, 2004).

In this research work, we tried to mine patterns by reverse-engineering some of the existing ITS
systems. These identified patterns were semantically organized and categorized to form the basic
core of a PLITS: A Pattern Language for Intelligent Tutoring Systems.

1. Introduction

A pattern describes a problem that occurs over and over again in our environment and then
describes the core of the solution to that problem in such a way that you can use this solution a
million times over without ever doing it the same way twice(Alexander, Ishikawa, & Silverstein,
1977).Moreover, a pattern language is a collection of such solutions which, at every level of scale,
work together to resolve a complex problem into an orderly solution according to a pre-defined
goal. Pattern Languages include rules and guidelines that suggest the order and granularity for
applying each pattern in the language (Vladan Devedzic & Harrer, 2004).

ITSs incorporate built-in expert systems in order to monitor the performance of a learner and to
personalize instruction on the basis of adaptation to the learner's learning style, current knowledge
level, and appropriate teaching strategies(Liegle & Woo, 2000). The classical ITS architecture is
composed of the following components illustrated in figure (1):

• Expert Model: This model contains the domain knowledge.

• Pedagogical (Tutor) Model: This model provides the knowledge infrastructure necessary to
tailor the presentation of the teaching material according to the student model.

• Domain Model: This model contains the knowledge about the actual teaching material.

• Student Model: This model stores details about the student's current problem-solving state
and long-term knowledge progress, essential for adapting the material to the student's
characteristics

• Communication (User Interface) Model: This model is responsible of user interaction.

Figure (1): ITS Architecture (El-Sheikh & Sticklen, 1998)

D2a 2

A recent analysis of a number of existing ITS architectures has revealed that many ITS designers
and developers use their own solutions when faced with design problems that are common to
different systems, models, and paradigms. However, a closer look into such solutions and their
comparison often shows that different solutions and the contexts in which they apply also have
much in common, just like the corresponding problems do. In all such cases we can talk of the
existence of patterns (Vladan Devedzic & Harrer, 2004).

2. The Proposed Pattern Language for Intelligent Tutoring Systems (PLITS)

This research, presents PLITS: A Pattern Language for Intelligent Tutoring Systems. PLITS is not a
mere collection of patterns that can be used in the implementation of ITSs it includes rules and
guidelines that explain how and when to apply its patterns to solve a problem which is larger than
any individual pattern can solve.

In this research work, we first identified the functional requirements of ITS which will be
summarized in table (1) and then tried to discover these features in a number of real ITSs that are
broadly used and are listed in table (2). If these features were indeed found in existing ITSs, then
these features were considered widely adopted and applicable and were therefore included in our
pattern language for ITSs. In table (3) we map these Functional Requirements to their
corresponding ITS patterns

Table (1): ITS Functional Requirements and Related ITS Model

Functional Requirement ITS Model

Curriculum Composition Domain Model

Lesson Presentation Planning, Exam Generation Tutor Model

Curriculum Instantiation Domain Model

Collective Student Information Instantiation Tutor Model

Students Registration and Access Control Student Model

Student Model Standardization Student Model

Determining and Achieving Student Goals Student Model

Initializing Student Model Student Model

Update and Maintenance of Student Model Student Model

Representing Student Status Per Topic Student Model

Representing Student Status Per Exercise

Student Exam Grade Computation Tutor Model

Monitoring Student Progress and Updating Students’ Progress Reports Tutor Model

Creating and Customizing Curriculum

GUI Model

Guiding Students Through a Complex Task GUI Model

D2a 3

Table (2) provides a list with the ITSs that were searched for patterns

Table (2): ITSs that were searched for Patterns

Name Domain

SQLT-Web (Mitrovic, 2003) Database Learning(SQL)

Cyberphysique (Nkambou & IsaBelle, 1998) Physics

Web Passive Voice Tutor-Web PVT(Virvou & Tsiriga, 2001) Language Learning

Verb Expert (Fum, Giangrandi, & Tasso, 1989) Language Learning

CAPIT: An ITS for Capitalization and Punctuation(Mayo, Mitrovic, &
McKenzie, 2000)

Language Learning

Intelligent Language Tutoring System for Grammar Practice(Heift, 2001) Language Learning

An Interactive Course Support System for Greek (Heift, Toole, McFetridge,
Popwich, & Tsiplakou, 2000)

Language Learning

2.1 PLITS Pattern Categories

While formulating PLITS we aimed to follow a comprehensive approach to cover all aspects related
to ITS implementation in order to provide a road map for any ITS developer or designer. To
provide this comprehensive approach a number of pattern categories were used in PLITS including
access, instructional, design, adaptive and interaction patterns. Although some of those patterns
were not intended for ITSs, yet we found that they can be useful in ITS implementation.

1. Access Patterns: Access Patterns are concerned with the ways that users may access the various

resources (Paris Avgeriou, Retalis, & Papasalouros, 2003).
2. Instructional Patterns: Instructional Patterns are concerned with the various tasks that tutors

perform in order to create and edit courses and learning resources (Paris Avgeriou, Retalis, &
Papasalouros, 2003).

Both Instructional Patterns and Access Patterns are used in the Learning Management Systems
domain. However, we found out that they can be useful in ITS implementation if they were
modified to suit the ITS developers and designer needs.
3. Design Patterns: Design Patterns can be divided into the following subcategories:

• Creational Patterns: Creational Patterns abstract the instantiation process. They help make a
system independent of how its objects are created, composed, and represented (Gamma, Helm,
Johnson, & Vlissides, 1995).

• Structural Patterns: Structural Patterns are concerned with how classes and objects are
composed to form larger structures. Structural class patterns use inheritance to compose
interfaces or implementations (Gamma, Helm, Johnson, & Vlissides, 1995).

• Behavioral Patterns: These patterns are concerned with algorithms and the assignment of
responsibilities between objects. These patterns describe patterns of communication between
objects or classes (Gamma, Helm, Johnson, & Vlissides, 1995).

4. Adaptive Patterns: Adaptive instruction can be defined as real-time modification of the
instructional curriculum, learning environment to suit different student characteristics ("ELEN
Project").

 Adaptive Patterns are patterns that are used in Adaptive Learning Systems. However, we found
that there is a number of adaptive learning patterns that can be of great use to the designers and
developers of ITSs if they were modified to suit the ITS developers and designer needs.

 More details on adaptive patterns for ITS implementation can be found in (Salah & Zeid, 2009).
5. Interaction Patterns: Interaction Patterns are focused on solutions to problems that end-users

have when interacting with systems. The patterns take an end-user perspective which leads to a
format where usability is the essential design quality (Trætteberg & Welie, 2000).

D2a 4

It is important to note that some of the discovered patterns were based on existing patterns;
however, we modified some of these patterns in order to suit the needs of ITS implementation. All
modified patterns have new names that begin with the word “New”.

2.2 PLITS Pattern Template

Documenting a pattern is the first step to build a pattern language. The GOF pattern template was
used since it is very complete and provides straightforward guidelines for implementing the patterns
into software by including more implementation details rather than generic solutions.

3 Building an Intelligent Tutoring System

The process of building a typical ITS is composed of four phases; building the Domain Model,
Student Model, Tutor Model and the Graphical User Interface Model. However, this is the typical
sequence followed, nevertheless, it is not mandatory to strictly follow this order and some ITS
developers use a different order for building ITSs.

In section 3 we will highlight the patterns that can be useful in every phase, and then in section 4 we
will present PLITS our proposed pattern language for ITSs.

3.1 Phase One: Building the Domain Model

The domain model contains the knowledge about the actual teaching material, since the teaching
material is usually composed of a number of topics. Each topic is composed of a number of learn items,
each topic has a number of exercises related to it and each learn item has a number of examples related
to it, furthermore, since the curriculum is shared by all students but yet is tailored to every student
current knowledge level thus a single curriculum instance and global student access is needed.
This led us to identify two patterns that are needed in building the domain model; the Whole Part
Pattern and the Singleton Pattern.

Pattern 1: The Whole Part Pattern

Classification: Design Patterns
Intent: Helping with the aggregation of components that together form a semantic unit.
In ITSs teaching material is composed of a number of topics. Each topic is composed of a number of
learn items, each topic has a number of exercises related to it and each learn item has a number of
examples related to it.
ITS Applicability: The Whole Part Pattern can be applied in the domain model implementation in
aspects in ITS design related to composing topics, composing lessons and composing curricula.

Known Uses
1. GET-BITS (Vladan Devedzic, Jerinic, & Radovic, 2000) : GET-BITS is an object-oriented

model of ITSs .GET-BITS Uses a variant of the Whole Part Pattern in the framework's lesson
presentation planner and remedial actions planner which is a part of the student's knowledge
examination and assessment.

2. SimQuest (Joolingen, King, & Jong, 1997) : SimQuest is an intelligent biomedical simulator
for medical training utilizing the expertise of professionals in the fields of 3D graphics
programming, clinical training, game and simulation design, medical illustration, human factors
and mechanical engineering. SimQuest focuses on the use of advanced simulation and gaming
technologies for medical training. SimQuest uses the Whole Part Pattern in its lesson presentation
planner to represent the teaching material and its constituent parts.

Related Patterns: Course Creation and Customization, Singleton, Adapter, New Student Model
Initialization.
References: The Whole Part Pattern is one of the Pattern Oriented Software Architecture patterns
(Buschmann et al., 2000).

D2a 5

Pattern 2: Singleton

Since this pattern is one of the GOF patterns we will only list the pattern template items that shows
its usefulness in the ITS field.

Classification: Design Patterns (Creational Pattern).
Intent: Ensuring that a class has only one instance, and provide a global point of access to it.
ITS Applicability: The Singleton Pattern can be applied in the Domain Model implementation in
ITS design in Curriculum Instantiation since we need a single curriculum instance and global
student access to it.
Related Patterns: Whole Part, Observer.
References: The Singleton Pattern is one of the Gang of Four patterns (Gamma, Helm, Johnson, &
Vlissides, 1995).

3.2 Phase Two: Building the Student Model

The following patterns are needed in building the student model.

Pattern 3: Registration-Authentication-Access Control

Classification: Access Patterns
Intent: Providing a standard registration mechanism for every user of the system. This can be
achieved through building a web interface related to a database with user data and providing a
mechanism for user authentication.
ITS Applicability: ITSs are large, multi-user systems. Due to security, privacy and institutional
policy reasons, students’ access to the resources of the ITS must be restricted to authorized students
only. How can all the different students’ access rights and privileges be effectively managed?
Known uses
1. SQLT-Web (Mitrovic, 2003): An ITS for teaching SQL (Structured Query Language).
2. Cyberphysique (Nkambou & IsaBelle, 1998): An ITS based on the World Wide Web that

teaches physics.
Both (Mitrovic, 2003) and (Nkambou & IsaBelle, 1998) acquire information about a student
through a login screen. Individual student models are stored permanently on the server, and
retrieved for each student’s session.
Related Patterns: User Model Definition.
References: The Registration-Authentication-Access Control Pattern is used in learning
management systems; however, we discovered that this pattern can be useful to ITS developers and
designers.

Pattern 4: User Model Definition

The User Model Definition Pattern is one of the patterns that were used in adaptive systems
("ELEN Project"), however, we discovered that this pattern can be useful to ITS developers and
designers in creating and maintaining a student model and providing mechanisms to modify
application features based on that in order to offer the student the best possible learning experience.

More details on the User Model Definition Pattern and its usage for ITS implementation can be
found in (Salah & Zeid, 2009).

Pattern 5: User Goals

The User Goals Pattern is one of the patterns that were used in Adaptive systems ("ELEN Project"),
however, we discovered that this pattern can be useful to ITS developers and designers in
determining both short term and long term educational goals for each student which is an important
component of the student model description.

D2a 6

More details on the User Goals Pattern and its usage for ITS implementation can be found in (Salah
& Zeid, 2009).

Pattern 6: New Student Model Initialization

This New Student Model Initialization Pattern was based on the User Model Initialization Pattern
that is used in Adaptive systems ("ELEN Project"), however, we discovered that this pattern can be
modified to suit ITS developers and designers needs.

The original Student Model Initialization Pattern ("ELEN Project") deals with determining and
providing the information needed to initialize the student model before all interactions in adaptive
systems. It proposes that this can be done by one of the following methods:

• User driven. The user specifies explicitly what stereotype he belongs to.

• Inferred by rules. These rules indicate which user model elements and values can activate a
stereotype.

• Speculated by rules .If the user does not specify his knowledge level then it is assumed to be
average.

However, we modified the Student Model Initialization Pattern and introduced the New Student Model
Initialization Pattern by initializing the student model with two types of knowledge:

• Knowledge that is acquired from the students: This knowledge should be determined with the
guidance of both the User Model Definition Pattern and the User Goals Pattern.

• Knowledge that can be acquired automatically from the system: This knowledge can be
acquired by implementing an entry exam that uses an Exam Generator Component. This
component can use the pool of questions that was filled earlier by the teachers through Course
Creation and Customization Pattern that will be discussed in section 3.4, and randomly choose a
set of questions that represent different difficulty levels thus can accurately measure current
student knowledge level per topic (stereotype).

More details on the New Student Model Initialization, its usage for ITS implementation and
modifications made to the original pattern can be found in (Salah & Zeid, 2009).

Pattern 7: New Student Model Maintenance

The New Student Model Maintenance Pattern was based on the User Model Maintenance Pattern that
is used in Adaptive systems ("ELEN Project"), however, we discovered that this pattern can be
modified to suit ITS developers and designers needs.

The original User Model Maintenance Pattern ("ELEN Project") deals with the methods for
capturing and maintaining changes that occur to student model elements as a results of interacting
with the system. It proposes that this can be done by one of the following methods:

• Using a questionnaire form that indicates the amount of benefit the user gained from using the
system.

• Interactive update of the user model by showing a pop-up form requesting the user to answer a
question.

However, we modified the Student Model Maintenance Pattern and introduced the New Student
Model Maintenance Pattern by capturing and maintaining changes that occur to student elements by
using an exam generator component to conduct a per topic exam. This can occur after the student is
presented by the topic learning material. The exam generator component can use the pool of
questions supplied by the subject instructor to randomly select a number of questions that can test

D2a 7

the current student knowledge level and according to the results of this exam the user model
maintenance module can update the student model to reflect his current status and the topics
covered and his knowledge level per topic.

More details on the New Student Model Maintenance and its usage for ITS implementation and
modifications made to the original pattern can be found in (Salah & Zeid, 2009).

Pattern 8: Adapter

Classification: Structural Patterns
Intent: Convert the interface of a class into another interface that clients expect. Adapter lets
classes work together that could not otherwise because of incompatible interfaces (Gamma, Helm,
Johnson, & Vlissides, 1995).
Participants
In the context of ITS we have the following participants:

• Client: Collaborates with objects conforming to the Target interface.

• Adaptee: Defines an existing interface that needs adapting.
In ITSs the Adaptee participant can be represented by two classes; Topic class and Exercise class.

• Adapter: Adapts the interface of Adaptee to the Target interface. It also acts as the Target.
In ITSs the Adapter participant can be represented by two classes; StudentTopic class and the
StudentExercise class.
ITS Applicability: The Adapter Pattern can solve two problems for ITSs:

1. Representing each student’s specific status per topic?
Any ITS deals with subject topics, however, there is a problem with the Topic class. This problem
occurs because this class doesn’t match the domain specific interface that the application requires
because it doesn’t reflect the student specific status per topic.
This class doesn’t represent the following information:
• The student stereotype per topic; whether he is a Beginner, Intermediate, Advanced or Expert
student.

• What learning item is currently being learned inside the topic by the student?

• How many times the student viewed a certain topic?

• What are the exams that he took on a certain topic?

• Student grades on every exam concerning this topic.
That is where the Adapter Pattern fits in ITSs Design. An Adapter class is needed that is capable of
converting the interface of a class (Topic) into another interface that the client expects
(StudentTopic). And to provide us with the functionality that the adapted class (Topic) doesn’t
provide.

2. Representing each student’s specific status per exercise?
Any ITS deals with exercises, however, there is a problem with the Exercise class. This problem
occurs because this class doesn’t match the domain specific interface that the application requires
because it doesn’t reflect the student specific status per exercise.
This class doesn’t represent the following information:

• Did the student view this exercise or not?

• The student answer on this exercise and whether he answered correctly or not, this will help to
understand any misconception that the student might have.

• The student score per exercise.

• The number of student tries for solving this exercise.

• Did the student use out all his tries in this exercise or not yet?

• The examples that is related to this exercise, this means that if the student answers incorrectly he
is shown some teaching material to revise the learning items that is covered by this exercise, this
teaching material includes some examples so a record should be kept of the examples that is
related to this exercise.

D2a 8

That is where the Adapter Pattern fits in ITSs. A StudentExcercise class is needed to act as an
Adapter that is capable of converting the interface of the Exercise class into another interface that
the client expects. And to provide us with the functionality that the adapted class (Exercise) doesn’t
provide.

Modifications Made to the Adapter Pattern Implementation
The main difference between our implementation and the classic Adapter Pattern implementation is
that the Adapter Pattern has two extra participants Target; which defines the domain specific
interface that Client uses and Client; which collaborates with objects conforming to the Target
interface.
Related Patterns: New Student Model Initialization, Whole Part, Master Slave, and New Student
Model Maintenance.
References: This pattern is one of the GOF Patterns (Gamma, Helm, Johnson, & Vlissides, 1995).

3.3 Phase Three: Building the Tutor Model

The following patterns are needed in building the tutor model.

Whole Part Pattern

The Whole Part Pattern can be used in the Tutor Model in the Lesson Presentation Planner and the
Exam Generator Component.

Pattern 9: Master Slave

Classification: Design Patterns
Intent: The Master Slave Pattern supports fault tolerance and computational accuracy. A master
component distributes work to identical slave components and computes a final result from the
results that these slaves return.
ITS Applicability: In ITSs the Master Slave Pattern can be used to compute the exam results of
each student according to their grade in each particular exercise within the exam.
Related Patterns: Adapter, Observer, New Student Model Maintenance, and New Student Model
Initialization.
References: The Master Slave Pattern is one of the POSA patterns (Buschmann, et al., 2000)

Pattern 10: Singleton Pattern

ITS designers and developers can benefit from the Singleton Pattern in the Tutor Model in the
instantiation of collective student information.

Pattern 11: Observer Also Known as Dependents, Publish Subscribe

Classification: Behavioral Patterns
Intent: The Observer Pattern defines a one to many dependencies between objects so that when one
object changes state, all its dependents are notified and updated automatically (Gamma, Helm,
Johnson, & Vlissides, 1995).
ITS Applicability: In ITSs an Observer class is needed to observe the status of all students and
update the reports with the new student status as he navigates through the learning path.
Related Patterns: Master Slave, Singleton.
References: The Observer Pattern is one of the Gang of Four Patterns (Gamma, Helm, Johnson, &
Vlissides, 1995).

D2a 9

3.4 Phase Four: Building the Graphical User Interface Model

The following patterns are needed in building the graphical user interface model.

Pattern 12: Course Creation and Customization

Classification: Instructional Patterns
Intent: How can the instructors be assisted in building on-line courses in ITS so that some of the
tasks they need to perform can be automated in order to decrease the time and effort of performing
those tasks?
ITS Applicability: ITSs must provide instructors with appropriate tools for creating and
customizing a course. Course creation can be based on design templates with pre-set interfaces,
content structure and features.
Known Uses
1. Cyberphysique (Nkambou & IsaBelle, 1998): An ITS based on the World Wide Web that

teaches physics. This ITS provides an authoring environment dedicated to teachers and
pedagogical designers.

2. Eon Tools(Murray, 1998): "Eon" is the name for a suite of authoring tools for building ITSs.
Eon includes tools for authoring all aspects of intelligent tutors, including the learning
environment, the domain knowledge, the teaching strategies, and the student model. Curriculum
can be easily extended or modified to update information and theories, and new curriculum can
be uploaded over the World Wide Web.

Related Patterns: Whole Part.
References: The Course Creation and Customization Pattern is one of the patterns that were used in
learning management systems (Paris Avgeriou, Papasalouros, Retalis, & Skordalakis, 2003),
however, we discovered that this pattern can be modified to suit ITS developers and designers
needs.

The following patterns represent user interface patterns that focus on solutions to problems that end
users have when interacting with systems. These patterns focus on usability as an essential design
quality. Usability can be measured through one of the following usage indicators: Learn-ability,
user guidance, memor-ability, speed of performance, error rate, satisfaction, task completion. Each
pattern should state the impact on these usage indicators. If a pattern does not improve at least one
usage indicator, it is not a user interface design pattern (Trætteberg & Welie, 2000).

Pattern 13: Wizard

Classification: User Interface Patterns (Interaction Patterns).
Intent: Students sometimes need to perform an infrequent complex task consisting of several
subtasks which ranges between 3 to 10 tasks where decisions that need to be made in each subtask
may not be known to the user.
Usability Principle: User Guidance (Visibility) (Trætteberg & Welie, 2000).
ITS Applicability: ITSs should be designed in order to take the user through the entire task one
step at the time. The user steps through the tasks and is shown which steps exist and which have
been completed (Trætteberg & Welie, 2000). When the complex task is started, the user is informed
about the goal that will be achieved and the fact that several decisions are needed. The user can go
to the next task by using a navigation widget such as a button. If the user cannot start the next task
before completing the current one, feedback is provided indicating the user cannot proceed before
completion for example by disabling a navigation widget. The users are given feedback about the
purpose of each task and the users can see at all times where they are in the sequence and which
steps are parts of the sequence. When the complex task is completed, feedback is provided to show
the user that the tasks have been completed and optionally results have been processed.

D2a 10

Users that know the default options can immediately use a shortcut that allows all the steps to be
done in one action. At any point in the sequence it is possible to abort the task by choosing the
visible exit (Trætteberg & Welie, 2000).
Known Uses
1. CAPIT (Mayo, Mitrovic, & McKenzie, 2000): An ITS that teaches the rules of English

capitalization and punctuation. As shown in figure (6) instructions relevant to the current problem
are clearly displayed at the top of the screen. Immediately below the instructions, and clearly
highlighted, is the current problem. There are also navigation buttons to move back or next to
assist student in navigating without overwhelming him with plenty of lists or options.

Figure (6): CAPIT Main User Interface (Mayo, Mitrovic, & McKenzie, 2000)

2. The German Tutor (Heift, 2001): An ITS for teaching German. After the student finishes
answering the current question he can go on to the next exercise with the "Weiter" (next) button.
The German Tutor utilizes the Wizard Pattern by using navigation buttons to move to next
exercise to assist students in navigating without overwhelming them with plenty of lists or
options. Figure (7) illustrates the Wizard Pattern in the context of the dictation exercise in the
German Tutor.

Figure (7): Dictation Exercise in the German Tutor (Heift, 2001)

Related Patterns: User Goals.
References: The Wizard Pattern is one of the Interaction Patterns (Trætteberg & Welie, 2000).
Table (3) maps our proposed ITS functional requirements to the corresponding ITS patterns. This
summarized description can be used as a roadmap for ITS developers and designers.

D2a 11

4. PLITS –A Pattern Language for Intelligent Tutoring Systems

Table (3): Mapping Between the Functional Requirements and the Corresponding ITS
Patterns

Category Pattern Name Functional Requirement ITS Model

1 Design Pattern Whole Part Curriculum Composition Domain Model

Lesson Presentation Planning,
Exam Generation

Tutor Model

2 Creational
Pattern

Singleton Curriculum Instantiation Domain Model

Collective Student Information
Instantiation

Tutor Model

3 Access Patterns Registration-Authentication-
Access-Control

Students Registration and
Access Control

Student Model

4 Adaptive
Patterns

User Model Definition Student Model Standardization Student Model

5 Adaptive
Patterns

User Goals Determining and Achieving
Student Goals

Student Model

6 Adaptive
Patterns

New Student Model
Initialization

Initializing Student Model Student Model

7 Adaptive
Patterns

New Student Model
Maintenance

Update and Maintenance of
Student Model

Student Model

8 Structural
Patterns

Adapter Representing Student Status Per
Topic

Student Model

Representing Student Status Per
Exercise

9 Design Pattern Master Slave Student Exam Grade
Computation

Tutor Model

10 Behavioral
Patterns

Observer Monitoring Student Progress
and Updating Students’
Progress Reports

Tutor Model

11 Instructional
Patterns

Course Creation and
Customization

Creating and Customizing
Curriculum

GUI Model

12 Interaction
Patterns

Wizard Guiding Students Through a
Complex Task

GUI Model

Figure(8) represents the Pattern Language Approach. In figure (8) we used two types of arrows:

 The dotted arrow is used to indicate the occurrence of a relationship between the ITS
Models.

The solid arrow is used to indicate the occurrence of a relationship between patterns.
This relationship is either a precedence or dependency.

D2a 12

Figure (8): PLITS –A Pattern Language for ITS

D2a 13

5. Conclusion
ITS complexity can be overcome by creating a pattern language for ITSs that can help software
developers resolve recurring problems encountered throughout all of software development process
of any ITS. In this way, designers of new or existing ITSs, especially inexperienced designers, can
take advantage of previous design expertise and save precious time and resources.

In this research work, we showed that one cannot talk of patterns in the ITS domain only in the
context of ITS architectures. On the contrary, there are many kinds of other patterns that can be
helpful in ITS implementation. This research started out by surveying the existing ITSs and their
components in search for some possible common design decisions, common interactions among
components, and common generalized principles underlying superficially different designs. We
extracted patterns from numerous known examples, systems, architectures, designs, etc.

We investigated the use of design patterns, access patterns, instructional patterns, adaptive patterns
and interaction patterns in ITS implementation. As a result of this research we formulated PLITS a
pattern language for intelligent tutoring systems implementation that includes rules and guidelines
which explain how and when to apply its patterns to solve a problem.

6. Directions for Future Research

Suggested directions for future research include the following:
1. Establishing an initiative for constructing a repository of patterns for ITSs in order to attract

more researchers to deposit their own patterns. That would strengthen the pattern language
and offer a wealthy pool of patterns for inexperienced designers of an ITS.

2. Introducing Web Services into ITS implementation: Web Services are self-contained,
modular applications that provide a set of functionalities (for instance; ITS expert Model) to
anyone that requests them. The main characteristic of Web Services is that they interact with
the applications that invoke them, using web standards such as WSDL (Web Service
Definition Language), SOAP (Simple Object Access Protocol) and UDDI (Universal
Description, Discovery and Integration). Basing learner modeling on web standards has the
advantage of enabling the dynamic integration of applications distributed over the Internet,
independently of their underlying platforms (Kabassi & Virvou, 2003).

References

1. Alexander, C., et al. (1977). A Pattern Language: Oxford University Press.
2. Avgeriou, P., et al. (2003). Towards a Pattern Language for Learning Management Systems.

Educational Technology & Society, 6(2), 11-24.
3. Avgeriou, P., et al. (2003). Patterns For Designing Learning Management Systems. In

Proceedings of the European Pattern Languages of Programming (EuroPLOP), Irsee,
Germany

4. Buschmann, F., et al. (2000). Pattern-Oriented Software Architecture:A System of Patterns:
John Wiley & Sons.

5. Devedzic, V., & Harrer, A. (2004). Common Patterns in ITS Architectures. Künstliche
Intelligenz, 18(3), 17-21.

6. Devedzic, V., et al. (2000). The GET-BITS Model of Intelligent Tutoring Systems. Journal
of Interactive Learning. Research, 11(3/4), 411-434.

7. El-Sheikh, E., & Sticklen, J. (1998). A Framework for Developing Intelligent Tutoring
Systems Incorporating Reusability. In Proceedings of the 11th International Conference on
Industrial and Engineering Applications of Artificial Intelligence and Expert Systems:
Methodology and Tools in Knowledge-Based Systems. Springer-Verlag. Retrieved.

8. ELEN Project. Retrieved May, 2004, from http://www2.tisip.no/E-LEN/outcomes.php
9. Fum, D., et al. (1989). Tense generation in an Intelligent Tutor for Foreign Language

Teaching: Some Issues in the Design of the Verb Expert. In Proceedings of the Fourth

D2a 14

Conference on European Chapter of the Association for Computational Linguistics.
Manchester, England. Association for Computational Linguistics. Retrieved.

10. Gamma, E., et al. (1995). Design Patterns, Elements of Reusable Object-Oriented Software.
(First ed.): Addison Wesley Professional.

11. Heift, T. (1998). An Interactive Intelligent Tutor over the Internet, In Proceedings of the
Proceedings of ED-MEDIA 1998, World Conference on Educational Multimedia,
Hypermedia & Telecommunications, Charlottesville, VA. Association for the Advancement
of Computing in Education (AACE)

12. Heift, T. (2001). Intelligent Language Tutoring System for Grammer Practice. Retrieved
May, 2004, from http://zif.spz.tu-darmstadt.de/jg-06-2/beitrag/heift2.htm

13. Heift, T., et al. (2000). An Interactive Course Support System for
Greek.Bourdeau,J.&Heller,R.(eds). In Proceedings of the ED-MEDIA 00,World Conference
on Educational Multimedia,Hypermedia &Telecommunications, Montreal Canada.
Association for the Advancement of Computing in Education (AACE)

14. Joolingen, W., et al. (1997). The SimQuest Authoring System for Simulation-Based
Discovery Learning. In Proceedings of the Artificial Intelligence in Education, Tokyo. IOS
Press

15. Kabassi, K., & Virvou, M. (2003). Using Web Services for Personalized Web-based
Learning Educational Technology & Society, 6(3), 61-71.

16. Liegle, J., & Woo, H.-G. (2000). Developing Adaptive Intelligent Tutoring Systems:A
General Framework and Its Implementations. In Proceedings of the ISECON Philadelphia,
PA, USA

17. Mayo, M., et al. (2000). CAPIT: An Intelligent Tutoring System for Capitalisation and
Punctuation. In Proceedings of the International Workshop on Advanced Learning
Technologies, Palmerston North, New Zealand

18. Mitrovic, A. (2003). An Intelligent SQL Tutor on the Web. International journal of
Artificial Intelligence in Education, 13(2-4), 173-197.

19. Murray, T. (1998). Authoring Knowledge Based Tutors: Tools for Content, Instructional
Strategy, Student Model, and Interface Design, Journal of the Learning Sciences.

20. Nkambou , R., & IsaBelle, C. (1998). Cyberphysique: A Web Based Distance Learning
Environment. Global Education on the Net, 1, 252-256.

21. Salah,D., Zeid,A. (2009). Aaptive Patterns for Intelligent Tutoring Systems. In Proceedings
of the EuroPLOP 2009.Germany.

22. Trætteberg, H., & Welie, M. (2000). Interaction Patterns in User Interfaces. In Proceedings
of the 7th. Pattern Languages of Programs Conference Illinois, USA

23. Virvou, M., & Tsiriga, V. (2001). Web Passive Voice Tutor: An Intelligent Computer
Assisted Language Learning System over the WWW. In Proceedings of the Proceedings of
the IEEE International Conference on Advanced Learning Technologies. IEEE Computer
Society. Retrieved.

"Copyright retain by author(s). Permission granted to Hillside Europe for
inclusion in the CEUR archive of conference proceedings and for Hillside
Europe website."

D2b 1

Adaptive Patterns for Intelligent Tutoring Systems
Dina Salah, The American University in Cairo, Computer Science Department, dsalah@aucegypt.edu

Amir Zeid, The American University of Kuwait, Division of Sciences and Engineering, azeid@auk.edu.kw

Abstract

The complexity of design and implementation of Intelligent Tutoring Systems (ITS) is
caused by the lack of a clear road map or implementation methodology. This has led
us to investigate the role of patterns in ITS implementation in order to provide
software developers with solutions to recurring ITS design problems.

In this research work, we highlight the role of adaptive patterns in intelligent tutoring
system implementation. We explain how those patterns were used in building The
Arabic tutor, an Intelligent Language Tutoring System over the World Wide Web for
teaching a subset of the Arabic Language that combines the flexibility and
intelligence of Intelligent Tutoring Systems with the availability of the World Wide
Web applications.

The implementation process of the Arabic Tutor was our proof of concept for the
validity and usefulness of adaptive patterns in ITS implementation.

1. Introduction

ITSs incorporate built-in expert systems in order to monitor the performance of a
learner and to personalize instruction on the basis of adaptation to the learner's
learning style, current knowledge level, and appropriate teaching strategies (Liegle &
Woo, 2000). The classical ITS architecture is composed of the following components
(El-Sheikh & Sticklen, 1998):

o Expert Model: This model contains the domain knowledge.
o Pedagogical (Tutor) Model: This model provides the knowledge infrastructure

necessary to tailor the presentation of the teaching material according to the
student model.

o Domain Model: This model contains the knowledge about the actual teaching
material.

o Student Model: This model stores details about the student's current problem-
solving state and long-term knowledge progress, essential for adapting the
material to the student's characteristics.

o Communication (User Interface) Model: This model is responsible of user
interaction.

A recent analysis of a number of existing ITS architectures has revealed that many
ITS designers and developers use their own solutions when faced with design
problems that are common to different systems, models, and paradigms. However, a
closer look into such solutions and their comparison often shows that different
solutions and the contexts in which they apply also have much in common, just like
the corresponding problems do. In all such cases we can talk of the existence of
patterns (Vladan Devedzic & Harrer, 2004).

Adaptive instruction can be defined as real time modification of the instructional
curriculum, learning environment to suit different student characteristics (“ELEN

D2b 2

Project”). Adaptive patterns are patterns that are used in Adaptive Learning Systems.
However, we found that there is a number of adaptive learning patterns that can be of
great use to the designers and developers of ITSs if they were modified to suit the ITS
developers and designers needs.

It is important to note that some of the discovered patterns were based on existing
patterns; however, we modified some of these patterns in order to suit the needs of
ITS implementation. Any modified pattern has a name that begins with the word
“New”.

2. Adaptive Patterns for Building the Student Model in Intelligent Tutoring
Systems

The process of building a typical ITS is composed of four phases; building the
Domain Model, Student Model, Tutor Model and the Graphical User Interface Model.
However, this is the typical sequence followed, nevertheless, it is not mandatory to
strictly follow this order and some ITS developers use a different order for building
ITSs.

In the following section we will highlight the adaptive patterns that can be useful in
building the student model.

2.1 Pattern 1: User Model Definition

Classification: Adaptive Patterns
Intent: An ITS enriches its functionality by maintaining a student model and
providing mechanisms to modify application features based on that. These
modifications can be deciding to move to a higher difficulty level, showing the
student more detailed feedback, etc., thus resulting in a personalized instruction.
Standardization of the student model is an important issue, because through it we can
greatly enhance the student model’s portability. This will allow learners to use several
different ITS(s) and to carry their personal model with them, providing the systems
with the same image of themselves, without that leading to compatibility problems.
We need a student model that is small, compact and flexible. What information
should an ITS keep for the student in order to offer him the best possible learning
experience?
ITS Applicability: In an ITS setting the items that should be included in the user
model definition have to be directly related to the user as a learner – anything that
would be considered useful to better adapt to the learner’s particular characteristics. A
complete user model definition should be comprised of the following elements:
1. Demographic data, which are relevant to the particular ITS (e.g. as age, gender,
etc.)
2. Student goals, which are related to the long term and short term learning goals.
3. Student preferences, which includes the mode of delivery, accessibility
requirements, or assessment.
4. Student knowledge, which includes the knowledge level about concepts to be
learned and weaknesses and strengths on particular areas, sections or points of the
concepts.
5. Usage data, which includes information like which pages were viewed, in what
order, etc.

D2b 3

6. The Stereotype that applies to the student, which essentially is the group of
learners he belongs to based on some predefined presuppositions in terms of
knowledge level, learning and cognitive styles.
Known Uses
1. An Interactive Course Support for Greek (Tudor Heift, Toole, McFetridge,
Popwich, & Tsiplakou, 2000): An ITS that teaches the Greek language.
2. The Web Based German Tutor (Trude Heift, 1998): A web based ITS for
teaching German.
3. Web Passive Voice Tutor (Web PVT) (Virvou & Tsiriga, 2001): An ITS for
teaching English passive voice.

Both of (Tudor Heift, Toole, McFetridge, Popwich, & Tsiplakou, 2000)and (Trude
Heift, 1998) has three student stereotypes beginner, intermediate and advanced.
Feedback messages are customized to suit current student knowledge level where
beginners receive more detailed feedback than advanced students. Whereas (Virvou &
Tsiriga, 2001) has four student stereotypes novice, beginner, intermediate and expert.
Nevertheless, all the above mentioned ITSs take into consideration the student
stereotype, knowledge, short term goals and usage data, but none of them take into
consideration student demographic data, long term goals or preferences.

Related Patterns: User Goals, New Student Model Initialization
References: The User Model Definition Pattern is one of the patterns that were used
in adaptive systems ("ELEN Project"); however, we discovered that this pattern can
be useful to ITS developers and designers.

2.2 Pattern 2: User Goals

Classification: Adaptive Patterns
Intent: The student model description is a part of the student model component of an
ITS and it should include student goals. What information should be considered as
student goals in a student model in an ITS?
ITS Applicability: Any ITS needs to include specific student goals in the student
model in order to facilitate adaptation, and capture the real intent of the learner with
respect to the learning material.
Student goals can be divided into two categories:
Long-term goals: Educational goals that are valid for a longer period of time and
require significant effort to be met, these goals are usually determined by the learners.
Short-term goals: Educational goals that are valid for a shorter period of time and
require relatively moderate effort to be met. These goals are usually determined by the
Tutor Module component of an ITS.
Known uses
1. An Interactive Course Support for Greek (Tudor Heift, Toole, McFetridge,
Popwich, &Tsiplakou, 2000): An ITS that teaches the Greek language to foreigners
2. The Web Based German Tutor (Trude Heift, 1998): A web based ITS for
teaching German.
3. Web Passive Voice Tutor (Web PVT) (Virvou & Tsiriga, 2001): An ITS for
teaching English passive voice.

All the ITSs mentioned above accomplish short term goals by tailoring teaching
material content and sequence to suit current student knowledge level.

D2b 4

Related patterns: User Model Definition, New Student Model Initialization.
References: The User Goals Pattern is one of the patterns that were used in Adaptive
systems ("ELEN Project"); however, we discovered that this pattern can be useful to
ITS developers and designers.

2.3 Pattern 3: New Student Model Initialization

Classification: Adaptive Patterns
Intent: ITSs initialize the student model before all interactions. What is the minimum
amount of information needed to start the system? What kind of information and what
amount is the student willing to provide?
ITS Applicability: ITS developers and designers need to initialize the student model
with two types of knowledge; knowledge that is acquired from the students and
knowledge that can be acquired automatically from the system.

The User Model Initialization Pattern initializes the student model with the student
stereotype through one of the following methods:

o User driven. The user specifies explicitly what stereotype he belongs to.
o Inferred by rules. These rules indicate which user model elements and values

can activate a stereotype.
o Speculated by rules .If the user does not specify his knowledge level then it is

assumed to be average.
Known Uses
1. Web PVT (Virvou & Tsiriga, 2001): The student is initially assigned to one of the
four distinct stereotypes, namely novice, beginner, intermediate and expert, according
to her/his performance on a preliminary test.
2. Verb Expert (Fum, Giangrandi, & Tasso, 1989): At the beginning of each session,
the tutor starts the interaction with the student by presenting him by an exercise on a
given topic. The Student Modeller compares the answer of the student with that of the
expert Module in order to identify the errors and to formulate some hypotheses about
their causes in order to initialize the student model.
Related Patterns: User Model Definition, New Student Model Maintenance, User
Goals.
References: This pattern was based on the User Model Initialization Pattern that is
used in Adaptive systems ("ELEN Project"), however, we discovered that this pattern
can be modified to suit ITS developers and designers needs.

We modified the solution suggested by the User Model Initialization Pattern in the
New Student Model Initialization Pattern by accurately initializing the student model
using an exam generator component. More details can be found in section 3.3.

2.4 Pattern 4: New Student Model Maintenance

Classification: Adaptive Patterns
Intent: During the course of interaction with ITSs many things about the student can
be changed, e.g. current student knowledge level. Thus, the student model must be
adapted to the new realities. How should the system capture those changes so as to
maintain a good student model ("ELEN Project")?
ITS Applicability: ITS designers should define the conditions that govern the
maintenance of the student model. The designer should define the scope of the

D2b 5

maintenance changes by defining the reason for updates. The reason is then quantified
in terms of choice of elements to undergo change.
The Student Model Maintenance Pattern suggests maintaining an accurate student
model through one of the following methods:

o Using a questionnaire form that indicates the amount of benefit the user gained
from using the system.

o Interactive update of the user model by showing a pop-up form requesting the
user to answer a question.

We modified the solution suggested by the Student Model Maintenance Pattern by
using an exam generator component to conduct a per topic exam. This can occur after
the student is presented by the topic learning material. The exam generator component
can use the pool of questions supplied earlier by the subject instructor to randomly
select a number of questions that can test the current student knowledge level and
according to the results of this exam the user model maintenance module can update
the student model to reflect his current status and the topics covered and his
knowledge level per topic.
Known uses
1. Web PVT (Virvou & Tsiriga, 2001): A web based ITS for teaching the English
passive voice. It records information about which concepts the student has mastered
and to what extent. In addition, it records the kinds of error the student has made
during past interactions as well as the most suitable explanation of each category of
error. The information from the long term student model forms an individual model of
the student, which together with the active stereotype are used in order to provide
adaptive navigation support and perform intelligent analysis of the student's solutions
to exercises.
2. An Interactive Course Support for Greek (Tudor Heift, Toole, McFetridge,
Popwich, & Tsiplakou, 2000): A web based ITS for teaching Greek. The student
model is a representation of the current skill level of the student. For each student the
student model keeps score across a number of error types, or nodes, for example,
grammar or vocabulary. The score for each node increases and decreases depending
on the grammar’s analysis of the student’s performance. The amount by which the
score of each node is adjusted is specified in a master file and may be weighted to
reflect different pedagogical purposes.
Related Patterns: New Student Model Initialization.
References: This pattern was based on the User Model Maintenance Pattern that is
used in Adaptive systems ("ELEN Project"), however, we discovered that this pattern
can be modified to suit ITS developers and designers needs.

3. Using Adaptive Patterns in Building the Arabic Tutor

3.1 Pattern 1: User Model Definition

A student model is the image that the system has about the learner. The closer it is to
the learner’s real characteristics and needs, the better the personalization. The User
Model Definition Pattern was used in the Arabic Tutor; the user model included short
term and long term student goals, student knowledge level on particular topics or
learn items, usage data, and student stereotype.

D2b 6

3.2 Pattern 2: User Goals
User Goals Pattern was used in handling both long term and short term goals in the
Arabic Tutor.
Long Term Goal Handling in the Arabic Tutor:
Students who use the Arabic Tutor are required to determine their goal from using the
system. This is achieved by allowing the students to choose the topics that are of
interest to them. These topics may be dependent on each other. Each topic may have
successors, predecessors, or topics that can be taught in parallel with this topic.

Short Term Goal Handling in the Arabic Tutor:
Short term goals are goals that are valid for a shorter period of time, for example, if
the long term goal of a certain student was “to learn topic X”, then the short term goal
is the presentation of the appropriate learn items and examples that he needs to study
or view in order to gain the required knowledge to master the chosen topic. Short term
goals in the Arabic Tutor are usually determined by the Tutor Model component.

The short term goal handling in the Arabic Tutor begins after the student signs up and
determines his long term goals from using the system. The results of the entry exam
per topic will be used to control the teaching material that will be viewed by the
student .This is illustrated in table (1):

Table (1): Teaching Material According to Student Level.

Student

Stereotype

Topic Explanatory Text Learning Item

Explanatory Text

Number of

Learn Item

Examples

Beginner Yes Yes 6

Intermediate No Yes 4

Advanced No Yes 2

Expert No No 1

In this phase, the student needs to perform a complex task consisting of several
subtasks where decisions that need to be made in each subtask may not be known to
the student. This complex task is represented by the student long term goal which is
mastering a certain topic. This long term goal can be divided into a number of short
term goals. Thus the complex task can be divided into a number of a subtasks
represented in the learn items that are included inside this topic and that needs to be
studied in a particular order to preserve the predecessor and successor relationship
between learn items.

D2b 7

3.3 Pattern 3: New Student Model Initialization

The New Student Model Initialization Pattern was used in the Arabic Tutor in
initializing the student model with two types of knowledge:

• Knowledge that is acquired from the students: This knowledge was determined
with the guidance of both the User Model Definition Pattern and the User Goals
Pattern.
• Knowledge that can be acquired automatically from the system: This knowledge
was acquired by implementing an entry exam that uses an Exam Generator
Component that randomly choose a set of questions that represent different difficulty
levels thus can accurately measure current student knowledge level per topic
(stereotype) instead of speculation or inferring as suggested in the User Model
Initialization Pattern.

3.4 Pattern 4: New Student Model Maintenance

The New Student Model Maintenance Pattern was used in the Arabic Tutor by
implementing an exam generator component to conduct a per topic exam. This
occurred after the student is presented by the topic learning material. The exam
generator component used the pool of questions supplied by the subject instructor
earlier to randomly select a number of questions that can test the current student
knowledge level and according to the results of this exam the user model maintenance
module updated the student model to reflect his current status and the topics covered
and his knowledge level per topic. This exam consists of 12 questions that vary in the
difficulty level according to the current mastery level of student per topic. In addition,
according to the level of the student that was determined in the entry exam he will be
presented by a tailored feedback message in case he answered the question
incorrectly.

Table (2) highlights the per exam configurable parameters in the Arabic Tutor.

Table (2): The Per Topic Exam Configurable Parameters in the Arabic Tutor

Student Level
Number of Exercise per difficulty

level

Topic
Explanatory

Text

Learn Item
Explanatory

Text

Number of
Remedial
examples

 Difficulty
Level 1

Difficulty
Level 2

Difficulty
Level 3

Beginner 12 0 0 Yes Yes 3

Intermediate 0 12 0 No Yes 2
Advanced 0 6 6 No Yes 1

Expert 0 0 12 No No 0

D2b 8

4. Conclusion

In this research work, we showed the role of adaptive patterns in implementing the
user model in ITS, we used the example of the Arabic Tutor, a web based intelligent
language tutoring system for teaching a subset of the Arabic Language as our proof of
concept for the validity and usefulness of adaptive patterns in ITS implementation.

We aim to provide designers of new or existing ITSs with a road map for user model
implementation within the ITS domain.

However, one cannot talk of patterns in the ITS domain only in the context of
adaptive patterns. On the contrary, there are many other kinds of patterns that can be
helpful in ITS implementation; design patterns, access patterns, instructional patterns,
and interaction patterns. Moreover, ITS complexity can be overcome by creating a
pattern language for ITSs that can help software developers resolve recurring
problems encountered throughout all of software development process of any ITS. In
this way, designers of new or existing ITSs, especially inexperienced designers, can
take advantage of previous design expertise and save precious time and resources.

In (Salah & Zeid,2009) we proposed PLITS, a Pattern Language for Intelligent
Tutoring Systems that utilizes design, access, instructional, adaptive and interaction
patterns in ITS implementation. PLITS includes rules and guidelines which explain
how and when to apply its patterns to solve a problem.

References

1. Devedzic, V., & Harrer, A. (2004). Common Patterns in ITS Architectures.

Künstliche Intelligenz, 18(3), 17-21.
2. El-Sheikh, E., & Sticklen, J. (1998). A Framework for Developing Intelligent

Tutoring Systems Incorporating Reusability. In Proceedings of the 11th
International Conference on Industrial and Engineering Applications of
Artificial Intelligence and Expert Systems: Methodology and Tools in
Knowledge-Based Systems. Springer-Verlag. Retrieved.

3. ELEN Project. Retrieved May, 2004, from http://www2.tisip.no/E-
LEN/outcomes.php

4. Fum, D., et al. (1989). Tense generation in an Intelligent Tutor for Foreign
Language Teaching: Some Issues in the Design of the Verb Expert. In
Proceedings of the Fourth Conference on European Chapter of the Association
for Computational Linguistics. Manchester, England. Association for
Computational Linguistics. Retrieved.

5. Heift, T. (1998). An Interactive Intelligent Tutor over the Internet, In
Proceedings of the Proceedings of ED-MEDIA 1998, World Conference on
Educational Multimedia, Hypermedia & Telecommunications, Charlottesville,
VA. Association for the Advancement of Computing in Education (AACE)

6. Heift, T., et al. (2000). An Interactive Course Support System for
Greek.Bourdeau,J.&Heller,R.(eds). In Proceedings of the ED-MEDIA
00,World Conference on Educational Multimedia,Hypermedia
&Telecommunications, Montreal Canada. Association for the Advancement of
Computing in Education (AACE)

D2b 9

7. Liegle, J., & Woo, H.-G. (2000). Developing Adaptive Intelligent Tutoring
Systems:A General Framework and Its Implementations. In Proceedings of the
ISECON Philadelphia, PA, USA

8. Salah,D.,Zeid,A (2009). A Pattern Language for Intelligent Tutoring Systems.
In Proceedings of the EuroPLOP 2009.Germany.

9. Virvou, M., & Tsiriga, V. (2001). Web Passive Voice Tutor: An Intelligent
Computer Assisted Language Learning System over the WWW. In
Proceedings of the Proceedings of the IEEE International Conference on
Advanced Learning Technologies. IEEE Computer Society. Retrieved.

"Copyright retain by author(s). Permission granted to Hillside Europe for
inclusion in the CEUR archive of conference proceedings and for Hillside
Europe website."

D3 - 1

A Pattern Language for Online Trainings
Christian Kohls
Knowledge Media Research Center, Tuebingen, Germany
c.kohls@iwm-kmrc.de

Abstract
This is a small pattern language for running online trainings. The language starts with an entry
pattern ONLINE TRAINING. All other patterns are supporting this pattern and help to make
online trainings more alive. Some of the patterns are not exclusive for online uses, for
instance PREPARED EXAMPLE or TEST RUN. These patterns could be part of a pattern language
for trainings as well. They are included in this collection because they are important for online
settings particularly. Another example is PAUSE FOR QUESTION. This should be applied in
classroom education as well. But the present pattern description takes special forces into
account, i.e. online you have to plan more pauses due to the lack of any non-verbal feedback.

D3 - 2

Mining Ground
The patterns ground in experiences of online training events of the German information portal
e-teaching.org. Since spring 2006 there have been 14 online trainings, hosted by the author
and guest trainers. There are usually between 30-50 participants attending the live event. Each
event is recorded and can be accessed later. The trainings are open educational resources and
can be accessed at1:
http://www.e-teaching.org/community/communityevents/schulung/

Besides our own experiences, we discussed best practices of using the conference system
Adobe Connect at a user meeting. Many of the patterns we applied have been in use by others
independently, i.e. Invisible CO-HOST, CONTROL MONITOR and of course TEST RUNS. Though
we have gathered our experiences using a particular conferencing system, they are not limited
to that system. We have tested other systems as well and their functions are quite comparable.
The present patterns should be useful for any of the standard web conference systems.

The pattern map shows the relation between the patterns and how they support each other.
The map clarifies that some patterns are applied in advance to prepare for the training while
other patterns are more important when the actual live training takes place.

1 The trainings are in German.

Acknowledgement
The author wants to thank his shepherd Nuno Flores for all his help and very thoughtful suggestions. I
enjoyed working with Nuno and I think I have not only learned new ideas for this paper but improved my
pattern writing style in general. I appreciate all the time Nuno has invested in the shepherding process! I
would also like to thank all people who have provided feedback to this paper and the patterns. Many helpful
suggestions from the Writer’s Workshop at EuroPLoP 2009 have helped to shape this paper as well. Thanks
to all participants.

D3 - 3

Online Training
Alias: Webcast, Tool Demonstration

Context
Using software applications is a fundamental activity in everyday work life. This applies to
teachers, students and employees in the same way. To acquire the desired level of skills,
trainings have shown to be an effective way to impart usage scenarios, process steps, tips and
tricks. Trainings are suitable to introduce new software products or versions promptly.

Problem
The number of participants is usually limited for classroom trainings. There is a fair amount
of costs for travelling to the training site, a loss of working time, and rooms need to be
allocated. The calendars of the trainer and the several participants have to be synchronized
which is not always an easy thing to do. If potential participants are located at different sites,
finding a time suitable for everyone becomes even harder.

Forces
Time For many software applications, there is a need for sophisticated trainings. However, the
time resources of trainers are limited. This is true particularly for part time trainers who have
other job activities on their agenda as well.

Availability Training services should be available on-demand and just-in-time, for example if
new tasks should be coped with, or a new colleague needs to be introduced to the software.

Overview Sometimes people just want to get an idea of a software product without
committing to a time intensive training session.

Costs The investment of time and money is a barrier in particular for trainings that are
important but not mandatory (or at least judged to be not mandatory).

Special interests For special interest trainings (e.g. a special field of application for standard
software) there are usually not enough attendees at a local site while there might be enough
interested people on national or international level.

Feedback Training videos offer no way to ask questions, or to signal difficulties in
understanding the demonstrated functions.

Solution
Online trainings allow the participation from anywhere independent of the location. If the
online training is recorded, the recorded material can be accessed at anytime.

Details
Today’s web conference systems allow broadcasting computer screens and actions to many
participants as a web cast. A trainer uses a headset and comments his action on the screen.
Participants can use a chat window to give feedback and ask questions. To make life easier
for the trainer, and to engage in communication with participants, a CO-HOST is a reliable

D3 - 4

support. In this case, the training is not led by a single trainer but supported by an assistant
who takes care of questions and discussion in the chat.

To check how demonstrated work steps are broadcasted to the participants, a second monitor
can work as a CONTROL MONITOR. This monitor shows the broadcasted screen from the
perspective of the participants.

Integrate more PAUSES FOR QUESTIONS (“Did you understand everything?“, “Any
questions?”) as you would do in your classroom education and use PREPARED EXAMPLES.
Plan your trainings to take no longer than 45 minutes (60 minutes being the limit!). People get
tired in longer lasting on-line sessions. Shorter sessions, say 15 or 30 minutes, will also do
well. While you are hosting an online training you should provide a personal and friendly
atmosphere. Don’t forget to smile occasionally even if you cannot see your participants and
their reactions.

Obstacles
Preparation Gap There is a huge difference between planning and running trainings. Only if
you run and implement the training, the real challenges in operating the software and applying
meaningful actions will reveal. Whether the instructional outline works can only be tested if
you run the training. Therefore, do a REHEARSAL before starting the training with real
participants.

Technical Problems According to Murphy’s law, if anything can go wrong, it will! If
anything goes wrong during the live event this could cause inconvenient delays and may let
the participants quit even before the event started. Furthermore, technical errors look very
unprofessional – even if the trainer or host cannot be accounted for the error. Therefore,
always check the technology in advance, fix any broken components, and analyze sources of
failure.

Benefits
- Participants are not required to travel to a trainings site. This saves time and money.
Training sessions can be integrated into the calendar of a regular working day.
- If a participant doesn’t like the training – or realizes that the content does not fit to his
learning goals – one can always quit he training without causing any trouble.
- Chat windows enable participants to ask questions during the presentation (an advantage
over pure training videos).
- Records allow to watch the training later on and to replay specific sections for a better
understanding (an advantage over classroom training).
- No physical rooms need to be allocated or rented.

Liabilities
- Cognitive load for the trainer due to the lack of relaxing pauses.
- No hands-on-practice during the training.
- A lack of non-verbal feedback to see whether participants grasp everything.
- More efforts to organize the technical infrastructure for training.
- A fast internet connection is required. Still, some interruptions of audio or video may occur.
- Delayed broadcast of screen operations may cause an asynchrony of audio comments and
screen video.

D3 - 5

Examples:
The following examples show several online trainings hosted by www.e-teaching.org, each
introducing a different software application. Each example was hosted using the same
conference system, Adobe Connect. However, there are other tools (see below) which enable
to run the same type of event. The trained software applications vary in their screen dynamics.
The content management systems Drupal and Wordpress are examples for web based
applications where the complete screen content only changes when a new page is loaded.

Wordpress training Drupal training
http://connect.iwm-kmrc.de/p35287287/ http://connect.iwm-kmrc.de/p68096301/

Google Apps is an example where direct manipulation causes more frequent screen changes.
In this training the participants where asked to fill out a questionnaire and their answers were
evaluated live with Google Spreadsheet. The PowerPoint training is an example for frequent
screen changes that occur when a slide is edited or an animation starts. While the editing was
broadcasted well, the animation was not smooth because some frames were left out.

Introduction to Google Apps Instructional Animations in PowerPoint
http://connect.iwm-kmrc.de/p27372695/ http://connect.stine.uni-hamburg.de/p65354949/

Tools

Adobe Connect DimDim OnSync

Adobe Connect, OnSync, and DimDim are examples for web based meeting systems that only
require a flash plug-in. Hence, most web users can attend trainings without installing anything
on their computer. Adobe Connect is very simple to handle and supports screen recording on
Mac computers. DimDim is based on open source components and offers free hosting for up
to 20 participants. OnSync has very good compressions but is less intuitive than Adobe
Connect.

D3 - 6

Control Monitor
Alias: Second Screen

Context
In an online training the trainer will demonstrate the use of
software on a screen that is broadcasted to participants who
are located at another site. In opposition to classroom settings
he will not see exactly the same image on the screen.
Participants will see the screen in their browser window with
a delay of time, lower screen resolution and a lower refresh
rate. Furthermore, the broadcasted screen is usually
integrated into a conference system which brings additional
panels on the screen (e.g. video-image of the trainer, chat
window).

Problem
The comments of the trainer should refer to what the participants see on their screens – and
not what he sees on his screen. If the audio comments do not fit to the screen video shown,
there is a danger of inducing false mental models for the participants.

Forces
Asynchronous streams When speaking his comments, the trainer refers to the process steps
he currently applies. However, participants receive the broadcasted screen with a time delay
(whereas audio might be delivered without delay).

True-to-detail High frequent changes of what is shown on the screen (e.g. animation, videos
or rapid input of text and drawings) will not be broadcasted true-to-detail due to the
compression and low bandwidths. For examples, some frames may be left out or the viewer
only shows the input of a whole word rather than the singular letters in a text field.

Resolution Since the captured screen is scaled down and broadcasted with lower image
quality, details may get lost. In an extreme example, the trainer might see things clearly
whereas participants see things only blurred.

Lag Frequent switches between windows frames or scrolling the screen will delay the
broadcast since every pixel on the screen changes. However, the trainer will not recognise this
because his own screen just acts normally.

Solution
Put a second computer and monitor besides the computer that is used to capture the training.
On this second computer one can login as a normal participant. Hence, the trainer can see the
screen from the perspective of the participants.

D3 - 7

Details
The second monitor does not only show the broadcasted screen but all other panels of the
conferencing system as well (e.g. his own video image recorded by the webcam). On his first
monitor, the environment of the conferencing system is hidden because the trainer operates
the software that is trained.

If the trainer sees a delay on the second monitor, he can mute for a few seconds to reduce the
generated amount of data. That will release server capacities and bandwidth.

Obstacles
Missing Eye Contact While looking at the second monitor, the trainer no longer looks into the
webcam. He no longer has “eye contact” with his audience because he is looking at some
corner of the screen. Therefore, the control monitor should be located close to the primary
monitor to avoid moving the whole body of the trainer out of the recorded video image. Not
looking into the camera can affect people to think that the trainer is inattentively or
unconfidently.

Interference However, if the control monitor is put too close to the primary monitor, the
perception of two monitors with almost (but not quite) the same content can irritate and
distract the trainer.

Echo Effects The speakers of the second computer have to be turned off. Otherwise, the
microphone of trainer might record its own audio output recursively and annoying echo
effects occur.

Benefits
- By looking at the second monitor, one changes his audio comments. Rather than saying
“Now you see,” one says “In a moment you will see”. Hence, the audio comments are more
appropriate to what actually happens on the screen.
- A second monitor enables the trainer to observe chat messages and read them in planned
PAUSES FOR QUESTIONS.

Liabilities
- Looking too many times to the control monitor interferes with the work flow, for the
operations will still be applied on the primary computer and not on the second one.
- Additional hardware is required.
- Time consuming setup of the trainer’s desktop.
- The trainer frequently looks to the side instead of into the camera which can be irritating.

D3 - 8

Examples

Small laptops or Tablet-PCs are perfect as a second screen because they are easy to setup on
your desk and don’t take too much space. Also, such small computers usually have a “low”
resolution (e.g. 1024x768 pixels) and you can see what happens under “worst” conditions.

Using a second monitor is particularly helpful if there are frequent changes on the screen. In
trainings for PowerPoint, Flash and Photoshop, the trainer was frequently checking whether
the manipulations were fully captured by the conference system.

In another example, a trainer was not using a control monitor. When he was scrolling quickly
up and down on a website (to just show what is at the bottom of the page), he did not realize
that no participant ever saw the bottom of the website because it did not last long enough at
that position to be captured by the conference system.

If the hosting computer uses an unusual
screen format or a very high resolution, a
second monitor can help to check what the
participants see.

D3 - 9

Pauses for Questions
Alias: Any questions?

Context
Planning and running an online training to let participants acquire software skills.

Problem
In online settings there is no non-verbal feedback that could indicate whether the
demonstrated process steps are understood, whether the pace is appropriate, or whether
interest arouses. Without this feedback the trainer cannot adapt the training to the situation
and it gets harder to optimize learning effects.

Forces
Visual Feedback Stereotypical signals such as frowning, staring bored, widened eyes,
confirming smiles etc. are giving conscious or unconscious feedback to the trainer, indicating
whether his style of training is adequate or needs to be adapted. However, in an online
training the trainer does not see the participants.

Signaling It should be allowed to ask questions at any time. However, how can a participant
indicate need for more information if he cannot simply raise a hand?

Pace Continuous talking of the trainer is stressing and participants need some relaxing time
every now and then to process the new information. However, idling moments have different
effects in online trainings and seem to be awkward.

Solution
Plan to invite participants to ask questions (“You understood everything?“, “Any questions so
far?”) explicitly and more frequently than in classroom trainings. Announce at the beginning
of the training that you will include several pauses in which questions can be answered.

Details
Since there is no implicit feedback from non-verbal communication, we have to ask explicitly
for feedback more frequently. At the end of the training, too, the trainer should ask for
feedback: “Were the amount of information and duration appropriate?”, “Did you miss any
information?”, “What would you like to hear the next time?”, “Was the quality of audio and
video sufficient?” Free answers can be typed into the chat window. Some conference systems
allow preparing questionnaires in advance. To not forget pauses for questions, it is a good
idea to include them explicitly into the informal TRAINING CONCEPT.

To give some relaxing time to the trainer and to involve the participants, one can ask them to
contribute: “Do you have an idea for his?“, “Do you know any other example?”, “Does
anybody know what I should enter into this field?” Answers can be typed into a chat window.

Most conference systems offer chat windows and trainers are advised to make use of it.

D3 - 10

Obstacles
 Lose out questions. While the trainer is demonstrating the software tool, participants can ask
questions. Since the trainer concentrates on demonstrating the tool, it is easy to miss some of
the asked questions. For this reason, the trainer should announce that he will not answer each
question immediately but has planned several halting points to discuss questions.

Switching focus To read the questions, the trainer has to switch from the demonstrated
software tool to the conferencing system. To avoid this switch, a second CONTROL MONITOR
can help. An INVISIBLE CO-HOST could organize and filter the questions.

Benefits
- Involvement of participants.
- Questions and obscurities can be addressed.
- Causes social awareness.
- Pauses are relaxing the trainer.

Liabilities
- Questions cannot be answered immediately when they occur.
- Not immediately scanning the questions in the chat window makes it hard to understand
afterwards which question refers to which section of the training.
- Pauses can be awkward if no participant asks any questions or gets involved.

Examples
Google Apps training:
User: “Are all users required to have an account at Google?”
User: ”How many people can work simultaneously?”

Flash training:
User: „What kind of braces are required for the command?“
User: “Why is the marker not directly set in the object’s layer? Does that not work?”

LibraryThing training:

User: „Can I save website sources in Zotero?“
User: ”Can I import external EndNote-files in Zotero and the
other way around?”
User: “Is this commenting feature available for other
document types as well?”

D3 - 11

Invisible Co-Host

Alias: Assistant

Context
You are running an ONLINE TRAINING with several participants
and you can use a chat window for synchronous
communication. A chat window allows participants to ask
questions and to give feedback whether they understand
everything.

Problem
During the training, a trainer concentrates on his screen actions and his audio comments. His
attention cannot be simultaneously and permanently on chat news. Also, chat news can be
distracting.

Forces
Awareness Since trainers can not permanently pay attention to the chat window some
questions might get lost.

Distraction Participants can chat and communicate with each other. This extends the
knowledge exchange and sharing of experiences, however, the trainer is distracted by frequent
messages that scroll over the chat window.

Filtering Trainers should address the most important questions at an appropriate time but
filtering the most important questions from the chat protocol causes inconvenient delays and
binds cognitive resources of the trainer.

Comprehension When checking questions at a later time, for example in a PAUSE FOR
QUESTIONS, it is hard to relate general questions to specific training sections, i.e. which
demonstrated steps or functions are addressed by the questions.

Solution
Run a training session in a team. Co-located with the trainer is a co-host who acts as an
invisible assistant taking care of questions and messages in the chat window. The webcam
only captures the trainer, while the co-host works in the back to answer questions, to sort
messages and forward the important ones to the trainer.

Details
The training is hosted by a trainer who is an experienced user of a software tool. The assistant
does not need to have the same level of expertise as the trainer has. He can answer simple
questions directly in the chat window and provide information about organisational issues
(e.g. he can answer questions about the duration of the training, whether the training is
recorded, how to control the audio volume). His most important task is to filter questions and
forward the important ones to the trainer.

D3 - 12

Since the co-host always monitors the chat window, he can relate questions in the chat to
specific sections of the training (i.e. “this question is about function XYZ”).
The co-host sits next to the trainer without being captured by the camera. This way he can act
in the background but can directly give signals to the trainer (e.g. wave a note) or write down
questions in large letters.

Obstacles
Intrusion The signals of the co-host can distract and irritate the trainer. For mute
communication, hand signals can be agreed upon. Thumb up means: “I have seen there is a
question and I will address it in a minute.” Waving the hand means: “OK, there is a questions,
but at the moment I cannot address it because I want to finish the section first.”

Briefing The assistant should know the TRAINING OUTLINE. If somebody asks a particular
question he can hint that the topic will be demonstrated later.

Benefits
- Relief for the trainer allowing him to concentrate on the training.
- By permanently observing the chat window, questions can be related to specific sections

of the training.
- Additional information can be provided in the chat window.
- Concurrent chat makes the training more alive.

Liabilities
- More personal resources are needed.
- Questions and gestures of the co-host can irritate the trainer.
- The co-host needs to have some minimal knowledge about the topic or has to be introduced
to it by the trainer.

Examples

Co-Host showing a
question to the trainer

User: “How long will the training last?”
Co-Host: “Approx. 45 minutes”

User: “Is the training recorded? Where can I get the link?”
Co-Host: “Yes, the training is recorded. We will publish the link in our
events section at e-teaching.org”

User: “Every now and then the sound is gone”
Co-Host: “You can change the bandwidth to Modem connection. Less
quality but continuously audio stream.”

User: “What is the difference between comments and pings?”
Co-Host (using his knowledge): “Comments: Visitors can write text
comments. Pings: Other blogs can automatically notify the entry that they
are referring it.”

User: “Can I add images and videos?”
Co-Host (using the TRAINING OUTLINE): “That’s coming in a minute…”

D3 - 13

Do not disturb!
Alias: On-Air

Context
To run an online training there is no need for a special training room and
trainers can host the session from their office.

Problem
Extraneous disturbances such as ringing phones, chatting colleagues,
students or any operating noises distract the trainer, interfere the quality of
audio broadcast and irritate the training flow.

Forces
Usual Fuss Colleagues, guests, or students cannot know that an online training is broadcasted
live from your office and that entering the office or knocking at the door will disturb. In
particular if you usually have a policy of open doors and people are used to just entering other
people’s offices, you have to communicate that there is a “special situation”.

Interruption To turn off annoying operating noises or to get rid of someone during the
training costs time, destabilizes the Zen of a training session and can cause embarrassing
situations in the virtual meeting room.

Absence To leave the desktop temporarily is not an option because a virtual training room
without a trainer is very irritating.

Solution
Place a sign at your office door to signal colleagues, guests, visitors or students that you do
not want to be disturbed at the moment. Explain the reason.

Details
Block the access to your office by locking the door or place something (e.g. a chair) in front
of the door. Tell all your close colleagues that you are running an online training. Turn off
phones, mobiles, noisy hard drives or air conditioners.

Obstacles
Explanation To not upset your colleagues, do communicate that your request for silence is
not arbitrary but for a good reason. Explain in friendly words why people around you have to
be quite for the next 45 minutes.

Defence If an unexpected source of distractions occurs, a CO-HOST can help to turn off a
noisy machine, ask people in neighbouring offices to be quiet and get rid of unwelcome
visitors. By any means, the trainer should not find himself in a situation where he has to leave
his desktop during the training.

D3 - 14

Benefits
- Simple and effective, easy to implement
- Everybody knows what is going on
- Running a training without disturbance

Liabilities
- People cannot contact you in an emergency
- Explicit “Do not disturb!” hints can provoke and even invite trouble makers
- People might think you are taking things too seriously

Examples

 Radio and TV stations use an „On Air“ signal.

A simple “Do not disturb” print-
out decorates the office door
when an e-teaching.org event is
hosted.

The sign also informs visitors
what is going on (e-teaching.org
Live-Webcast).

D3 - 15

Rehearsal
Alias: Test Run, Dry run

Context
You are planning an online training with several participants and you are
currently preparing the structure. The training content and TRAINING
OUTLINE are fixed in principle.

Problem
There is a huge difference between planning and running trainings. Only
if you run and implement the training, real challenges in operating the software and applying
meaningful actions will reveal. Whether the instructional outline works can only be tested if
you run the training.

Forces
Complexity You have to try out your PREPARED EXAMPLES to realize that they do not work as
planned or are too time consuming and complex.

Elocution The spoken audio comments for each of the process steps have to be clear and to
the point. Practice can help. If you are looking for the right words and examples during the
training you are risking shakiness in your style of presentation.

Pausing Pauses in online training are much more intensive and seem to be longer; hence,
trainers have less time to gather themselves or think about the next steps. Moments of silence
(e.g. walking in the training room or looking into the audience) are harder to achieve in virtual
environments and often appear to be strange.

Coherence The sequential order of a training requires that information is build on each other
and that the structure is coherent. If you only plan theoretically it is easy to lose sight of the
big picture and which details have to be presented at which time. As an expert you have
everything in your head but that does not mean that you can already communicate it in an
instructional way.

Solution
Do at least one test run in advance of the actual training. Use the test run to analyze at which
points the training concept can be improved.

Details
It is crucial to speak all comments out aloud in spite of being on your own. By doing so, you
get a feeling for the language, how to describe and comment actions. Also, you get a better
feeling of how much time you actually need for the training and can adapt the materials
accordingly.

To be a skilled user of software is not enough to be a good trainer; you also need to have a
good presentation style and skills of communication.

D3 - 16

Obstacles
Knowing the traps Known problems of the software to be trained should not surprise the
instructor. Rather, he should know the problems and offer solutions. Tackling such obstacles
cannot be planned without practically try out the features. The more often you try the same
flow of operations, the more likely you will find any potential source of errors.

Passionless It’s the same as with everything: the more practice the better you get. But be
aware of running too many test runs. You can easily get bored by the content or start
oversimplifying concepts. This could effect your motivation when you are running the real
training. You might present the content mechanically. Therefore, the final test run should not
be immediately before the real training (e.g. just an hour in advance). It’s better to test run one
day in advance.

Benefits
- The trainer gets more confident in demonstrating and explaining.
- Potential sources of errors are recognized and can be addressed.
- The TRAINING OUTLINE is optimized step-by-step.
- If you have a new idea during the test run, you can just write it down and still change the

outline.
- You can interrupt a test run at any time.

Liabilities
- Investment of time
- Having too many pre-phrased sentences makes the training monotonously
- Be aware of false safety and be prepared that still a lot of things can go wrong
- Excitement and stage fright will still be with you on the real training

Examples
- Each online training at e-teaching.org is at least tested one time without audience
- Trainings in classroom settings are very often tested with no or just a small group of

participants
- Rehearsals are quite common for theatre performances, concerts or public talks.

D3 - 17

Training Outline
Alias: storyline, training script

Context
When planning an online training, surely everybody has a mental picture or a concept in his
head of what skills should be acquired. Then comes the moment of the real training and you
are excited and more stressed.

Problem
While taking the stress – even stage fright – during the live training into account, one easily
forgets important information or jumps over some important sections. Thus, some of the
knowledge gaps of the participants may remain.

Forces
Skipping It is tempting to leave out some content sections just to get sooner to the end of the
training session.

Sequencing Functions and models should build on each other. The sequence in which
software features are presented is crucial for its understanding.

Flippancy Flippancy lets one forget to mention some information, leaving behind knowledge
gaps of the participants. Delivering information afterwards is laborious and not all
participants might receive it.

Biasing Writing a full trainings storyboard costs a lot of time and limits your flexibility as it
builds mental barriers to adapt to individual educational situations.

Solution
Make a list of the most important features and process steps you want to communicate. Write
them down as an ordered item list setting the structure of the training.

Details
The items will remind you which information to provide in which order. They are the base
structure.

Each item is only an anchor for your presentation – and not a pre-phrased manuscript for your
training. You should avoid reading information or descriptions from a manuscript.

The item list could include special sections such as defining the learning goals, PAUSES FOR
QUESTIONS, or at which time you will show a PREPARED EXAMPLE.

If you run the training with a CO-HOST, you should give him a copy of the training script. If
he knows what will be tackled in the training he can better provide information in the chat.

D3 - 18

Obstacles
Tracking For your own orientation, highlight the most important information and the start of
new sections using a bold font. For clarity, check all items you have talked about with a pen.

Benefits

- Trainings get better structured
- There is less danger to forget relevant information
- PAUSES FOR QUESTIONS can be integrated explicitly
- You always keep on track
- You resist the temptation to jump over some sections

Liabilities

- Blindly following the script makes the training inflexible
- Having too many details and an inner force to necessarily tackle everything can drawn

out the training

Examples

The outlines of online trainings for SlideShare, SMART Board interactive whiteboards, and
LibraryThing.

D3 - 19

Prepared Example
Alias: Tested Example, Working Example

Context
You plan and run a classroom or online training. In order to show
typical scenarios or actions, you will enter example data for the sake of
demonstrating functions or process steps.

Problem
The search for meaningful examples costs time which is not available
during the time of training. If you use meaningless (random) data or
materials, you can show the functions of a program but you communicate the purpose
ineffectively. Careless chosen example data can cause undesired effects or atypical results.

Forces
Limitation You cannot use a huge number of examples in a single training, hence you have to
use good examples (in terms of instructional benefit).

Meaning Examples have an important instructional impact and are not just a means to click
through program functions. Meaningful examples not only demonstrate the functions but also
show their typical uses and benefits.

Time An example can be meaningful but time-consuming, long-winded, and take up too
much time of a training session.

Solution
Prepare your examples with care. Use meaningful input data and actions that apply to the
typical needs of the trained audience. If needed prepare materials (images, spreadsheet values)
in advance, in order to avoid editing times that show no key functions of the software.

Details
The most simple example that does not skip any relevant information might be the best. Try
several examples and decide which one fits best.

Never enter meaningless data such as “abc“, “xyz“ or “slkjssw swkjd“ into an input field! Use
examples that are appropriate to the semantic of the input field. This is important to associate
the right type of input and to demonstrate the purpose and meaning of the input data.

If you show graphic user interfaces that allow direct manipulation, you should not start wildly
but create new objects purposefully. Do not just sketch on a graphic panel or create
meaningless objects. This will only raise questions such as “Well, fine! But why do I need
this?” If the function is meaningful then you will always find a meaningful example!

D3 - 20

Obstacles
Stickiness Due to all the efforts for finding good examples one might be tempted to use them
at any price. But one should always adapt to the individual training situation. If one example
takes longer than planned (e.g. participants asked some questions) just skip another example.
If you use a chat window you can ask participants whether there is need for more examples.

Renewal Do not use examples only because you have prepared them! It’s hard to discard an
example that has cost you some time to create. But if you find a better one just go for it!

Benefits
- Meaningful examples increase the learning effect
- The trainer is more relaxed during the training if he has not to search for examples
- It helps to avoid unexpected results when using the software
- Good examples can be re-used
- A toolkit of good examples lets you act flexible and offers the opportunity to adapt the

training according to the interests of the participants

Liabilities
- It takes a lot of time for preparation
- You may have to adapt examples for each specific group to provide meaningful example

data

Examples
LibraryThing training (http://connect.iwm-kmrc.de/p79077399/)
LibraryThing is an online service to manage your library. To demonstrate the service, an
account was created and all books of the trainer were added online (in advance) to show a
realistic setting. To demonstrate how a book was added, the trainer chose books from which
he knew that meta-data were available in other online libraries. In the actual training he only
added books to the list which he had successfully added before to avoid any bad surprises.
LibraryThing also shows correlations to other users with similar interests (having similar
books or tag clouds). To make sure to use interesting examples, the “live” exploration of
correlated tags and users was tested several times in advance. The queries that created the best
results were used in the actual training.

Animation in PowerPoint training (http://connect.stine.uni-hamburg.de/p65354949/)
PowerPoint offers many ways to animate objects. Usually such animations are distracting but
cleverly used they can offer instructional support. This was demonstrated in an online
training. Since the training was meant to show how to edit more complex PowerPoint
animations, each image and each slide layout was prepared in advance. The purpose of the
training was not to show how to create or find interesting images. Therefore, the example
image material was prepared in advance.

Animated highlighting of table rows can be used
to direct the attention of the audience. In the
training it was explained how to create such
animated highlighting. The table itself was
prepared in advanced because the topic was “how
to create animations” and not “how to create
tables”.

Hearing the Student’s Voice -
Patterns for Handling Students’ Feedback

Axel W. Schmolitzky

University of Hamburg, Germany
Vogt-Kölln-Str. 30
D-22527 Hamburg
+49.40.42883 2302

schmolitzky@acm.org

Till Schümmer

FernUniversität Hagen, Germany
Universitätsstr. 1
D-58084 Hagen

+49.2331 987 4371

till.schuemmer@fernuni-hagen.de

Abstract: Feedback is an important value in agile methodologies. It is also
essential for any context where people are learning. Typically the focus is on
giving learners feedback on their learning progress, either from an
educator’s point of view or between the learners via peer feedback. This
paper focuses on gaining feedback from learners. We discuss methods and
good practices for encouraging learners to switch their perspective from a
recipient of facts to a critical observer of material produced by peer students
and educators. This is essential both for educators (as a way to learn more
about their own teaching) and for students (to be able to express opinions
and give constructive feedback).

1. Introduction
The following patterns describe good practices for gaining and handling
feedback given by students. The patterns focus on educators and facilitators at
higher level education institutions who aim at raising the level of critical thinking
of their students.
Critical thinking is relevant especially in areas that do not offer simple “right” or
“wrong” answers, but where solutions to problems have to be chosen from
solution spaces with several dimensions of freedom. The resulting solutions
thus have to be produced through intensive interaction between several
stakeholders; these should be able to (a) identify their interests and (b) express
them in a way others can build upon.
The intensive interaction between the various stakeholders such as teachers,
experts, and students heavily relies on constructive feedback. Since the
students have the freedom to construct their solution from a large design space,
they require feedback in order to understand how their solution is perceived by
others. As long as this feedback is expressed as constructive feedback, the
student will be forced to reflect on her individual solution and potentially revise
the design decisions based on the advice given by others.
The ability to give constructive feedback and the strategies to digest feedback
given by others are thus important soft skills that become especially important in
teamwork that is omnipresent in modern work places. Since more and more

Copyright retain by author(s). Permission granted to Hillside Europe for inclusion in the CEUR
archive of conference proceedings and for Hillside Europe website.

D4-1

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-2

work places involve distributed interaction (and since distributed interaction
becomes more important in educational settings as well), we will also discuss
how feedback can be gained and given in distributed computer-mediated
settings. While the mechanics for distributed computer-mediated interaction
have been described before [Schümmer & Lukosch, 2007], we focus on the way
how standard collaboration support such as Wikis, forums, or e-mail can be
used to support feedback.
The general questions that have to be answered by the following patterns are:

 Who is giving feedback? Typically it will be students, but other interest
groups are possible.

 On what is feedback given? On lectures, presentations, design proposals,
written text by teachers and students.

 How is the feedback expressed? A feedback culture needs to be
established, an etiquette especially for constructive feedback.

 To whom is the feedback given? How large is the audience? In which
setting is the feedback given (e.g., face-to-face discussions vs. anonymous
interaction in a web-based forum)? How comfortable students feel to speak
up?

 What for is the feedback given? It should be taken seriously and digested
thoroughly. In the ideal case, it should improve the competencies of the
feedback taker.

We can also distinguish between informal and formalized feedback. Informal
feedback is highly individualized and takes place during the course: students in
the same course share their views on the learning experience or teachers give
the students feedback on their progress. Formal feedback is typically part of a
university’s QA program. In German universities, these programs model a
formal process that was accredited when the master or bachelor program of the
university was established. Since the formal processes are typically not under
control of one individual teacher, we do not consider them in our pattern
collection.

Figure 1: Directions of feedback (fat arrows are focused in this paper)

Considering the interaction in a course, we distinguish three different feedback
channels: From teachers to students, from students to teachers, and between
peer students. The feedback from teacher to student has been covered in other
pattern languages before. We suggest looking at the feedback patterns
provided by Eckstein et al. (2002) if your desired direction for feedback is from
teachers to students.
The evaluation patterns of Derntl (2004) describe how the students’ progress
can be measured and how students can get feedback on their performance.

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-3

In this paper, we focus on the other two paths for feedback in which the student
is giving the feedback. Especially the feedback among students does to our
experience contribute to the critical thinking which we would like to increase for
the students.
A general question for feedback patterns is whether feedback can be given
anonymously or not. Anonymous feedback is especially important when critical
feedback could influence the grades of a student. In such cases, students could
fear that a critique of the teaching would result in bad marks for them.
Anonymous feedback – on the other hand – often tends to be too harsh,
especially when the feedback giver is not used to receive or give feedback.
In this paper we are not interested in grading, neither teachers nor students. We
think that the application of agile values should result in a more balanced
relation between teacher and students.

2. The Pattern Collection
This paper contains the following patterns:
YOU ARE HEARD: Ensure that students see that their feedback is considered as
important and that the feedback can have an effect.
FEETIQUETTE: Give students guidelines on how they should express their
feedback.
FEEDBACK SCAFFOLD: Help students to structure their feedback by giving them
an outline of the feedback they typically give.
PEER-RATED COMPETITION: Let students rate other students‘ work and give a
special reward to those students who have received the highest ratings from
their peers.
STUDENTS’ FEEDBACK FIRST: Give students room to express their feedback
before you as a teacher give feedback from your perspective.
PEER CORRECTION: Let peer students correct assignments and make clear that
the ability to rate a solution is another important way of understanding the
assignment’s subject.
EXHIBITION: Let students present their work to the whole class or even to future
and past students and honor outstanding exhibits.

Figure 2: The patterns of this paper and their dependencies

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-4

2.1 YOU ARE HEARD
Context: You are teaching a course with a large audience (more than 100
participants), either in classroom or in distance education. Because feedback
from the audience during lecture time is difficult due to time constraints (or for
technical reasons in distance education, or because students are too shy to
speak up in large audiences in the lecture room), you have decided to give the
students of your course a feedback channel by means of an electronic forum, a
newsgroup, or at least a contact e-mail.

Problem: It is hard to find the balance between ‘no feedback’ over this
channel and ‘too much feedback’. Sometimes students don’t use the channel
at all. Sometimes they are eager to express all their opinions and report on their
experiences during the course, so that the teacher can not find the time to
comment on all messages, especially in large courses.
Forces:
 Students are reluctant to provide written negative feedback as it persists

(sometimes longer than the urge to write it down).

 Students assume that the teacher will be equally interested in giving them
personal feedback as they are in giving it.

 RECIPROCITY (Schümmer & Lukosch, 2007) argues that any computer-
mediated interaction should create a balance between efforts and benefits
for all stakeholders. However, the distribution of efforts is not reciprocal in
large courses since the students only have to contribute their personal view
and the teacher would have to answer all these messages.

 Feedback should have an effect. In the case of feedback given by students,
they expect that the course improves through their feedback.

 You want to increase the students’ skills and competencies like sociability,
reflection on various viewpoints and communication skills.

 Students can comment on their peer’s feedback but since they don’t have
the final authority (e.g., for giving the grades), their feedback is often not
considered as binding.

Solution: In at least one lecture, explicitly encourage the students to use
the feedback channel. Define the kind of feedback that will be helpful.
Make clear how fast you will reply to the student’s feedback and how
extensive the replies can be. Show the students how their feedback
changed the course and how it helped them and others to learn.
You may decide to create a compiled response referring to multiple feedbacks
of the students, especially when different students provide feedback on related
topics. In such a case, you should ensure that the references to the feedback
become visible so that the students can see that their feedback was heard.

Technology Support: Most online platforms (such as Moodle, CommSy) or
even a simple net news server provide a component for THREADED DISCUSSIONS
(Schümmer & Lukosch, 2007). These can be used to collect feedback and reply
to it. Some systems also allow to FLAG (Schümmer & Lukosch, 2007) or tag a
message. In such a case, you can flag messages that you considered as

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-5

correct, which would be the most lightweight form of telling the students that
their messages were heard.
As long as you personally welcome positive and negative feedback, you should
share the feedback with the whole class instead of having it sent to you by
personal e-mail. This allows other students to see their peer students’ feedback.

Discussion: If feedback is seen as an important part of learning in higher
education, then it should be addressed explicitly. The fact that you appreciate
feedback and encourage students to improve the course can be another
incentive for the students to take a closer look at the course’s subject. By saying
that you need the students’ feedback, you also emphasize on the fact that you
can also make mistakes. This may invite students to critically evaluate the
content you teach them.
Examples: In our introductory programming course at the University of
Hamburg, we have been using the online platform CommSy for several years,
mainly to distribute the digital material for the exercises and lectures. Because
the platform offers a discussion forum as well, a feedback channel is provided
implicitly. But this channel was not used by the students. Only after we explicitly
encouraged the students during one lecture to make use of this channel,
students started to comment on the problematic aspects of the course.

Related Patterns:
 STUDENT’S FEEDBACK FIRST: You may decide to delay your responses to the

feedback given by the students and encourage other students to reply first.
However, you should still ensure that the students understand that YOU
hear their feedback.

 PEER CORRECTION can be used if there are still too many students so that
you cannot reply to them individually. In that case, other students act as your
delegates. But you should still stay aware of the feedback given by the
students.

 TIME FOR REFLECTION (Manns & Rising, 2005) takes a broader perspective
on the importance of feedback. The authors argue that any long-term activity
should be interrupted by phases of reflection. The student feedback can
serve as a trigger for such reflection episodes. Once students express
feedback, they trigger teachers (and other students) to reflect on their
current practice as well.

2.2 FEETIQUETTE
Context: Any teaching context in higher education, independent of the group
size, course format or distribution of the participants.

Problem: Feedback can be harmful if done wrong.
Forces:
 If students are very unhappy with a teaching situation they can tend to act

very emotional.

 Unfair feedback can lower or even destroy motivation, both on the side of
the teacher and of the student.

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-6

 Students can be forced to attend the course because it is mandatory in their
particular program.

 Especially with weak contributions students can be nasty.

 Different People deal differently with personal critique. Some simply ignore
any kind of feedback; others misunderstand even positive and constructive
feedback as de-motivating.

 In distance education, feedback is typically expressed as text. If given
without intensive reflected, it quickly becomes harmful and the lack of non-
verbal clues makes it difficult for the receiver to understand how the
feedback was intended.

 Potential anonymity or pseudonymity of computer-mediated feedback can
lead to situations where the feedback giver becomes offensive since the
feedback giver does not expect any negative consequences (note that this is
a general problem in computer-mediated communication).

 Textual computer-mediated feedback can be persistent, which makes
harmful statements in the feedback even more harmful (the feedback can
still be read a long time after it was given and may thus still hurt).

Solution: Explicitly introduce an etiquette for feedback (a ‘feetiquette’).
Give an appropriate explanation of how you understand the term feedback in
your context, as part of a presentation and/or in written form. Point out the
importance of feedback, but at the same time make clear that feedback is often
subjective, i.e. highly influenced by the individual situation of the feedback giver.
Explain when feedback can be given and what forms of feedback you consider
as helpful in your course. Clearly state that feedback should always be
constructive to be helpful.

Technology Support: If a technical feedback channel is identifiable as such,
the infrastructure could ask for a confirmation, asking if the feedback typed in
should really be sent and pointing out the possible consequences. The
feedback etiquette could be shown in this dialog as well. This gives the student
the explicit chance to reconsider the consequences of the feedback.

Discussion: By having a feetiquette, the students agree on a feedback culture
that shares the values expressed in the feetiquette. Trying to adhere to the
feetiquette makes them reflect on the way how they provide and receive
feedback so that they finally improve the way how they provide feedback.
Moderators (i.e., teachers) can give meta-feedback on feedback using the
feetiquette as a FEEDBACK SCAFFOLD for the meta-feedback.

Examples: At the University of Hamburg, we apply this pattern in a regular
course on design patterns, where students present use cases of design
patterns to each other in a special form called ‘teachlet’ (Schmolitzky, 2005).
We give a short presentation on the term feedback and hand out a one page
description of our feedback etiquette for the course.
An example, which is not in the educational domain, is the feedback etiquette
for e-Bay (online at http://reviews.ebay.com/FEEDBACK-ETIQUETTE-
netiquette-POSITIVE-neutral-NEGATIVE_W0QQugidZ10000000000079805). It
explains dos and don’ts for giving feedback on a transaction.

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-7

Related Patterns:
 NETIQUETTE (Schümmer & Lukosch, 2007) focuses on rules and guidelines

for interaction in computer-mediated contexts. Good Netiquettes can
become part of the FEETIQUETTE in distance education contexts.

 FAQ (Schümmer & Lukosch, 2007) describes how information about a
community’s culture and norms can be given based on questions asked by
members. The FEETIQUETTE can fulfil the role of a FAQ for procedures on
giving feedback.

 FEEDBACK SANDWICH (Eckstein et al., 2002) argues to start and end with
positive feedback. It is one typical rule that can be part of a FEETIQUETTE.

2.3 FEEDBACK SCAFFOLD
Context: A teaching situation with a lot of interaction between students
(presentations, discussions). Feedback can be given on several levels of
abstraction, from presentation style to presented content.

Problem: Students do not know how they should structure their feedback.
They fail to distinguish important aspects that require feedback from
aspects that do not need further comments.
Forces:
 If feedback can be given on several levels of abstraction it can be difficult to

be systematical.

 Students often feel that there was something wrong with a presentation, but
cannot put a finger on it.

 Feedback is sometimes given in a destructive manner.

Solution: Provide an Outline of a good feedback. Pass this outline together
with an explanation how to flesh out the different parts of the scaffold with
feedback.

Technology Support: Technology support can help by providing online forms
for feedback. It should give the teachers means for adding their questions to a
template (e.g., as Wiki templates proposed by Haake et al. (2005)) from which
the students then create their feedback documents. The technology should
however be open enough to allow free-form feedback (at least one free text
field).

Discussion: The scaffold gives the students a structure by which they can
develop their feedback, but an outline can also block creativity. If students feel
that they need to follow a certain scheme they can be tempted to not think
outside of it. You should thus explain the students that they are free to extend
the structure proposed in the scaffold.

Examples: At the University of Hamburg, we apply this pattern in a regular
course on design patterns, where students present use cases of design
patterns to each other in a special form called ‘teachlet’ (Schmolitzky, 2005).
Because teachlets consist of several parts that are clearly distinguishable
feedback can be very focused on these parts. It is then helpful to have some

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-8

standard questions at hand that have proven to be helpful in finding good
feedback comments. We provide such questions in a one page document
(different from the feedback etiquette).
At the University of Hagen, we provide FEEDBACK SCAFFOLDS for PEER GRADING
(Eckstein et al., 2002). The scaffold guides the students through the review
process and shifts their attention to different aspects of the feedback process.
Most review processes for scientific publications provide a review template.
Reviewers use this template to provide constructive feedback on different
aspects of the reviewed paper.
All evaluation questionnaires are examples for the FEEDBACK SCAFFOLD. The
FEEDBACK SCAFFOLD pattern, if applied correctly in this area, would help the
designers of the questionnaires to provide space for free feedback (e.g., an
open-ended text field).

Related Patterns:
 SOFT SCAFFOLDING (Pachler et al., 2009) highlights the importance of

providing scaffolding structures for e-learning settings.

2.4 PEER RATED COMPETITION
Context: During your course, you have students working in small groups on a
larger design problem. All groups work on the same problem.

Problem: Students tend to focus on their own solution and to ignore
other, potentially better ways of solving the problem.
Forces:
 Students have different levels of proficiency upfront.

 Some courses are not graded. If reaching any solution is the main criteria for
passing the course, students focus on reaching one solution, ignoring the
solution’s quality.

 Some students love competitions, especially ambitious students.

 Students should be aware of the possibility of different quality criteria.

Solution: Let the students select the best solution through several rounds
of selection and offer a reward for the best solution. Let them first present
their solutions to two or three other groups and make them elect the best
solution out of these. Let them decide based on quality criteria that are explicitly
set up by the students. Make all the winners present again in front of the whole
course. Let the solutions be rated at the end of the course and offer REWARDS
(Schümmer & Lukosch, 2007) for the best solution. You can define more than
one category where teams can win.

Technology Support: You may decide to have one or more rewards where the
class is the jury (extending the idea of a (RATED) EXHIBITION). In such cases, you
can support the students in the election of the winners by using a VOTING
(Schümmer & Lukosch, 2007) system.

Examples:

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-9

In 2004, we taught a beginners course on Java programming at the FernUni
Hagen. Since the students had very diverse previous knowledge, we decided to
require rather basic programming skills to pass the course while at the same
time creating a competition that should encourage good students to create their
best possible result in the course.
The task was to create an event location planner that helped organizers of an
event to place the chairs in a way that the audience could have a good view of
the stage. Students worked on this task individually and presented their
solutions in micro exhibitions with 8 students in each exhibition. From each
exhibition, the 8 students selected the most interesting application with respect
to the design of the graphical user interface and the performance reached by
the system. The winners were then presented in a course-wide exhibition and
all students were allowed to vote for the best solutions.
At the end, 4 students received prices and their solutions were placed on the
course’s web site (http://web.archive.org/web/20050302111927/kalu.fernuni-
hagen.de/1580+82+84/propra2004.html). Both, novices and advanced students
reported that they were amazed by the quality and creativity that was present in
the winning solutions and perceived new motivation for their next courses.
At the University of Hamburg, we conduct a similar competition in the second
semester course on programming, called Software Development 2, since 2007.
All students have to implement parts of a film schedule planning software for a
real cinema, working in groups of up to six. Towards the end of the semester,
the teams have to present their results to each other and elect the best
contribution. The prizes are tickets for the cinema in Hamburg.

Related Patterns:
 EXHIBITION focuses more on the presentation and exchange of the students’

solutions in diverse areas.

 LETTER OF RECOMMENDATION (Schümmer & Lukosch, 2007) shares the focus
on rating other people’s contributions. The goal of the LETTER OF
RECOMMENDATION is to identify experts for a specific subject or people who
have a specific experience. In contrast to this, the ratings in the PEER-RATED
COMPETITION use the ratings as a motivational means.

 GOLD STAR (Eckstein et al., 2002) is a more general pattern for praising
good students.

 ROUND AND DEEP (Pachel et al., 2009) highlights that the experiences of peer
students can augment the content taught in a course. Students should learn
from other students’ views by understanding the different approaches
towards a specific challenge.

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-10

2.5 STUDENTS’ FEEDBACK FIRST
Context: You are discussing students’ solutions.

Problem: Discussions of solutions are often dominated by the teacher.
Teachers are often pressed into the role of experts and their feedback is
seeked first. Students fear to criticize other students’ work since they do
not always know if their critique is correct.
Forces:
 Students are less confident in the subject than educators.

 Since there are more students than educators, there will be more opinions
and different (creative) ideas and impressions present in the class than the
educator expects.

Solution: Let students comment on peer students’ solutions before
providing feedback yourself. Appreciate the feedback and strengthen the
confidence of the students in the solution by an explicit summary or
confirmation at the end of the discussion.

Technology Support:
In newsgroups, you should give students the time to answer a subject on their
own first. Make sure that students know that you will not respond immediately.

Discussion:
Danger spot: Students may get the impression that the teacher has nothing to
say about the solution.

Examples: Newsgroup discussion at the FernUniversität in Hagen: Courses at
the FernUniversität in Hagen typically have an attached newsgroup where
students can ask questions and discuss solutions. Instructors intentionally leave
questions unanswered for one or two days to give students the opportunity of
providing an answer. Later in the discussion thread, the instructors step in to
approve the solution.

Figure 3 : Newsgroup threads in the course on distributed systems.

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-11

Figure 3 shows a brief excerpt of a newsgroup discussion that took place in the
course on distributed systems. One student initially presented his solution with
the goal of getting feedback (on 9th Nov). Instead of providing an instant
answer, the instructor waited three days before she commented the solution
(post from 12th Nov, 11:27). She also commented the comments made by other
students whenever this was required.

Related Patterns:
 PEER CORRECTION also argues that you as a teacher should step back in

order to encourage students to make up their mind regarding other students’
solutions.

2.6 PEER CORRECTION
Context: You are teaching a large course where students have to solve
assignments. The solution process involves creativity; the final result is often a
written text that needs to be interpreted by the reader in order to grade it.

Problem: Students expect to receive feedback on their solutions. But you
as a teacher have insufficient time to provide detailed feedback on all
solutions.
Forces:
 You have no resources for correcting all assignments.

 Students request that their individual solution is corrected by a
knowledgeable person.

 Students have gained competencies by creating a solution.

 You want to empower students to critically comment content related to your
course’s subject.

Solution: Let students give feedback on other students' solutions. Create
a prototypical solution and give that solution to the correcting students.
Correcting students can use this solution as a guideline for their feedback. If
appropriate, you can give the students additional guidelines such as a list of
important keywords that should be discussed in the solution. Each student
selects a peer student (or is assigned by you to a peer student) and provides
feedback according to your solution guidelines. Note that the different roles of
the correcting student and the corrected student can also be filled by groups of
students. This would mean that a small group of students collaboratively
creates a solution and that another group of students than does the inspection.

Technology Support: Technology support can help during the coordination of
the correction process. Special attention should lie on support for GROUPS, i.e.,
the corrected student should be aware of the correcting student and have
means for interacting with the correcting student.
An example for a concrete implementation provides the student with
functionality for submitting his solution to a pool of correcting students. The
correcting student may select this solution for correction or the teacher may
assign the solution to the correcting student. From then on, the correcting
student and the author of the solution form a COLLABORATIVE SESSION that

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-12

allows them to interact. You may decide to equip the students with a
collaboration space, e.g., a ROOM, in which they will find the approved solution
and advice for performing the grading.
The correcting students need means for adding comments to the solution. This
can be handled by SHARED ANNOTATIONS. The final result of the correcting
student’s review can be structured with a grading template. This especially
eases the teacher’s task of reviewing the review.

Discussion: The correcting student takes over parts of your responsibility as a
teacher. He can do this because he received additional input (the solution
guidelines) or because he/she has gone through the assignments in a previous
iteration of the course. In both cases, the student benefits from correcting other
students’ solutions because he/she has to analyze, understand, and critique the
solutions produced by peer students. Students also get an impression of other
students’ approaches for the assignment.
A potential danger spot of the pattern is that the correcting student misinterprets
or simply does not understand your solution guidelines. Make sure that a
corrected student can contact you if he/she has any doubts regarding the
correctness of the feedback.

Examples: At the FernUniversität in Hagen, we applied the CORRECTING
STUDENTS pattern in a course on operating systems in the years 2006 to 2009.

Related Patterns:
 GURU REVIEW (Manns & Rising, 2005) proposes to invite well-known experts

to review new ideas in an organization.

 FEEDBACK (Eckstein et al., 2002): Feedback is given by the teacher to
ensure that the students understand where they are at fault.

 SELF TEST (Eckstein et al., 2002): Students should assess themselves using
questionnaires and prepared answers.

 PEER EVALUATION (Derntl, 2004): The PEER-EVALUATION pattern can be
considered as a predecessor of our pattern. PEER CORRECTION extends the
PEER EVALUATION pattern by proposing a concrete interaction process and
highlighting the need for FEEDBACK SCAFFOLDS.

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-13

2.7 (RATED) EXHIBITION
Context: You have students working on larger design problems. They work
alone or at most in pairs. Each person or pair is working on a different problem.
The typical example is several students that are working on their final thesis.

Problem: Students that work very focused on their own problem tend to
loose interest in other problems or solutions.
Forces:
 Students construct creative solutions.

 Students can be shy to show the results of their work.

Solution: Let students prepare presentations of their finished work, e.g. in
form of a poster. Organize a gathering where the students can (but do not
have to!) present their results. Identify and honor outstanding
presentations.
This encourages other (younger) students to reflect on the quality of good
solutions and thereby better understand what is required by a good solution.
Besides presenting the result, you may also ask the students to present their
process that led to the result.

Technology Support: In co-located settings, you may create an exhibition
where students present their results on flip-charts, posters, etc. In distributed
settings, you may ask the students to upload their solutions to a Wiki. If the
solution includes a presentation, you may also ask the students to create
electronic versions of their presentation using presentation systems like
slidecast. Encourage the students to comment other students’ solutions.
Since the discussion should have time to reflect, you may use a forum attached
to each solution where the solution can be discussed.

Discussion: You need to decide when you make the solutions available. If you
teach the same class in subsequent years, you may use the solutions of
previous years’ students and make them available before the solution is due.
However, this may hinder the development of new / different solutions.
Ensure that you explain the added value of creating a presentation of their work
for a wider audience.

Examples:
In the course Designing Cooperative Systems taught at the Universities of
Applied Science Dortmund and Cologne/Gummersbach, the students were
asked to successively build a prototype for a cooperative system. While the
lecture evolved, students were frequently asked to show their intermediate
solution to others. This bound the lecture to the cases created by the students
and helped the students to better understand the subject. At the end of the
course, the students created a SlideCast presentation of their prototype and all
prototypes were finally visited together on slidshare
(http://www.slideshare.com/) during a virtual lecture session where students
provided their comments both in written form using the course’s mailing list and
orally within a telephone conference (Figure 4).

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-14

Figure 4: Using a SlideCast as one way to exhibit the students’ results.

In the Department of Informatics at the University of Hamburg, once every year
students are asked to present the results of their thesis projects at the EXPO, a
half day event that is open to the public and actively visited by the members of
the Department (staff and students). Typically students prepare posters, but
sometimes they also prepare demos. The best three presentations win a prize
(money).

Related Patterns:
 PEER RATED COMPETITION has a special focus on the peer rating. While rating

can also be an aspect of the EXHIBITION, the main focus of an EXHIBITION
should rather be the exchange of experiences.

 HALL OF FAME (Schümmer & Lukosch, 2007) displays successful users of a
community. In an educational context, we prefer to rate the students’
solutions.

 HOMETOWN STORY (Manns & Rising, 2005) discusses how new ideas can be
exchanged in organizations. The authors propose to organize an informal
highly interactive session in which new ideas are presented and shared
among practitioners.

 STUDENT ONLINE PORTFOLIOS (Eckstein et al., 2002): Same direction but
focus on providing a place for publishing results. We assume that there are
additional requirements, especially that the exhibited artifacts should invite
peer feedback.

 Classroom display (Pachler et al., 2009) also argues for an event at which
student solutions are made accessible to peer students. The pattern
concentrates on the design of an e-learning environment for supporting the
exchange of the solutions. Rating is not discussed in the Classroom Display
pattern.

Hearing the Student’s Voice Schmolitzky, Schümmer

D4-15

3. Conclusion
This paper is intended as a systematic collection of best practices for gaining
and handling feedback by students. We consider it as a first step towards a
larger collection of patterns that will encourage students to become active and
critical partners in the next generation of educational settings. In these settings,
teachers become facilitators of learning activities. We experienced that
feedback plays an important role in these settings and hope that the patterns of
this paper can make teachers more aware of the importance of feedback.

Acknowledgements: We thank our shepherd Symeon Retalis and the
participants of the writers’ workshop at EuroPLoP 2009 for their feedback.

4. References
Bergin, J., Eckstein, J., Manns, M.L. and Sharp, H.: Patterns for Active Learning. Proc.

PLoP '02, Monticello, Illinois, 2002.

Bergin, J.: Active Learning and Feedback Patterns. Proc. PLoP '06, Portland, Oregon,
2006.

Derntl, M.: The Person-Centered e-Learning pattern repository: Design for reuse and
extensibility. Proc. World Conference on Educational Multimedia, Hypermedia
and Telecommunications, Lugano, Switzerland (pp. 3856–3861), 2004.

Derntl, M.: Patterns for Person-Centered E-Learning. IOS Press, Amsterdam, 2005.

Eckstein, J: Workshop Report on The Pedagogical Patterns Project: Successes in
Teaching Object Technology. Proc. OOPSLA ‘99 Educators’ Symposium,
Denver, CO, 1999.

Eckstein, J., Bergin, J. and Sharp, H.: Feedback Patterns. Proc. EuroPLoP '02, Irsee,
Germany, 2002.

Haake, A., Lukosch, S., and Schümmer, T.: Wiki-templates: adding structure support to
wikis on demand. Proceedings of the 2005 international Symposium on Wikis
(San Diego, California, October 16 - 18, 2005). WikiSym '05. ACM, New York,
NY, 41-51. DOI= http://doi.acm.org/10.1145/1104973.1104978, 2005.

Manns, M.L., Rising, L.: Fearless Change. Pearson Education, Boston, MA, 2005.

Martin, D., Rodden, T., Rouncefield, M., Sommerville, I., Viller, S.: Finding Patterns in
the Fieldwork. Proc. of ECSCW’01. Bonn, Germany, Kluwer, 2001.

Pachler, N., Mellar, H., Daly, C., Mor, Y., Wiliam, D., Laurillard, D.: Scoping a vision for
formative e-assessment. JISC project report, http://telearn.noe-
kaleidoscope.org/open-archive/browse?resource=1875 (2009)

Schmolitzky, A.: A Laboratory for Teaching Object-Oriented Language and Design
Concepts with Teachlets. Proc. OOPSLA Educators' Symposium, San Diego,
CA, 2005.

Schmolitzky, A., Schümmer, T.: Patterns for Supervising Thesis Projects. Proc.
EuroPLoP 2008, Irsee, Germany, 2008.

Schümmer, T., Lukosch, S.: Patterns for Computer-Mediated Interaction. John Wiley
and Sons, Chichester, UK, 2007.

Schuler, D.: Liberating Voices, A Pattern Language for Communication Revolution. MIT
Press, 2008.

D5 1

Pattern for Graduate Student Company

Petko Ruskov1, Milena Stoycheva2, Yanka Todorova3

1Sofia University, FMI, 125 Tzarigradsko shosse, Sofia, Bulgaria, petkor@fmi.uni-sofia.bg

2JA Worldwide and JA Bulgaria, Sofia, Bulgaria, milena@jabulgaria.org
3Sofia University, FMI, 125 Tzarigradsko shosse, Sofia, Bulgaria, todorova.yana@gmail.com

Abstract

Graduate Student Company (GSC) is an innovative educational model to teach entrepreneurship
competencies based on the learning-by-doing methodology. It represents the formation of a student-
operated mini-company which functions like a limited company, and the members buy shares in the
company though personal contributions. During the process of learning, the students understand the
opportunities of how to start and run a company and go through the whole company life cycle from
establishment to closure.

Our approach involves review and observation of European and global practices in the field of
entrepreneurship education; practical implementation of the Junior Achievement –Young Enterprise
(JA-YE) methodology for the Graduate Student Company. The main findings represent the
experience and best practice of the Junior Achievement -Sofia University partnership and propose a
model for future implementation in both engineering and scientific faculties. Learning-by-doing
methodology is a key success factor for teaching entrepreneurship. Patterns are seen as a good
repeatable practice to encourage involvement and mentorship on part of the business community and
improve the learning environment and entrepreneurship ecosystem. The target audience are
developers of curricula, teachers and business angels. The GSC pattern is expanded and
implemented in 10 more universities in Bulgaria during 2008-2009 academic years.

Keywords
Graduate Student Company, life cycle, learning patterns, learning-by-doing

1. Introduction
The educational processes like the processes in the service industries share two
comparatively common features: intangibility and interactivity. Graduate Student Company
life cycle process – which is presented in this paper as a pattern - typically has progressed
further in terms of intangibility and interactivity than most other sectors being an innovative
representative of the educational sector. Like the other service industries it has the following
main characteristics according to Miles [13]: co-terminality, low portability, information
intensity, fundamental processes, knowledge intensity, and market relations.
The education of students from scientific and technology faculties in technology
entrepreneurship in this complex and dynamic environment requires the evaluation and
response of all of the above factors and their impact on the education. Therefore, we made a
conscious decision to utilize the pattern approach which later on will help us to share and
repeat the GSC practice.

2. Graduate Student Company Organizing Principles
The organizing principles we have chosen represent a structure which is a set of syllabus,
patterns, and academic and business services [12, 14, and 15].

D5 2

 Syllabus is an organizing framework that groups together separate learning lessons
and themes into one specific university course.

 Patterns are organizing concepts that facilitate dynamic mapping from stakeholders
requirements to learning-by-doing educational designs.

 Services are a comprehensive set of activities that ensure the smooth and
successful implementation of the academic processes and the related administrative
and business procedures.

In the context of all of the above and having set our strategy and goals, we reviewed our
processes and analyed the best practices in the field [4, 5, 6, and 18]. As a result, we came
up with the improved Graduate Student Company learning process [16] – Figure 1:

Figure 1. Graduate Student Company process

The above described process of the GSC life cycle represents a pattern which the authors
recognize consists of several sub-patterns. It is our intentions in future works to dive deeper
and uncovers and describes them.

Patterns

In principle, a pattern describes a particular problem and its solution context [9, 10, 11].
Specifically in these books, a pattern describes a (set of) problematic situation(s) for the
development team that can be fixed by applying an agile practice [1, 3]. Patterns are to be
trusted because each one has been used several times with real development teams and
projects — they are not one-off solutions or ‘good ideas’ that might or might not work [2].
Patterns are "discovered" and not "created."
The pattern format used in [1] by Elssamadisy is as follows and has been modified in some
sections of the current pattern:

 Name:
 Description: a brief overview of the practice or cluster. Not included in this pattern.
 {Dependency Diagram:} A diagram showing inter-practice dependencies (for

practices) and grouping (for clusters). Not included in this pattern.
 Business value: A sorted description of the business values this practice or cluster

improves.
 Sketch: A fictional story that describes this pattern being used on a software

development project in a given context.
 Context: The preconditions and environment where this pattern is useful. The

context is a collection of invariants: issues that do not change by applying the
pattern.

D5 3

 Forces: Used to elaborate context and give specific issues that are problems
(partially) resolved by this pattern. In fact, correct application of the pattern should
remove many of the forces.

 Therefore: The pattern description.
 Adoption: Steps, ordering, guides to adopting this pattern.
 But: Negative consequences that can occur from applying this pattern.
 {Variations:} Different ways this pattern has been implemented successfully other

than that described in the Therefore section.
 {References:} Where one can read more.

3. Student Company Patterns

Based on the 4 year experience with the student company model, a pattern for its
implementation has been emerged - GRADUATE STUDENT COMPANY pattern. It is a
higher level of abstraction of the GSC lifecycle and therefore can be further developed in
many sub patterns – such as curricula, enrolment of students, company operations, closing
the company, etc.

Name: Graduate Student Company Pattern
Description: Most sciences and technology universities today focus on theory that does not
reflect the competences and capabilities needed on the market. The GSC set of patterns
describes a learning-by-doing paradigm. Students are educated and learn through a process
of creation, registration and running of a student company. The GSC functions as a real
company (but is registered with the local Non-Government Organization entity office/ or
government department) in real market conditions. The participants in the company receive
advice and mentoring by experts and practitioners from real business organizations but run
the company themselves. After the GSC educational process, successful companies
proceed with a legal registration and establish as new start-ups. One of the major problems
in educational system is the existence of a big gap between academia and business. It is
also a recognised phenomenon that needs to be addressed on a pan-European and global
level. The traditional university education is rather static and lagging behind the current
dynamic economic environment. The classical knowledge life cycle from the moment of
creation of knowledge and delivery to the students through books and professors is much
slower than the direct contact with the knowledge creators. n the side of the continuum, for
students to “plunge” directly in the real business without going through the practical learning
curve will take this activity out of the educational life cycle. However, the implementation of
the GSC model guarantees interaction and contact of the students with practitioners and
consultants from the real business sector. Furthermore, it helps to eradicate the problem of
lack of practical experience and work in real business conditions.

Problem: How does one motivate and educate science and technical student to have
entrepreneurial competences and attitude.

Business value: The GSC added value to all stakeholders in the chain – students perform
in a real market environment and build experience; universities cooperate with the existing
respective industries and transfer competences; employers participate in the educational

D5 4

process and update syllabuses; local and central governments are recipients of the benefits
the active citizens of their community provide. The GSC delivers the real practice value to
the customers: students, potential employers and community.

Sketch: Students from the Masters Degree Program “e-Business and e-Government” of the
Faculty of Mathematics Information Science of Sofia University have the elective course
Entrepreneurship – Graduate Student Company in their curriculum. Prior to the beginning of
the academic year, JA Worldwide, the oldest and the fastest growing organization teaching
economics, business and entrepreneurship in the world, organizes and sponsors training of
teams of professors and students from technical and scientific faculties and universities in
the country, delivered with the support and participation of business consultants and
practitioners from the business sector. The latter conduct a promotion campaign among the
students at large from these faculties and universities, and established 2 Graduate Student
Companies which followed the real business educational process of Junior Achievement and
created firms, formed departments, appointed staff, issued shares, designed and developed
a product and produced it as well. At the closing stage of the process, the members of the
company participated in a national, regional and global competitions for a business plan and
a best company and the winners represented the country in the European and global wide
competition for a best Graduate Student Company and business plans.

Context: Preliminary conditions for conducting this program (course and training) through
this strategic pattern include securing that the course is a part of the elective offerings in the
curricula; training of faculty selected students in real company setting by the business
sponsors of the program.. It is necessary also that teaching materials, guides for
consultants, teachers, and students are secured for the participants and provided to them.
These conditions are enforced and true for the respective academic year and do not change
while implementing the pattern. A GSC is not expensive to run and there is no risks for the
stakeholders.

Forces:

 Delivering value to the customer: The education offered in the majority of the
universities today is rather academic and theoretical and does not meet stakeholders’
expectation in reflecting the dynamics of today’s global market economy. But,
involving business consultants in the process delivers the real practice value to the
customers: students, potential employers and community.

 Need of Multidisciplinary competences: Traditionally, the teaching approach lacks
integration of multidisciplinary competences, i.e. technology, business, human
behavior, etc. However, in the carried out GSC format, students will practice and
learn many lessons in creativity and innovation and apply skills and competences
from different disciplines.

 Measuring students’ performance: The classical method for measuring
educational results is rather subjective and dependent on a limited number of
evaluators. However, the GSC model allows the students to have a self-evaluation
through public presentations and filming of their performance, as well as feedback
from participation on the real market or in national and international contests and
competitions.

Therefore/Solutions: Establish a Graduate Student Company (GSC).
A GSC provides post-secondary students the opportunity to experience running their own
company, giving them an insight into how their talents could be used to set up in business
for themselves. GSC students acquire real experience of the world of business: creating and
researching a business plan, taking responsibility and being accountable to their
shareholders for the running of the company. Through this program students develop
attitudes and skills necessary for personal success, lifelong learning and employability, plus

D5 5

an understanding of how business works; gain an insight into self-employment, business
creation, risk taking and coping with adversity, with advice and support of business
consultants available.
During the one and/or two semester educational process (depending on the specific local
environment) the students form their own student company, manage it efficiently and
achieve a real financial result at the end of the course. The Graduate Student Company
functions like a limited company, and the members buy shares in the company though
personal contributions. The number of participants is 12-20 people, and they operate in
departments with Vice presidents as heads and a President as the CEO of the company.
Two real life examples describing the processes and GSC case studies are presented in the
Section 4 of the current paper.

Adoption: Most of the experience of the authors in the delivery of this program has been
with students from high schools and some college students. The current program has been
upgraded, adapted and innovated for Masters’ degree students from technical and scientific
faculties. The authors are convinced that such a course adds great educational value for the
students with such background as it exposes them and develops their entrepreneurial
mindset and business competency.
Our experience so far, has provided enough evidence that the student company life cycle
pattern can be one of the steps to address this issue and apply an innovative and hands-on
approach to it. The stages in the process of the GSC are many and follow the logic of a real
company. To indicate where there are more patterns, the authors use capitals or terms of
(potential) sub patterns. The Graduate Student Company Learning processes and their
Stage Titles (Figure 2) as well as the Student Company Business Cycle based on APQC's
[20] Process Classification Framework (Figure 3) are visualized and outlined below. Figure 3
shows a different view of the value added chain.

Identify and involve all
stakeholders

Prepare and publish
teaching materials

Create demand in the
community for this type

of learning

Promote the course among
masters degree students

Enroll the students in
the program

Introduce and present the
minds and ends of the

student company

Define the organizational
model and structure of the

company

 Organize and form
Student Companies

Run the Student
Companies - business

cycle

Close the Student
Companies

Outcome of the work
and Results

Support for the student
company members to

participate in competitions

Academic Evaluation
and grading of the

students

Follow-up
Register real companies

with the most
entrepreneurial students

STAGE 1: SETTING THE CONTEXT

STAGE 2: INVOLVING THE STAKEHOLDERS

STAGE 3: COMPANY OPERATIONS

STAGE 4: FURTHER SUPPORT

D5 6

Figure 2. Graduate Student Company Learning processes

Figure 3. Student Company Business Cycle based on APQC's Process Classification
Framework

But: Negative consequences: Specific factors and conditions which can create problems for
the delivery of the pattern are related to the threat of too much theoreticiing of the course.
Negative consequences may be observed when implementing the pattern if the students are
not properly consulted and they are allowed to divert from the educational process or they
spend too much time on the company and leave their other obligations unattended.
Additionally, the GSC course is an empowering course for students in terms of “going-for-
real” through the process of running a business. However, the fact that there are limitations
in terms of registration and cap on the capital creates a challenge for the students as they
are functioning in real market conditions and yet have to comply with the requirements for
less capital. One of the ways to overcome such negative consequences is to have closer
interaction with the business consultants so that the students can feel and see the “value-
added” that they are also creating for the business. Ultimately, the best solution to make the
experience and model really “valid” is to secure a support structure for student start-ups that
is supported institutionally by the government.

Variations: The GSC allows the students to experience the whole idea of going
through the life cycle of a real company. The program can be delivered in the following
variations:
 This program is usually delivered for students from high schools and college. However,

these age groups lack some of the more sophisticated business experience (like with the
master’s degree students), critical problem thinking, ability to see alternative solutions
and decision-making.

 The authors are specializing in technology entrepreneurship and therefore find the
pattern most appropriate for students from scientific and engineering backgrounds.
However, there is also positive experience in applying it in economic and business
faculties as it adds the hands-on experience and entrepreneurial approach in education.

 One or two semesters. If offered two semesters this will allow for more in-depth
development of the product and its activity and better strategy for its development. It is a
good option to use with unemployed specialists for the development of their
entrepreneurial skills and competences [7].

 The best configuration, based on the authors experience is a team of approximately 15
students, more or less. This allows for a good-sized company organization which has all

Develop Vision and
Strategy

Develop and Manage
Products and Serveices

Market and Sell Products
and Services

Deliver Products and
Services

Manage
Customer Services

OPERATING PROCESSES

MANAGEMENT AND SUPPORT PROCESSES

Develop and Manage
Human Capital

Manage Environmental
Health and Safety

Manage Information
Technology

Manage External Relations

Manage Financial
Resources

Manage Knowledge,
Improvement and Change

Manage Property

D5 7

of the main departments manned, and at the same time provides a format for effective
communication in smaller groups.

 The course is not limited to running a Student Company where students buy shares –
there are options to attract a sponsor and run the company with the funding/money of an
investor as well. However, again based on the experience of the authors, the closer the
delivery of the course to real market conditions and the more concrete the requirements
are, the clearer and better the outcome is in terms of achieving specific results for
developing entrepreneurial mindset and business competency in the students.

 It is possible to run a company in a virtual environment, especially if participants are from
different countries – almost entirely. We believe though that for a real business to occur,
having trust in ones’ business partners and building relationships is critical. Therefore the
model should provide for at least one face-to-face meeting.

Literature: You may read more on this pattern in:

Stoycheva M., Ruskov P., Entrepreneurship Education in Engineering and Scientific
Faculties, Proceedings of the International Conference for Entrepreneurship, Innovation and
Regional Development ICEIRD 2008, Skopje&Ohrid, Macedonia 8-12 may 2008, pp. 605-
610, ISBN 978-9989-2636-4-4.

Ruskov P., Stoycheva M., Graduate Student Company Learning Patterns, Proceedings of
the International Conference for Entrepreneurship, Innovation and Regional Development,
ICEIRD 2009, 24-25 April 2009, Thessaloniki, Greece, pp.231-239, ISBN: 978 -960-89629-
9-6.

GSC known uses/applications: After a 4 year-long experience in running the GSC, the
authors developed the Student Company Lifecycle Processes and in applying them are
presenting two case studies of successful GSCs.

 Case studies for graduate student companies

YPM – Start Point

Sector: Products
Employees: 15
Location: Bulgaria
The big idea
To be the most popular on-line and publishing media focused on issues for and targeting the
Bulgarian students. To create community that enables students and business across Europe
to share ideas and fill the gap between them.
What they do
The product "Start Point" Magazine is a monthly publication distributed for free. The second
part of the product is a Start Point web site, where the magazine content can be found.
Articles from the site are translated in English and accessible all over Europe.

The challenge
The participants in the YPM-Start Point Company started with a brain-storming session and
analyzed the current environment in the country. They concluded that there is a gap
between education and business in Bulgaria. They identified the challenge to create a bridge
among them. Another problem is the need of popularization of Entrepreneurship among
young people and its integration in the education programs.

The solution
The GSC life cycle pattern provided the right format for the participants to address the
problems and challenges that they identified. "Start Point" magazine is entirely intended

D5 8

for young people, who make their first steps in business or career. It provides information for
current interesting events related to business and education. The purpose is to provide
different perspectives for starting a new business and career growth.
On-line Magazine - All articles can be found on the magazine’s web site. Each section has a
forum, allowing readers to share their experiences and ideas between each other, related to
the magazine staff.

"Start Point" is positioned on the market of free and online media, aimed at students and
issued monthly. It is the first magazine of this kind, offering information on current and
important topics, related to business and education. The articles are written in accessible
language and the information is presented in an interesting way. Through its website, the
magazine reaches much larger audience.
Issues arising
To facilitate and create common interests between business and education YPM has to
develop and promote a web site and a forum. In this way they allow effective communication
between business and students. More over with organizing, assisting and participating in
various initiatives, seminars and forums, they contribute to the building of better relationship
between business and education.
The outcome
Even with the first issue the company realized a positive outcome. It was achieved because
of the strength and potential for development of an innovative idea of free student magazine,
linking businesses and students. Proofs of this are the companies that supported the idea in
the beginning.
What next?
To achieve progress and growth YPM have to:

 Increase the volume, by getting more funds attracted by advertising or other
sources.

 Reach a maximum number of readers.
 Increase the distribution area.
 Increase the revenue from advertising, through aggressive marketing strategy

and maintaining a high quality of information provided by us.
 Increase the number of pages, by attracting new advertisers.
 Build a good team of authors through continually attract new young people.
 Build a partnership network of organizations and associations with similar to their

goals.

Art & Innovation Group

Sector: Products
Employees: 8
Location: Bulgaria
The big idea: To help reducing environmental pollution.
What they do:
Alternative eco-product for the polyester bags - bags made from recycled paper.
The challenge:
According to the Ministry of Environment and Water three billion and two hundred million
plastic bags are bought in Bulgaria every year. If we tie together those bags (and assume
that a bag is long on average 30 centimeters), we may reach the moon, then back to Earth
and back to the half of the distance. A plastic bag is produced for 5 minutes. It is used for
average 30 minutes, and for its degradation is needed between 100 and 400 years. The
partcipants identified the problem of a lack of concrete solutions to deal with the
environmental pollution.

D5 9

The solution
The GSC Life cycle pattern showed the participants a way of creative thinking and
approach to the problem. The team which was formed during the company life cycle
generated an idea and found a way to implement it.
Art & Innovation Group develop a strategy to establish the use of alternative eco-product -
bags made from recycled paper.
Main advantages of paper bags:

 Recycled paper is cheaper than natural paper;
 They are designed to withstand load up to 10 kilograms;
 Provide weak elasticity: retain its shape during use;
 Advertisement inscriptions are visible for a long time;
 Provide excellent print quality on all types of printing machines;
 They are biodegradable, can be processed and turned into paper.

Issues arising
To establish the use of paper products that meets the European ecological requirements. In
this way they will avoid the use of packaging materials from polyester materials. Art &
Innovation Group uses economic stimulus to establish the bags. As the advertisers have
access to a wide segment of the market and via their advertisement they show socially
responsible policy.
The outcome
The company contacted most of the big retail chains and achieved signing contracts for
partnership. The eco-product will be offered along with the polyester bags. They plan to sell
200 000 paper bags in the first year.
What next?
Art & Innovation Group’s goals are:

 To convince the representatives of large retail chains in the profitability and benefit
from the use of such eco-product;

 To "force" the maximum number of advertisers to place their logo on the bags, and
thus accelerate the realization of the idea;

 To change public attitudes through extensive marketing campaigns;
 To establish their brand and name of a socially responsible company.

5. Conclusions
The paper presents the experience of the authors with a course -- the “Graduate Student
Company”, the process of introduction and implementation of the program in a university
setting, the lessons learned, and the importance and use of this pattern as a good practice in
the teaching and development of entrepreneurship education in the engineering and
scientific faculties.
The described pattern facilitated the process of expansion and multiplication of the Graduate
Student Company Life Cycle processes from one faculty of Sofia University to 10 faculties
and universities and faculties in Bulgaria. The authors anticipate that it will receive a positive
feedback and will be disseminated as an innovative approach of learning-by-doing in several
European universities and can be promoted and successfully implemented in other
universities in the region as well. The participation in the GSC and passing the patters is an
excellent opportunity for students and teachers to meet with executives, innovators,
investors, industry suppliers and leading brands of the GSC stakeholders.
The described above cases represent the successful implementation and practices in 2
Graduate Student Companies and show the positive results from this process in Bulgaria.
This, as well as the achievements from the European Best Graduate Student Company

D5 10

Competition, demonstrate evidence and proof for the value of the current GRADUATE
STUDENT COMPANY LIFE CYCLE pattern.

Acknowledgement
We are most grateful to Christian Kohls and Andreas Fießer who shepherded this paper for
EuroPLoP 2009.

The work on this paper has been sponsored by:
 Junior Achievement Bulgaria; Junior Achievement-Young Enterprise Europe
 UC 7FP Project SISTER: “Strengthening the IST Research Capacity of Sofia University”,

Grant agreement no.: 205030

References:
1. Elssamadisy A. 2007, Patterns of Agile Practice Adoption, Crafting an Agile Adoption

Strategy, InfoQ, 2007.
2. Engel J., Charron D.,(2006), Technology Entrepreneurship Education, Theory to Practice,

Lester Center, Berkeley 2006.
3. Galic M., and all, Academic Edition: Applying Patterns Approaches Patterns for e-

business Series, IBM Redbooks publication, 2007, SG24-7466-00.
4. JA Bulgaria Graduate Student Company,

http://www.linkedin.com/groups?gid=1221827&trk=hb_side_g
5. JA-YE Europe Strategy Brochure - "Vision 2010 and Beyond", http://www.ja-

ye.org/Download/STRATEGY%20BROCHURE%202007.pdf,
6. Junior Achievement, Student Company, Entrepreneurial Spirit, Colorado Springs,

Colorado, USA, (Translated and Adapted in Bulgarian by Junior Achievement Bulgaria,
2003), 2000.

7. Junior Achievement, Student Company, Entrepreneurial Spirit, Documentation, Colorado
Springs, Colorado, USA, (Translated and Adapted in Bulgarian by Junior Achievement
Bulgaria, 2003), 2000.

8. Junior Achievement, www.ja-ye.org/graduatestudentcompany
9. Kelly A. 2005a, Business Strategy Design Patterns, The Porter Patterns,

http://www.allankelly.net
10. Kelly A.2005c, Business Strategy Patterns for the Innovative Company, The Porter

Patterns, http://www.allankelly.net
11. Kelly A.2008, Business Patterns for Product Development, (EuroPLoP 2008),

http://www.allankelly.net
12. Masters Science Degree Program of Sofia University http://www.fmi.uni-

sofia.bg/education/magisters/informatika-07-08/elektr_biz_el_uprav.pdf
13. Miles I., Patterns of innovation in service industries, IBM Systems journal, vol.47, No 1,

2008, pp.115-128
14. Robertson B., Sribar A., Enriching the Value Chain, Infrastructure Strategies Beyond the

Enterprise, Intel Press IT Best Practices Series, 2002.
15. Ruskov P., Harris M., Todorova Y., Strategic Model for Master of Science program

“Innovation and Technology Entrepreneurship”, 3rd Balkan Conference in Informatics
(BCI'2007), 27-29 September 2007, Sofia, Bulgaria, ISBN:978-954-9526-41-7, vol.1, pp.
501-512.

16. Ruskov P., Stoycheva M., Graduate Student Company Learning Patterns, Proceedings of
the International Conference for Entrepreneurship, Innovation and Regional Development
ICEIRD 2009, Skopje&Ohrid, Macedonia 8-12 may 2008, pp. (under review)

17. JA-YE Europe Surveys, 2009 http://www.ja-
ye.org/Main/Default.aspx?Template=TProjects.ascx&phContent=ProjectsList.ascx&CatID
=213&ArtID=0&LngID=0

18. Christensen C., Horn M., Johnson C., Disrupting Class, How Disruptive Innovation Will
Change the Way the World Learns Mc Grow Hill, 2008

19. Ruskov P., Stoycheva M., Graduate Student Company Learning Patterns, Proceedings of
the International Conference for Entrepreneurship, Innovation and Regional

D5 11

Development, ICEIRD 2009, 24-25 April 2009, Thessaloniki, Greece, pp.231-239, ISBN:
978 -960-89629-9-6.

20. APQC, American Productivity and Quality Center Process Classification Framework,
http://www.apqc.org/portal/apqc/site/?path=/research/pcf/index.html.

Appendix1. Graduate Student Company Processes

The stages (in bold italic) and sub processes in the educational process of the GSC are as follows:
Identifying and involving all stakeholders. The main stakeholders that have to be contacted and
negotiate the future collaboration with them are:

Faculties from leading and diverse fields of science

Consultants from the business community,

Business partners,

Government

High schools and colleges

Clients/employers

Preparation and Publication teaching materials. Before the GSC life cycles start the next teaching
materials must be ready:

Teachers Guide

Students Guide

Business Consultants Reference Guides

Creating demand in the community for this type of learning

Promotion among the corporate sector

Promotion with the relevant ministries

Promotion in the local communities and municipalities

Promotion with local SMEs and NGOs

Promotion of the course among university masters degree students. The GSC course is elective,
according to the curriculum and next activities helps to attract more students to participate:

Joint business academia workshops

Conferences and competitions

Media publications

Enrolment of the students in the program

Evaluation of the capacity and competences of the future teams

Company Team building

Short student workshops

Introduction and presentation of the minds and ends of the student company

Introduction of the business models

Introduction of the business plan concept

Defining the organizational model and structure of the company

Developing mission, vision and strategy

Setting goals and roles of the departments

D5 12

ORGANIZATION AND FORMATION OF THE STUDENT COMPANY. This process is very
important and it can be sub pattern of the GRADUATE STUDENT COMPANY LIFE CYCLE pattern.

Choice of an organizational model

Registration of the company

Collecting of initial capital (e.g. through issuing of shares, sponsors, VC, etc.)

Establishment of departments

Selection of product or service

RUNNING THE STUDENT COMPANY CYCLE. The process is vital, train students on the subject of
practical competences and it can be sub pattern of the GRADUATE STUDENT COMPANY LIFE
CYCLE pattern.

Departments work

Department meetings and progress reporting

Company meetings and periodic reviews

Company processes improvement

Exit Strategy

Closing of the Student Company.

Departments final reports

Financial report

Liquidation

Outcome of the work and Results

Presentation

Evaluation

Support for the student company members to participate in competitions

Presentation of previous experiences and learned leassons

Research for different opportunities and competitions

Counselling, coaching, mentoring, and facilitation

Academic Evaluation and grading of the students

Test

Public presentation

Follow-up. Activities in this stage summarise the experience and go over learning lessons during the
GSC life cycle:

Publishing and dissemination of results

Managing the graduate student company social network

Registration of real companies by the most entrepreneurial students. The last stage is the most exiting
activity of the GSC and finalizes the efforts of the students and they become real entrepreneurs.

!" "

!"##$%&' ()% !%)*+,# -.&$ /&0.&$$%.&0
#$%&'() *+$,)--&-./%0 1&+$)/2 3&%+$/%0 *&/4/-' 56

1&#%)*+,#.)&
*78(,)%/ 9%7:;+(<&-/ !-.&-//%&-. =9<!> $)' ?/+74/)- &4@7%()-(,)A 78 ?;&2:&-.)-: %/;'&-.

'78(,)%/B C- 9<!0 ($/ 87+;' &' '$&8(/: 8%74 ?;&2:&-. &'72)(/: @%7:;+(' (7 ?;&2:&-. 8)4&2&/' 78 %/2)(/:

@%7:;+('0 ,$&2/ %/;'/ &' :&'+;''/: -7()()- &-:&D&:;)2 7?E/+(2/D/2 0 /B.B 2&?%)%&/' 7% +74@7-/-('0 ?;(

)') ,$72/F 7%.)-&G)(&7-)20 @%7+/'' ,&'/0)-:)2'7 2&8/ +A+2/ ,&'/ /-: (7 /-: 8%74 %/H;&%/4/-(' (7

)+(;)22A :/@27A/: D)%&)?&2&(A)(($/ +;'(74/%B I/ +7-'&:/% 7-2A ($7'/ @2)(87%4' 9<! /887%(' ($)()%/

@2)--/:)-: @%/'+%&?/: (7 ?/ %/;'/: &-) :/:&+)(/: @%7:;+(@7%(872&7 7% (7 ?;&2: '72;(&7-' &-)

'@/+&8&+ 4)%J/('/.4/-(0 $/-+/ (A@&+)2 ./-/%)2 @;%@7'/ (/+$-727.A @2)(87%4'0 ';+$)' !+2&@'/0 KL7''0

7% BM!N0 :7 -7(8)22 &-(7 ($&' +)(/.7%AB

I$&2/) 27(78 2&(/%)(;%/ 7- 9<! /O&'('0 ($/%/ &' '(&22 -7 +7-'&'(/-(+722/+(&7- 78 /)'A (7 ;'/)-:

@%)+(&+)2 @)((/%-'B N$/ @)((/%-' :/'+%&?/: &- ($&' @)@/% ?;&2: 7- ($/ /O&'(&-. 2&(/%)(;%/0 2&J/ ($/ ?77J

78 #2/4/-(')-: M7%($%7@ PQR 7% 32);' *+$4&:S' 9$T N$/'&' PURB I&($ ($&' &-&(&)2 +722/+(&7- 78 @)((/%-'

,/ $7@/ (7 47(&D)(/ 47%/ @)((/%-' 7- 9<!B N$/ @)((/%-' :/'+%&?/ $7, (7 +/-(%)2&G/)-: 7?E/+(&8A

:/+&'&7- 4)J&-.0 $7, (7 @)%(&(&7- ($/ :74)&- &-(7 '/D/%)2 ';? :74)&-'0 $7, (7 '/(;@ A7;% %/2/)'/'0

)-: $7, (7)D7&: :)-./%7;' +74@2/O&(AB

N$&' @)@/% &' &-(/-:/: 87%)-A 2/):/%'$&@ '()88 +7-+/%-/: ,&($ ($/ @%7:;+(@7%(872&7 +7-(/-(0

7%.)-&G)(&7-0 @%7+/''0 (/+$-727.A0)%+$&(/+(;%/0 7%)+(;)2 @%7E/+(/O/+;(&7- 78) 9<! &-&(&)(&D/B I/

)'';4/ '74/ ?)+J.%7;-: &- 9<!B V/8/% (7 P"R 7% PWR 87%) 47%/ :/()&2/: &-(%7:;+(&7-B

9<! $)' (7 ?/):)@(/: (7 ($/ '@/+&8&+ 7%.)-&G)(&7-)($)-: (7 ?/ ';++/''8;2B 1)-A 8)+(7%' &-82;/-+/

$7, 9<! &' /O/+;(/: &-) '@/+&8&+ 7%.)-&G)(&7-B N$/ 7-/' ,&($ ($/ 2)%./'(&4@)+()%/F '&G/ 78 ($/

7%.)-&G)(&7-0 J&-: 78 ?;'&-/''0 -;4?/% 78 @%7:;+(2&-/'0 4)(;%&(A 78 ($/ :74)&-0)-: @%7+/''

:&'+&@2&-/B I$&2/ ($7'/ 8)+(7%' &-82;/-+/ 9<!0 ($/A ,&22 &- %/(;%- ./(&-82;/-+/: ?A &-(%7:;+&-. 9<!B

N$/ @)((/%-' &- ($&' @)@/%)@@2A 2)%./2A (7 4&:)-: 2)%./ '+)2/ 7%.)-&G)(&7-'0)' ($/A (A@&+)22A $)D/

'/D/%)2 @%7:;+(2&-/' ,&($ '/D/%)2 &-D72D/: ';? 7%.)-&G)(&7-' ,&($ D)%A&-. ?;'&-/'' .7)2'0 ,$&+$

4)J/' :/+&'&7- 4)J&-.) 4;2(& :&4/-'&7-)2 7@(&4&G)(&7- @%7?2/4B X%.)-&G)(&7-' ,&($ 7-2A) :7G/-

&-D72D/: '()88 :7 -7($)D/ ';+$ &'';/'Y &-'(/): 47'(78 ($/ +$)22/-./ ?/+74/') (/+$-&+)2 &'';/ 78

$7, (7 :/)2 ,&($ D)%&)?&2&(A Z ,$&+$ &' -7(($/ 87+;' 78 ($&' @)@/%B

N$/ @)((/%-' :/)2 ,&($ '/((&-. ;@ ($/ 7%.)-&G)(&7-0 ($/ @%7+/'')-: 4/($7:727.&+)2 ?/'(@%)+(&+/'B

N$&' @)@/% :7/' -7(@%7D&:/)-A)-)2A'&'):D&+/ ,$/- (7 ;'/) 9<! /887%(7% -7(0 &-'(/): &()'';4/'

($)() %/(;%- 7- &-D/'(=VXC>)-)2A'&' $)' ?//- :7-/ &-):D)-+/)-: ($)() 9<!)@@%7)+$ @%7D/:

';@/%&7% 7D/% +2)''&+)2 7-/ 788 :/D/27@4/-(B

[7% %/):/%' ,$7)%/ -7(8)4&2&)% ,&($ 9<! (/%4&-727.A0 @2/)'/ %/): ($/ .27'')%A)(($/ /-: 78 ($/

@)((/%- +722/+(&7-B

!" W

#7@A%&.$(%/()&- ?A);($7%'B 9/%4&''&7- .%)-(/: (7 \&22'&:/ !;%7@/ 87% &-+2;'&7- &- ($/ #!]V)%+$&D/

78 +7-8/%/-+/ @%7+//:&-.')-: 87% \&22'&:/ !;%7@/ ,/?'&(/B

2,)3.&0 !"##$%&'

4$&#%"5 6$,.'.)& 7"8.&0

4)&#$9#
5- 7%.)-&G)(&7- &'):7@(&-. @%7:;+(2&-/ /-.&-//%&-.B]@ (7 -7, &(:/D/27@/: @%7:;+(' 7% '72;(&7-' &-

@)%)22/20 ,&($ +7@A^@)'(/ %/;'/0 (/+$-727.&+)2 @2)(87%4 ;')./0 7% ;'&-.) '()-:)%:&G/: &-8%)'(%;+(;%/B

!D/%A @%7:;+(:/D/27@4/-(.%7;@ ,)' %/'@7-'&?2/ 87% :/+&:&-. 7- ($/ '+7@/)-: %/2/)'/ @2)- 78 &('

@%7:;+(0) ()'J +)22/: @%7:;+(4)-)./4/-(B N$/ 7%.)-&G)(&7- ,)-(' (7 &-+%/)'/ ($/ ?/-/8&(8%74

%/;'/)47-. @%7:;+('_'72;(&7-'B N$/ :/D/27@4/-(78) '/(78 %/;')?2/ +7%/)''/(' &' '()%(/:B C($)'

(7 ?/ :/+&:/: ,$)(($/'/ +7%/)''/(' '$7;2: ?/F ($/ '+7@/ 78 ($/ %/;'/ &-8%)'(%;+(;%/B N$/ %/)'7- 87%

'()%(&-. ($/ @%7:;+(2&-/ &' (7 4)O&4&G/ ($/ %/(;%- 7- &-D/'(4/-(=VXC> 87% ?;&2:&-. %/;')?2/)''/('

87% ($/ ,$72/ 7%.)-&G)(&7-B [&.;%/ " '$7,' ($/ :/'&%/: '()(/0 7-/ :74)&- /-.&-//%&-.)+(&D&(A ($)(

@%7:;+/' %/;')?2/)''/(')-: '/D/%)2)@@2&+)(&7- /-.&-//%&-.)+(&D&(&/' ($)(%/;'/ ($/'/)''/('B

!"#$%& '()&*+,"-./0"1 2&,3&&. 4-5+". +.4 +11*"6+,"-. &.#".&&%".#

!%):5$;
I$7 :/+&:/' ,$)()''/(' '$7;2: ?/ :/D/27@/:)' %/;')?2/ +7%/)''/(')-: ,$)()''/(' '$7;2: ?/

J/@(@%7:;+('@/+&8&+`

! !D/%A @%7:;+(4)-)./% (A@&+)22A @;'$/' $&' 7,- @%7:;+('B V/;'/ &' 7-2A &-(/%/'(&-. &8 &(')D/'

/887%(7% 7($/%,&'/ ?/-/8&(' $&' @%7:;+('B *;@@7%(&-. $&' 7,- @%7:;+(' &' ,$)($/ &' (%)&-/:

(7 :7B

! I&($7;(47:/%)(&7- /&($/% ($/ '(%7-./'(&-) .%7;@ 78 @%7:;+(4)-)./%' :&+()(/' ,$)(,&22

?/ &4@2/4/-(/:)' %/;')?2/ +7%/)''/(7% ($/ @%7:;+(4)-)./%').%// 7- '74/

+74@%74&'/0 /B.B /D/%A?7:A ./(' ($/&% 47'(&4@7%()-(8/)(;%/' &-B N$&' '/2/+(&7- &' 2&J/2A -7(

4)O&4&G&-. ($/ @%78&(78 ($/ ,$72/ 7%.)-&G)(&7-B

! #7%/)''/(:/D/27@4/-(&' +7-8%7-(/: ,&($)22 @%7:;+(4)-)./%')-: ($/&% +7%%/'@7-:&-.

@%&7%&(&/'B [7% :/+&:&-.)?7;() @%7:;+(@7%(872&7 '(%)(/.A ://@ 4)%J/(J-7,2/:./ &'

%/H;&%/:0 ,$&+$ (A@&+)22A &' -7()D)&2)?2/ &- :/D/27@4/-(B T/D/27@4/-(&' &-+2&-/: /&($/% (7

!" Q

.&D/ &- 7- ($/ @%/'';%/ 78 ($/ '(%7-./'(7% :/+&:/ ?A ($/4'/2D/' ,$)($)' ($/ $&.$/'(

@%&7%&(A0 78(/-)++7%:&-. (7 @;%/2A (/+$-&+)2 +%&(/%&)B

2)5+#.)&
#/-(%)2&G/ :/+&'&7- 4)J&-. %/.)%:&-. '+7@/)-: @%&7%&(&/'B N$/ ?/'(,)A (7 :7 ($&' &' &-(%7:;+/) -/,

%72/ &- ($/ 7%.)-&G)(&7-0 ($/ @%7:;+(2&-/ @%7:;+(4)-)./%B \&' .7)2 &' (7 7@(&4&G/ ($/ @%7:;+(

@7%(872&70 ($/ '72;(&7- '+7@/0 ,$&+$ '$)22 ?/ ';@@7%(/: ?A ($/ '$)%/: +7%/)''/('B [7% ?&../%

7%.)-&G)(&7-' ($/ @%7:;+(2&-/ @%7:;+(4)-)./4/-(+)-)2'7 ?/ '()88/: ,&($ '/D/%)2 &-:&D&:;)2'B

!"#$%& 7(80& 9%-4$6, :".& 9%-4$6, ;+.+#&% "/ %&/1-./"2*& <-% ,0& 30-*& 1%-4$6, *".&=

#7%/)''/(:/D/27@4/-('$7;2: -7(:/+&:/)?7;(8/)(;%/ @%&7%&(&/'B \7,/D/%0 +7%/)''/(

:/D/27@4/-(/'(&4)(/' ($/ /887%(87% 8/)(;%/')-:)-)2AG/' :/@/-:/-+&/')47-. 8/)(;%/'0 ,$&+$ &'

/''/-(&)2 &-@;(87% :/+&:&-. 7- ,$)('$7;2: ?/ &4@2/4/-(/:)' +7%/)''/(B L/),)%/ ($)(@%7:;+(

4)-)./4/-()27-/ &' -7(';88&+&/-((7 8&-: ($/ 7D/%)22 7@(&4&G/: '+7@/ 87%) ?;'&-/''0 ?/+);'/

+7-'(%)&-(' 2&J/ H;)2&(A0 (&4/0)-: +7'(4&.$(-7(?/ %/@%/'/-(/: ';88&+&/-(2AY '// ($/ @)((/%-'

!"#"$%& '($)*+",$*))-: '(##"-(+"*,($ -&*.&&$ /+(-#&0 "$1 2(#3*,($ 456&+*)B

N$/ 9%7:;+(<&-/ 9%7:;+(1)-)./% &' %/'@7-'&?2/ 87% ($/ 7D/%)22 @%7:;+(@7%(872&70 ($/%/87%/ &'

-/&($/% @)%(78)-A @%7:;+(:/D/27@4/-((/)40 -7% 78 ($/ +7%/)''/(:/D/27@4/-((/)4B N$/%/

4&.$(?/ +7-:&(&7-' ($)(%/-:/%) :/:&+)(/:0 &-:/@/-:/-(%72/ -7(@7''&?2/0 /B.B &8 ($/ 7%.)-&G)(&7-'

)%/ '/@)%)(/ @%78&(+/-(/%' ,&($ ($/&% 7,- ?;'&-/'' ()%./(')-: -7 7@/%)(&7-)2 %/'@7-'&?&2&(&/')%/)(

) +7447- 4)-)./4/-(2/D/2B N$/ 9%7:;+(<&-/ 9%7:;+(1)-)./% ,7;2: &- ($&' +)'/ ?/ @)%(78 ($/

+7%/)''/(:/D/27@&-. 7%.)-&G)(&7-0 ,$&+$ 4)J/' $&' @7'&(&7- &- ($/ 7D/%)22 7%.)-&G)(&7- ,/)J/%B C(

%/H;&%/')::&(&7-)2 @%7+/'' ';@@7%((7 :/)2 ,&($ ($&' '&(;)(&7-B N$&' ';? @)((/%- 2)-.;)./ &' A/((7 ?/

4&-/:B

<"#.)&"5$
[7% /88/+(&D/ +7%/)''/(:/D/27@4/-() '&-.2/ %/'@7-'&?&2&(A 87% @%&7%&(&G)(&7-)-: '+7@&-. &' %/H;&%/:B

C- 7%:/% (7 @%&7%&(&G/ 8/)(;%/')-: '+7@/ ($/ @%7:;+(2&-/ (7 4)O&4&G/ ($/ /+7-74&+ ?/-/8&(78 ($/

!" a

!" b

,$72/ 7%.)-&G)(&7-0 J-7,2/:./)?7;(($/ 4)%J/(='>0 +74@/(&(&7-0)-: +;'(74/%' &' &4@7%()-(87%

($)(%72/B T/D/27@4/-((A@&+)22A 2)+J' ($/ 8;22 ;-:/%'()-:&-. 78 +;'(74/%)-: ?;'&-/'' D)2;/B

N$&' @)((/%- ,7%J' ?/'(&8 ($/ +7%/)''/(')+(;)22A &4@2/4/-(:74)&- '@/+&8&+ Z +;'(74/% D&'&?2/ Z

+7%/)''/('B *;+$)''/(' (A@&+)22A $/)D&2A &-82;/-+/ ($/)+(;)2 @%7:;+(@7%(872&7B C- +7-(%)'(0 &8 ($/

+7%/)''/(')%/ 4)&-2A (/+$-&+)2 &-8%)'(%;+(;%/)''/('0 ($/ @%7:;+(@7%(872&7 &' 7-2A 4)%.&-)22A

&-82;/-+/: ?A ($/ +7%/)''/('+7@/B C- ';+$ +)'/' ($/ @%7:;+(2&-/)%+$&(/+(%72/ &-'(/): 78 ($/

@%7:;+(4)-)./%0 4)A @/%87%4 ($/ '+7@&-.0 ?/+);'/ $/ +)-):/H;)(/2A E;:./ ($/ '+7@/ 78 ($/

4)&-2A &-8%)'(%;+(;%/ +7%/)''/('B N$/ 9%7:;+(<&-/ 5%+$&(/+(($/- 8;28&22' ($/ %72/ 78 ($/ 9%7:;+(<&-/

9%7:;+(1)-)./%)' ,/22B

N$/ 9%7:;+(<&-/ 9%7:;+(1)-)./% %72/ %/'72D/' ($/ +7-82&+()47-.'(@%7:;+(4)-)./%')-:

?/(,//- @%7:;+(4)-)./4/-()-: +7%/)''/(:/D/27@4/-(B I/ '), 7%.)-&G)(&7-' ($)(';88/%/:

8%74 ($&' +7-82&+(B C- ($/ /-:0 ($/ @%7:;+(2&-/' ?%7J/)@)%()-: ($/ ,$72/ /887%(78 :7&-. 9<! ,)'

'//-)') 8)&2;%/B

N$/ V72/ 9%7:;+(<&-/ 9%7:;+(1)-)./% $)' (7 J-7, $7, (7 4)-)./ ($/ +7-82&+(&-. &-(/%/'('

?/(,//- $&' %72/)-: ($/ @%7:;+(4)-)./%'B N$&' +7-82&+(+)- ?/ %/'72D/: ,&($ '(06+&7&$),-#&
8&%,),($ 9":,$;B

<$($%$&,$' "&* =&)>& ?'$'
N$&' @)((/%- &')@@2&/:)() *&/4/-' \/)2($+)%/ .%7;@ :/D/27@&-.)- &4).&-. @2)(87%4B N$/ @2)(87%4

+;'(74/%')%/ :&88/%/-(&4).&-. @%7:;+(2&-/'0 ,$&+$,/%/ $/)D&2A &-D72D/: &- :/8&-&-. ($/ '+7@/ 78

($/ -/, @2)(87%4 8%74 ($/ ?/.&--&-.B \7,/D/%0 ($/%/ ,)' -7 :/:&+)(/: @%7:;+(4)-)./% 87% ($/

@2)(87%4B \/-+/0 8)% (77 4)-A 8/)(;%/' ,/%/)''&.-/: (7 ($/ @2)(87%4B N$/%/ ,)' -7 +2/)%

@%&7%&(&G)(&7-0)-: :/'@&(/ ,7%J&-. $)%:0 ($/ @2)(87%4 +;'(74/%' ,/%/ -/D/% ')(&'8&/: ,&($ ($/ '+7@/

78 ($/ @2)(87%4B N,7 A/)%' 2)(/% ($/ 7%.)-&G)(&7- &-'()22/:) @2)(87%4 @%7:;+(4)-)./4/-(B N$/

@2)(87%4 @%7:;+(4)-)./% &' -7, %/'@7-'&?2/ (7 :/8&-/) +7447- D7+)?;2)%A)-: (7 :%&D/ '+7@&-. 78

+7%/)''/(' &- +722)?7%)(&7- ,&($ ($/ @%7:;+(4)-)./%' 78 ($/ :&88/%/-(@%7:;+('B \/ 47:/%)(/'

'+7@&-. '/''&7-')-: 4)J/' ($/ '+7@/)-: ($/ %)(&7-)2 87% ($/ '+7@/ (%)-'@)%/-((7 @%7:;+(

:/D/27@4/-('B N$/ 7%.)-&G)(&7- 4)-)./: (7 %/.)&- (%;'(8%74 ($/ @%7:;+(.%7;@'B C-'()22&-.)

@%7:;+(2&-/ @%7:;+(4)-)./% &4@%7D/: ($/ '&(;)(&7- +7-'&:/%)?2A 87% ?7($0 :74)&-)-:)@@2&+)(&7-

/-.&-//%&-.B

5 '/@)%)(/ .%7;@)(*&/4/-' @7'()2);(74)(&7- '()%(/:) 8&%'(@2)(87%4)?7;("c A/)%').7 (7 ?/-/8&(

8%74 %/;'/)47-. ($/&% +;'(74/% @%7E/+('B N$/%/ ,)' -7 @2)(87%4 @%7:;+(4)-)./%0 /D/- -7 /O@2&+&(

'+7@&-. @%7+/''B N$/ @2)(87%4 ;'/%' ,/%/ -7($)@@A ,&($ ($/ @2)(87%40 H;&+J2A '()%(/: (7 +27-/)-:

7,- @)%(' 78 ($/ @2)(87%4)-: ($/ @2)(87%4 (/)4 ,)' (;%-/: &-(7) @%7E/+((/)4 87% 7-/ '@/+&8&+

+;'(74/%)8(/% ($%// A/)%'B N7:)A0 ($/ 7%.)-&G)(&7- $)') D/%A '(%7-. @%7:;+(4)-)./4/-(($)(

J-7,')?7;(($/ D)2;/ 78 %/;')?2/)''/(')-:)+(&D/2A ';@@7%(' '+7@&-.)-: 4)%J/(&-. 78 %/;')?2/

)''/('B 522 ?&::&-. &-D&()(&7-' .7 ($%7;.$ ($/ @%7:;+(2&-/ 4)-)./4/-(.%7;@0 ($)(&') (/)4 78

@%7:;+(2&-/ @%7:;+(4)-)./%')-: @%7:;+(2&-/)%+$&(/+('B N$/ '+7@&-. &' :7-/ &- '/D/%)2 '(/@'F

:/+&:&-. ,$&+$ /O&'(&-. +7%/)''/(' ,&22 ?/ 788/%/: (7 ($/ +;'(74/%0 ,$&+$ +7%/)''/(' '$7;2: ?/

):)@(/:)-: ,$&+$ '$7;2: ?/ ?;&2()-/, &- +)'/ ($/ +;'(74/% @%7E/+()+(;)22A &' ,7-B L)'/: 7- ($&'

($/ 788/% &' 4):/ (7 ($/ +;'(74/%B I$/- ($/ +;'(74/%)++/@('0 ($/ @%7:;+(2&-/ 4)-)./4/-((/)4

&-+2;:/' ($/ /887%(87% ?;&2:&-. ($/)''/(' &-(7 ($/ 7D/%)22 @%7:;+(2&-/ :/D/27@4/-(@2)-B

!" d

4);3%$@$&'.:5$ 6$,.'.)& 4%.#$%."

4)&#$9#
N$/ @)((/%- /+(13%* <,$& /+(13%* 9"$";&+ ,)')@@2&/:B 5 +7-82&+(@7(/-(&)2 &' %/4)&-&-. ?/(,//-

&-:&D&:;)2 @%7:;+(4)-)./%')-: ($/ 9%7:;+(<&-/ 9%7:;+(1)-)./% %/'@7-'&?2/ 87% ($/ ,$72/

@%7:;+(2&-/ @7%(872&7B

!%):5$;
N$/ @%7:;+(4)-)./%' %/'@7-'&?2/ 87% '&-.2/ @%7:;+(_'72;(&7-)%/) .%7;@ 78 @//%' ,$7 $)D/)22

+7-82&+(&-. .7)2'0 ,$&+$ &' @%747(&-. ($/ '@/+&8&+ @%7:;+(' ($/A)%/ %/'@7-'&?2/ 87%B 5.%//&-. 7-)

'+7@/ 87% ($/ %/;')?2/ ?)'/)''/(' 4/)-' %/'72D&-. +7-82&+(' ($)()%&'/ 8%74 ($/'/ :&88/%/-(.7)2'B

! !D/%A @%7:;+(4)-)./% (A@&+)22A @;'$/' 7-2A $&' 7,- @%7:;+('B V/;'/ &' 7-2A &-(/%/'(&-. &8 &(

')D/' /887%(7% 7($/%,&'/ ?/-/8&(' $&' @%7:;+('B *;@@7%(&-. $&' 7,- @%7:;+(' &' ,$)($/ &'

(%)&-/: (7 :7B

! #7%/)''/(' 78(/- ./('@/+&)2 8;-:&-.B N$/ +7'(&' '$)%/: ?/(,//-)22 @%7:;+('_'72;(&7-'B

X8(/- @%7:;+(4)-)./%' ,)-((7 ;-?;%:/- ($/&% @%7:;+(_'72;(&7- '@/+&8&+ ?;:./()-: @;()'

4;+$:/D/27@4/-(/887%()' @7''&?2/ (7 ($/ +7%/)''/(:/D/27@4/-(B N$&' ,)A 47%/ ?;:./(

&')D)&2)?2/ 87% 4)J&-. 7,- @%7:;+(' ?/((/%0 +$/)@/% 7% /)%2&/% 7- ($/ 4)%J/(BB

! I$/- ($/ '/2/+(&7- 78 ,$)('$)22 ?/) +7%/)''/()-: ,$)('$)22 ?/ @%7:;+('@/+&8&+ '//4'

-7(+%/:&?2/0 :/D/27@4/-(,&22 -7(%/'@/+(($/ '+7@&-. :/+&'&7-'B T/D/27@4/-(,&22 :/+&:/ 7-

&(' 7,- @%&7%&(&/'B

2)5+#.)&
T/8&-/)-: +744;-&+)(/ +2/)% +%&(/%&) 87% /D)2;)(&-. ($/ D)2;/ 78 8/)(;%/'B N$/ +%&(/%&) '$7;2: ?/

:/%&D/: 8%74 ($/ 7%.)-&G)(&7-S' 4&''&7-0 D&'&7-0)-: '(%)(/.A0 ?/+);'/ 7-2A ($/- ($/ :/+&'&7-')%/ &-

2&-/ ,&($ ($/ ?;'&-/'' ()%./('B !D)2;)(/ ($/ +7'()-: ?/-/8&(87% /D/%A 8/)(;%/)-: 87% /D/%A @%7:;+(

)++7%:&-. (7 ($/'/ +7447- +%&(/%&)B T/+&'&7- 4)J&-. ?7&2' :7,- (7 +)2+;2)(&-. ($/'/ D)2;/')-:

:/+&:&-.)++7%:&-. (7 7?E/+(&D/ -;4?/%'B

N$/ ?/'(,)A (7 :7 ($&' &' (7 :/8&-/ +%&(/%&) 87% ($/ ?/-/8&()-: ($/ +7'(78 /)+$ 8/)(;%/B L/-/8&(

+%&(/%&) +7;2: ?/ $7, 4;+$:7/' ($/ 4)%J/(%/H;/'(($&' 8/)(;%/ 7% $7, ,/22 :7/' &(';@@7%(($/

'@/+&8&+ @7%(872&7 '(%)(/.AB N$/ +7'('&:/ -//: -7(?/)- /'(&4)(&7- 78 ($/ :/D/27@4/-(+7'(87% ($/

8/)(;%/0 '&-+/ ($&' 4)A ?/ $)%: (7 ?/ +)2+;2)(/: /)%2A &- ($/ @%7+/''0 ?;() 4&O(;%/ 78 /'(&4)(/:

+74@2/O&(A0 -7D/2(A0)-: /88/+(7- ($/ +;%%/-(@%7:;+(2&-/)%+$&(/+(;%/B

*()%(,&($ '&4@2/ ?/-/8&(_+7'(/D)2;)(&7- 87%4;2)')-: &4@%7D/ ($/4 7D/% (&4/B N$/ @%7:;+(

4)-)./%')-:)%+$&(/+(' ($)(:/2&D/% ($/ :)() 87% ($/ 87%4;2) (A@&+)22A :&88/% &- ($/&%)++;%)+A)-:

%/2&)?&2&(A 78 ($/ :)() ($/A @%7D&:/B C-'()22 4/(%&+' +74@)%&-. /'(&4)(&7-' ,&($ ($/ 2)(/% 8)+('0 /B.B

/'(&4)(/: ')2/' 8&.;%/')-:)+(;)2 ')2/' 8&.;%/' 87%) @%7:;+(B N$/ %/';2(')%/ ;'/:)' +7%%/+(&7-

8)+(7%'B

!" e

<"#.)&"5$
17'(78 ($/ @7(/-(&)2 +7-82&+(+)- ?/ 4&(&.)(/: ,$/- /D/%A '()J/$72:/% '$)%/' ($/&% ?;'&-/'' D)2;/

:)())-: ($/ %/';2(&' 4/%/2A +)2+;2)(/:B N$/ @%7:;+(2&-/ @%7:;+(4)-)./% :%&D/' ($/ @%7+/'')-:

+7-(%72' $7, 8)&%2A 8/)(;%/')%/ %)(/:)-: &4@%7D/' ($/ /D)2;)(&7- +%&(/%&))-: 87%4;2)'B

<$($%$&,$' "&* =&)>& ?'$'
N$/ @2)(87%4 7%.)-&G)(&7- 87% &4).&-. 'A'(/4' ,&($&- *&/4/-' \/)2($+)%/ :/D/27@/:) 87%4;2) 87%

@%&7%&(&G&-. 8/)(;%/')-: +)2+;2)(&-. ($/ +7'(78 /D/%A 8/)(;%/B C(&' 8&22/: ,&($ &-87%4)(&7- 8%74

@%7:;+(4)-)./4/-()-: :/D/27@4/-((7 :/(/%4&-/ ?/-/8&()-: +7'(78 /D/%A 8/)(;%/B 1/)';%/' 87%

) 8/)(;%/S' ?/-/8&()%/ 87% /O)4@2/ ,$/($/% &(&' &--7D)(&D/ 7% E;'() f4/ (77g 8/)(;%/)-: $7, 78(/-

&(,7;2: ?/ %/;'/:0 4/)';%/' 87% &(' +7'()%/ 87% /O)4@2/ ($/ +74@2/O&(A)-: $7, +%7''+;((&-. &(&' &-

($/ '72;(&7- '@)+/B N$/ %/';2(')%/ ()J/- (7 :/+&:/ ,$/($/%) 8/)(;%/ '$7;2: ?/ &4@2/4/-(/: &- ($/

@2)(87%4)()22)-: ,$)(@%&7%&(A &('$7;2: $)D/B

32);' *+$4&: ';../'(') '&4&2)% @%7+/:;%/ &- PWRB C- ($&' +7-(/O(&(,)' (/'(/: ,&($ (,7 @%7:;+(2&-/'

78 15V3!N 153!V *78(,)%/ 56)-: ,&($ 7-/ @%7:;+(2&-/ &- L7'+$B

!" U

2$3"%"#$ 2+: *);".&'

4)&#$9#
N$/ 7%.)-&G)(&7- $)' (7 :/+&:/ ,$)(,&22 ?/ :/D/27@/:)' +7%/)''/()-: ,$)(,&22 %/4)&- @%7:;+(

'@/+&8&+ Z) (A@&+)2 '+7@&-. :/+&'&7-B 5+(;)22A0 ($/ 7%.)-&G)(&7- ,&22)2'7 $)D/ (7 :/+&:/ 7-) @%7:;+(

@7%(872&7 ($)()227,' 4)O&4&G&-. ($/ ?/-/8&(8%74 %/;'/B

!%):5$;
L;:./()-: (&4/ 87% '/((&-. ;@) +7%/)''/(?)'/ &' 2&4&(/:B C8 8&-:&-. 7;(,$&+$)''/(')%/ ,7%($ (7 ?/

:/D/27@/:)' +7%/)''/(()J/' (77 4)-A %/'7;%+/'0 ($/ @%7:;+(2&-/ 4&.$(:&/ ?/87%/ &(/D/- '()%('B

! M7()22)%/)' &-) :74)&-)%/ /H;)22A '()?2/)-: ($/%/87%/ ';&()?2/ 87% %/;'/B

! *+7@&-. &') @;%/ @2)--&-.)+(&D&(AB C(&' -7(@%7:;+(&D/)-:)++7;-(')' -/.)(&D/ &(/4 &- ($/

%/(;%- 7- &-D/'(4/-(+)2+;2)(&7- 87%) @%7:;+(2&-/B

! X8(/-) 4)%J/(/D)2;)(&7- &')- &4@7%()-(@%/ +7-:&(&7- 87% '+7@&-.B N$/ '+7@&-.)+(&D&(A $)'

(7 ?/ @/%87%4/: &-) (&4/ 8%)4/ ($)((7./($/% ,&($ &4@2/4/-(&-. ($/ '+7@/ &' '$7%(/-7;.$

(7 +)(+$ ($/ 4)%J/(,&-:7, ($)(,)' 277J/:)(&- ($/ /D)2;)(&7-B

! N$/ 8/)(;%/' &- ($/ +7%/)''/(?)'/ $)D/ (7 ?/ '/2/+(/: &-) ,)A ';+$ ($)(&(&' @7''&?2/ (7

87%4) +7-'&'(/-(%/8/%/-+/)%+$&(/+(;%/B N$/A +)--7(%/';2(&- +74@2/(/2A &-:/@/-:/-(

@&/+/' 78 8;-+(&7-)2&(A &- '72;(&7- '@)+/B C(4;'(?/ @7''&?2/ (7)%+$&(/+()-: &4@2/4/-()

+7$/%/-(+$;-J 78 8;-+(&7-)2&(AB

2)5+#.)&
T&D&:/ ($/)@@2&+)(&7- :74)&- &- ';? :74)&-' ($)(+)- ?/ $)-:2/: '/@)%)(/2AB N$/ /)'&/'(,)A (7

&:/-(&8A ';? :74)&-' &' (7 277J)(/O&'(&-. 'A'(/4'_@%7:;+('B N$/&% :&D&'&7- &- ';?'A'(/4' &') .77:

8&%'(';?:&D&'&7- 78 ($/ 7D/%)22 :74)&-B [&%'(/'(&4)(/ ($/ %/;'/ @7(/-(&)2 87% /D/%A ';? :74)&- ?)'/:

7- @)'(/O@/%&/-+/B N$/- +7-(&-;/ +27'/% &-D/'(&.)(&7-' ,&($ 7-/ 7% (,7 @%74&'&-. ';? :74)&-'B [&-:

7;(,$)(+)- ?/ %/;'/: 87% ($/'/ ';? :74)&-')-: &4@2/4/-(($/'/)''/('B

N$/ ';? :74)&-' 4&.$(?/)@@2&+)(&7- :74)&- '@/+&8&+ 2&J/ (/2/@$7-A0 '$7%(4/'')./ '/%D&+/)-:

:)() '/%D&+/' &-) 47?&2/ @$7-/0 7% (/+$-&+)20 2&J/ 4/47%A 7% @7,/% 4)-)./4/-(B

!"#$%& >(?-./"/,&., /$2 4-5+"./ 5+@ 2& A&%,"6+*B 0-%"C-.,+*B -% /6+,,&%&4 +6%-// ,0& +%60",&6,$%&=

<"#.)&"5$
C4@2/4/-(&-. 7-2A +7%/)''/(' 87% 7-/ 7% (,7 ';? :74)&-' .&D/' /)%2A 8//:?)+J (7)22 '()J/$72:/%'

,$/($/% ($/ 7%.)-&G)(&7-)-: @%7+/'' +$)-./' 87% 9<! ,/%/ ($/ %&.$(7-/' ,&($7;(?/)%&-. (77 $&.$

%&'J 87% ($/ ,$72/ 7%.)-&G)(&7-B I&($ ';+$ @7(/-(&)2 H;&+J ,&-' ($/ 7%.)-&G)(&7- &' 47(&D)(/: (7

/O(/-: ($/ @%7:;+(2&-/)2'7 (7 7($/% ';? :74)&-'B

<$($%$&,$' "&* =&)>& ?'$'
#)% 4)-;8)+(;%/%' (A@&+)22A :&D&:/ ($/&% +)%' &- ';? :74)&-' 2&J/ +$)''&'0 /-.&-/0 /2/+(%&+)2 'A'(/40 7%

')8/(A 'A'(/4'B N$&' :&D&'&7- &' (A@&+)22A)2'7 4&%%7%/: &- ($/ 7%.)-&G)(&7-)2 '/(;@Y '&4&2)%2A ($/

+7-8&.;%)(&7- 7@(&7-' 87% ($/ +;'(74/%')%/ .%7;@/: &- ($/'/ ';? :74)&-'B

N$/ 8/)(;%/' 78 ($/ &4).&-. @2)(87%4 &- *&/4/-' \/)2($+)%/)%/ .%7;@/: &-(7)?7;("c ';? :74)&-'

($)('(%;+(;%/ ($/ @%7?2/4)' ,/22)' ($/ '72;(&7- '@)+/B

32);' *+$4&: &-(%7:;+/') -/,)@@%7)+$ 87% /D)2;)(&-. ';? :74)&-'0 ($/ :74)&- @7(/-(&)2

)''/''4/-(&- PWRB

!" h

!" "c

2#"%# >.#@ !%)*+,# A$"#+%$ 7"3

4)&#$9#
5- 7%.)-&G)(&7- ,)-(' (7 ?/-/8&(8%74 %/;'/B N$/ 7%.)-&G)(&7-)2%/):A &4@2/4/-(/: 'A'(/4' &- ($/

:74)&- 87%) ,$&2/B !O&'(&-. @%7:;+(' 7% '72;(&7-')%/)D)&2)?2/B

!%):5$;
N7 ?/-/8&(8%74 %/;'/ &- +;%%/-()-:_7% 8;(;%/ @%7:;+(@7%(872&7 ($/ 7%.)-&G)(&7- -//:' (7 8&-: 7;(

,$&+$)%(&8)+(' '$7;2: ?/ &4@2/4/-(/: 87% %/;'/B

! N)J&-.)2%/):A)D)&2)?2/)''/(')-: (;%- ($/4 &-(7 %/;')?2/)''/(' ?A &-+%/)'&-. ($/ H;)2&(A

)-:)::&-. D)%&)(&7- @7&-(' &') 27, %&'J 7@(&7- (7 ./() '/(78 +7%/)''/('B \7,/D/% &(&'

;-+2/)% ,$&+$ D)%&)-(' '$7;2: ?/ ';@@7%(/:B

! T/D/27@4/-(J-7,' ,$)(&(()J/' (7 ?;&2: +/%()&- 8;-+(&7-)2&(A)-: ,$)('$7;2: ?/ %/;')?2/B

L;('(&22 ($&' &')(47'() @%7E/+(&7- 8%74 ($/ @)'(@%7:;+(@7%(872&7B

! T74)&-)-)2A'&' 277J')(';? :74)&-' ($)(@%/';4)?2A $)D/ %/;'/ @7(/-(&)20 &:/-(&8&/' ($/

+7447-)2&(&/')-: D)%&)-(' &- /)+$ ';? :74)&-)-: .&D/') 8//2&-. 87% %/;'/ @7(/-(&)2B

\7,/D/%0 &8)22 D)%&)-(' @7''&?2/ &-) ';? :74)&-)%/ +7-'&:/%/:0 ($&' ,&22 -7(';@@7%(($/

?;'&-/'' 78 ($/ 7%.)-&G)(&7- 7@(&4)22AB

2)5+#.)&
L/87%/ ($/ '+7@&-. 78 +7%/)''/(' '()%('0 ($/ @%7:;+(' 7% '72;(&7-' ($)('$)22 ?/ ';@@7%(/: ?A ($/'/

+7%/)''/(' $)D/ (7 ?/ +2/)%B N$;'0 ($/ 8&%'('(/@ &' (7 &:/-(&8A ($/ @%7:;+(')-: 4)%J/('/.4/-(' ($)(

'$)22 ?/)::%/''/: ?A ($/ @%7:;+(2&-/B M/O(0 ($/ +$)%)+(/%&'(&+' 7% 8/)(;%/' ($)()%/ &-+2;:/: &- /)+$

78 ($/ @%7:;+(')%/ 2&'(/: (7 '// ($/ +7447-)2&(&/')-: D)%&)?&2&(A ?/(,//- ($/ @%7:;+(' 7% 4)%J/(

'/.4/-('B N$&' &' ($/ '()%(&-. @7'&(&7- 87% 8;%($/% +7447-)2&(A_D)%&)?&2&(A)-)2A'&'B N$/ /-D&'&7-/:

@%7:;+(@7%(872&7 %/'(%&+(' ($/ 2&'(78 @7''&?2/ 8/)(;%/' &- /)+$ ';? :74)&-B 5(($/ ')4/ (&4/ @%7:;+('

./(?/((/% '$)@/: ?A :/+&:&-. 87% /)+$)::&(&7-)2 8/)(;%/ &8 &('$7;2: 7% '$7;2: -7(?/ &- ($/ @%7:;+(B

<"#.)&"5$
C8 ($/ @%7:;+(@7%(872&7 7% 4)%J/('/.4/-(' 78 &-(/%/'()%/ -7(($/ '()%(&-. @7&-(87% +7%/)''/(

'+7@&-.0 ($/)''/(' ,&22 (A@&+)22A ?/ 47%/ ./-/%&+ ($)- -/+/'')%AB N$/):D)-()./ 78 @%7:;+(2&-/

/-.&-//%&-. 7D/% '&4@2/ %/;'/)' @%7@).)(/: &- ($/ "hhc' &' ($)(7-2A ($/ D)%&)?&2&(A /2/4/-()%A

-/+/'')%A (7 ';@@7%() '@/+&8&+ ?;'&-/'' &' ?;&2(&-(7 ($/ +7%/)''/(')-: -7(47%/ Z '// =">(+
/#"*?(+0 2,06#,%,*@B #7%/)''/(' $)D/ (7 ?/ ?;&2: +7-'&:/%&-. D)%&)?&2&(A ($)(&' (7 ?/ /O@/+(/: 87%
8;(;%/ @7%(872&7'0 ?;(($/ D)%&)-(' '$7;2: ?/ +2/)%2A &:/-(&8&)?2/)-: /D&:/-(2A 47(&D)(/:B

<$($%$&,$' "&* =&)>& ?'$'
9%7:;+(_[/)(;%/ 4)@')%/ H;&(/ +7447- &- @7%(872&7 :/D/27@4/-(B #)% 4)-;8)+(;%/%' 2&J/ 5;:&)-:

L1I @%/'/-(($/&% @7%(872&7 &- ';+$ 2&'('B

*&4&2)%2A0 *&/4/-' C-:;'(%A T%&D/ N/+$-727.&/' '+7@/ ($/&% @%7:;+(@7%(872&7' ,&($ ($/ $/2@ 78

@%7:;+(_8/)(;%/ 4)@' ;-: ;'/ ($/ +;'(74/% D&'&?2/ @)%((7 @%/'/-(($/&% @%7:;+(@7%(872&7 (7

+;'(74/%'0 [&.;%/ a '$7,')- /O)4@2/ 8%74 $((@F__,,,B);(74)(&7-B'&/4/-'B+74_B

!"#$%& D(EF+51*& -< G"&5&./ H$,-5+,"-. +.4 I%"A&/ 9-%,<-*"-

32);' *+$4&: ';../'(' ($&' @%7+/:;%/ &- PWRB C- ($&' +7-(/O(&(,)' (/'(/: ,&($ (,7 @%7:;+(2&-/' 78

15V3!N 153!V *78(,)%/ 56)-: ,&($ 7-/ @%7:;+(2&-/ &- L7'+$B

C- PQR 9);2 #2/4/-(')-: <&-:) M7%($%7@ ';../'(JT/D/27@&-.)-)((%&?;(/_@%7:;+(4)(%&Og0 ,$&+$ &'

7-/ @)((/%- &- ($/&% +722/+(&7- 78 9<! @)((/%-'B N$/ @)((/%-' &- PQR ,/%/ 4&-/: 8%74 /O@/%&/-+/ ,&($

+7-';2(&-. +74@)-&/' ($)(&-(%7:;+/: 7% &4@%7D/:) 9<!)@@%7)+$B

!" ""

!" "W

4)55":)%"#.)& :$#>$$& !%):5$; "&* 2)5+#.)& /93$%#'

4)&#$9#
5- 7%.)-&G)(&7- :/+&:/' (7 ?;&2:) +7%/)''/(?)'/B C((%&/' (7 7@(&4&G/ ($/ %/(;%- 7- &-D/'(4/-(B

!%):5$;
M/&($/% @%7:;+(4)-)./4/-(0 -7% :/D/27@4/-()27-/ &' ';@@7'/: (7 J-7,)22 :/()&2')%7;-:

+7447-)2&(A)-: D)%&)?&2&(AB

! 9%7:;+(4)-)./4/-(J-7,')22 8)+(')%7;-: 4)%J/(0 4)%J/()?2/ 8/)(;%/'0 D)2;/ 78 8/)(;%/'0

)-: @%7:;+('B [;%($/%0 &(J-7,' ,$&+$ 8/)(;%/')%/ +7447- ?/(,//- @%7:;+(' 7-) $&.$

2/D/2 78)?'(%)+(&7-B \7,/D/%0 ,&($ 47%/ :/()&2/:)-)2A'&' D)%&)?&2&(A H;&+J2A &-+%/)'/'0

/'@/+&)22A &8 -7- 8;-+(&7-)2 %/H;&%/4/-(' D)%AB *;+$ D)%&)?&2&(A +)- -7(?/ '@7((/: 7-) $&.$

2/D/2 78)?'(%)+(&7-B \/-+/0 ($/ +74@2/O&(A)-: +7'(87% 8/)(;%/' +)--7(?/ :/(/%4&-/: (7

($/ 8;22 /O(/-(?A @%7:;+(4)-)./4/-(B

! T/D/27@4/-(J-7,' ($/ +7'(87% :/D/27@&-.)''/('0 ?7($ 87% @%7:;+('@/+&8&+)-: +7%/)''/('B

T/D/27@4/-($)' ($/ i'72;(&7- '@)+/S J-7,2/:./ 87% :/(/%4&-&-. ($/)+(;)2 D)%&)?&2&(A)-:

:/@/-:/-+&/' ?/(,//- D)%&)(&7- @7&-('B \7,/D/%0 :/D/27@4/-(2)+J' ($/ J-7,2/:./)?7;(

($/ D)2;/ 78 8/)(;%/' 87% +;'(74/%'B

2)5+#.)&
</('+7@&-. ?/ 2/): ?A @%7:;+(4)-)./4/-(0 ?;(4)J/ &()- &(/%)(&D/)-: +722)?7%)(&D/ /887%(

?/(,//- @%7:;+(4)-)./4/-()-: :/D/27@4/-(B 9%7:;+(4)-)./4/-(&-&(&)22A '/(' ;@ ($/ @%7:;+(

4)@ ,&($ 8/)(;%/)''&.-4/-(' (7 @%7:;+('B T/D/27@4/-()-)2A'/' ($/ 8/)(;%/ &- :/@($?A :%)8(&-.

:/'&.-')-: &:/-(&8A&-. (/+$-&+)2 :/@/-:/-+&/' ?/(,//- D)%&)-('B C(4&.$(87% /O)4@2/ ?/ -/+/'')%A

(7 &-+2;:/ +/%()&- 8/)(;%/' &-(7 ($/ +7%/)''/(?)'/ ($)(,7;2: -7($)D/ ?//- '/2/+(/:0 &8 &(,/%/ 7-2A

?)'/: 7- ($/&% ?;'&-/'' D)2;/ 87% ($/ +;'(74/%0 ?;(?/+);'/ ($/A)%/ -/+/'')%A (7 :/D/27@ $&.$/%

@%&7%&(&G/: 8/)(;%/' /88&+&/-(2AB N$/)::&(&7-)2 :/@/-:/-+&/')-: +7'()%/ 8/: ?)+J (7 @%7:;+(

4)-)./4/-(($)(%/ /'(&4)(/' ($/ +7'(_?/-/8&(%)(&7 87% 8/)(;%/')-: @%7:;+('B L7($ @)%(&/' &(/%)(/

7D/% ($/ @%7:;+(@7%(872&7 +7447-2A)-:)2(/%-)(/2AB

<"#.)&"5$
I$&2/ @%7:;+(4)-)./4/-(&' %/'@7-'&?2/ 87% '/((&-. ;@) @%7:;+(@7%(872&7 ($)(7@(&4&G/' ($/

?;'&-/'' 78)- 7%.)-&G)(&7-0 :/D/27@4/-(&' %/'@7-'&?2/ 87% 4&-&4&G&-. ($/ +7'(78) @%7:;+(

@7%(872&70 @7(/-(&)22A 7@(&4&G&-. %/;'/)-: (7 :/+&:/ ,$/($/%) 8/)(;%/ '/(+)- ?/ &4@2/4/-(/: &-)

+7-'&'(/-(@2)(87%4)%+$&(/+(;%/)()22B M/&($/% +)- @%7:;+(4)-)./4/-(/'(&4)(/ /887%(' %/2&)?2A0 ?/

&(87% @%7:;+('@/+&8&+ 7% +7%/)''/('0 -7% +)- :/D/27@4/-(:/+&:/ 7- @%&7%&(&/' 78 @%7:;+(' 7%

8/)(;%/'B N$/ 8//:?)+J 8%74 :/D/27@4/-(78(/- &-82;/-+/' ($/ @%7:;+(@7%(872&7 :&%/+(2AB 9%7:;+(

4)-)./4/-(&' 4):/),)%/ 78 /O&'(&-. J-7,2/:./ 7%)''/(' ($)(+)- ?/ 4)%J/(/: ?A +$)-.&-. ($/

@7%(872&7B

<$($%$&,$' "&* =&)>& ?'$'
[7% :/+&:&-. ,$&+$ 8/)(;%/' .7 &-(7 ($/ &4).&-. @2)(87%4)(*&/4/-' \/)2($+)%/0 :)() 8%74 @%7:;+(

4)-)./4/-(&' ;'/: (7 +)2+;2)(/ ($/ D)2;/ 78) 8/)(;%/)-: 8%74)%+$&(/+(' (7 ./(($/ +7'(78

8/)(;%/'B

!" "Q

N$/ *&/4/-' @7'()2);(74)(&7- .%7;@)-: @)%(78 ($/ $7(%722&-. 4&22);(74)(&7- $)D/ @%7:;+(2&-/

(/)4' &-'()22/: ($)(+7-'&'(78 @%7:;+(4)-)./4/-(=7% ')2/'>)-:)%+$&(/+('B N7./($/% ($/A :/+&:/

,$/($/%) 8/)(;%/ &' :/D/27@/: &- ($/ @2)(87%4 7% 7-2A 87% 7-/ '@/+&8&+ '72;(&7-B

C- PQR ($/ %&'J' 78 '+7@&-. &-+2;:/ f'+7@/ &-+2;:/' ($/ ,%7-. @%7:;+('gB [;%($/%0 ($/);($7%' :/'+%&?/

($)(($/ %/)'7- (A@&+)22A &' ($/ 4&''&-. +722)?7%)(&7- ?/(,//- @%7:;+(4)-)./4/-()-:

:/D/27@4/-(B

!" "a

B$&$%"5 !"##$%&'

<$0+5"% !5"#()%; <$5$"'$'

4)&#$9#
X-2A) 2&4&(/: -;4?/% 78 J-7,2/:./)?2/ @/7@2/ /O&'(@/% +7%/)''/(($)(+)- +$)-./ 7% /O(/-:)

'@/+&8&+ +7%/)''/(B #7%/)''/(' 8)+/ $&.$:/4)-: 78 +$)-./)-: /O(/-'&7- ?A ($/ @%7:;+(' ($)()%/

%/;'&-. ($/4B \7, :7 A7; 4&(&.)(/ ($/ @%/'';%/`

!%):5$;
5++/@(&-. ($/ $&.$ @%/'';%/0 '@/+&8&+)22A %/.)%:&-. (&4/0 +)- %/';2(&- '/D/%)2 '$7%('&.$(/: '72;(&7-'B

! */D/%)2 ?%)-+$/' 78 ($/ ')4/ +7:/ @)%(' 87% :&88/%/-(@%7:;+(' &- @)%)22/2B N$/ +7-'/H;/-+/

&' $&.$ 4/%./ /887%(' ?/(,//- ($/ ?%)-+$/')-: 7D/%$/): 78 ',&(+$&-. ?/(,//- ($/

?%)-+$/' 87% &-:&D&:;)2 :/D/27@/%'B

! \&.$ 82/O&?&2&(A 78 ($/ +7:/ @)%(' (7)++/@()-A D)%&)-(0 /B.B 7D/%2A i'(%)(/.&G/:S :/'&.- 7%

+%/)(&-.) j&8:/8 $/22B

! C- ;%./-(+)'/')@@2&+)(&7- :/D/27@/%')%/ &-+2&-/: (7 8)22 ?)+J (7 +7@A ^ @)'(/ %/;'/0 7% /D/-

%/ ,%&(/ ($/ 8;-+(&7-)2&(A @%7:;+('@/+&8&+B

2)5+#.)&
N$/%/87%/0 @%&7%&(&G/ A7;% (7()2 8/)(;%/ ?)+J27. +7-'&:/%&-. ,$/- %/;')?2/ +74@7-/-(' $)D/ (7 ?/

)D)&2)?2/ 87% ,$&+$ @%7:;+(')-: @%7D&:/ $&.$ H;)2&(A %/2/)'/' %/.;2)%2A0 /B.B /D/%A Q 47-($'B C8)

@2)(87%4 ;'/% ;%./-(2A -//:')-A +$)-./ 7% /O(/-'&7-0 ($/ 8/)(;%/ ?)+J27. +)- ?/ %/@%&7%&(&G/:

)++7%:&-.2AB

<"#.)&"5$
V/.;2)% %/2/)'/')22/D&)(/ ($/ $&.$ @%/'';%/ ($)((A@&+)22A 2/):' (7 4;2(&@2/ ?%)-+$/'Y $/-+/ ?%)-+$/'

+)- (A@&+)22A ?/)D7&:/: 7%)(2/)'(4&-&4&G/: &- ($/&% -;4?/%B C- 7%:/% (7 ?/)++/@(/: ?A ($/

@2)(87%4 ;'/%' ($/ H;)2&(A 78 ($/ %/.;2)% %/2/)'/' 4;'(?/ ';88&+&/-(2A $&.$B [;22A);(74)(/:

%/.%/''&7- (/'(';&(/' ($)()%/ /O/+;(/: 7- /D/%A +$)-./0 ;@ (7 ($/ /O(/-(78 #7-(&-;7;' C-(/.%)(&7-0

'/+;%/ ($/ H;)2&(A ,$&2/ 4&-&4&G&-. /O(%) /887%('B

\7,/D/%0 @%7D&:&-. %/.;2)% %/2/)'/' +$)22/-./' ($/ 7%.)-&G)(&7- (7 :/8&-/) @%7@/% D/%'&7-&-.

'(%)(/.A ($)(%/.;2)(/' ,$&+$ %/2/)'/')%/ +74@)(&?2/0 /B.B)22 4&-7% %/2/)'/'0)-: ,$&+$ %/2/)'/'

+7-()&- &-+74@)(&?2/ 59C +$)-./'0 /B.B 4)E7% %/2/)'/'B

!" "b

A"C)% !5"#()%; 2.;35.,.#D

4)&#$9#
*7;%+/ +7:/ 78 %/;')?2/)''/(' ./(' +74@2/O D/%A /)'AB X8(/- &(&' ($/ ,/22 &-(/-:/: 82/O&?&2&(A

:/'&.-/:)-: &4@2/4/-(/: ?A :/D/27@/%' ($)(&-+%/)'/' ($/ +74@2/O&(AB

!%):5$;
92)(87%4')%/ &-(/-:/: 87% 27-./D&(A0 ?;(($/ $&.$ +74@2/O&(A 2/(' ($/4 :&/ ($/ (77 +74@2/O)-: -7(

4)&-()&-)?2/)-A 47%/ :/): 8)'(/% ($)- /O@/+(/:B \7, :7 ?;&2: ($/ '&4@2/'(@7''&?2/ @2)(87%4`

! 92)(87%4 :/D/27@4/-(&' 78(/- :/8&-/:)' @%7D&:&-. ($/ '78(,)%/ ,&($ /-7;.$ D)%&)?&2&(A

4/+$)-&'4'0 ';+$)' $/)D&2A)@@2A&-. ($/ *(%)(/.A @)((/%-)-:)227,&-. 87% :/+2)%)(&D/

@%7.%)44&-. D&) +7-8&.;%)(&7- 8&2/'B

! \)%: ,&%&-. 7-2A ($/ D/%A +;%%/-(%/H;&%/4/-(' 4&.$(2/): (7 47-72&($&+ :/'&.-0 $/-+/ ?):2A

4)&-()&-)?2/)-: /D72D)?2/ '78(,)%/0 (77B

2)5+#.)&
N$/%/87%/0 /'()?2&'$ ($/ 4&-:'/(78 ($/ ?/);(A 78 '&4@2&+&(AB [)D7% '&4@2&+&(A &-'(/): 78 82/O&?&2&(AB

[&%'(2A0 :&88/%/-(&)(/ ?/(,//- ($/ &-$/%/-(+74@2/O&(A 78) @%7?2/4)-: ($/)++&:/-()2 +74@2/O&(AB 5(

)22 (&4/' ?/),)%/ 78 ($/ &-$/%/-(+74@2/O&(A 78) @%7?2/4B

[7% /O)4@2/0 ($/ :/4)-:/: D)%&)?&2&(A 78)-)@@2&+)(&7- :74)&- &' &-$/%/-(+74@2/O&(A0 ,$&2/ ($/

'72;(&7-)@@%7)+$0 /B.B 82/O&?&2&(A0 :A-)4&+&(A0 7% ./-/%&+&(A)%/ (A@&+)22A '7;%+/' 78)++&:/-()2

+74@2/O&(AB C- 4)-A %/.)%:' ($&')2'7 4/)-' ($)(($/ ;'/ 78 ($/ +2)''&+)2 67[:/'&.- @)((/%-' $)' (7

?/ 2&4&(/: (7 ($/ ?)%/ 4&-&4;4B L)'&+)22A &(&' fT7 ($/ '&4@2/'(($&-. ($)(+7;2: @7''&?2A ,7%Jg PhR0

,$&2/ -7(7?'(%;+(&-. 8;(;%/ @7(/-(&)2 /O(/-'&7-B

V/:;+&-. ($/ &-$/%/-(+74@2/O&(A &' 7-2A @7''&?2/ ?A %/:;+&-. ($/ %/H;&%/: D)%&)?&2&(A0 ,$&+$ &- (;%-

4/)-' %/:;+&-. ($/ '+7@/ 78 ($/ @%7:;+(2&-/B 5++&:/-()2 +74@2/O&(A +)- ?/)D7&:/: ?A :/4)-:&-.

($)()22 82/O&?&2&(A &- ($/ @2)(87%4 $)' (7 ?/ E;'(&8&/: ?A D)%&)?&2&(A &- ($/ +$7'/- '+7@/ 78 ($/ @%7?2/4

'@)+/B

<"#.)&"5$
I$&2/ ($/ '72;(&7- 4&.$('7;-: (%&D&)20 &(&' -7(B I&($)22 ($/ &-(%&-'&+ 47(&D)(&7-)-: +%/)(&D&(A 78)

(A@&+)2 '78(,)%/ :/D/27@/%0 7-2A 27(' 78 :&'+&@2&-/)-: /O@/%&/-+/ ,&22)227, $&4 (7)+(;)22A 87+;' 7-

($/ /''/-(&)2'B *&4@2&+&(A '$7;2: .;&:/ &('/28 7- ($/)+(;)22A :/4)-:/: D)%&)?&2&(A0 ($/ '+7@/0 78 ($/

@%7:;+(2&-/0 -7(($/ ./-/%)2 &-(/%/'(&- (/+$-727.A0 @%/@)%&-. 87%)22 @7(/-(&)2 D)%&)(&7-' 7% ($/

)@@2&+)(&7- 78 ($/ 47'(@)((/%-'B *7 &- '74/ '/-'/ ($&' @)((/%- &' 4/)-()' %/4&-:/% 78):$/%&-. (7

?/'(@%)+(&+/)-: @%).4)(&'4B C- $)%:,)%/ :/D/27@4/-(+%/)(&-. 82/O&?&2&(A &' 4;+$ 47%/ /O@/-'&D/

+74@)%/: (7 '78(,)%/0 $/-+/ 7D/%2A 82/O&?2/ :/'&.- &- $)%:,)%/ &' 2/'' 78)- &'';/B

N$/ %72/ 78 ($/ '78(,)%/)%+$&(/+(0 78(/-)2'7 +)22/: (/+$-&+)2 2/):0 &' +%;+&)2 &- ($&')'@/+(B \/ .;&:/'

($/ 7%.)-&G)(&7- ?A /'()?2&'$&-. ($/ %&.$(4&-:'/(B #7-(&-;7;' %/D&/, 78 :/'&.- :/+&'&7-' ?A

:/D/27@4/-((/)4')227,' $&4 .&D/ &-@;()-: @7(/-(&)22A +7%%/+(4&'.;&:/: :/'&.- :/+&'&7-'B

!" "d

<$($%$&,$' "&* =&)>& ?'$'
5(($/ &4).&-. @2)(87%4 :/D/27@4/-(/887%(&- *&/4/-' \/)2($+)%/ ($&' @)((/%- &')@@2&/: (7 /-';%/

($/ 27-./D&(A 78 ($/ @2)(87%4)' ,/22)' ($/ :/D/27@4/-(/88&+&/-+A 78 ($/)@@2&+)(&7-' 7- (7@B N$/

.%7;@ &-(%7:;+/: ($/ (%)+J&-.)-: (%)+&-. 78 :/@/-:/-+&/' ?/(,//- '72;(&7-)-: @%7?2/4 '@)+/

D)%&)?&2&(AB T;/ (7 ($/ %/.;2)(7%A %/H;&%/4/-('0 ,$&+$)2%/):A %/H;&%/ '74/ /O(/-(78 (%)+&-.0 ($&'

'(/@ ,)' -7((77 :&88&+;2(B N$/)::&(&7-)2 (%)+&-. +);'/' '74/ 7D/%$/): &- 4)&-()&-&-.0 ?;(7- ($/

@7'&(&D/ '&:/ 87%+/' :/D/27@/%' (7 :/'&.- 87% '&4@2&+&(AB

!" "e

E"5"&,$ 4)&'#%".&#'

4)&#$9#
*(%)(/.&+)-: 7@/%)(&7-)2 :/+&'&7-' -//: (7 ?/ 4):/B !D/%A @%7E/+(87227,' ($/ +7-'(%)&-(' 78 ($/

@%7E/+(4)-)./4/-((%&)-.2/ PaRB 1)@@/: (7 ($/)%/) 78 '78(,)%/ :/D/27@4/-(($/A)%/ :/8&-/:)'F

! *+7@/ Z ($/ 8;-+(&7-)2&(A /'@/+&)22A ($/ ;-&H;/ '/22&-. @7&-(' 788/%/: ?A) @%7:;+(

! k;)2&(A Z ($/ :/D/27@4/-()2)' ,/22)' 7@/%)(&7-)2 H;)2&(&/'0 ?7($:/(/%4&-&-. ($/ (7()2 +7'(
78 7,-/%'$&@

! N&4/ Z ($/ :;%)(&7- &(()J/' (7 :/D/27@ ($/ @%7:;+(0 $/-+/ ($/ (&4/ (7 4)%J/(

! #7'(Z ($/ +7'(78 @/%'7--/20 47'(2A ,)./'0)-: +7'(' 87% ($/ &-8%)'(%;+(;%/0 2&J/ 9#'0 '/%D/%'0
?;&2:&-.B NA@&+)22A ($/ 2)%./'(@)%(78 ($/ +7'(&' :&%/+(2A %/2)(/: (7 ($/ :/D/27@4/-((&4/)-:
&-D72D/: '()88B

!%):5$;
C-:&D&:;)2 %72/' &-) '78(,)%/ :/D/27@4/-(7%.)-&G)(&7- (A@&+)22A '@)- -7()22 87;% +)(/.7%&/'0 $/-+/

:/+&'&7-' +)- /)'&2A ?/ +7-+/-(%)(/: 7- '+7@/0 H;)2&(A0 (&4/0 7% +7'(7-2AB N$/ +2)''&+)2 '/@)%)(&7- &'

)' 87227,'B

! 9%7E/+(4)-)./4/-((A@&+)22A 8//2' 47'(%/'@7-'&?2/ 87% ($/ (%&@2/ +7-'(%)&-((&4/0 +7'(0)-:

:/D/27@4/-()2 H;)2&(A0 ';+$)' %/.;2)(7%A +74@2&)-+/)-:)D)&2)?&2&(A 78)22 :7+;4/-()(&7-

)%(&8)+('B

! 9%7:;+(4)-)./4/-((A@&+)22A 8//2' 47'(%/'@7-'&?2/ 87% '+7@/0 (&4/0)-: +;'(74/% D&'&?2/

H;)2&(A0 2&J/ @/%87%4)-+/)-: ;')?&2&(AB

! N/+$-&+)2 2/):/%'$&@ =)%+$&(/+('> (A@&+)22A 8//2' 47'(%/'@7-'&?2/ 87% '+7@/)-:

:/D/27@4/-()2)' ,/22)' 7@/%)(&7-)2 H;)2&(AB

</((&-. 7-2A 7-/ 7% (,7 78 ($/ %72/' :/+&:/ 7-) '(%)(/.A 2/):' (7 @7(/-(&)22A ;-?)2)-+/: :/+&'&7-'B

2)5+#.)&
I&($ /D/%A :/+&'&7- 4)J/ ';%/ A7; $)D/) ?)2)-+/ ?/(,//- ($/ 87;% +7-'(%)&-(' ($%7;.$ ($/

&-D72D/: %72/'B 5 (A@&+)2 '(//%&-. +744&((// '$7;2: +7-'&'(78 %/@%/'/-()(&D/' 8%74)22 '(%/)4' 78

2/):/%'$&@ =@%7E/+(4)-)./4/-(0 @%7:;+(4)-)./4/-(0 (/+$-&+)2 2/):/%'$&@>B X-2A ($&' ,)A A7; +)-

4)J/ ';%/ ($)('7;-: :/+&'&7-' ,&($ @%7@/% %&'J)''/''4/-()%/ ?/&-. 4):/B

<"#.)&"5$
N$/ @)%(&(&7-&-. ?/(,//- @%7E/+(4)-)./4/-(0 @%7:;+(4)-)./4/-(0)-: (/+$-&+)2 2/):/%'$&@ &' ($/

+2)''&+)2 '/@)%)(&7-B 5.&2/ 4/($7:727.A)@@%7)+$/' @%7D&:/) '2&.$(2A :&88/%/-(@)%(&(&7-&-.0 /B.B

*+%;4 @%7:;+(7,-/%')%/ (A@&+)22A ?%7):/% '/(;@)-: +)%/)?7;((&4/0 '+7@/0)-: H;)2&(AB N$/

N7A7())@@%7)+$ P"cR ,7;2: /D/- .7 '7 8)% (7 &-(/.%)(/)22 +7-'(%)&-(' &-(7) '&-.2/ @/%'7-F ($/ +$&/8

/-.&-//%B X8 +7;%'/ &- ($&' +)'/ ($/%/ &' -7 -//:)-A47%/ (7 ?)2)-+/ ($/ +7-'(%)&-('0 ?/'&:/' 4)J&-.

';%/ A7; @&+J ($/ i%&.$(S +$&/8 /-.&-//% 87% A7;% ?;'&-/'' ';++/''B

!" "U

<$($%$&,$' "&* =&)>& ?'$'
1)-A .%7;@' &- *&/4/-'0)47-. ($/4 ($/ @7'()2);(74)(&7- .%7;@)-: ($/ $7(%722&-. 4&22

);(74)(&7- .%7;@0 &-(/-'&D/2A)@@2A ($&' @)((/%- (7 ($/&%):D)-()./B N$/A)%/ ,/22),)%/ 78 ($/

:&88/%/-(87%+/' 78) @%7E/+()-: ;'/ ($/ %/'@/+(&D/ @/%'@/+(&D/' (7 ($/):D)-()./ 78 +%/)(&-.

&--7D)(&D/)-: /O+/22/-(@%7:;+('B

F,8&)>5$*0$;$&#'
I/ ($)-J 7;% '$/@$/%: K)'7- l&@ 87% $&' /2)?7%)(/ +744/-(')-: $&' @)(&/-+/B *@/+&)2 ($)-J')2'7 (7

7;% I%&(/%S' I7%J'$7@ .%7;@)(!;%79<79 WcchF V/-/ L%/:2); 0 !:;)%:7 [/%-)-:/G0 #2);:&;' <&-J0

32);' 1)%H;)%(0 T&/(4)% *+$m(G0 1)%J;' no2(/%0)-: 52)&- 6B n7;887 [/;:E&7B C- ($&' @)@/% ,/ ?)'/

7- ($/ 87;-:)(&7-' 2)&: ?A);($7%' 2&J/ 32);' *+$4&:0 <&-:) M7%($%7@0)-: 9);2 #2/4/-('B X;%

2/)%-&-. +7-(&-;/: 7;(78 ($/&% @%7:;+(2&-/ /-.&-//%&-. /O@/%&/-+/'B

G$%;.&)5)0D
?-%& +//&, Z 5 '/(78 %/;')?2/)%(&8)+('0 &B/B %/H;&%/4/-('0 :74)&- 47:/2'0)%+$&(/+(;%/0 @)((/%-'0

+7-+/@('0 :7+;4/-()(&7-0 (/'(+)'/'0 ?;:./(@2)-'0 ,7%J @2)-'0 @%7+/''0 (772'0 ,7%J827,')-: +7:/

)''/('B

9*+,<-%5 Z N$/ ';4 78)22 +7%/)''/(' &' (A@&+)22A +)22/: ($/ @%7:;+(2&-/ @2)(87%4B \7,/D/%0 ($/ (/%4

@2)(87%4 &' '74/(&4/')2'7 ;'/: 87%) ?)'/ 78 (/+$-727.&/' 7- ,$&+$ 7($/% (/+$-727.&/' 7% @%7+/''/'

)%/ ?;&2(P"R0 /B.B)- 7@/%)(&-. 'A'(/40 4&::2/,)%/ 7% +74@7-/-(+7-()&-/%B C- ($&' @)@/% ,/ %/8/% (7

($/ 8&%'(&-(/%@%/()(&7-B

;"//"-.B K"/"-.B G,%+,&#@ Z 1&''&7- p ,$A :7 C /O&'(` n&'&7- p ,$/%/ ,7;2: C 2&J/ (7 ?/` *(%)(/.A p

$7, ,7;2: C 2&J/ (7 ./(($/%/`

8-,+* 6-/, -< -3.&%/0"1 L8?MN Z N$/ ';4 78)22 +7'(' %/2)(/: (7 :/D/27@&-.0 4)&-()&-&-.0 ';@@7%(&-.0

&-'()22&-.0 '/%D&+&-.0)-: 7,-&-.) +/%()&- @%7:;+(78 ($/ @%7D&:&-.)' ,/22)' %/+/&D&-. @)%(AB

8"5& ,- 5+%O&, L88;N Z N$/ (&4/ &(()J/' (7 :/2&D/%) @%7:;+(8%74 &-&(&)2 +7-+/@(&7- (7)+(;)2

)D)&2)?&2&(A 7- ($/ 4)%J/((7 ?/ ?7;.$(?A +;'(74/%'B N$/ 27-./% ($/ :/2)A ($/ $&.$/% ($/ +$)-+/' 87%

($/ +74@/(&(&7- ?%&-. ($/&% @%7:;+(' &-(7 ($/ 4)%J/()-: /-:)-./% ($/ @7(/-(&)2 4)%J/('$)%/ 87%

($/ 7,- @%7:;+(B

9%-P&6, 5+.+#&5&., ,%"+.#*& Z N$/ (%&)-.2/ :/'+%&?/' ($/ +7-'(%)&-&-. %/2)(&7-'$&@ ?/(,//- '+7@/0
(&4/0)-: +7'()'';4&-. ($/ H;)2&(A (7 ?/ 8&O/:B 522)%/ &-(/%%/2)(/:Y A7; +)--7(+$)-./)-A 78 ($/4

,&($7;():7@(&-. ($/ 7($/%' PaRB

G6-1".# Z *+7@&-. P"RPQRPbR &')-)+(&D&(A (7 8&-: ($/ ?7;-:)%&/' 78) @%7:;+(2&-/ ($)(+)- ?/ :&D&:/:
&-(7 ($%// ';? '(/@' PdRPeRF @%7:;+(2&-/ '+7@&-.0 '+7@&-. ($/ :74)&-0)-: '+7@&-. ($/ %/;')?2/)''/('

=@2)(87%4>B N$/ 7?E/+(&D/ 78 @%7:;+(2&-/ '+7@&-. +74@%&'/' :/8&-&-. ($/ '/(78 @%7:;+(')-: ($/ 4)&-

8/)(;%/' (7 ?/ &-+2;:/: &- ($/ @%7:;+(2&-/B T74)&- '+7@&-. %/@%/'/-(' ($/ @%7+/'' 78 &:/-(&8A&-.

)@@%7@%&)(/ ?7;-:)%&/' 87% ($/ ';? :74)&-' 78 ($/ 7D/%)22 @%7:;+(2&-/B *+7@&-. ($/)''/(' %/';2(' &-

($/ :/+&'&7- ,$&+$ 78 ($/ %/H;&%/: 8;-+(&7-)2&(A) :/D/27@4/-(7%.)-&G)(&7- '$7;2: &4@2/4/-()'

%/;')?2/ ?)'/)''/(')-: ,$&+$ &('$7;2: +7-'&:/% @%7:;+('@/+&8&+B [7% '&4@2&+&(A ,/ +)- '(&+J (7 ($/

!" "h

!" Wc

87227,&-. :/8&-&(&7-F *+7@&-. 4/)-' '/((&-. ($/ 87+;' 78 %/;'/ 7- ($/ 8;-+(&7-)2&(A ($)(@%74&'/')-

7@(&4)2 %/(;%- 7- &-D/'(4/-(PURB

H11*"6+,"-. +.4 I-5+". E.#".&&%".# Z T74)&- !-.&-//%&-. =T!> &' ($/ ';? @%7+/'' 78 9<! ($)(&'

%/'@7-'&?2/ 87% ?;&2:&-.)-: 4)-).&-. %/;')?2/ ?)'/)''/('0 ,$&2/ 5@@2&+)(&7- !-.&-//%&-. =5!> &'

)?7;(?;&2:&-. @%7:;+(' 7% '72;(&7-' 8%74 ($/'/ ?)'/)''/('B n)%&)(&7- &- 7%.)-&G)(&7- 87%4' Z 9<!

7%.)-&G)(&7-' 4)A ?/ '@2&(&-) T74)&- !-.&-//%&-. @)%(($)(&' %/'@7-'&?2/ 87% &4@2/4/-(&-. ($/ +7%/

)''/(')-: '/D/%)2 5@@2&+)(&7- !-.&-//%&-. @)%(' ($)(?;&2: @%7:;+('_'72;(&7-' ?)'/: ($/ +7%/)''/('

)-:)::&-. @%7:;+('@/+&8&+ 8/)(;%/'B

52(/%-)(&D/2A0 9<! 7%.)-&G)(&7-' 4)A)' ,/22 ?/ :&D&:/:)27-. ';? :74)&-' ($)(:7 ?7($0

:/D/27@4/-(78 +7%/)''/(')-: @%7:;+(_'72;(&7- :/D/27@4/-(B N$&' '/(;@ &' +7447- &- 4)(;%/ 9<!

7%.)-&G)(&7-'0 47'(2A 87% '72;(&7- :/D/27@4/-(B *;+$) :&D&'&7- &' D/%A /88&+&/-('&-+/ -7 $)-:7D/%

?/(,//- ($/ (,7 :&'+&@2&-/' &' -/+/'')%AB \7, (7 '/(;@ ($/ ?/'(7%.)-&G)(&7- 87%) @%7:;+(2&-/

,7;2: ?/) @)((/%- 2)-.;)./ 7- &(' 7,-B

9%-+6,"A& &A-*$,"-. Z #7%/)''/(')%/ &:/-(&8&/: ;@ 8%7-()-: :/D/27@/: 87% %/;'/B

)&+6,"A& &A-*$,"-. Z #%/)(&7- 78 +7%/)''/(' ?)'/: 7- /O&'(&-.0 @%/D&7;'2A @%7:;+('@/+&8&+)''/('B

!" W"

<$($%$&,$'
ABC /(7#D !E%:#&D >"$ 1&+ <,$1&$D 2(?*."+& /+(13%* <,$& 4$;,$&&+,$;D 26+,$;&+D FGGH

AFC I#"3) 2%70,1D /#"$$,$; 2(?*."+& J&3)& K L 8,)%,6#,$&1 2%(6,$; L66+("%7 ?(+ 2(?*."+& /+(13%*
<,$&)D 8,))&+*"*,($D =+"3$7(?&+ MJ! N&+#";D FGGO

AOC '#&0&$*)D /P Q R(+*7+(6D <P 2(?*."+& /+(13%* <,$&)S /+"%*,%&) "$1 /"**&+$)D L11,)($ T&)#&@D FGGF

AUC 7**6SVV&$P.,:,6&1,"P(+;V.,:,V/+(W&%*X*+,"$;#&

AHC IP 'Y"+$&%:, "$1 ZP TP 4,)&$&%:&+D [&$&+"*,>& /+(;+"00,$;P 9&*7(1)D \((#)D "$1 L66#,%"*,($)P
L0)*&+1"0S L11,)($ T&)#&@ <($;0"$D FGGGP

A]C ^"$!()%7D 8&),;$ "$1 Z)& (? 2(?*."+& L+%7,*&%*3+&)S L1(6*,$; "$1 4>(#>,$; " /+(13%* <,$&
L66+("%7D L11,)($ T&)#&@ J&"1,$;D FGGGP

A_C I#"3) 2%70,1D 2*&??&$ \7,&#D ^"$!()%7D 23)"$$& ^(7$))($D 9,%7&# ^"+,$;D !&+$7"+1 \7(0`D
2,&;?+,&1 \+()%7D 2%(6,$;D 4L2/2 %($)(+*,30 .,1& 1&#,>&+"-#& 'T8BPFPUD FGGBP

AaC I#"3) 2%70,1D L '(06+&7&$),>& 6+(13%* <,$& 2%(6,$; L66+("%7 "$1 M*) N"#,1"*,($D M$ /+(%&&1,$;)
(? *7& FU*7 M$*&+$"*,($"# '($?&+&$%& ($ 2(?*."+& 4$;,$&&+,$; bM'24 FGGFcD L'9 /+&))D FGGFD 66P HdO
]GO

AdC e/ ;3,1"$%& f8(*7&),06#&)* *7,$; *7"* %(3#1 6()),-#@ .(+:g

ABGC 7**6SVV...P6(66&$1,&%:P%(0V#&"1&+)7,6P7*0

 E2 - 1

Dietmar Schütz
Siemens AG, Corporate Technology

CT T DE IT1
System Architecture & Platforms

Otto-Hahn-Ring 6
81739 München

Germany
eMail: dietmar.schuetz@siemens.com

Phone: +49 (89) 636-57380
Fax: +49 (89) 636-45450

VARIABILITY REVERSE ENGINEERING
Version 1.0, (Final Version for Printed Proceedings), EuroPLoP2009

In the realm of Product Line Engineering (PLE), Variability Management is
one of the key issues. The success of the whole product line approach relies
on the correctness of the variability models. Unfortunately, before transiting
to PLE, knowledge on the variability is not addressed explicitly, but
embedded in many development artefacts. This pattern provides an
approach to extract that hidden knowledge, and transform it into the
required problem side commonality/variability model.

Product Line Engineering (PLE), Platform Development,
Product Business, Solution Business

An established development organisation with several successful similar
projects has identified the potential for a Product Line (PL) approach. It has
defined a business strategy and market scope to be covered, and developed a
coarse roadmap and internal business case for developing reusable assets.

Consider your company operates in solution business in the web
applications domain, developing customer specific (software) applications.
These applications typically share a common set of features and solutions.
For every customer/application, a separate project is created, responsible to
satisfy customer needs within the given budget.
In order to reduce their own development effort, the projects have applied a
copy/paste approach on the code (and project) base, using the most similar
project from the past as starting point for their own work.

Summary

Context

Example

 E2 - 2

This ad-hoc reuse has sped up initial development of other applications, but
reveals weaknesses in an increasing number of maintenance scenarios.
Every bug that is found has a high probability to affect other projects too,
but is difficult to be located and fixed in the different branches.
Now, your management wants to establish a “platform” (better: product line
engineering) approach in order to benefit from reusing common parts during
software development and the entire software lifecycle. In the context of the
“Commonality-Variability-Analysis” (C/V-analysis) tasks during domain
analysis, the projects from the past are revisited in order to extract a useful
set of commonalities that shape the basis for planned reuse in the future. In
addition, the variant parts should be identified for a proper platform
scoping, defining the complete set of core assets that should be provided
upfront.

A lot of knowledge regarding commonality and variability that has been
accumulated in the past, but is not explicitly documented. How can the
undocumented knowledge be made accessible for future work, and
contribute to a viable commonality/variability-model?

The following forces influence the solution:
 Different kind of artefacts.

The exiting base of information from previous projects spans various
types of artefacts (documents, specifications, tools, code). All of
them might be a source for commonality and variability.

 No explicit highlighting of variability.
From the perspective of a single project, variability does not exist,
since the customer wants a specific system. Therefore, each project
supports its own needs, but does not care about the differences to
others. The copy/paste approach has helped to have a quick start, but
couldn’t keep the different projects to follow their own, isolated
path, resulting in an overly wide code base.

 Constraints and dependencies.
Typically, a variability model does not only contain the possible
variation points and variants, but also the dependencies between
them, such as conflicting variants.

Extend the forward oriented variability modelling (feature based C/V-
analysis) with backward oriented techniques (reverse engineering). To this
end, analyse promising types of artefacts that have been created by previous
development projects in order to extract candidates for problem side
variability. Assess these candidates for there relevance to identify solution
side variations points and variants. Map those back to (customer-visible)
features in order to problem side variability model. With that model in
place, assess the variability on both sides to derive technical constraints and
dependencies as necessary part of the variability model.

Problem

Solution

 E2 - 3

The intended outcome of the C/V analysis is a commonality/variability-
model. It contains features that are common to all products, and those where
the products differentiate from others, characterized by variation points (e.g.
colour) and specific variants (e.g. blue, green).
In order to distinguish this C/V model from the developmental solutions,
this model is typically denominated as the problem side C/V model. It is
counterparted by the solution side C/V model, which relates to components,
modules, or code fragments of the realization structure and implementation.
Both parts of the C/V-model are connected by a mapping structure that
links the variations points from both sides together, hence allowing deriving
a concrete implementation based on a given set of features.

Input sources for the analysis are all kinds of artefacts that have been
created and/or modified in relation with the definition and development of
concrete products. Since similar kinds of artefacts exist for the different
products, they build a comparison base for the analysis.

Applying VARIABILITY REVERSE ENGINEERING incorporates at least the
sequence of six steps described below.

Decide on input sources.
Based on the knowledge which are the key artefacts that your business and
development operates on, establish a set of artefact types that probably will
provide much to variability.

The starting point are definitely the artefacts available on the problem side:
 Marketing material containing product descriptions.

These might even contain explicit variability information by means
of (comparative) feature lists.

 User Manuals

On the solution side, typical promising artefact types are the “high level”
specifications of the system:

 Requirements specifications
 Architecture specifications
 System test cases

Some others artefacts contain the variability information more directly, but
maybe on a too fine level:

 Code
(maybe even explicitly exposing variability, e.g. by means of
conditional compilation directives)

 Configuration files (.ini-files, and similar)
Last but not least, the development environment provides structural
information too,

 Configuration management structure (branches)
 Build/development (management) structures

Structure

Realization

1

 E2 - 4

Compare to derive differences.
For most kinds of artefacts, variants reveal themselves as differences
between two documents.
The results are best if you do not compare two random documents to each
other, but use the copied master and those derived from it, to limit the set of
differences/changes to just one level. To this end, it might be useful to do
some “project archaeology” and dig out these “based on” relationships.
Unfortunately, they are not necessarily identical throughout the whole set of
artefacts.

Comparing two files using text/line oriented tools like diff is nice for
code, but there is also need for a semantic diff /compare. Sometimes this is
provided by development tools. Otherwise, it might be helpful to export the
artefacts to an xml representation and compare these files incorporating the
hierarchical structure. But this approach needs careful observation, since for
example the order of nodes in containers (not ordered lists) might lead to
misinterpretation the results.

Identify candidates.
Walk through the different kinds of artefacts and the comparison findings,
in order to identify common and variant parts. Different artefact types
require different assessment techniques, related to their typical content and
change scenarios that might have been applied during “copy/paste/modify”
cycles.

Marketing documents:
Scan for keywords like “option”, “additional”, “alternative”, since they are
explicitly indicating variability. The features listed there can (after
verification) directly added to the problem side C/V model, and used as
input for considering variability. If there are comparative specs for the
different products, they already contain most of the variability information.

Requirement documents:
Due to the “contractual” character of requirement documents, often
polishing of wording is necessary. In order to not mistake these as variation
candidates, it is helpful to look into related solution side artefacts
(architecture and design documents, hopefully linked to the requirements) to
assess the variability potential of the discovered changes.

Configuration management system:
This source of information might provide explicit variability candidates, e.g.
by means of branches. Another useful source is the code and its changes
over time. The changes (when taken from configuration management) often
indicate the reason for change by check-in comments.

Select solution side variability.
After having all the differences and changes available, it is necessary to
filter out the irrelevant elements. While this might be obvious for smaller
code changes, all bigger differences must be reflected according to their

2

3

4

 E2 - 5

relevance to stakeholders (customer, product manager, key developer)
regarding variation scenarios. The remaining elements are arranged into a
solution side variability model, typically oriented along the structure of the
system and development organisation, which contains the common parts
too.

Map back to problem side variability.
We need to separate customer relevant requirements and variability from
corresponding design related elements. For design related issues, try to
analyze the rationale behind it –it could be an undocumented requirement or
a constraint

 use established RE analysis techniques to extract the reason behind

 try to reverse the refinement step by abstraction/generalization

Use high level features identified in the solution domain as a guide for
further reverse engineering activities and as completeness check

Finally merge all identified requirements, variability and constraints with
requirements on solution side and consolidate the models.

Complete white spots.
When looking at your problem side, you might recognize that the system
you see does not match the perspective of the customer. Use scoping
techniques to define the boundaries of your product line, and complete
missing elements within your desired scope.

VARIABILITY REVERSE ENGINEERING provides the benefits depicted below:

 Efficiency
By focussing on artefacts types with high potential first (explicit
variability, on problem side), the process of extracting variability the
generates the most important results with minimal effort early (80:20-
rule).

 The variability model reflects knowledge from past projects
Even if not obvious upfront, the implicit variability knowledge from the
past projects is incorporated into the commonality/variability-model,
making it much more realistic than a strictly top down approach.

 Derivation support
The artefact types that have provided useful content to the backward
analysis are also promising candidates for forward oriented tasks: they
should be supported by the platform for the efficient derivation of
concrete projects/products.

5

6

Consequences

 E2 - 6

On the other hand, the pattern carries the following liabilities:
 Reverse Engineering can be laborious and expensive

Especially the tasks of deriving and assessing the candidates for
variability can eat up tremendous resources, due to their sheer number.

 Risk of overdoing
The past does not necessarily reflect the future. Hence focusing to much
on the derived information can be misleading.

 Risk of missing dependency information
Possible dependencies between variants (e.g. conflicts) are typically not
expressed in the development artefacts, and hence cannot be derived
from them. Hence, the variability model needs to be proof-read,
consistency-checked and possibly extended afterwards.

In product business, there are even more sources: information gained from
competitors can be subject to the variability reverse engineering too:
products catalogues, (comparative) feature lists, reverse-engineered
products. Although they do not necessarily fit to your solution side
variability model (and therefore should be kept separately in the beginning),
they valuably contribute to the problem side.

Thanks to my shepherd Hans Wegener, for his patience and guidance in
busy times. To my colleagues Horst Sauer, Anne Hoffmann, and Christa
Schwanninger, for providing their thoughts and never getting out of
discussion. And last but not least I thank the participant of the writers
workshop at EuroPLoP 2009, namely Alain-Georges Vouffo-Feudjio,
Christa Schwanninger, Claudius Link, Ed Fernandez, Klaus Marquardt,
Markus Völter, Michael Kircher, and Rene Bredlau.

[SPLE2006]
Pohl, Böckle, van der Linden, Software Product Line Engineering,
Springer, 2005

Variants

Credits

References

E3 - 1

Digital Signature with Hashing and XML Signature Patterns

Keiko Hashizume, Eduardo B. Fernandez, and Shihong Huang

Dept. of Computer Science and Engineering,
Florida Atlantic University

Boca Raton, FL 33431, USA,
ahashizu@fau.edu, ed@cse.fau.edu, shihong@cse.fau.edu

Abstract

Data security has become one of the most important concerns for organizations. Information is a
valuable asset and needs to be protected. One important countermeasure against attackers is the
use of digital signatures. Digital signatures provides message authentication and may also
provide message integrity. We present here two patterns: XML Signature and Digital Signature
with Hashing patterns. The XML Signature pattern, a specialization of the Digital Signature with
Hashing, is used to secure XML messages.

1. Introduction

Data security has become one of the most important concerns among us, especially for
organizations that have valuable information. An important security risk is that information can
be modified during its transmission by somebody trying to make us believe something to his
convenience. How do we prove that a message came from a specific user? Digital signatures use
public-key cryptography to provide message authentication by proving that a message was sent
indeed from a specific sender [dig, Sta06]. The sender encrypts the message using his private key
to sign it. In this case, the signature has at least the same length as the message. This works but it
wastes bandwidth and time. Thus, we need to reduce the length to the message before signing it.
This can be done producing a digest through hashing. When the receiver gets the signed
message, he verifies the signature by decrypting it using the sender’s public key, thus proving
that the message was encrypted by the sender. Also, digital signatures can provide message
integrity by verifying whether a message was modified during its transmission. Digital signatures
can also protect the integrity and verify the origin of a digital document, e.g. a certificate, or of
programs. Digital signatures provide also non-repudiation, the sender cannot deny having sent
the message he signed. In several countries, including the U.S., digital signatures have legal
validity.

An emerging use of web services that exchanges XML messages also can be target of attacks.
Some security standards have been developed to apply mechanisms that reduce security risks,
one of these is. XML Signature. This standard is a joint effort between the World Wide Web
Consortium (W3C) and the Internet Engineering Task Force (ITEF). XML Signature defines
how to digitally sign an entire XML message, part of an XML message, or an external object.
XML Signature also includes hashing, but the pattern name follows the name of the standard.
Because XML documents can have the same contents but in different layouts, we need to convert
the documents into a canonical form before we apply digital signatures. Note that XML

E3 - 2

Signature solves the same problem as the Digital Signature with Hashing pattern but in a more
specialized context.

We present here two patterns: XML Signature and Digital Signature with Hashing patterns. The
XML Signature pattern, a specialization of the Digital Signature with Hashing, is used to secure
XML messages. We assume the reader is a designer intending to use message authentication in
her design or a user intending to sign documents; we also assume both types of users have a
basic knowledge of cryptography and UML. We provide a solution with sufficient detail so as it
can be used as a guideline for design of signature systems and for users of signed documents.

Section 2 presents the Digital Signature with Hashing pattern, and Section 3 presents the XML
Signature pattern.

2. Digital Signature with Hashing

2.1. Intent

Digital Signature with Hashing allows a principal to prove that a message was originated from it.
It also provides message integrity by indicating whether a message was altered during
transmission.

2.2. Example

Alice in the Sales department wants to send a product order to Bob in the production department.
The product order does not contain sensitive data such as credit card number, so it is not
important to keep it secret. However, Bob wants to be certain that the message was created by
Alice so he can charge the order to her account. Also, because this order includes the quantity of
items to be produced, an unauthorized modification to the order will make Bob manufacture the
wrong quantity of items. Eve is a disgruntled employee who can intercept the messages and may
want to do this kind of modification to hurt the company.

2.3. Context

People or systems often need to exchange documents or messages through insecure networks and
need to prove their origin and integrity. Stored legal documents need to be kept without
modification and indicating their origin. Software sent by a vendor through the Internet is
required to prove its origin.

We assume that those exchanging documents have access to a public key system where a
principal possesses a key pair: a private key that is secretly kept by the principal and a public key
that is in a publicly-accessible repository. We assume that there is a mechanism for the
generation of these key pairs and for the distribution of public keys; that is, a public key
infrastructure (PKI).

2.4. Problem

E3 - 3

In many applications we need to verify the origin of a message (message authentication). Since
an impostor may assume the identity of a principal, how do we verify that a message came from
a particular principal? Also, messages that travel through insecure channels can be captured and
modified by attackers. How do we know that the message/document that we are receiving has
not been modified?

The solution for these problems is affected by the following forces:

 For legal or business reasons we need to be able to verify who sent a particular message.
Otherwise, we may not be sure of its origin and the sender may deny having sent it
(repudiation).

 Messages may be altered during transmission, so we need to verify that the data is in its
original form when it reaches its destination.

 The length of the signed message should not be significantly larger than the original
message; otherwise we would waste time and bandwidth.

 Producing a signed message should not require a large computational power or take a
long time.

2.5. Solution

Apply properties of public key cryptographic algorithms to messages in order to create a
signature that will be unique for each sender [Sta06]. The message is first compressed (hashed)
to a smaller size (digest), and then it is encrypted using the sender’s private key. When the
signed message arrives at its target, the receiver verifies the signature using the sender’s public
key to decrypt the message, if it produces a readable message, it could only have been sent by
this sender. The receiver then generates the hashed digest of the received message and compares
it to the received hashed digest: if it matches the message has not been altered.

This approach uses public key cryptography where one key is used for encryption and the other
key for decryption. To produce a digital signature (SIG), we encrypt (E) the hash value of a
message (H(M)) using the sender’s private key (PrK): SIG = EPrK (H(M))

We recover the hash value of the message (H(M)) by applying decryption function D to the
signature (SIG) using the sender’s public key (PuK). If this produces a legible message, we can
be confident that the sender created the message because she is the only one who has access to
her private key. Finally, we calculate the hash value of the message as H(M) = DPuK(SIG) .If this
value is the same as the message digest obtained when the signature was decrypted, then we
know that the message has not been modified.

It is clear that the sender and receiver should agree to use the same encryption and hashing
algorithms.

Structure

Figure 1 describes the class diagram for the Digital Signature Pattern.

E3 - 4

A Principal may be a process, a user, or an organization that is responsible for sending or
receiving messages. This Principal may have the roles of Sender or Receiver. A Sender may
send a plain Message and/or a SignedMessage to a receiver.

The KeyPair entity contains two keys: public and private, that belong to a Principal. The public
key is registered and accessed through a repository, and the private key is kept secret by its
owner. In a Public Key system, one key is normally used for encryption, while the other is used
for decryption. PublicKeyRepository is a repository that contains public keys that can be
available to anyone. The PublicKeyRepository may be located in the same local network as the
principal or in an external network.

The Signer creates the SignedMessage that includes the Signature for a specific message. On
the other side, the Verifier checks that the Signature within the SignedMessage corresponds to
that message. The Signer and Verifier use the DigestAlgorithm and SignatureAlgorithm to
create and verify a signature respectively. The DigestAlgorithm is a hash function that condenses
a message to a fixed length called a hash value or message digest. The SignatureAlgorithm
encrypts and decrypts messages using public/private key pairs.

Dynamics
We describe the dynamic aspects of the Digital Signature Pattern using sequence diagrams for
the use cases sign a message and verify a signature.

Sign a message (Figure 2):

Summary: A Sender wants to sign a message before sending it
Actors: A Sender
Precondition: A Sender has a public/private pair key
Description:
a) A Sender sends the message and its private key to the signer.
b) The Signer calculates the hash value of the message (digest) and returns it to the Signer.
c) The Signer encrypts the hash value using the sender’s private key with the Signature

Algorithm. The output of this calculation is the digital signature value.
d) The Signer creates the Signature object that contains the digital signature value.
e) The Signer creates the SignedMessage that contains the original message and the

Signature.
Postcondition: A SignedMessage object has been created.

E3 - 5

Figure 1: Class Diagram for Digital Signature Pattern

E3 - 6

Figure 2: Sequence Diagram for signing a message

Verify a Signature (Figure 3):

Summary: A receiver wants to verify that the signature corresponds to the received message.
Actors: A Receiver
Precondition: None
 Description:
a) A Receiver retrieves the sender’s public key from the repository.
b) A Receiver sends the signed message and the sender’s public key to the verifier.
c) The verifier decrypts the signature using the sender’s public key with the Signature

Algorithm.
d) The verifier calculates the digest value of the message.
e) The verifier compares the outputs from step c) and d).
f) The verifier sends an acknowledgement to the receiver that the signature is valid.
Alternate Flows:
 The outputs from step c) and d) are not the same. Then, the verifier sends an

acknowledgement to the receiver that the signature failed.
Postcondition: The signature has been verified.

E3 - 7

Figure 3: Sequence Diagram for verifying a signature

2.6. Implementation

 Use the Strategy Pattern [Gam94] to select different hashing and signature algorithms.
The most widely used hashing algorithms are MD5 and SHA1. Those and others are
discussed in [Sta06].

 A good hashing algorithm produces digests that are very unlikely produced by other
meaningful messages, meaning that it is very hard for an attacker to create an altered
message with the same hash value. The message digest should be encrypted after being
signed to avoid man-in-the-middle attacks, where a person who captures a message could
reconstruct its hash value.

 Two popular digital signature algorithms are RSA [RSA], and Digital Signature
Algorithm (DSA) [Fed00, Sta06].

 The designer should choose strong and proven algorithms to prevent attackers from
breaking them. The cryptographic protocol aspects, e.g. key generation, are as important
as the algorithms used.

 The sender and receiver should have a way to agree on the hash and encryption
algorithms used for a specific set of messages. XML documents indicate which
algorithms they use and pre-agreements are not necessary.

 Access to the sender’s public key should be available from a public directory or from
certificates presented by the signer.

 Digital signatures can be implemented in different applications such as in email
communication, distribution of documents over the Internet, or web services. For
example, one can sign email’s contents or any other document’s content such as PDF. In
both cases, the signature is appended to the email or document. When digital signatures
are applied in web services, they are also embedded within XML messages. However,

E3 - 8

these signatures are treated as XML elements, and they have additional features such as
signing parts of a message or external resources which can be XML or any other data
type.

 When certificates are used to provide the sender’s public key, there must be a convenient
way to verify that the certificate is still valid [SOA01].

 There should be a way to authenticate the signer software [dig]. An attacker who gains
control of a user’s computer could replace the signing software with his own software.

2.7. Known Uses

Digital Signatures have been widely used in different products.

 Adobe Reader and Acrobat [Ado05] have an extended security feature that allows users
to digitally sign PDF documents.

 CoSign [Arx] digitally signs different types of documents, files, forms, and other
electronic transactions.

 GNuPG [Gnu] digitally signs e-mail messages.
 The Java Cryptographic Architecture [Sun] includes APIs for digital signature.
 Microsoft .Net [Mic07] includes APIs for asymmetric cryptography such as digital

signature.
 XML Signature [W3C08] is one of the foundation web services security standards that

defines the structure and process of digital signatures in XML messages.

2.8. Consequences

This pattern presents the following advantages:

 Because a principal’s private key is used to sign the message, the signature can be
validated using its public key, which proves that the sender created and sent the message.

 When a signature is validated using a principal’s public key, the sender cannot deny that
he created and sent the message. If a message is signed using another private key that
does not belong to the sender, the validity of the signature fails.

 If the proper precautions are followed (See 2.6), any change in the original message will
produce a digest value that will be different (with a very high probability) from the value
obtained after decrypting the signature using the sender’s public key.

 A message is compressed into a fixed length string using the hash algorithm before it is
signed. As a result, the process of signing is faster, and the signed message is much
shorter.

 The available algorithms that can be used for digital signatures do not require very large
amounts of computational power and do not take large amounts of time.

The pattern also has some (possible) liabilities:

E3 - 9

 We need a well established Public Key Infrastructure that can provide reliable public
keys. Certificates issued by some certification authority are the most common way to
obtain this [Sta06].

 Both the sender and the receiver have to previously agree what signature and hashing
algorithms they support. This is not necessary in XML documents because they are self-
describing.

 Cryptographic algorithms create some overhead (time, memory, computational power),
which can be reduced but not eliminated.

 The required storage and computational power may not be available, e.g. in mobile
devices.

 Users must implement properly the signature protocol.
 There may be attacks against specific algorithms or implementations [dig]. These are

difficult to use against careful implementations.
 This solution only allows one signer for the whole message. A variant or specialization,

such as the XML Signature pattern, allows multiple signers.
 Digital signatures do not provide message authentication and replay attacks are possible

[SOA01]. Nonces or time stamps could prevent this type of attacks.

2.9. Example Resolved

Alice and Bob agree on the use of a digital signature algorithm, and Bob has access to Alice’s
public key. Alice can then send a signed message to Bob. When the message is received by Bob,
he verifies whether the signature is valid using Alice’s public key and the agreed signature
algorithm. If the signature is valid, Bob can be confident that the message was created by Alice.
If the hash value is correct Bob also knows that Eve has not been able to modify the message.

2.10. Related Patterns

 Encryption/Decryption using public key cryptography [Bra00]
 Generation and Distribution of public keys [Leh02]
 Certificates [Mor06] are issued by a Certificate Authority (CA) that digitally signs them

using its private key. A certificate carries a user’s public key and allows anyone who has
access to the CA’s public key to verify that the certificate was signed by the CA.

 Strategy Pattern [Gam94], defines how to separate the implementation of related
algorithms from the selection of one of them.

3. XML Signature

3.1. Intent
XML Signature allows a principal to prove that a message was originated from it. It also
provides message integrity by defining whether a message was altered during transmission. The
XML Signature standard [W3C08] describes the syntax and the process of generating and

E3 - 10

validating digital signatures for authenticating XML documents. XML Signature also provides
message integrity. It requires canonicalization before hashing and signing.

3.2. Example

Alice in the Sales department wants to send product orders to Bob in the production department.
The product orders are XML documents and do not contain sensitive data such as credit card
number, so it is not important to keep them secret. Each order must be signed by Alice’s
supervisor Susie to indicate approval. Bob wants to be certain that the message was created by
Alice so he can charge the order to her account and also needs to know that the orders are
approved. Because the orders include the quantity of items to be produced, an unauthorized
modification to an order will make Bob manufacture the wrong quantity of items. Eve can
intercept the messages and may want to do this kind of modification.

3.3. Context

Users of web services send and receive SOAP messages through insecure networks such as the
Internet and need to prove their origin and integrity. During their transmission these messages
can be subject to a variety of attacks.

We assume that a principal possesses a key pair: a private key that is secretly kept by the
principal and a public key that is in a publicly-accessible repository. We assume that there is a
mechanism for the generation of these key pairs and for the distribution of public keys.

3.4. Problem

In many applications we need to verify the origin of a message (message authentication). Since
an impostor may assume the identity of a principal, how do we verify that a message came from
a particular principal? Also, messages that travel through insecure channels can be captured and
modified by attackers. How do we know that the message/document that we are receiving has
not been modified?

 For legal or business reasons we need to be able to verify who sent a particular message.
Otherwise, we may not be sure of its origin and the sender may deny having sent it
(repudiation). We assume the sender has signed the message to prove she is its author.

 Messages may be altered during transmission, so we need to verify that the data is in its
original form when it reaches its destination.

 The length of the signed message should not be significantly larger than the original
message; otherwise we would waste time and bandwidth.

 Producing a signed message should not require a large computational power or take a
long time.

 We need to express a digital signature in a standardized XML format, so interoperability
can be ensured between applications.

 There may be situations where we want to ensure proper origin or integrity in specific
parts of a message. For example, an XML message can travel through many

E3 - 11

intermediaries that add or subtract information, so if we sign the entire message, the
signature would have no meaning. Thus, we should be able to sign portions of a message.

3.5. Solution

Apply cryptographic algorithms to messages in order to create a signature that will be unique for
each message. First, the data to be signed may need to be transformed before applying any digest
algorithm. The series of XML elements (that includes other subelements) is canonicalized before
applying a signature algorithm. Canonicalization is a type of transform algorithm that converts
data into a standard format, to remove differences due to layout formatting. This process is
required because XML is a flexible language where a document can be represented in different
ways that are semantically equal. Thus, after calculating the canonical form, both the sender and
the receiver will sign and verify the same XML data respectively. After applying a
canonicalization algorithm, the result value is digested and then encrypted using the sender’s
private key. Finally, the signature, in XML form, is embedded in the message.

In the other side, the receiver verifies the signature appended in the signed message. The
verification process has two parts: reference verification and signature verification. In the
reference verification, the verifier recalculates the digest value of the original data. This value is
compared with the digest value included in the signature. If there is any mismatch, the
verification fails. In the signature verification, the verifier calculates the canonical form of the
signed XML element, and then applies the digest algorithm. This digest value is compared
against the decrypted value of the signature. The decryption is done using the sender’s public
key.

There are three types of XML Signature: enveloped, enveloping and detached signature. In an
enveloped signature, the signature is a child element of the signed data. For example, when you
sign the entire XML message, the signature is embedded within the message. An enveloping
signature is a signature where the signed data is a child of the signature. You can sign elements
of a signature such as the Object or KeyInfo element. A detached signature is calculated over
external network resources or over elements within the message. In the latter case, the signature
is neither an enveloped nor an enveloping signature.

Structure

Figure 4 describes the structure of the XML Signature Pattern. Note that the upper part of this
figure is almost the same as Figure 1. The main difference is that Figure 4 ads more details about
the structure of the elements of the message so that signature can be applied more finely.

A Principal may be a process, a system, a user, or an organization that sends and receives
XMLMessages and/or SignedXmlMessages. This principal may have the roles of Sender and
Receiver.

E3 - 12

Both an XMLMessage and a SignedXMLMessage are composed by XML elements, but this is
only shown in the SignedXMLMessage. Each XMLElement may be a SingleElement that does
not have any children or be a Composite element which is composed by other XML elements.

The XMLSigner and the XMLVerifier create and verify a Signature, respectively. They can
select signature and digest algorithms. A Signature element is an XML element that has two
required children: SignedInfo and SignatureValue and two optional children: KeyInfo and
Object.

The SignedInfo element is the one that is actually signed. It contains one or more Reference
elements, the canonicalization algorithm identifier, and the signature algorithm identifier. The
Canonicalization algorithm is used to convert the SignedInfo element into a standard form before
it is signed or verified. The Signature algorithm includes also a digest algorithm that is applied
after calculating the canonical form of the Signed Info in both process creation and verification
of XML signatures.

Each Reference element includes a Uniform Resource Identifier (URI), a hash value
(DigestValue), the digest algorithm identifier (DigestMethod), and an optional list of Transform
elements. The URI is a pointer that identifies the data to be signed. It can point to an element
inside an XML message, an element inside the Signature element such as Object or KeyInfo, or
resources located in the Internet. The DigestValue contains a hash value after applying the digest
algorithm to the data pointed by its URI. If the Transform element exists, it includes an ordered
list of transform algorithms that are applied to the data before being digested.

The SignatureValue element includes the value of the digital signature.

If the KeyInfo is present, it indicates the information about the sender’s public key that will be
used to verify the signature. This flexible element may contain certificates, key names, and other
public keys forms. Additional information about this element can be found in [W3C08].

The optional Object element may contain SignatureProperties and/or a Manifest. The
SignatureProperty identifies properties of the signature itself such as the date/time when the
signature was created. The Manifest element includes one or more Reference elements same as
the Reference element within the SignedInfo. They are semantically equal; however, each
Reference in the SignedInfo has to be validated in order to consider a valid signature. On the
other hand, the list of Reference elements within the Manifest is validated.

The sender and receiver must use the same hash, signature, and canonicalization algorithms.
XML documents are self-descriptive and indicate this information so the sender only needs to
find the corresponding algorithms.

E3 - 13

Figure 4: Class Diagram for XML Signature Pattern

E3 - 14

Dynamics

We describe the dynamic aspects of the XML Signature Pattern using sequence diagrams for the
use cases sign different XML elements of an XML message and verify an XML signature with
multiple references.

Sign an XML message (Figure 5):

Summary: A sender wants to sign specified XML elements of an XML message.
Actors: A sender
Precondition: A sender has a private/public key pair.
Description:
g) A sender requests the signer to sign different XML elements of a message.
h) The signer calculates the digest value over the XML element.
i) The signer creates the <Reference> element including the digest value and using the

digest algorithm.
j) Repeat steps b) and c) for each XML element to be signed.
k) The signer creates the <SignedInfo> that includes the Reference elements, the

canonicalization algorithm identifier, and the signature algorithm identifier.
l) The signer applies the canonicalization algorithm to the <SignedInfo> element.
m) The signer signs the output from step f). First, it applies the digest algorithm, and then it

encrypts the digest using the sender’s public key. The output is the signature value.
n) The signer creates the <SignatureValue> element that includes the signature value.
o) The signer created the <KeyInfo> element that holds the sender’s public key that will be

used to verify the signature.
p) The signer creates the <Signature> element that includes the <SignedInfo>, the

<SignatureValue>, and the <KeyInfo> elements.
q) The signer creates the SignedXMLMessage that includes the Signature and the

XMLMessage.
Alternate Flows: None
Postcondition: The specified elements of the document have been signed

E3 - 15

Figure 5: Sequence Diagram for signing an XML message

Verify an XML signature with multiple references (Figure 6):

Summary: A receiver wants to verify the signature of a received document.
Actors: A Receiver
Precondition: None
Description:
a) A receiver requests to verify the signature that is included in the SignedXMLMessage.
b) The verifier obtains the signature elements such as the <SignedInfo> which includes the

<Reference> elements, the <SignatureValue>, and the <KeyInfo> elements.
c) The verifier calculates the digest value over the XML element that is pointed (URI) in the

<Reference> element using the digest algorithm specified in the <Reference> element as
well.

d) The verifier compares the output from step c) against the digest value specified in the
Reference element.

e) Repeat step c) and d) for each <Reference> included in the <SignedInfo> element.
f) The verifier canonicalizes the <SignedInfo> element using the canonicalization method

specified in the <SignedInfo>.
g) The verifier digests the output from step f) using the digest algorithm specified in the

Signature Algorithm.
h) The verifier decrypts the signature value using the sender’s public key (<KeyInfo>).
i) The verifier compares the outputs from step f) and h).

E3 - 16

j) The verifier sends an acknowledgement to the receiver that the signature is valid.
Alternate Flows:

 If the values compared in step d) are not the same, then the signature is invalid.
 If the outputs in the step i) are not the same, then the validation fails.

Postcondition: The signature is validated.

Figure 6: Sequence Diagram for verifying an XML signature

3.6. Implementation

 Identifiers of algorithms used to create a signature are attached along with the signature,
so they also should be protected from being modified by attackers.

 XML documents may be parsed by different processors, and also XML allows some
flexibility without changing the semantic of the message. Thus, we need to convert the
data to be signed to a standard format.

 All the signers of a given document should have the same level of trust to avoid
misleading the receivers about the trust of the whole message. Allowing untrusted signers
might give them a better chance to attack the message.

E3 - 17

 Use the Strategy Pattern [Gam94] to select different hashing and signature algorithms.
The most widely used hashing algorithms are MD5 and SHA1. Two popular digital
signature algorithms are RSA [RSA] and Digital Signature Algorithm (DSA) [Fed00].

 If needed the data to be signed needs to be transformed using transformation
algorithms before producing a digest. For instance, if the object to be signed is an image,
it needs to be converted into text.

 It is recommendable the use of certificates issued by an Certification Authority that are
trusted by the sender and the receiver.

3.7. Known Uses

Several vendors have developed tools that support XML Signature.

 IBM - DataPower XML Security Gateway XS40 [IBM] parses, filters, validates schema,
decrypts, verifies signatures, signs, and encrypts XML message flows.

 Xtradyne – Xtradyne’s WS-DBC [Xtr]. The Web Services Domain Boundary Controller
is an XML firewall that provides protection against malformed messages and malicious
content, XML encryption, XML signature, and authentication, authorization, and audit.

 Forum Systems - Forum Sentry SOA Gateway [For] conforms to XML Digital Signature,
XML Encryption, WS-Trust, WS-Policy and other standards.

 Microsoft .NET [Mic] includes API that support the creation and verification of XML
digital signatures.

 Java XML Digital Signature API [Mul07] allows to generate and validate XML
signatures

3.8. Consequences

This pattern presents the following advantages:

 A principal’s private key is used to sign the message. The signature is validated using its
public key, which proves that the sender created and sent the message.

 When a signature is validated using a principal’s public key, the sender cannot deny that
he created and sent the message. If a message is signed using another private key that
does not belong to the sender, the validity of the signature fails.

 Any change in the original message will produce a digest value that will be different from
the value obtained after decrypting the signature using the sender’s public key.

 Before applying any signature algorithm, the data is compressed to a short fixed-length
string. In XML Signature, digest algorithms are used two times; one is used to digest data
to be signed indirectly, and the other digest algorithm is used to digest the canonical form
of the SignedInfo element.

 Any change in the data that was indirectly signed will produce another digest that will
invalidate the signature.

 The available algorithms that can be used for digital signatures do not require very large
amounts of computational power and do not take large amounts of time.

 We can sign different parts of a message with different signatures. This allows a set of
principals to write portions of a document and sign them.

E3 - 18

 An XML signature is an XML element that is embedded in the message. The XML
signature is composed of several XML elements that include information such as the
value of the signature, the key that will be used to verify the signature, and algorithms
used to compute the signature. This standard format helps XML parsers to better
understand signature elements during the validation process.

 This pattern supports also message authentication code (MAC). Both signatures and
MACs are syntactically identical. The difference between them is that signatures use
public key cryptography while MAC uses a shared common key.

 The data being signed is pointed by its URI (Uniform Resource Identifier), so elements
within XML messages and external network resources can be located using their
identifiers.

 The SignedInfo is the element that is actually signed. It includes the references that point
the data being signed along with their digest values, and algorithms identifiers. Thus, the
XML signature also protects the algorithm identifiers from modification.

 XML Signature uses canonicalization algorithms to ensure that different representations
of XML are transformed into a standard format before applying any signature algorithm.

 XML documents are self-describing and the sender and receiver don’t need to agree in
advance on the algorithms to be used.

The pattern also has some (possible) liabilities:

 We need a well established Public Key Infrastructure that can provide reliable public
keys. Certificates issued by some certification authority are the most common way to
obtain this [Sta06]. There is a public key standard for XML that should be used.

 Users must implement properly the signature protocol.
 There may be attacks against specific algorithms or implementations [dig]. These are

difficult to use against careful implementations.
 Signing and verifying XML messages may create a significant overhead.
 The pattern does not describe the complete standard. For example, details of transforms

and key values have been left out for simplicity [W3C08].

3.9 Example resolved

Alice and Susie sign each product order sent to Bob. Bob has access to Alice’s and Susie’s
public keys. When the message is received by Bob, he verifies whether the signatures are valid
using Alice’s and Susie’s public keys and the signature algorithm specified in the order. If the
signature are valid, Bob can be confident that the message was created by Alice and approved by
Susie. If the hash value is correct Bob also knows that Eve has not been able to modify the
message.

3.10 Related Patterns

 This pattern is a specialization of the Digital Signature with Hashing Pattern.
 WS-Security Pattern [Has09] is a standard for securing XML messages using XML

signature, XML Encryption, and security tokens.

E3 - 19

The following specifications are related to XML Signature, but they have not been expressed as
patterns.

 The XML Key Management Specification (XKMS) [W3C01] specifies the distribution
and registration of public keys, which works together with the XML Signature.

 WS-SecurityPolicy [OAS07] standard describes how to express security policies such as
what algorithms are supported by a web service or what parts of an incoming message
need to be signed or encrypted.

4 Conclusions

We presented two patterns: Digital Signature with Hashing and XML Signature, the latter a
specialization of the first one for a more specific context. Since the XML pattern solves the same
problem it repeats the general aspects of the Digital Signature pattern but repeating this
information allows the XML pattern to be used alone. We showed these two patterns together to
make clearer the logic behind XML Signature, a rather complex pattern. Future work will
include completing our development of other web services security patterns such as XML
Encryption and WS-Security [Has08].

Acknowledgements

We thank our shepherd Amir Raveh, for his careful comments that improved the quality of this
paper. The workshop participants at EuroPLoP 2009 also provided valuable comments. This
work was supported by a grant from DISA, administered by Pragmatics, Inc. Our security
research group provided useful comments.

References

[Ado] Adobe System Incorporated, Digital Signatures,

http://www.adobe.com/security/digsig.html

[Arx] Arx, Digital Signature Solution (Standard Electronic Signatures),
 http://www.arx.com/products/cosign-digital-signatures.php

[Bra00] A. Braga, C. Rubira, and R. Dahab, “Tropyc: A pattern language for cryptographic
 object-oriented software”, Chapter 16 in Pattern Languages of Program Design 4
 (N. Harrison, B. Foote, and H. Rohnert, Eds.). Also in Procs. of PLoP’98,
 http://jerry.cs.uiuc.edu/~plop/plop98/final_submissions/

[dig] Digital signature, http://en.wikipedia.org/wiki/Digital_signature

[Fed00] Federal Information Processing Standard, “Digital Signature Standard,” 27 January

2000, http://csrc.nist.gov/publications/fips/fips186-2/fips186-2-change1.pdf

[For] Forum Systems, Sentry: Messaging, Identity, and Security,

http://www.forumsys.com/products/soagateway.php

E3 - 20

[Gam94] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design Patterns: Elements of

Reusable Object-Oriented Software, Addison-Wesley Professional, 1994

[Gnu] GnuPG, The GNU Privacy Guard, http://www.gnupg.org/

[Has09] K. Hashizume and E. B. Fernandez, “A Pattern for WS-Security”, submitted for

publication.

[IBM] IBM, WebSphere DatatPower XML Security Gateway XS40, http://www-

01.ibm.com/software/integration/datapower/xs40/

[Leh02] S. Lehtonen and J. Parssinen. “A Pattern Language for Key Management,” EuroPlop

2002. http://www.hillside.net/patterns/EuroPLoP2002/papers.html

[Mor06] P. Morrison and E.B.Fernandez, "The Credential pattern", Procs. of the Conference

on Pattern Languages of Programs, PLoP 2006, Portland, OR, October 2006,
http://hillside.net/plop/2006/

[Mic07] Microsoft Corporation, .NET Framework Class Library, November 2007,

http://msdn.microsoft.com/en-us/library/ms229335.aspx

[Mul07] S. Mullan, Programming with the Java XML Digital Signature API, Sun

Microsystems March 2007,
http://java.sun.com/developer/technicalArticles/xml/dig_signature_api/

[OAS06] OASIS, Web Services Security: SOAP Message Security 1.1 (WS-Security 2004), 1

February 2006, http://www.oasis-open.org/committees/download.php/16790/wss-
v1.1-spec-os-SOAPMessageSecurity.pdf

[OAS07] OASIS, W-S SecurityPolicy 1.2, 1 July 2007, http://docs.oasis-open.org/ws-sx/ws-

securitypolicy/v1.2/ws-securitypolicy.pdf

[RSA] RSA Security, PKCS #1: RSA Cryptography Standard,

http://www.rsa.com/rsalabs/node.asp?id=2125

[SOA01] W3C, SOAP Security extensions: Digital Signature, W3C NOTE 06, February 2001,

http://www.w3.org/TR/SOAP-dsig/

[Sta06] W. Stallings, Cryptography and network security (4th Ed.), Pearson Prentice Hall,

2006.

[Sun] Sun Microsystems Inc., Java SE Security,

http://java.sun.com/javase/technologies/security/

E3 - 21

[W3C01] W3C, XML Key Management Specification, March 2001
http://www.w3.org/TR/xkms/

[W3C08] W3C, XML Signature Syntax and Processing (Second Edition), 10 June 2008,

http://www.w3.org/TR/xmldsig-core

[Xtr] Xtradyne, Xtradyne's WS-DBC - the XML/SOAP Firewall for Enterprises,

http://www.xtradyne.de/products/ws-dbc/ws-dbc.htm

 E4 - 1

Dealing with Complexity

Klaus Marquardt
Dorothea-Erxleben-Straße 78
23562 Lübeck
Germany
mailto:pattern@kmarquardt.de
http://www.kmarquardt.de
Copyright © 2009 by Klaus Marquardt. Permission granted to Hillside Europe for
inclusion in the CEUR archive of conference proceedings and for Hillside Europe website

All but the most trivial software systems are complex, and complex systems have
a high risk of failure.
Across all industries, large projects have a higher risk of failure than small
projects. Their sheer size is a major contributing factor to their internal
complexity; the infrastructure and communication becomes more complex. With
many factors combined and interrelated, smaller disturbing effects get out of
control; the project develops unexpected behavior and refuses to be manageable.
Within the project the complexity must be tackled to increase the chances for
success. Engineering disciplines manage complexity, avoid, circumvent, and
reduce it. A prominent aspect again is to limit the size of the system to take care
of at once – decomposition and incremental development resemble each other in
this respect. Our engineering and project management wisdom well in place, we
are inherently optimistic that we will be able to succeed.
At the same time, complex systems are the natural friends of highly qualified
engineers. They provide intellectual and cultural challenges, and they require
experts to solve it. The latest project is typically more complex than the ones we
have already completed. We need to cope with complexity, we know it and we
actually love it [Marquardt2008]. Viewed from very far away, the continued
overestimation of our abilities and this inherent optimism ultimately enables the
successes of homo faber [Frisch1957] in the first place.

Success, just as complexity, is in the eyes of the beholder. This paper is aimed to
assist project managers and key stakeholders inside and outside of the project, to
cope with the complexity and control its contributing factors.

Complexity
Dealing with large and complex systems is the dominant occupation of IT
professionals. Many advances of the past decades have helped here, mostly in the
Lampson style [c2lampson]: "all problems in Computer Science can be solved by
another level of indirection", allowing to neglect most levels of detail for the
moment.1

1 In praxis, this is only partly successful. The separation of abstraction levels does not imply them
being independent; details often influence the more abstract levels.

 E4 - 2

Complexity has been analyzed and treated extensively, including the founding of
scientific branches. However, few insights have found their way into the working
knowledge of software professionals, and are applied in daily routine.

• Complexity and complicatedness are different concepts: complicated
systems or problems can be subdivided and solved in independent parts,
where this is by definition impossible with complex problems.
Solving complicated problems thus benefits from a divide-and-conquer
approach in some form – breaking tasks down, developing features
sequentially or in parallel, separating technical or domain concerns. In
contrast, solving complex problems requires an understanding of the entire
mechanism and its internal and external influences.
This distinction is not entirely helpful in actual projects. Complexity is
already added with human interaction; adding different aspects of
complicatedness will create a problem that is not distinguishable from a
complex problem. If you are fluent in different languages, you might want
to check out different understandings to complexity in [Wikipedia].

• The separation of essential (intrinsic, problem domain related) complexity
from accidental complexity, introduced by Brooks [Brooks1995], helps to
distinguish complexity that stems from the approach of problem solving,
i.e. that the project is essentially creating itself.
While the awareness created by this distinction is a major step, Brooks
resolution proposals, like his concept of conceptual integrity, are only
valuable if you know already what to do. They are hardly accessible to and
applicable by the uninitiated.

Directly attacking complexity will change the situation, but the response often is
that complexity comes back at another place. The following attempts to reduce
complexity contribute their own complexity, at a different location depending on
their individual mechanism:

• Raising the level of abstraction requires education and personal ability,
which is expensive at best. In case of “analysis paralysis” or extreme
toolsmithing (XT) it can break your project at worst.

• Scope reduction is a craft that can be taught, but it always has a political
dimension to it: the renegotiation with the stake holders. Applying it to
actual project situations is both an art and tedious work.

• Finally, striving for conceptual integrity creates a strong coupling between
projects, teams and individuals. Such an intended coupling between many
system components is a factor to complexity itself, and the necessary
amount of work and friction may outweigh any potential benefits.

Chosen Complexity
Complexity thrives from contributing factors, and the factors can be classified and
considered individually. When the complexity contributions are reduced in
amount or severity, humans are able to deal with the remaining complexity due to

 E4 - 3

their personal experience. Indirectly, the complexity itself becomes decomposed
and resolved. Early complexity factor management is more promising, but it is
never too late to take control of your project’s influence factors.
A distinction between chosen complexity, and imposed complexity, helps to gain
consciousness about the mechanisms that add complexity to the project, and to
take control of and possibly eliminate contributing factors. The chosen complexity
is typically a subset to Brooks’ accidental complexity – but also intrinsic
complexity could partly be chosen. Most importantly, the viewpoint and focus are
different. Chosen complexity comprises any complexity factor a project leader
and team has actively or passively accepted into the project.
Ultimately the project leader is responsible for the project’s success. This includes
managing and minimizing risks; if some stakeholder initially imposed some
condition that increase the overall complexity and thus increase the risk, it is the
project leader’s duty to bring these conditions under project control and remove
obstacles when possible. This attitude is closer to Beck’s “play to win”
[Beck1999] than to dutiful acceptance of the requirements document. The project
shall strive to be successful, including negotiation of success criteria, or to fail
quickly.
The complexity factor attribute chosen versus imposed is not stable. Many factors
start out as imposed by stakeholders or other forces. However, once a project
leader becomes aware that the current situation imposes an obstacle or significant
risk, she needs to remove the respective factors, or negotiate about their
importance and how success is defined for this particular project. By silently
accepting or ignoring imposed factors that are known to contribute to complexity,
the project leader abandons responsibility, taking an “absent without leave”.

Complexity Factor Classification
The key technique for coping with complexity is to identify and name the
contributing factors, and to treat them in a way that reduces their impact on the
project. This works against complexity in two ways: by the removal of the factors,
and by creating consciousness about these factors and gaining insight and
security.
CLASSIFY COMPLEXITY is the introductory pattern in this paper. It helps to list all
the risk and size factors, and to classify them. This classification follows the two
dimensions stated above, essential and accidental versus imposed and chosen. The
diagram shows these dimensions, and typical complexity factors found in these
coordinates:

• The team members and overall infrastructure are often established from
the very beginning. They are initially imposed and accidental, i.e. they
belong to the solution domain.

• Roles and workflow are typically chosen by the team and could be
changed.

• Non-functional requirements are mostly implicitly stated, and typically not
subject to discussion: imposed, and essential as they relate to the problem.

 E4 - 4

• Functional requirements belong to the problem domain. However, a fair
amount of them is often not essential for the project’s success and should
be interpreted as a part of the chosen complexity as it could be removed.

Functional
Requirements

Essential Accidental

Ch
os

en
(in

 p
ro

je
ct

 c
on

tro
l)

Im
po

se
d

(fr
om

 o
ut

si
de

)Non-Functional
Requirements

Team members,
Infrastructure,

Offshoring

Roles, Workflow,
Architecture

Once some factor is identified as chosen and preferably related to the solution
approach, the project can control and address it.
The following patterns help to move the complexity factors into a lower quadrant
and enable project control. The overview also lists the key techniques used:

• to approach and influence the project’s stakeholders;

• to shrink the size of (some aspect of) the project;

• to improve on the internal organization and communication;

• to gain competence to enhance the personal ability to cope with
complexity.

Pattern Key Mechanisms
RE-NEGOTIATE COMPLEXITY influence stakeholders

DE-VISUALIZE STRATEGIC PROJECTS influence stakeholders; shrink size

COMBINATORIAL BUDGET shrink size; influence stakeholders

PIECEMEAL GROWTH shrink size

DIVIDE AND CONQUER2 improve organization

DELEGATE COMPLEXITY improve organization

MANAGEMENT BY TRIGGERS improve organization

LOCAL DECISION COMMUNITIES improve organization; gain competence

GATHER DOMAIN KNOWLEDGE gain competence

2 Divide and Conquer has many known publications and is not included in this paper.

 E4 - 5

Development Methodology
Most development methods claim to successfully cover complexity management.
While process models that closely follow CMMI address complexity by ensuring
the organization’s ability to minimize risk, agile approaches ensure that the
organization is able to react to feedback.
With respect to complexity, both virtues are essential. Many of the mechanisms
can be found in agile methods, while others resemble project management best
practices. Your project likely benefits from both. Beware though: whenever some
practice or approach does not help you to improve the situation, refrain from
enforcing more of the same.

Pattern Form
The pattern format can contribute to the quality of brevity.
In this paper, the pattern context is kept very broad and sketched within one line
after the name. The problem statement is followed by the forces pulling in
different directions and listed mostly in “…but…” sentences. The “therefore”
keyword initiates the description of the solution. The solution includes general
strategy as well as implementation details, and examples wherever these would
not compromise the desired brevity.

 E4 - 6

Classify Complexity
Applies to projects considered complex by key stakeholders.

It is unclear how complex the project actually is, and which measures can be
taken to increase the project’s success probability.

Knowing your complexity does not remove it,

but not becoming aware of complexity will not yield effective measures.
Many factors contribute to a project’s complexity,

but reducing the number and severity of even a few factors increases the
chances for success.

Some complexity factors appear imposed onto the project,
but whether to accept them or to fight them is a choice of the project.

Therefore, create awareness of the project’s complexity by listing all the risk and
size factors that have an impact on your project’s complexity. Afterwards, classify
these factors along multiple dimensions, especially including a distinction whether
a factor is essential to the problem or created by the solution approach, and
whether it is imposed or chosen. Chosen factors are those that, according to the
evaluation, could be changed by the project itself.
The complexity factors’ classification is similar to a project risk assessment. It
needs to be fairly complete so that you can communicate and discuss the influence
factors. The classification also needs honesty, so it can give a prospect and a
healthy signal to upper management: we are aware of our potential problems, and
we try to gain control over them.
Depending on the company culture, the classification needs to avoid factors that
are considered trivial – except when you think you need to address exactly these
factors. Furthermore, each company has its taboos; just mentioning factors like
“offshoring” or “lack of education” might set a political tone. If your company
demands or favors some practice, you would only want to mention it if you are
willing to make a strong case against it in your particular project.
Use the classification’s visualization to discuss with the stakeholders and move
factors into the chosen area. When the stakeholders are optimistic and would not
value an increased chance for project success at the expense of allowing slips in
some initial boundaries, your negotiation might be successful only after you have
already missed some milestone.

 E4 - 7

Re-Negotiate Complexity
Applies to projects whose stakeholders impose on the project’s approach.

Accepting every wish that a stakeholder mentions limits the project’s options to
make decisions that fit its situations.

Stakeholders define the terms and conditions of the project,

but terms that proscribe parts of the solution may limit the chances for
success,
and the project leader is responsible for the project’s success.

At project initiation, all costs and effects are negotiated,
but complexity factors that are identified late still affect you,
and when new insights arise, a renegotiation might be needed.

Therefore, renegotiate all factors that contribute to the overall complexity, as
soon as you become aware of them.
Stakeholders may prescribe project relevant topics like development team
members or technology choices. Once you can with knowledge argue about
chosen complexity, you can start making a case to change the project. Even with
prominent risks, however, it might be that the negotiation just confirms the
conditions you tried to overcome.
Approaching stakeholders and asking for a change in project settings is an
inconvenient step. However, not raising issues turns them into your own – the
project leader becomes responsible for all choices she did not challenge. You need
a strategy to escalate in a way that keeps everybody’s face, and you need to be
successful with your first try.
For implementation, use MOTIVATIONAL QUESTIONS [Marquardt2004] to address
all aspects that hit back when ignored. They need to answer the immediate
questions for steering, address prioritization aspects, and ensure that the decision
becomes secured against later opposition. An example set of questions contains
these:

• What is the problem?
• What is the proposed solution?
• Who wants this?
• What does it cost?
• What happens if we don’t do it?
• Does everybody agree?

 E4 - 8

De-Visualize Strategic Projects
Applies to innovative projects with high visibility.

Projects initiated by top management and aimed at fulfilling high expectations, are
suspiciously observed from all parties that might consider themselves affected.
These projects likely suffer from stakeholder creep, followed by all other types of
creep including complexity creep.

All potential parties desire to be involved in strategic projects,

but a project involving all parties might never start at all.
Strategic projects will affect many different commodities and departments,

but the final effects can merely be guessed.
Highly visible projects invite fans and critics alike, making non-political progress
impossible,

but hiding important projects will even be more counterproductive, once
they go public.

Important projects are often assumed large and generously funded,
but simple, small and properly funded projects have a higher probability to
succeed.

Therefore, start the most visible projects as small as possible, and reduce their
scope even further. Define them to answer very few questions, so that all parties
that did not become sponsors or stakeholders see no need to interfere.
Small projects have fewer factors that contribute to complexity, and they have a
higher potential to successfully cope with the remaining complexity since they
need not spend effort due to their sheer size.
Strategic projects need to address numerous aspects of change. However, it is
virtually impossible to get them addressed all at the same time, and likely some of
the answers will prove incorrect in the final implementation. Furthermore,
strategic projects typically have a bunch of stakeholders and subsequent projects
to serve. Have one stakeholder to become the project’s sponsor
[MannsRising2005], and focus on his aspects only. Define the project to be less
strategic at first, its success depending on its usefulness for the sponsor.
Follow-up efforts can take care of other aspects and another stakeholder. DE-
VISUALIZE STRATEGIC PROJECTS can be applied in a PIECEMEAL GROWTH manner,
growing the number of stakeholders, requirements, and amount of visibility.

 E4 - 9

Combinatorial Budget
Applies to projects with many dimensions of variability.

Sheer size is the key risk to unmastered complexity. The combinatorial explosion
of many variables defines the technical size of the project, contributing to
implementation, test, installation, and maintenance.

Variability can help you to satisfy different users with the same application,

but variability multiplies the effort in implementation and testing.
Variability can compensate for uncertainty and cover indecisiveness,

but it contributes a complexity factor that increases the project risk
significantly.

Therefore, budget the amount of variability and configurability in the same
manner as you budget resource consumption. Allow the customer to select a small
number of configurable items. Whenever the demand for further configuration
arises, the necessary budget needs to be freed by removing variability in another
area of the application.
Be sure not to miss the relevant variability factors of your application. These may
include: number of product variants; number of options a user may order; number
of releases (versions) that need to be maintained in the field; number of other
applications for interaction; number of configurable items for installation or
usage. While these factors do not directly multiply, their consideration easily turns
one application into several 1.000 applications to develop, test and support.
The combinatorial budget needs to be defined and negotiated with product owners
respectively product managers. It is mandatory to trade combinatorial factors
against each other, and not try to enable a high combinatorial factor with a larger
team or a prolonged development time. These would be additional factors to the
overall product complexity. Also take care that the maintenance costs are included
in that subsequent development projects can be scheduled less aggressively.
The COMBINATORIAL BUDGET is related to the COMPLEXITY BUDGET
[Marquardt2005] that also includes metrics from organization and design. The
key to dealing with complexity is to turn as many contributing factors as possible
into chosen factors, and then eliminate them. Variability needs to be discussed
with the product owner, while organizational changes need to be agreed with the
organization owner.

 E4 - 10

Piecemeal Growth
Applies to projects that are large and hard to comprehend.

The project team needs to react to incomprehensible situations, dealing with many
issues and requirements at once.

Following a plan avoids unnecessary mistakes during the project’s course,

but it cannot describe necessary changes due to gained experiences.
Plans can be established for anticipated circumstances,

but a project exploring new territory will experience the unplanned.
Risk management prepares project management to cope with the unexpected,

but changes and learning experiences will leave the range of anticipated
risks, and will exhibit unknown challenges and chances.

Therefore, introduce an attitude into the project to solve problems one at a time.
Reduce the amount of things to care for at once by focusing on the next few
important things, only one or two per person. Adapt an attitude that actively
refuses to plan ahead for complex issues, even if that would seem smart and
apparently could reduce the overall effort. The question to ask is: what could we
try or show next?
PIECEMEAL GROWTH [FooteYoder1998] helps on problem domain as well as on
solution domain complexity. Since “the problem with Big Design Up Front is the
big, not the up front”3, it slices the problem to portions that are comprehensible.
While establishing this culture, some amount of stubbornness helps. Refuse any
task that would take days, is not immediately in reach, and has links with other
tasks – as long as there is still some gain possible with less coupling.
This attitude can best be transported by an external mentor or coach brought into
the project. Novices often apply it by themselves, but seasoned engineers can
benefit from a frequent reminder to ignore some assumed facts and focus on each
function individually. Without external help, it could become tough to actively
ignore some of the company culture.
PIECEMEAL GROWTH is a counterpart to DIVIDE AND CONQUER, it describes the
iterative and incremental nature of progress as contrasted to independent progress
in different areas. It also contrasts to GATHER DOMAIN KNOWLEDGE, where the
perceived complexity is reduced by increasing the personal ability of
comprehension.

3 Proverb of unknown origin, mentioned during the workshop at EuroPLoP 2009

 E4 - 11

Delegate Complexity
Applies to complex projects with a competent team.

You cannot deal with all complexity the project offers, and you cannot control it.

Complexity cannot be controlled or planned,

but what is considered as complex varies with personality.
Complexity scares many people away,

but engineers and technical leaders love to handle complex topics, and are
proud of their problem solving abilities.

Therefore, share dealing with complexity. Decide who of the team shall deal with
which topics. Give the authority to deal with complexity to the team members
who are willing and able.
Complexity has a strong link to cognitive psychology. Whether some endeavor is
considered complex depends on the undertaker and his perception. Individuals
with a strong attitude to problem solving and the ability to abstract thinking likely
perceive problems as simple that would overwhelm other people.
There are common pitfalls when managing complexity:

• Risk avert managers would try to avoid complexity; this is helpful though
not always possible.

• Managers with a strong technical background would engage themselves on
the most difficult and exciting topics, and become a bottleneck within the
project [Coldewey1998] while neglecting their management duties.

Develop the habit to approach team member strong in analysis or design, and
discuss difficult problems with them while these are not urgent yet. Discuss
informally every once in a while: your peers will have a different but helpful view
on many aspects that you had viewed as hopeless. Once some complex issue
becomes urgent, you know who could handle some weight and you have
established communication mechanisms.
Dealing with difficult problems adds to the job satisfaction and to the reputation
of engineers. It gives them positive visibility. To DELEGATE COMPLEXITY both
gets managers more help, and prevents communication faults that otherwise could
cause the brightest people to quit.
The caveat is that you need to know when to stop. Exposure to complexity often
equals exposure to conflicting goals and company politics. Employees need to be
backed that once they are overstrained, they can return to technical tasks.

 E4 - 12

Management by Triggers
Applies to managers with large teams and complex project settings.

When a project gets out of hands, adding even further levels of control and
tracking is hardly possible and rarely helpful.

Uncontrolled projects do not allow monitoring or informed decision making,

but controlling and tracking a project costs effort and must only be done
for a clear purpose.

Control does not answer the important questions from within the project, and may
discourage initiative of the project team,

but desired behavior can be triggered by inducing thoughts and mindset.

Therefore, set triggers to invoke desired behavior in the mid term.
When projects get out of hands, many managers react by increasing the level of
control. However, detailed process instructions or tight tracking adds further
complexity to the process, and minimizes the initiative of the project participants
to cope with complexity.
Refrain from adding more control to a project that is fundamentally
uncontrollable, it would just be costly and result in frustration on all sides. Change
the fundamental assumptions from the leaders solving the problems, to each
participant solving the problems. Loosen on the “how” side, and take a look at the
“who” side: who is the right one to finish the job? And then, what trigger can I set
to foster initiative and create a supportive project team?
Choosing good triggers is a virtue that parents learn with their children. Make
others think instead of providing them with solutions. Ask questions, guide team
members beyond the scope of their daily duties. Give (non-monetary) incentives
to team members that evolve beyond their work assignments.

Richard Gabriel tells the story of two classes joining a one-week pottery course.
The first class is asked to build the most beautiful vase they can, the second one to
build as many vases as they can. In the end the best vases from the second class
are the most beautiful. The teacher has set a trigger that led to a much higher level
of experience in creation and in judgment.
In a large software team, changes to already finished code became unwanted since
several clients to that code did not want to change their code in return. However,
the system was still in development; restricting change would have stalled
progress. Relaxing on code ownership, the team agreed that who wants to change
some code also needs to cleanup the entire code base. The undesired workload
prevented thoughtless changes. However, the changes that were still tackled by
some engineer managed to earn acceptance by all developers [Marquardt2007].

 E4 - 13

Local Decision Communities
Applies to projects with a large team.

Project team members’ decisions need to be in synch with the overall architecture,
without asking for approval individually.

Conceptual integrity is best created by asking a single mind for advice,

but a central approval person is a bottleneck for project progress,
and no process step could replace implementation of actual functionality.

Homogenous approaches increase the maintainability of software,
but they introduce a tight coupling between engineers and tasks,
and the need to establish concepts prior to implementation hinders the
immediate progress.

Therefore, enable developers to take local decisions. Encourage a communication
culture of small neighborhoods. Within these developers can develop a common
spirit without the need to share this spirit with the entire project team. Establish
very few rules to adhere to, the core of the overall architecture.
LOCAL DECISION COMMUNITIES are the more useful, the higher the costs of
communication within the project team are. Local decisions are virtually
unavoidable then, and better named and planned for. Distributed development is a
typical example: interfaces and strategies can be aligned, but the implementation
is subject to a local team. Any rigor, in architecture or process, requires control
measures that quickly become overly hard to implement and maintain. Less rigor
can actually enable new ideas, and increase the project’s options for reaction.
However, several kinds of decisions should not be considered local since they
have a tendency to influence other teams. Useful advice depends on the kind of
system at hand; typical examples are

• the processing model, with infrastructure and communication design;
• transactions, notifications, pull-push and provider-retriever decisions;
• cross-cutting services like security, failure handling, and system startup.

The potentially harmful effects of inadequate local decisions can be measured and
addressed by an INTEGRATION FIRST ARCHITECTURE [Marquardt2004].
Furthermore, local decisions also increase complexity, especially when they are
not backed by adequate experience. To prevent effects only visible at system
maintenance, the system architects may apply a DEFINED NEGLECTION LEVEL
[Marquardt2004a] at one decision level inside the individual teams. Some
mentoring and frequent contact between the teams’ key developers can provide
sufficient early warning signals.

 E4 - 14

Gather Domain Knowledge
Applies to organizations that run many projects in related domains.

When complexity is a key problem to projects, and the ability to deal with
complexity is largely depending on individuals, what should the team members
learn and do to increase their personal ability to cope with complexity?

Each defined processes guides you through a project,

but no process can replace knowledge about what is important to the
project at hand.

Engineers need to be knowledgeable in the solution domain,
but the project team has to fulfill expectations in the application domain.

Complexity is perceived largest where you leave your comfort zone of situations
you are familiar with,

but additional experience and expertise will expand your area of
familiarity.

Therefore, increase your knowledge about the application domain. You will be
able to apply your own judgment, and reduce the complexity associated with
unknown settings and questions.
Software development process models typically place the domain expertise
outside of the development team.4 The development team should focus on generic
planning and problem solving, keeping the project on track no matter what the
domain. However, most large companies have their own development
departments, or they cooperate with partners that are familiar with their business
and domain for many years. The reason is a risk reduction, stemming from an
increased ability to cope with complexity.
Clients look for competence that guides them and sees their problem. Similar to
house building, customers expected to be guided to what they want. The choices
they make cannot break the project, but make their house a more or less
comfortable home. Architects and project managers never allow choices known to
cause trouble. The decisions customers make are on the problem domain side and
define the project’s inherent complexity.
A standard development process can serve as a solid foundation, and remove risk
during implementation. However, generic methods have an attitude of
carelessness in domain responsibility. However, it cannot replace domain
expertise. Knowing your domain and the way the project owner and software user
thinks reduces the complexity dramatically.

4 Following a technical interpretation of DIVIDE AND CONQUER, vendors occasionally declare that
some tool implemented by their developers can let the domain experts express their knowledge
without further communication and adaptation. However, the successful creation such a tool
requires exactly that domain knowledge.

 E4 - 15

Outroduction
It is interesting to see how coping with complexity reveals parallels between
traditional and agile approaches. Pragmatism takes the best of both worlds, and
leaves aside all dogma. You need courage, sometimes ignorance (and courage to
ignore your best intentions), and local adaptations. Add humbleness and
appreciation, and take control of your project!

Acknowledgements
Many thanks to Markus Völter, my knowledgeable and challenging shepherd for
EuroPLoP 2009. Further thanks to the workshop participants at EuroPLoP 2009
for their valuable feedback: Rene Bredlau, Eduardo B. Fernandez, Michael
Kircher, Claudius Link, Dietmar Schütz, Alain-Gearges Vouffo Feudjio, and
Markus Völter.

References
Beck1999 Kent Beck, Extreme Programming Explained.

Brooks1995 Frederick P. Brooks Jr.: The Mythical Man Month. Anniversary
Edition, Addison-Wesley 1995

c2lampson found at http://c2.com/cgi/wiki?ButlerLampson

Coldewey1998 Jens Coldewey: Lazy Leader. Available at
http://www.coldewey.com/publikationen/Management/LazyLeader.8
.html

FooteYoder1998 Brian Foote, Joe Yoder: Big Ball of Mud. In: Pattern Languages of
Program Design, edited by Neil Harrison, Brian Foote, Hans
Rohnert, Addison-Wesley 1998

Frisch1957 Max Frisch: Homo Faber.

MannsRising2005 Mary Lynn Manns, Linda Rising, Fearless Change. Addison-Wesley
2005

Marquardt2004 Klaus Marquardt: Platonic Schizophrenia. In: Proceedings of
EuroPLoP 2004

Marquardt2004a Klaus Marquardt: Ignored Architecture, Ignored Architect. In:
Proceedings of EuroPLoP 2004

Marquardt2005 Klaus Marquardt: Indecisive Generality. In: Proceedings of
EuroPLoP 2005

Marquardt2007 Klaus Marquardt: Zeus: Innovation in Life-Supporting Systems. In:
Cutter IT Journal, Vol. 20, No. 5, May 2007

Marquardt2008 Klaus Marquardt: Sisyphean Leadership. To appear in: Proceedings
of EuroPLoP 2008

Wikipedia found at http://en.wikipedia.org/wiki/Complexity

E5 - 1

Handling Variability
Version 2.0, December 11, 2009

Markus Völter, Independent/itemis
(voelter@acm.org)

© 2009 Markus Voelter
Copyright retain by author(s). Permission granted to
Hillside Europe for inclusion in the CEUR archive of

conference proceedings and for Hillside Europe website

Introduction
Traditionally, in software engineering, development happens for single
products. This is a very inefficient approach in cases where groups of
products are related. Software product line engineering [1] is about
systematically developing families of related products together, as a
product line. The products within a product line usually have many things
in common, but also significant differences. Managing and implementing
these differences can become complex because in realistic product lines,
variability abounds, and it is often a cross-cutting concern. Hence, to
exploit the benefits of product line engineering, it is important to
systematically manage the variability between the products.

Variability denotes differences between related products in a product line.
Typically one talks about variation points, where, to define a product, you
need to bind each variation point. There are different ways to bind a
variation point: setting a value, selecting an option or implementing a

the patterns below).

design time, load time, runtime, etc.

This paper is a collection of patterns for handling variability in software
systems. It contains patterns for managing variability, introduces different
kinds of variability, and illustrates realization of variability in
implementation artifacts such as models or source code. The patterns are
intended as a contribution to a more comprehensive pattern language on
product line engineering.

The paper is intended to be read by architects who want to get a better
grasp on managing and implementing variability. The paper does not
address requirements and product management. I assume the requirements
that drive the variability are known.

E5 - 2

Structure of the Paper
The paper is structured into three sections, Managing Variability, Classes
of Variability and Implementing Variability.

Managing Variability provides two approaches on how to reduce the overall
complexity that results from variability. One pattern, SEPARATE
DESCRIPTION OF VARIABILITY recommends the separation of the logical
description of variability from its implementation. The other one, MODEL-
BASED IMPLEMENTATION describes how and why to use domain-specific
models to capture variability.

The second chapter, Classes of Variability, contains two patterns,
CONFIGURATION and CONSTRUCTION. The level of expressiveness of these
two approaches is fundamentally different, and you have to make a
conscious decision for one of these when thinking about how to describe
variability.

Chapter three, Implementation Strategies, deals with lower-level mechanisms
for representing variability in implementation artifacts. It consists of three
patterns: REMOVAL, where you conditionally take something away from a
whole, INJECTION where you conditionally add something to a minimal
core, as well as PARAMETERIZATION where you define a variant by
providing values for a predefined set of parameters.

Representing Variability
In large product lines with many products and many differences between
the products, the variability inherent to implementation artifacts can easily
overwhelm developers. The overhead for representing, organizing or
managing the variability can become so complex that the potential benefits
of product line engineering cannot be realized

How can you represent the complexity introduced by variability in
implementation artifacts?

Separate Description of Variability
Make sure that the logical description of variability is separate (external)
from its realization in the implementation artifacts. The logical description
describes the variation points, the variants, as well as constraints between
these variants. The realization of the variability in the implementation
artifacts is tied to the logical variability description.

E5 - 3

Artefact 1

Artefact 2

Artefact 3

 VP
 VP

 VP VP VP

 VP VP

Artifact
Level

Logical
Level

 VP
 VP

 VP

Artifact Level represents
realization artifacts such
as models, code or
documentation
The Logical Level is the
external description of
variation points and the
conceptual constraints
among them.

One or more VPs in the
implementation level are
associated with variation
points in the logical level
(n:1, n:m)

As a consequence of the cross-cutting nature of variability in many of
today's systems, the implementation of variability is scattered over many
implementation artifacts. However, in many cases several variation points
need to be configured in a consistent, mutually dependend way for the
resulting product to work. If each has to be configured separately, the
overall complexity grows quickly. By identifying logical variation points,
and then tying the (potentially many) implementation variation points to
these logical variation points, related implementation variations can be tied
together and managed as one. With reasonable tool support, you can also
select a logical variation point and navigate to all the implementation
variation points, providing a level of traceability. When customizing the
artifact level based on a configuration of the logical level, the mapping
should be automated, but doesn't have to be.

In most cases, the logical variability is also much more closely aligned with
the problem domain. The variability in the artifacts corresponds to the
solution domain. Consequently, meta data (why does the variability exist,
which stakeholders care about it, etc.) is associated with the logical level.
The logical level is typically visible to the non-developer stakeholders.

One way of separating logical variations from implementation variations is
using feature models. A feature model [2] describes features and their
dependencies in a hierarchical fashion. Implementation artifacts or artifact
processors can refer to those features and construct the product variant
accordingly.

An alternative approach is OVM, or orthogonal variability models [3]. In
contrast to feature models, they are not hie
describe features and their relationships but rather variation points. The two
representations are semantically equivalent.

E5 - 4

Model-Based Implementation
Describe the implementation of the system with high-level constructs, such
as models based on domain specific languages, and a subsequent
transformation, interpretation or code generation step. Because of the closer
alignment with the actual problem domain, variability is much more
localized, and the number of variation points is significantly reduced in
models compared to code.

Model

 VP VP VP

Impl. Artefact 1

 VP

 VP VP

 VP

T

Impl. Artefact 2

T

 VP

 VP

 VP

A model describes
domain abstractions in
a formal and concise
way
Transformations map
that model to (typically
more than one)
implementation artifact
Variability is expressed
with fewer VPs in the
models compared to
implementation
artifacts

If you can describe something with a smaller amount
stuff on a more

abstract domain specific level, and then use the
transformation or generator to expand all the details,
you can simply implement the variation on the more
abstract level in one place. The trade-off is, of course,
that you have to define this high-level domain specific
language, including a way to define variants of programs written in that
language. You also need to define the transformation down to the actual
implementation artifacts.

The relationship of this pattern to SEPARATE DESCRIPTION OF VARIABILITY is
interesting. As the name suggests, the models mentioned in this pattern
play the role of the implementation/artifact level in SEPARATE DESCRIPTION
OF VARIABILITY. The logical description "customizes" the models which are
then further mapped down to code. In some cases the models in this
pattern play the role of the logical level and are not further customized by
an additional logical level.

Consider the case where the attributes of an address entity need to be variable.
For example, in the US version of the system the address needs to have a state
attribute. In European countries this is not necessary. The state attribute needs
to be taken into account in the UI, the data structures, the database table
structure, the SQL code to persist the data, and maybe in several other places.
Instead of implementing the variability in each of these places, you can simply
put one variation into a model that describes the data structure, and then use

Model-Driven Development

In Model-Driven Development,
we develop domain-specific
languages that are very closely
aligned with the domain at hand.
Consequently, when using such a
DSL (Domain-Specific-Language)
to describe a system in that
domain, the resulting
models/programs become very

repetition and low-level detail in
the description.

In a subsequent step, code
generation (and sometimes
interpretation) is used to map the
models to implementation code.
The knowledge about how to

models to implementation code is
encoded into the code generator.

E5 - 5

code generation to derive the UI, the data structure, the database table
creation statements, as well as the SQL code from that model.

Another, similar example is the implementation of state-based behaviour. If it
is implemented directly with a programming language, you have to use either
the State pattern, a big switch/case statement, a number of arrays pointing
into each other, or state tables, together with a number of constants
representing the states, events and transitions. If the state-based behaviour
should be variable, implementing this variability on the level of the
implementation is very tedious and error prone. An alternative approach is to
directly describe the behaviour as a state machine using a suitable language,
together with an interpreter written in the target language. Making some of
the states, events or transitions variable requires only one change (for each
variability) in the model and no changes to the interpreter, reducing the
overall complexity significantly.

Classes of Variability
Regarding the definition of variation points and the mechanisms to define
the variants, there are several alternatives with different levels of
expressiveness.

How can the different alternatives be grouped according to their
expressiveness?

Configuration
A variation point allows the selection from several alternatives. Each
alternative is either in the system or not. Constraints between the
alternatives limit the valid combinations.

XOR

OR

x

x

x

From a given set of
configuration options you
select a subset.

Constraints between
configuration options limits
valid combinations

The biggest advantage of configuration is its simplicity. People don't have
to learn complex formalisms for defining a variant, they simply select from
a predefined set of alternatives. Invalid selections are avoided by

E5 - 6

restricting the valid combinations. To achieve this,
constraints (requires, prohibits, recommends,
discourages) are defined between the configuration
options. Of course there are limits to what you can
do with configuration only. For example,
cardinalities, instantiation or relationships cannot be
expressed very well. This can be seen as an
advantage (makes the configuration process simple)
and as a liability (the degrees of freedom are
limited).

If you want end-users to configure your product,
you should try to go as far as possible with
configuration only.

In the simplest case, configuration can be achieved
by simply setting flags in a configuration file.

In C compilers, the ability to define symbols which
are then evaluated by ifdefs is another way of
configuration. Another alternative is using the

implementations at a specific variation point. In contrast to preprocessors,
they are bound at runtime using polymorphism in object oriented
languages.

A more powerful formalism for configuration variability is feature models
[2]. Feature models are hierarchical collections of flags (features) that can
be selected or not. There are several default constraints between such
features: mandatory (the feature must be included), optional (the feature
might be included), alternative (exactly one of the set of features has to be
included) and or (one or more from a collection of features has to be
included). Powerful tools exist to manage even large sets of features and
their relationships.

Most wizards are also a kind of configuration. You are guided through a
number of selections and parameter specification. What you have selected
in steps 1 through n possibly determines the options you can select from in
options n+1 through k, a form of constraints. From the resulting overall
configuration some kind of artifact is generated or some functionality is
executed.

Construction
A language is provided to define the variant. The definition of the variant is
a sentence in this language.

The C Preprocesseor

The C and C++ language family
includes a preprocessor that can
process the source code before it
is submitted to the actual
compiler.

One of the features of the
preprocessor is to conditionally
remove a region of code. To do
that, you have to use #ifdef:

#ifdef aSymbol
 // here is some code
#endif

The code between the #ifdef and
the #endif is removed (and hence,
not compiled) if aSymbol is not
defined. A symbol can be viewed
as a boolean variable, and
defining a symbol means to set it
to true.

E5 - 7

1 2

B 3

A

You define a language that can
be used to define a basically an
unlimited number of variants

You then define a sentence in
that language that describes a
particular variant

Construction is much more powerful than configuration, since it provides
an unlimited variant space. The language defines a grammar (or a meta-
model) and all valid instances are valid variants. Picture this in the
illustration above: you can always add one more box and line. Depending
on the language definition, construction can also be much more
complicated to use than configuration, because of the unlimited variant
space. However, it can be used to express relationships, instantiation and
cardinalities.

The most well-known example for construction is simply programming
languages. Frameworks define hooks into which the developer can plug in
code, as long as it conforms to a certain interfaces or other framework
imposed constraints. Essentially, the variability is unlimited.

Whenever domain specific languages [4] are used to configure a product,
then this is also construction. The variability is more limited, i.e. domain
specific, but almost all DSL grammars allow for unlimited variability.

The composition of a system from components that are then hooked up in
order to communicate is also a form of construction. This hooking up can,
for example, happen through a dependency injection framework or
through any other means of configuration file.

Combinations
Of course, configuration and construction can be used in conjunction.

 A complex system can be subdivided into several subsystems,
where possibly one set of subsystems is configured by a
configuration and another set of subsystems will be configured by
construction.

 Configuration can be superimposed onto construction, where a
constructively created variant is customized by configuration. This
can be achieved using Removal or Injection, as explained below.

 It is also feasible to use construction to provide details to
configuration. Many configuration options have parameters (see
Parameterization below). The type of such a parameter can be a

E5 - 8

construction language. Every instance of a construction language
would be a valid value for the parameter.

Implementation Strategies
Now that we have defined the various classes of expressiveness we can
look at the actual implementation of variability in implementation artifacts.

How can variability be implemented in implementation artefacts?

Removal (aka negative variability)
Remove parts of a comprehensive whole. This implies marking up the
various optional parts of the comprehensive whole with conditions that
determine when to remove the part.

a

a

b

b c

c

!a
!c
b

b

b

An artifact contains parts (the
rectangles) annotated with
features (a, b, c) with which
they are associated

A variant removes those
those parts whose features
are not selected in the
configuration

The biggest advantage of this approach is its apparent simplicity. However,
the comprehensive whole has to contain the parts for all variants (maybe
even parts for combinations of variants), making it potentially large and
complex. Also, depending on the tool support, the comprehensive whole
might not be a valid instance of the underlying language or formalism. For
example, in an IDE, the respective artefact might show errors which makes
this approach annoying at times. Because of its technical simplicity, the
approach can be easily retrofitted to all kinds of artifacts: documentation,
code, models.

ifdefs in C and C++ are a well-known example of this strategy. A preprocessor
removes all code regions, whose ifdef condition evaluates to false. When
calling the compiler/preprocessor, you have to provide a number of symbols
that are evaluated as part of the ifdef conditions.

E5 - 9

Conditional compilation can also be found in other languages. Preprocessors
that treat the source code simply as text are available for many languages and
are part of many PLE tool suites, such as pure::variants [5] or Software Gears
[6].

The Autosar [7] standard, as well as other modeling formalisms, support the
annotation of model elements with conditions that serve the same purpose.
The model element (and potentially all its children) are removed from the
model if the condition evaluates to false.

Injection (aka positive variability)
Inject additions into a minimal core. The core does not know about the
variability, the additions point to the place where they need to be added.

a

b

a
!b

A base artifact made of various parts (the small
rectangles) exists. There is also variant specific
code (the strange shapes), connected to features
external to the actual artifact and pointing to the
parts of the artifact to which they can be attached.

Defining a variant means that the
variant specific code associated with
the selected features are injected into
the base artifact, to the parts they
designated.

The clear advantage of this approach is that the core is typically small and
contains only what is common for all products. The parts specific to a
variant are kept external and added to the core only when necessary.

To be able to do this, however, there must be a way to refer to the location
in the minimal core at which to add a variable part. This either requires the
markup of hotspots or hooks in the minimal core or some way of pointing
into the core from an external source. In the latter case, the core requires no
modification and the approach can be used for implementing unexpected
variability.

Aspect Oriented Programming (AOP) [8] is a way to implement this strategy.
Pointcuts are a way of selecting from a set of join points in the base asset. A
joint point is an addressable location in the core. Instead of explicitly defining
hooks, all instances of a specific language construct are automatically
addressable.

Various preprocessors can be used in this way. However, they typically
require the explicit markup of hooks in the minimal core.

E5 - 10

For models, injection is especially easy, since in most formalisms model
elements are addressable by default. So it is possible to point to a model
element, and add additional model elements to it, as long as the result is still a
valid instance of the meta model.

The installation of optional packages for software systems is another example
of this pattern.

An example in the architectural patterns world would be the Microkernel [9].
A microkernel-based system is one that provides a minimal set of
functionality in its base functionality together with a protocol for plugging in
additional pieces of functionality that makes use of the functionality in the
microkernel, or other additions.

Parameterization
The artifact that shall be varied needs to define parameters. A variant is
constructed by providing different values for those parameters. The
parameters are usually typed to restrict the range of valid values.

 p2

p1

 p3

p1

p2

p3

X

Y

Z

 Y

X

 Z

An artifact defines a number of
(typed) parameters

A variant provides values for
the parameters

:=

:=

:=

The artifact that shall be parameterized needs to explicitly define the
parameters, as well as a way to specify values (this makes this approach
different from injection where it is possible to make it work without
marking up the minimal whole). Hence, the variability is limited to the
locations where parameters are defined. The core has to query the values of
those parameters explicitly and use them for whatever it does. The
approach requires the core to be explicitly aware and define all parameters,
unexpected variability cannot be handled.

In most cases, the values for the parameters are relatively simple, such as
strings, integers, booleans or regular expressions. However, in principle,
they can be arbitrarily complex.

A configuration file that is read out by the using application is a form of
parameterization. The names of the parameters are predefined by the
application, and when defining a variant, a set of values is supplied.

The strategy pattern is a form of parameterization, especially in combination
with a factory. A variant is created by supplying an implementation of an

E5 - 11

interface defined by the configurable application. Once again, the application
has to explicitly query the factory, and the type of the values is defined by the
interface which its strategy classes implement.

All kinds of other small, simple, or domain specific languages can be used as a
form of parameterization. A scripting language in an application is a form of
parameterization. That type of parameter is "valid program written in
language X". Also, systems where some kind of behavior can be configured
using workflow languages, activity diagrams, state machines or business rules
is a form of parameterization. In this case, too, the languages used to define
the behavior are the type of the parameter.

The classical approach of copying resources is also a form of parameterization.
Consider the place where a logo is exchanged. The application defines a
parameter ("logo for the company"), the type being the file type (such as GIF,
32x32 pixels) and the parameter is any valid image that makes sense as a logo
for the company.

Combinations
Of course there are also combinations of all of these approaches. Going
back to the component example introduced in the CONSTRUCTION pattern,
components that are wired together often also use PARAMETRIZATION to
implement another, smaller grained form of variability.

Another combination is using PARAMETRIZATION to determine which parts
are REMOVED or INJECTED.

Acknowledgments
I want to thank my EuroPLoP 2009 workshop for the feedback on this
paper: Christa Schwanninger, Klaus Marquardt, Didi Schütz, Rene Bredlau,
Claudius Link and Ed Fernandez.

Thanks to Iris Groher for providing feedback on earlier version of this
paper. I also want to thank my EuroPLoP 2009 shepherd Michael Stal for
his repeated useful feedback.

References
[1] http://www.softwareproductlines.com/introduction/introduction.html

[2] http://en.wikipedia.org/wiki/Feature_model

[3] Klaus Pohl, Günter Böckle, Frank van der Linden, Software Product Line
 Engineering. Foundations, Principles, and Techniques,
 http://www.amazon.de/Software-Engineering-Foundations-Principles-
 Techniques/dp/3540243720

[4] http://en.wikipedia.org/wiki/Domain-specific_language

E5 - 12

[5] http://www.pure-systems.com/pure_variants.49.0.html

[6] http://www.biglever.com/solution/product.html

[7] http://www.autosar.org/

[8] http://en.wikipedia.org/wiki/Aspect-oriented_programming

[9] Frank Buschmann, Regine Meunier, Hans Rohnert, Peter Sommerlad, Michael
 Stal, Pattern Oriented Software Architecture, Vol 1,
 http://www.amazon.com/Pattern-Oriented-Software-Architecture-System-
 Patterns/dp/0471958697

Test Automation Design Patterns for Reactive Software Systems

A.-G. Vouffo Feudjio, I. Schieferdecker
Fraunhofer Institute for Open Communication Systems (FOKUS)

Alain.Vouffo, ina.schieferdecker@fokus.fraunhofer.de

Abstract

Patterns have been successfully applied in software development to improve the development process, by facil-
itating reuse, communication and documentation of sound solutions. However, the testing domain is yet to benefit
from a similar approach. This although, with the growing complexity of test automation solutions, identifying
and instrumenting patterns in test design to facilitate reuse appears to be a promising approach for shortening
the development cycle and save costs. This paper presents a collection of patterns for designing test automation
solutions for reactive software systems and reports on first experiences of applying those patterns in a case study.

1 Introduction

It is now widely acknowledged that testing is no longer just an art, but an engineering discipline in its own,
with test development following a similar process as generic software development. Patterns are a canonical docu-
mentation of the essential concepts underlying successful solutions to recurrent engineering and design problems.
They are used to capture experiences, expertise, and facts to improve system quality and facilitate the production
of new solutions. In previous publications, we proposed a similar approach for the design and implementation
of tests automation systems [23]. This is particularly interesting with the growing popularity of Model-Driven
Testing (MDT), which raises the level of abstraction for test design, to a degree that it allows reuse of concepts for
new solutions.
In this paper, we present a selection of test patterns we have collected so far by performing pattern mining on

existing test automation solutions designed using different test design and test scripting notations e.g. the Testing
and Test Control Notation (TTCN-3) [12] the UML Testing Profile(UTP) [21] or JUnit [15]. Each test pattern is
defined along a template we introduced in previous work [23], but which was refined to align with generic pattern
methodologies. This work is organised as follows: Section 2 presents a selection of the test patterns we have
identified, then Section 3 reports on a case study in which a prototype tool implementing some of those patterns
was used to design a conformance test suite for the IP Multimedia Subsystem communication protocol (IMS).
Section 3.2 discusses some related work in this area, before Section5 concludes the paper and draws an outlook
for further research.
Readers familiar with the pattern concept can skip parts of section 3 and go directly to section 2.1, where the

description of patterns starts.

E6 - 1

Figure 1. Overview of Identified Test Patterns

2 A Collection of Test Patterns for Black-box test design

We consider test engineering to be a process that starts from the definition of test objectives via abstract test
models through to executable test cases. We classify test patterns along the various activities of that process into
the following categories:

• Generic test design patterns are those applicable to all activities of the test engineering process.

• Test objectives design patterns: According to IEEE 829 [16], a test objective1 is a brief and precise descrip-
tion of the special focus or objective for a test case or a series of test cases. Test objectives can be viewed as
the equivalent to system requirements in product development and will certainly benefit from the application
of patterns in a similar way as with requirements engineering (RE) patterns [13]. Accordingly, test objective
design patterns are those addressing that activity in the test engineering process for a given system under
test (SUT).

• Test procedure design patterns: A test procedure is defined as a prose description of a sequence of actions
and events to follow or to observe for executing of a test case. A test procedure describes how a test objective
will be assessed. Therefore, Test procedure design patterns are those that are applicable when designing the
test procedures for a given SUT.

• Test architecture design patterns define good practices and established recommendations in selecting and
designing appropriate test architectures. The test architectures describe the topology of a test system, i.e.
its composition as a collection of (parallel) test components, interconnected among each other and with the
SUT and communicating through Points of Control and Observation (PCOs). Depending on the overall
goal of a test e.g. conformance, performance, functionality, robustness, etc., different test architectures are
suitable.

1Test objectives are sometimes also referred to as test purposes, test requirements or test directives in the literature

E6 - 2

• Test data design patterns describe approaches for designing the data used in test scenarios as stimuli for the
SUT or to express assertions, based on which the SUT’s response will be evaluated to assess if they meet
their requirements or not.

• Test behaviour design patterns document approaches and principles for designing the behaviour of test
systems, i.e. the patterns of interactions between entities in a test architecture.

The ultimate goal of test patterns is to increase the quality of tests. Which leads us to the issue of defining the
characteristics of test quality. The ISO/IEC 9126 standard [17] defines a model for internal and external quality of
software, including quality characteristics and associated metrics.
Zeiss et al [26] demonstrated the applicability of that model to tests and came up with a model combining

test-specific quality characteristics such as test effectiveness and test efficiency with more generic ones such as
(re-)usability, maintainability, portability etc. However, the value and applicability of those characteristics will
mainly depend on the chosen test design strategy. Binder [2] classifies test design strategies in four main cate-
gories: Responsibility-based , implementation-based, hybrid and fault-based test design. Responsibility-based test
design uses specified or expected responsibilities of an SUT to design tests and is synonymous to “black-box”,
“specification-based”, “behavioural”, “functional” testing. Implementation-based test design relies on internal
knowledge (e.g. source code, internal design) of the SUT for test design and is also labelled “structural”, “white-
box”, “glass box” or “clear box” testing. Hybrid test design combine responsibility and implementation-based
test design. Whereas fault-based testing purposely injects faults in the SUT to check whether those faults are
discovered by a test suite.
Although some of the patterns discussed in this work may be applicable to other test design strategies, the main

concern is on responsibility-based test design. As expected, this has had repercussions on our methodology for
pattern mining. This is illustrated for example by the fact that test effectiveness - i.e. the capability of tests to
reveal faults on the SUT - only plays a marginal role for test quality in responsibility-based test, although it’s a key
factor in implementation-base test design.
Basically, pattern mining for test design patterns can be driven by one or both of the following questions:

• Question 1: What is the best way for designing tests, so that they would help uncovering as many errors of
the SUT as possible, before it is delivered to end customers [14]?

• Question 2: What is the best way for designing and modelling tests so that the resulting test specification
and/or solution matches best main quality criteria such as reusability, maintainability, understandability etc.?

A pattern template is a list of subjects (sections) that comprise a pattern [2]. The content of the test pattern template
depends on which of question 1 or question 2 above is the main driving force for pattern mining. In [2], Binder
proposes a test pattern template, which is driven by question 1. Our pattern mining activities are mainly driven
by question 2, although question 1 is considered as well. Therefore, we took the test pattern template provided
by Binder [2] as the base for our own template, but modified it to reflect the fact that our focus is more on reuse
towards more automation than on effectiveness of the tests.
As a consequence subjects such as the subjects fault model, the entry criteria and the exit criteria proposed

by [2] were removed from the template. Instead, we added the applicable test scope subject to capture the precon-
ditions for applying test patterns. Our test modelling pattern template consists of the following subjects:

• Pattern name: A meaningful name for the test pattern.

• Context: To which specific context does it apply? This includes the kind of test pattern (organisational vs.
design, generic, architectural, behavioural or test data etc.) as well as the test scope for 2 .

2The test scope describes the granularity of the item under test [19], which may vary from a low-level entity such as class (for unit
testing) to a whole software system (for system testing).

E6 - 3

• Problem: What is the problem, this pattern addresses and which are the forces that come into play for that
problem?

• Solution: A full description of the test pattern.

• Known Uses: Known applications of the test pattern in existing test solutions (e.g. test specifications, test
models, test suites, or test systems) or by test modelling approaches.

• Resulting context: What impact does this pattern have on test design in general and on other patterns appli-
cable to that same context in particular?

• Related patterns(optional): Test design pattern related to this one or system design patterns in which faults
addressed by this test pattern might occur. This section is optional and will be omitted, if no related pattern
can be named.

• References(optional): Bibliographic references to the pattern. This section is also optional and will be
omitted, if no reference can be provided.

Figure 1 displays an overview of those patterns we have identified so far for each of the categories mentioned
above. In the following sections, we present a selected subset of those patterns.

E6 - 4

2.1 Pattern: Separation of Test Design Concerns

2.1.1 Context

This pattern is a generic organisational test design pattern and is applicable at any test scope for large size test
projects. It is assumed that test development is process running in parallel to the development of the SUT or
integrated to it, with both of them having the requirements as a common starting point.

2.1.2 Problem

How to organise the file structure of test artifacts. Test artifacts are resources used for storing the design and
implementation of a test automation solution. They include high level design models, documentation artifacts
through to source code of executable test scripts. The size and the complexity of those test artifacts can grow
considerably, raising questions as to how to organise properly to keep a good overview and facilitate collaborative
work.

Forces

• To avoid test design activity becoming a bottleneck to the development process, having different teams
working in collaboration on the will speed up that process.

• Synchronisation and version control conflicts between the actors involved in test design may cause resources
being wasted to address them.

• Large compilation units increase the risk of potential version control conflicts among parallel developers/de-
signers.

2.1.3 Solution

Divide the various tasks over several test designers, by organising modules accordingly. Each task is addressed
separately to allow parallel processing. Applying this pattern requires that the technologies involved (e.g. the
notation used for designing the tests) provide such mechanisms. Modules may be organised based on the aspect
they cover(e.g. Test data, test architecture) or based on the SUT feature they target.

2.1.4 Known Uses

Instantiations of this test pattern can be observed in numerous test automation solutions. The code snippet below
from the IPv6 conformance test suite [22] displays an example in TTCN-3 of a test script importing elements of
other test modules to design test behaviour.

1 module AtsIpv6 Common Funct ions {
2 / / Impor t i ng Gener ic L i b r a r i e s
3 / / LibCommon
4 import from LibCommon BasicTypesAndValues a l l ;
5 import from LibCommon DataStr ings a l l ;
6 . . .
7 / / Impor t i ng t e s t da ta modules
8 / / L i b I pv6
9 import from L i b I p v 6 I n t e r f a c e T em p l a t e s a l l ;
10 import from LibIpv6 CommonRfcs TypesAndValues a l l ;
11 . . .
12 / / Impor t i ng t e s t a r c h i t e c t u r e modules
13 / / A t s I p v 6
14 import from Ats Ipv6 Tes tSy s t em a l l ;

E6 - 5

15 import from Ats Ipv6 Tes tCon f i gu r a t i o n TypesAndVa lu e s a l l ;
16 . . .
17 } / / end module A ts Ipv6 Common Funct ions

2.1.5 Discussion

A difficulty in applying this pattern consists in ensuring that the number of separate modules remains within
sensible limits. Otherwise, the effort of managing all parallel activities can reduce the positive impact of the
pattern and even lead to less productivity. However a small number of modules will inevitably lead to more version
controlling conflicts, with several people potentially working in parallel on the same modules. In such cases the
usage of an appropriate version controlling system, along with clearly defined policies is highly recommended.

2.1.6 Related Patterns

This pattern is an application of the Separation of Concern, a.k.a Divide and Conquer design pattern known both
in generic software engineering, as well as in test design [7].

E6 - 6

2.2 Pattern: Prioritization of test objectives

2.2.1 Context

This pattern is an organizational pattern that addresses test objectives design

2.2.2 Problem

Due to resource limitations, often not all test cases can be implemented and/or executed at a within the decided
deadline. Some key decisions need to be taken confidently for planning the testing activities and to be able to react
to changes in a proper way. Example of key decisions include:

• Which test cases need to be implemented and executed first and which ones can be left aside for later stage
in the testing process?

• When can test activities be considered sufficient to provide a level of confidence in the SUT, that is high
enough to allow its release?

2.2.3 Solution

As recommended by IEEE 829[16], introduce a prioritization scheme for test objectives in the test model. Prior-
itization should be provided for a test objective taken individually or for a group of test objectives. Prioritization
of test objectives can be based on factors such as:

• Priority level of the feature or requirement(s) covered by the test objective.

• Level of criticality of the errors targetted by the test objective.

Testing activities (e.g. design, implementation, execution) can then be planned based on the priority level of the
test objectives and taking the time and resources constraints into account, to ensure that test cases with highest
priority are available on time before product delivery.

2.2.4 Discussion

The size of the testing project and the time constraints it faces will be taken into account, whenever the application
of this pattern is considered. Obviously, applying the pattern for large scale projects yields more benefits than
doing so for smaller ones.

2.2.5 Known Uses

Prioritization of test cases is used implicitly in several instances, though it is not always supported by a specific test
notation. Generally a separate tool is used to manage that aspect of the test process. However, it would be highly
beneficial to integrate it into the test design process, so that relating it to other tasks in the product development
process would be more straightforward.

2.2.6 References

[8, 9, 6]

E6 - 7

2.3 Pattern: Traceability of Test Objectives to Requirements

2.3.1 Context

This pattern is an organizational pattern that addresses the management of large test suites under restrictive time
and resource constraints.

2.3.2 Problem

To keep control of your development process, you want to be able at any point in time to evaluate the progress of
the test project to gain objective criteria for making decisions on the project.

Forces:

• 100% code coverage is an illusion

• 100% requirements coverage is achievable, but needs to supported with clear and sensible metrics.

• Being able at any time to give an estimation of the current coverage of requirements by the specified test
objectives will facilitate decision making for releasing the product.

How to achieve traceability between tests and system requirements to enable automatic coverage analysis?

2.3.3 Solution

Provide a mean for linking each test objective to a (set of) requirements or features of the SUT that it addresses.
Those include functional as well as non-functional requirements. The test objectives will be designed based on
potential risks for the SUT related to a particular feature or as a mean for verifying that the SUT meets the
requirements

2.3.4 Known Uses

Please refer to [24] for an overview of requirements traceability that includes numerous examples of traceability
to test artifacts as proposed in this pattern.

2.3.5 Discussion

Benefits of this pattern include the fact that the selection of test cases to address specific products or features is
facilitated based on the requirements they support. Furthermore, automated requirements coverage analysis of the
test cases can be achieved at any time in the lifecycle.
One key difficulty in applying this pattern is to ensure that changes to the test model are propagated in both

directions of the link to avoid dead links and keep the test model consistent. The test design tool should take care
of that and update a test objective element accordingly, if one of the covered system requirements is altered (e.g.
deleted, moved to another location, renamed etc.). Such a propagation of changes could be facilitated by the usage
of the same notation or of the same modeling technology (e.g. EMF, MOF) for those aspects being linked with
each other. Otherwise, some serious maintainability issues might emerge.

E6 - 8

2.4 Pattern: Traceability of Test Objectives to Fault Management

2.4.1 Context

This pattern is an organizational pattern that addresses the management of large test suites under restrictive time
and resource constraints.

2.4.2 Problem

In spite of all testing efforts, errors in software are inevitable and will eventually occur. We want to avoid experi-
encing and fixing the same errors many times. How can it be ensured, that the information gathered in analyzing
and fixing errors identified at the user end or through testing can be exploited for the benefit of future testing
activities and for improving the overall quality of the software product under test?

Forces

• Fixing errors is generally granted higher priority than documenting them.

• Besides, who cares about fixed issues?

• Developers lack of time to do such additional presumably activities. So they tend to postpone them until
they pop-up again as higher priorities.

2.4.3 Solution

Provide a mechanism for ensuring traceability between entries in the fault management system and elements of
the testing process. The mechanism should fullfil the following requirements:

• The mechanism should be integrated in the test development/management tool to ensure that it can the
process does not cost too much additional effort.

• Every time a failure is (inadvertently or deliberately) discovered on a version of the SUT, make sure that
while creating a new entry for that failure in the fault management system, that it is associated with a test
objective addressing the root cause of the bug and that test cases are implemented to cover that test objective.

• Provide technical means for enforcing that policy automatically online (i.e. in the process of creating the
entries in the model repository) or offline (after the elements have been created)

• Automatically integrating the newly added tests in subsequent regression tests would yield additional bene-
fits.

2.4.4 Known Uses

Agile methods apply this pattern by making test development an integrated part of the development lifecycle (e.g.
Test-driven development in XP).

2.4.5 Discussion

The same type of potential issues identified for the traceability of test objectives to system requirements pattern
(section 2.3) also apply for this pattern.

E6 - 9

2.5 Pattern: One-on-One Test Architecture

2.5.1 Context

This pattern addresses test architecture design for an SUT that can be viewed as one entity providing a well-
known set of entry points and interacting with its environment following a sequential non-concurrent behaviour.
Functional testing at unit or system level is the goal.

2.5.2 Problem

How to design a static test architecture for achieving testing the SUT with highest possible efficiency.

Forces

• Resources planned for testing are generally and straightforward solutions are always welcome.

• The level of complexity of the test system should be kept as low as possible, to keep maintainance and
associated efforts as low as possible.

• Usage of concurrency in the test system increases the risk of introducing erroneous test behaviour and the
cost of the test system, because a coordination mechanism is required to control the choreography of parallel
test components.

2.5.3 Solution

Design the test architecture consisting of one single test component connected to the SUT in a way that it can
stimulate the SUT and verify its response to those stimuli. One possible way of achieving that is by making the
test component a mirrored image of the SUT, e.g. by providing interfaces required by the SUT and using interfaces
the SUT provides.
Figure 2 displays two examples resulting from applying that pattern. The upper part of the figure shows a test

architecture consisting of a single test component that uses one port both for sending impulses to and receiving
responses from the SUT to verify its correct behaviour. On the other hand, the lower part of the figure illustrates
a test architecture for an SUT providing three different entry points for stimuli and responses. Benefits: Having a

Figure 2. Test architecture Diagram for One-on-One Pattern

single test component implies that synchronization mechanisms based on message exchange or other Remote Pro-
cedure Control(RPC) or similar mechanisms do not have to be implemented at the testing side. Variables defined

E6 - 10

in the test component can be used to describe states based on which decisions can be made on the test verdict.
Shortcomings: The test component has to emulate the complete behaviour of system component it replaces. De-
pending on the level of complexity of that behaviour, this might be more or less difficult to achieve. Furthermore,
having a single component makes it difficult to deal with concurrency at the testing side, if required.

2.5.4 Known Uses

This pattern is applied in numerous conformance test suites, e.g. the collection of IPv6 test suites [22] used e.g.
for the IPv6 logo brand ,the IMS benchmark test suite [5] used for performance testing IMS server equipment or
the CORBA component test suite [1] used for integration testing of CORBA components

2.5.5 Discussion

Potential difficulties in handling concurrent behaviour from the SUT and to emulate similar behaviour to stimulate
the SUT.

2.5.6 Related Patterns

This pattern is the logical opposite to the Centralized Test Coordinator test pattern described in section 2.6. It is
also referred to as the Centralized tester test pattern [10].

2.5.7 References

[10]

E6 - 11

2.6 Pattern: Centralized Test Coordinator for Concurrent Test Components

2.6.1 Context

• This pattern addresses test architecture design.

• This pattern is more applicable to integration and system testing. It is less the case for unit testing at the
class level. However, it can be applied for system testing, whereby a unit testing framework is instrumented
for that purpose.

2.6.2 Problem

How to model a test architecture, that is suitable for load- , performance- or conformance testing on an SUT
requiring parallel and possibly distributed processing.

Forces The motivations for this pattern are:

• An SUT featuring concurrent behaviour cannot be verified through a test system supporting only sequential
behaviour.

• Certain requirements of software (e.g. robustness, load, performance) can hardly be addressed using test
architectures that allow only sequential behaviour.

• Simple test architectures (e.g. the One-on-One test architecture pattern) restrict the level of flexibility for
the test system with regard to deployment. The fact that a distributed testing setup would not be possible is
an example of those restrictions. A conscequence of those restrictions is that certain test scenarios would
not be possible.

However, this pattern comes with its liabilities that should be considered as well:

• It must be ensured that, despite the introduction of concurrency in the test system, the tests remain repro-
ducible and deterministic.

• The introduction of concurrency will require some form of coordination between the entities involved. The
effort for providing that coordination scheme should be taken into account as well.

2.6.3 Solution

As depicted on figure 3, this pattern features a test component acting as test coordinator and thus controlling the
life cycle other components it controls. Each of the controlled test components is connected to the controlling
component via a connection through which coordination messages can be exchanged to control the components’
behaviour. To keep the overhead of processing those coordination messages as low as possible, to not affect the
proper test behaviour, coordination messages should be kept as simple as possible in their structure. The real
testing activities are performed by the controlled test components, which are directly connected to the SUT.

2.6.4 Known Uses

Several TTCN-3 projects such as [20] involving UTML protocol testing (Siemens) and [4] involving BCMP pro-
tocol performance testing.

E6 - 12

Figure 3. Test architecture Diagram for Centralized Test Coordinator Pattern

2.6.5 Discussion

A coordination scheme is required between the main test component and the parallel test components to control
the latters behaviour according to the overall test choreography. The additional load and delays created by that
communication should be taken into account while evaluating the SUT component’s test results.

2.6.6 Related Patterns

This pattern is the opposite of the One on One test architecture pattern defined in section 2.5

2.6.7 References

[10]

3 Evaluation of the Approach: IMS Case Study

3.1 MDTester: A Pattern-Oriented Test Design Tool

Integrating patterns in a process requires a suitable concept, that would allow the creation of new artifacts in
a flexible and efficient way, while at the same time ensuring that the rules defined by the patterns are followed
in the creation process or can be verified afterwards. Domain Specific Modeling Languages (DSML) provide a
good mean for integrating patterns to a given process. Firstly, because they operate at a level of expression, that
is abstract enough to express concepts in a solution-independent, but yet formal manner. Secondly, because they
can be tailored precisely to define model templates and associated rules, that are specific to the targeted process’
domain. Therefore, to evaluate the impact of the patterns we presented in section 3, we defined a UML MOF
Meta-model for a DSML dedicated to black box test engineering. The particularity of this DSML is that, tests are
modelled based on meta-elements representing the patterns we mentioned earlier.

E6 - 13

Test Pattern Implemen-
tation
Status

Application
to Case
Study

Separation of test design concerns Yes Yes
Grouping of concerns Yes Yes
Naming convention Yes Yes
Prioritization of test objectives Yes No
Traceability of test objectives to re-
quirements

Yes Yes

Traceability of test objectives to fault
management

Yes No

One on One test architecture Yes No
Proxy test component Yes Yes
Centralized test coordinator Yes Yes
Purpose-driven test data design Yes Yes
Flexible test data definition Yes Yes
Dynamic test data pool No No
Focus on expected test behaviour Yes Yes
Test component factory No No
Time constraints Yes Yes

Table 1. Summary of Test Patterns and Status

3.2 The IMS testing case study

Following an MDE process, we developed MDTester, a tool to support pattern-oriented test design with au-
tomated generation of test designs according to selected patterns and automated model transformations of the
high-level test design into test scripting or test specification notation for specific target test environments (e.g.
TTCN-3, JUnit). The MDTester tool was used to design functional tests for the IP Multimedia Subsystem (IMS)
architecture. Table 1 lists all test patterns and their implementation status in the prototype tool, as well as their
application to the IMS case study test model.
The impact of model-driven and pattern-oriented test development can be analyzed from a quantitative and

a qualitative view point. The purpose of quantitative analysis is to evaluate how productivity is affected by the
introduction of the methodology. On the other hand, qualitative analysis aims at measuring the effect on quality
factors, both of the process itself and of its output, i.e. the generated test scripts. The goal of the case study was to
analyse both the qualitative and the quantitative aspects of that impact and at the same time, to compare the results
with those obtained with a “traditional” test development approach.

3.2.1 Quantitative Analysis

A key metric for quantitative analysis of any development process is productivity. Evaluating the productivity of
pattern oriented test development is a relatively straightforward task. For that purpose, we simply have to correlate
the output (e.g. number of implemented test cases) to the invested effort (e.g. number of person-days/person-
months involved) for a project or a series of projects. However, to measure the impact of introducing a new
approach on that productivity is a less trivial task, because productivity data before and after the introduction of
the new approach need to be compared with each other. Ideally, to ensure a fair comparison, at least the following
conditions need to be fulfilled:

E6 - 14

• Both methodologies should be applied on the same case study: The starting point for both test development
approaches should be the same system specification or test plan, targeting the same SUT

• Separate teams should apply the methodology, each on its side in a separate project.

• The same time frame will apply to both projects and results will be collected at the end for evaluation.

• Both teams should have comparable level of expertise in their respective field.

However, we could not provide such an ideal setup for our IMS case study. Therefore we had to base our quanti-
tative comparison on assumptions resulting from statistical analysis of past TTCN-3 test development projects.
Taking into account that the project duration was set to 5 person-days and that a total result of 19 test cases

were implemented at its end, productivity factor is 19/5 = 3.8 test cases/day. It should be pointed that, this result
was obtained with team of designers with a rather low level of testing and modelling expertise. Therefore, it can
be assumed that slightly higher results would be obtained with experienced test designers.
To measure the productivity gain generated by our approach, we compare our results with those generally

obtained through “traditional” test development approaches. Generally, for TTCN-3 test development, realistic
estimations of productivity range between 2 and 5 test cases/day. The obtained results indicate that, if the existing
process allows a production rate of more than 4 test cases/day (including test objectives definition, test procedure
design and documentation), then applying our methodology would rather cause a productivity loss. On the other
hand, the productivity could be significantly improved (30 to 90%), when the production rate of the existing
methodology is between 2 and 4 test cases/day.
Moreover, if we estimate that, the specification of a test plan (test objectives) and of test procedures consumes

20% of the effort in pattern-oriented test development and are generally not taken into account, when estimating
the productivity of the test development process, then the productivity gain is even higher.

3.2.2 Qualitative Analysis

Using model-driven approach to test development offers a wide range of qualitative benefits, compared to tradi-
tional development approach. Test models offer a higher level of readability, maintainability, documentation and
flexibility that plain test scripts and non-formal notations. Furthermore, existing MDE frameworks (e.g. Eclipse
EMF, TOPCASED) provide a wide range of functionalities for creating, managing, validating and transforming
models, that can be used to provide powerful tool chains to support the process. However, a source of general
concern is the quality of the test scripts generated automatically from the process. For our case study, we used
the TRex [25] tool to measure the quality of the generated TTCN-3 test scripts. The authors of TRex define a
metric called Template coupling (ranging between 1 and 3) to measure the maintainability of TTCN-3 scrips. The
automatically generated IMS test scripts scored 1.015 on that metrics, indicating the high level of maintainability
of those scripts (1.0 is best).

4 Related Works

The potential benefits of cataloguing best practices and patterns in test design has been advocated by several
authors before. Binder [2] discusses a test pattern template, based on a pattern language of object oriented testing
(PLOOT) proposed by Firesmith [11] and introduces a collection of test patterns from the object-oriented software
design domain. Meszaros [18] presents a collection of test patterns for unit testing. Howden [14] presents a
collection of patterns in selecting tests for maximum error detection. It appears that existing work on test patterns
tend to focus on interactions at the object level and are hardly applicable for higher level (i.e. integration, system,
and acceptance-level) testing whereby the applied programming paradigm are less relevant. Delano et al [3] present
a collection of patterns focussing more on the organisational aspects of test development as a process, rather

E6 - 15

than on test design itself. On the other hand, Dustin [7] covers all aspects of test development, with one chapter
dedicated to test design and documentation. in 2005, the European Telecommunications Standards Institute (ETSI)
started an initiative on patterns in test development (PTD) in which some of the patterns defined in this work were
introduced and discussed. However, to the best of our knowledge, none of the existing work attempts to formalise
test patterns, so that they could be instrumented to support the test development process in an automated way.

5 Conclusion and Outlooks

This paper has presented first ideas on a collection of patterns of test design based on a template defined for that
purpose. First experiences with that prototype tool chain have shown some promising results. However, model-
driven test development has not reached a high level of popularity yet. Therefore, some of the patterns described
here can only be considered as mere candidates and will require further analysis with regard to their usability and
their consequences. Also, we have presented a case study in which those patterns have been applied to develop
tests for IMS. An analysis of the approach through that case study indicates that it can significantly improve the test
process, both quantitatively and qualitatively. In the future, we intend to conduct further case studies to analyze
the impact of the approach, when developing tests for other domains.

6 Acknowledgements

We would like to thank our shepherds Uwe Zdun and especially Christian Kohls (on-site shepherd) who were
both very helpful in the process of improving this paper through their challenging comments, their patience as well
as their interesting ideas. Also, we would like to thank all participants to writer’s workshop E at the EuroPLoP
2009 conference for their contributions to bring this paper into shape. A special thank you to Dietmar (Didi) Schtz,
Michael Kircher, Heiko Hashizume, klaus Marquardt and last but not least, Markus Voelter!

References

[1] Harold J. Batteram, Wim Hellenthal, Willem A. Romijn, Andreas Hoffmann, Axel Rennoch, and Alain Vouffo. Imple-
mentation of an open source toolset for ccm components and systems testing. In Roland Groz and Robert M. Hierons,
editors, TestCom, volume 2978 of Lecture Notes in Computer Science, pages 1–16. Springer, 2004. [cited at p. 11]

[2] Robert V. Binder. Testing Object Oriented Systems: Models, Patterns and Tools. Addison-Wesley Longman Publishing
Co., Inc. Boston, MA, USA, 1999. [cited at p. 3, 15]

[3] David E. Delano and Linda Rising. System test pattern language copyright 1996 ag communication systems corporation
permission is granted to make copies for plop ’96., 1996. [cited at p. 15]

[4] Sarolta Dibuz, Tibor Szabó, and Zsolt Torpis. Bcmp performance test with ttcn-3 mobile node emulator. In TestCom,
pages 50–59, 2004. [cited at p. 12]

[5] George Din. An ims performance benchmark implementation based on the ttcn-3 language. Int. J. Softw. Tools Technol.
Transf., 10(4):359–370, 2008. [cited at p. 11]

[6] Hyunsook Do, Gregg Rothermel, and Alex Kinneer. Prioritizing junit test cases: An empirical assessment and cost-
benefits analysis. Empirical Softw. Engg., 11(1):33–70, 2006. [cited at p. 7]

[7] E. Dustin. Effective Software Testing. 50 Specific Way to Improve Your Testing. Addison-Wesley, 2003. [cited at p. 6, 16]

[8] Sebastian Elbaum, Alexey G. Malishevsky, and Gregg Rothermel. Test case prioritization: A family of empirical
studies. IEEE Trans. Softw. Eng., 28(2):159–182, 2002. [cited at p. 7]

[9] Sebastian Elbaum, Gregg Rothermel, Satya Kanduri, and Alexey G. Malishevsky. Selecting a cost-effective test case
prioritization technique. Software Quality Control, 12(3):185–210, 2004. [cited at p. 7]

E6 - 16

[10] M. Frey et al. Etsi draft report: Methods for testing and specification (mts); patterns for test development (ptd).
Technical report, European Telecommunications Standards Institute (ETSI), 2005. [cited at p. 11, 13]

[11] D.G. Firesmith. Pattern language for testing object-oriented software. Object Magazin, 1996. [cited at p. 15]

[12] Methods for Testing and Specification (MTS). The testing and test control notation version 3; part1: Ttcn-3 core
language. Technical report, European Telecommunications Standards Institute (ETSI), 2003. [cited at p. 1]

[13] Lars Hagge and Kathrin Lappe. Sharing requirements engineering experience using patterns. IEEE Software, 22:24–31,
2005. [cited at p. 2]

[14] William E. Howden. Software test selection patterns and elusive bugs. In COMPSAC ’05: Proceedings of the 29th
Annual International Computer Software and Applications Conference (COMPSAC’05) Volume 1, pages 25–32, Wash-
ington, DC, USA, 2005. IEEE Computer Society. [cited at p. 3, 15]

[15] Andy Hunt and Dave Thomas. Pragmatic Unit Testing in Java with JUnit. The Pragmatic Programmers, September
2003. [cited at p. 1]

[16] IEEE. Draft ieee standard for software and system test documentation (revision of ieee 829-1998). Technical report,
IEEE, 2008. [cited at p. 2, 7]

[17] ISO/IEC. Iso/iec standard no. 9126: Software engineering product quality; parts 14. Technical report, Organization for
Standardization (ISO) / International Electrotechnical Commission (IEC), Geneva, Switzerland, 2001-2004. [cited at p. 3]

[18] Gerard Meszaros. XUnit Test Patterns: Refactoring Test Code. Addison-Wesley, 2007. [cited at p. 15]

[19] Helmut Neukirchen. Languages, Tools and Patterns for the Specification of Distributed Real-Time
Tests. PhD thesis, Dissertation, Universität Göttingen, November 2004 (electronically published on
http://webdoc.sub.gwdg.de/diss/2004/neukirchen/index.html and archived on http://deposit.ddb.de/cgi-
bin/dokserv?idn=974026611 . Persistent Identifier: urn:nbn:de:gbv:7-webdoc-300-2), November 2004. [cited at p. 3]

[20] Andrej Pietschker. Automating test automation. Int. J. Softw. Tools Technol. Transf., 10(4):291–295, 2008. [cited at p. 12]

[21] OMG ptc. Unified modeling language: Testing profile, finalized specification. Technical report, Object Management
Group, 2004. [cited at p. 1]

[22] Stephan Schulz. Test suite development with ttcn-3 libraries. Int. J. Softw. Tools Technol. Transf., 10(4):327–336, 2008.
[cited at p. 5, 11]

[23] Alain Vouffo-Feudjio and Ina Schieferdecker. Test patterns with ttcn-3. In FATES, pages 170–179, 2004. [cited at p. 1]

[24] Stefan Winkler and Jens von Pilgrim. A survey of traceability in requirements engineering and model-driven develop-
ment. Software and Systems Modeling, December 2009. [cited at p. 8]

[25] Benjamin Zeiß, Helmut Neukirchen, Jens Grabowski, Dominic Evans, and Paul Baker. TRex - An Open-Source Tool
for Quality Assurance of TTCN-3 Test Suites. In Proceedings of CONQUEST 2006 – 9th International Conference on
Quality Engineering in Software Technology, September 27-29, Berlin, Germany. dpunkt.Verlag, Heidelberg, Septem-
ber 2006. [cited at p. 15]

[26] Benjamin Zeiß, Diana Vega, Ina Schieferdecker, Helmut Neukirchen, and Jens Grabowski. Applying the ISO 9126
Quality Model to Test Specifications – Exemplified for TTCN-3 Test Specifications. In Software Engineering 2007 (SE
2007). Lecture Notes in Informatics (LNI) 105. Copyright Gesellschaft für Informatik, pages 231–242. Köllen Verlag,
Bonn, March 2007. [cited at p. 3]

E6 - 17

A Good Fort Has a Gap

Arto Juhola
VTT Technical Research Centre of Finland

17. December 2009

Figure 1: Old painting of Himeji castle [24][21]

1 Name
“A good Fort Has a Gap”.

2 Problem
You are not (and can’t be) absolutely certain that the principal defences (of a system or a structure) you
have set up are impenetrable.

In other words, you cannot out rule the possibility of a successful break-in, since the attacker might
be able to circumvent or confuse the provided access control points by some clever means. This might
be due to the breadth and complexity of the system or structure, or to some other inherent weakness.

3 Context
You have to defend a site with a well defined perimeter, be that a physical fort, a network or something
else.

F1-1

You have taken care of the more straightforward means of defence. But, confidence in the infallibility
of the principal defence might be misplaced, rendering your system or structure to be just a little better
off than a sitting duck; You have to cover all possible vulnerabilities, while the attacker needs only a
single one.

4 Forces.
1. The site cannot parallel the kind of imperviousness a European, pre-cannon era (1100-1300) castle
had against the attackers of the period, when the castle defenders usually could most often just
simply wait until the attackers lost heart and returned home[22].

2. You lack applicable methods, resources, manpower, funds and/or time to realise an impenetrable
protection, or it is a sheer impossibility.

3. However, you have authority and means, within reasonable bounds, to introduce improvements.

4. Deploying improved (but not perfect) protection prompts intruders to device and use more intricate
forms of attack, including ones not foreseen and subsequently lacking means of detection.

5. To make things worse, potential malefactors have often many advantages over you that make
foreseeing attacks difficult: Covert collection of preparatory information, gathering of “mass”,
concealed identity, concentration of forces, surprise, freedom of means, particularly with regard to
law, latitude in manoeuvres and timing, and possibilities to cover up their tracks.

6. Because of the above disadvantages, it might be necessary to diminish the extent of the “fort’s”
perimeter”

7. The manpower you have is capable, disciplined and ample.

8. Awareness of any stealthy, on-going break-in attempt is essential in the utmost, since if continuing
unnoticed it might eventually lead to the compromising of the “fort”. Also, the sooner the attempt
will be noticed the sooner the actions to neutralise it can be started, and consequently, the lesser
the damages will be.

5 Solution
Your system or structure should have an intentional weakness (real or fake), visible to the outside. This
way you can lure attackers to enter in a way you can predict and detect.

Behind the “gap”, you are able to select and set the “stage” to your liking, watch it over with the
arsenal of your choice, and persuade anyone paying a visit to dance according to your tune.

5.1 Caveat

The presented pattern is complementary to the principal defences, not a substitute. Its worth is in prepar-
ing for the attack to come; a stratagem to make the intruder to reveal himself, his resources, methods and
intentions. The pattern is useful for cases where watertight protection cannot be achived. In such cases,
however :

• It does not remove the need to have the other means to counter whatever havoc the malefactor has
in mind to play.

• The protection will be improved, but it still will not be unshakable.

• Presenting a weakness can direct the attack towards it; care will be needed to avoid this weakness
to be successfully exploited by the attackers.

F1-2

5.2 Application

5.2.1 Generic

An aspect facilitating the universal use of the pattern is that every site, however strong, does have a
weakest point, as exemplified by the European medieval castles mentioned earlier; with them it was the
gate, but even this weak point was very strong indeed [23]).

Also, “To catch a thief, you must think like a thief”:
First, to make the behaviour of your unwanted guest a little more predictable, you must step into the

“boots” of the potential malefactors. You must take care to present something that will hopefully suit
their appetite, but nothing too obvious, since a sophisticated intruder might be alerted when encountering
a “too easy” target (In computer setting, a “low hanging fruit”), and decide to resort to something more
intricate. Also, after a break-in, it should not be easily deductible that a trap is closing.

There are at least the following possibilities:

• Determine existing weaknesses in the defences. In case that there is no cure available (yet) these
should be definitely taken in account.

• Open your defences slightly, so as not to arouse suspicion, and at a select point, so that you will
know in advance the likely ingress point of an attack. This is an obviously an option that requires
preparedness.

• In addition, the “gap” can be a fake. Say, by reporting misinformation about the “fort”; like
location of an opening where no exists can entice an attack devised to make use of it, leading to an
easy detection (with computers e.g. a wrong version of a certain software, one known to present a
particularly popular vulnerability)

The presented “gap” should be irresistible to the intruder, yet easy to guard. Usually, an intruder hopes to
gain the control of some central part, to allow him to investigate the surroundings and to gain foothold in
as many other parts as possible. The ones which seem to be the “hubs” of any kind of traffic are natural
picks.

Creating “a gap” means lowering your defences or tolerating some known vulnerabilities. And/or at
least (falsely) exhibiting them. This means that there will be a certain element of risk involved, since
malevolent activity will be allowed some leeway. It is up to the defender to see that he can keep his
insidious guests within bounds.

The presented solution requires that the “fort” needs to be well armed and manned; in the handling
of the unprecedented no automatic mechanisms has proven to be satisfactory (so far). In other words, the
pattern requires substantial effort to deploy, maintain and operate.

Finally, it cannot be stressed too much that the other, principal security mechanisms must be in top
condition, the “gap” being just an addition.

5.2.2 Computers

Generally, the “first line” of defence cannot be trusted to withhold a sufficiently determined attack.
For example, in network security the defence is based on the models of attacks known beforehand,
or detection of anomalies. So it is within possibilities that novel variants of attacks could appear, not
deviating too much from the normal traffic to cause an anomaly alarm to be raised. Also, defence might
fail by misconfiguration and too numerous “false positives”, the filtering of which can throw some real
alerts aside as well.

The “gap” can be presented in a special “bait” machine, external to the production system, as is the
case with most “honeypots”. A machine can be too obviously a “low hanging fruit”, though. A double
bluff is also a possibility: A production system truly residing in an overtly tempting looking host (but
still well guarded), and a somewhat less enticing target offered by some nearby machine.

Second, be aware of the prime targets of the “black hats” potentially assaulting your system.

F1-3

Guard all the above keenly, but opaquely.
If a malefactor gains an access into the system through your “gap”, try to confuse him; say, let him

believe that he’s in a honeypot. Or present a “forced deal” to him (e.g. “honeytokens” [11]). When
deliberately offering a target you must thread carefully so that the systems intended to protect you will
not be made to turn against you, or if this happens, they should not be able to cause excessive harm. This
is a very real threat, since a takeover of the protective systems is the dream of a cracker.

Although a bait would be a bit too evident for a intruder, his less sophisticated colleagues will still
be trapped, though, and if there is no cure for his next move, nothing additional will be lost (the system
will be lost with or without implementing this pattern). Also, the “black hat” might think it’s a case of a
“double bluff”.

So, while in operation, a good decoy should seem to be a realistic one, with authentic looking traffic.
As such, offering and watching over “baits” is not something that a small site could consider, so a balance
needs to be stricken between the needed effort and the risks (risk = probability of an incident multiplied
by its impact).

Collect incriminating, non-repudiable evidence. Logging time-stamped security events to a non-
rewritable medium is a good start.

5.3 Known Uses

5.3.1 Discovery of the dtspcd exploit

First documented capture of an unknown exploit with a “Honeypot” (from the “Honeynet” project [10],
declared as the first in [16],). was noted in CERT advisory CA-2002-01[14]

In this document the network traces provided by the Honeynet Project were specified as the source
material that revealed the active exploitation of the dtspcd vulnerability.

The vulnerability in question was a remotely exploitable buffer overflow, affecting the Common
Desktop Environment’s (CDE, a graphical user interface on *nix) Subprocess Control Service network
daemon (dtspcd) that accepts requests from clients to execute commands and launch applications re-
motely.

The details of the capture of the exploit, including the actions of the intruder, can be found in [13].
In short, the traffic of the Honeypot, a machine with SunOS 5.8, was registered with the Ethereal tool

and the attack itself followed the usual procession of reconnaissance -> exploit -> reinforcement (bring
in the rootkit)-> consolidation (use newly installed back-doors for further communications) as outlined
in [15] .

5.3.2 Project Honey Pot

Project Honey Pot [17] is an on-going and operational (at the time of writing, March 2009) effort to
snare e-mail address harvesters, spammers, dictionary attackers and comment spammers [18]. “Har-
vesters” are automated collectors of addresses from web-pages, “dictionary attackers” are in search of
e-mail addresses by mailing to potential user names and waiting for possible acknowledgements, and
“comment spammers” are targeting blogs and forums. The idea of the Honey Pot is to present decoy
e-mail addresses and html forms in www-pages. When these (unique) e-mail addresses are “harvested”,
the “harvester’s” IP-address will be stored with the harvested address. Immediately after this the decoy
e-mail address will be changed. The arrangement facilitates later correlation of the harvesters IP-address
with the email sent by a spammer to this address (the spammer and harvester will have most probably a
“subcontractor” relationship, and therefore a different IP address).

An noteworthy aspect of the activity is that the system is global, orchestrated by the Project Honey
Pot that publishes statistics and results, cooperates with law enforcement officials and accepts donations.
The donations might be e.g. MX records that can be used in decoys and www-pages in servers along
with plain funding.

F1-4

5.3.3 Tom Liston’s “LaBrea” Tar Pit vs. “CodeRed” worm

The “CodeRed” worm [20] was observed July 13 2001 and Tom Liston’s site was one of the victims. He
came to think about ways to slow it down, and settled on offering bogus machines to the worms entering
reconnaissance phase, that is, starting to find new victim machines by scanning. The bogus machines
were announced at the communication protocol level (starting with ARP and ending with TCP) to any
request to connect to an address with no machine attached. Since the protocols at the worm’s side were
persistent about opening a connection to the new found “virtual machine”, substantial delays could be
effected by careful choice and timing of the protocol replies. When the worm finally moved on (to the
next address), the same procedure could be repeated. [19]. The fruition of this idea was “LaBrea” [1].

5.4 Exemplary cases

The pattern has a wide area of application:

• You might run a networked site, with connections available for external traffic. Most often you
have to provide services (like web) with an indeterminate set of external users/machines so a VPN
(Virtual Private Network) solution is not applicable. So, you need to fend against the threat from
the “outside”. As for the remedy, the solution might include “Honeypots”, “Tarpits” and Logging
arrangements, see 5.5

• Another case could be a user interface provided for the public, say a desktop system in libraries,
embedded systems for payments like at petrol stations or ATMs (Automatic Teller Machines). A
potential intruder might try to sneak his/hers way around the official user interface. In this case the
intruder might be “rewarded” for his persistence, by having sufficiently hidden items like “system
control” or “authorised users only” to be available to him or her, triggering appropriate alarms
and video cameras etc. as a matter of course. The items should have varying (preferably random)
discovery “paths” and announcements to prevent their learning.

• Also within singular applications, like databases, users apt for unauthorised access need to be
trapped. Here suitable “Honeytokens” [11], e.g. extra tables with tempting looking content (fake
credit card numbers etc.) but with access announced as illicit to ordinary users might be the answer.

• The pattern applies beyond computerised systems, say to physical buildings where an attempt
needs to be made to oversee the comings and goings of people. In buildings, a special, unlocked
door, with alarms, and with a sign like “Cashiers office, for personnel only” could do the trick,

• And, if you ever find yourself in a situation calling for the planning of the fortifications for a
village, in circumstances resembling medieval Japan, you can also take the name of the pattern
quite literally (see 5.5)

5.5 Suggested Further Reading

5.5.1 On Honey Things

Honeypots: Usually thought to be separate machines, but the idea fits to separate entities within ma-
chines as well (processes, virtual machines). These are not so effective anymore, since these can be
detected [3][2], even easily[5], since they need to abide with the law and it is trivial to test this. Sim-
ulated “unlawful” environments might be an improvement as proposed in [5], but are not likely to be
an answer since the attackers can test against several known (to them) domains, and not all of them can
be fakes. Undoubtedly, the (counter) detection methods will become more sophisticated and/or inven-
tive with time. Aside the simulated unlawfulness, the “honeypots” need to be made to resemble normal
systems as closely as possible, including fake traffic with normal looking traffic patterns.

F1-5

Honeytokens: Associated with honeypots are “honeytokens”, i.e. a piece of information used as a bait,
essentially something that the intruder can “take away” and that can act after its capture as a means of
tracking of the actions taken by the intruder. As noted in [11], the honeytoken can be made to incorporate
also the aspect of “agent provocateur”, i.e. to contain something capable of enticing its capturer to
commit subsequent, incriminating actions (say, an e-mail address, with a promise of extra information,
given in the honeytoken only, for the “special guest”, could tempt the “black hat” actually to send a
message and thus reveal himself).

Honeynets: Comprise of several connected honeypots, see [10]

Honeymonkey: Of Microsoft origin [7], the idea is to actively invite marauders into your system.
Honeymonkey (there are also open source efforts, “honeyclient” and “HoneyC[8][9]) contacts websites,
downloads their content and checks afterwards whether any “monkey business” (or worse) was perpe-
trated.

5.5.2 On Parallel Approaches

Tarpits: “Tarpits” [1] are based on the idea of slowing down sessions to deter intruders. In case of
“LaBrea”[1] the main idea is to offer empty promises of hosts to contact, kind of “virtual” honeypots, so
that the assailants attempts to reach the non-existent will waste his/hers time.

*nix syslog: The logs can be periodically and silently (unseen by the rest of the system) stored in a
secured place for (sufficiently frequent) periodic comparison. Logs being a valued target, attempts to
cover traces of illicit activity are thus easily detected. This idea is described in [3], and its nature is a
“last resort” affair, since it implies that all preceding safeguards have failed.

6 Resulting Context
A warning has been received and the “cat and mouse” play between the intruder and the admin may
begin.

Since it is increasingly difficult to get any reliable information about the intruders’ ultimate traffic
source (series of “bots” used for mediating), the malefactor should be kept unaware of his/hers exposure,
so that useful information about the “modus operandi” can be accumulated. This, and not the simple act
of filtering packets based on source addresses, can be used to prevent any subsequent similar attempts in
the future.

There are three main cases:

1. The “mouse” continues to believe in the hoax, and after performing whatever it had in its mind,
leaves. In a lucky case it might further contribute to its downfall, say, in a computer setting, a
“honeytoken” arouses its interest so it scurries away with it between it’s teeth.

2. After a while, the “mouse” begins to detect that something is amiss, retreats, maybe after an
attempt to conceal any telltale signs, and lists the “gap” as intentional. Perhaps it distributes this
information to its kind.

3. The “mouse” was specifically in search of defence related arrangements, or was otherwise prepared
to handle the situation, and is determined to make use of them.

As for the “cat”, in the first case the follow-up actions are to analyse the evidence left behind to learn the
tricks of the intruder, implement any necessary improvements, and if appropriate, wait for “hooks” in a
possibly swallowed honeytoken to catch, or the honeytoken itself to show up.

F1-6

The second case will lead to a need for further actions, since the plot has been revealed. The attacker
might ponder returning with new vigour at some future date, or some of the kindred souls that have
received or bought the information might pay a visit, avoiding or targeting the “gap” as they wish.

With the third case great care is needed, to avoid the bait to turn against its masters. If the going gets
touch the gatecrasher can be forcibly expelled to avoid him or her gaining any foothold. In any of the
cases, after an noticed attack attempt, thorough checking of the relevant systems is commendable.

7 Origins of the idea
The basic insight has ancient roots; as it happens, the principle was used in medieval Japanese warfare.
According to Karl F. Friday, a professor in Japanese history, the early fortifications (12th - early 13th
century) ubiquitously employed wooden gates, kido or kidoguchi, designed to act as focal points of a
battle, since they were the only conceivable entrances to the attackers (as well as a means of counterattack
to the defenders) of the time [12].

The idea is also depicted in the Kurosawa’s famous film “The Seven Samurai” (1954). The name
chosen for this pattern is taken from a line of one of the main characters of that movie, in a scene where
the construction of the defences for a village threatened by marauders is pondered: “A good fort needs a
gap. The enemy must be lured in. So we can attack them. If we only defend, we lose the war.”[6].

Also, Japanese castle town’s layout often featured winding streets and blind alleys designed to delay
and deceive the attackers [21] .

8 Acknowledgements
It was Mr Juha Pärssinen who suggested to me to write some patterns, an exercise I have not tried before.
While I have been aware of patterns and have read a bunch of them, it was his enthusiasm and advice
that prompted me to produce the current text. I thereby present my thanks to Juha for guiding me in the
world of patterns.

I also owe thanks to my “shepherd”, Kristian Elof Sørensen for many valuable suggestions concern-
ing the form and the content of the pattern. And, I am gratefull for TimWellhausen, Ville Reijonen, Veli-
Pekka Eloranta, Marko Leppänen, Anjali Das, Farah N. Lakhani, Martin Wagner and Stefan Sobernig
for offering many heplfull comments during the EuroPloP-09 conference.

9 Copyright
Copyright retain by author(s). Permission granted to Hillside Europe for inclusion in the CEUR archive
of conference proceedings and for Hillside Europe website.

References
[1] A tarpit: http://labrea.sourceforge.net/labrea-info.html (retrieved 13. Nov 2009)

[2] http://www.send-safe.com/honeypot-hunter.html (retrieved 13. Nov 2009)

[3] Anti-honeypot technology, Security & Privacy Magazine IEEE,
http://ieeexplore.ieee.org/iel5/8013/28290/01264861.pdf?arnumber=1264861 (retrieved 13.
Nov 2009)

[4] On logging http://www.sans.org/reading_room/whitepapers/logging/1168.php (retrieved 13. Nov
2009)

[5] Detecting honeypots, the easy way http://www.springerlink.com/content/dq3t9btumw6gvrk5/ (re-
trieved 13. Nov 2009)

F1-7

[6] http://en.wikiquote.org/wiki/The_Seven_Samurai (retrieved 13. Nov 2009)

[7] ftp://ftp.research.microsoft.com/pub/tr/TR-2005-72.pdf (retrieved 13. Nov 2009)

[8] http://www.honeyclient.org/trac (retrieved 13. Nov 2009)

[9] https://www.client-honeynet.org/ (retrieved 3. Feb 2009)

[10] https://www.honeynet.org/ (retrieved 13. Nov 2009)

[11] http://www.securityfocus.com/infocus/1713 (retrieved 13. Nov 2009)

[12] Samurai, Warfare and the State in Early Medieval Japan, by Karl F. Friday, Published by Routledge,
2004, ISBN 0415329620, 9780415329620 (Chapter “Fortifications and Strongholds”, page 125).

[13] http://old.honeynet.org/scans/scan28/sol/29/sotm28.pdf (retrieved 13. Nov 2009)

[14] http://www.cert.org/advisories/CA-2002-01.html (retrieved 13 Nov 2009)

[15] Richard Bejtlich, The Tao of Network Security Monitoring: Beyond Intrusion Detection, ISBN-10:
0-321-24677-2, ISBN-13: 978-0-321-24677-6

[16] Honeypots: Tracking Hackers, by Lance Spitzner, Publisher: Addison-Wesley Professional, Pub
Date: September 10, 2002, ISBN-10: 0-321-10895-7, ISBN-13: 978-0-321-10895-1

[17] http://projecthoneypot.org/index.php

[18] http://projecthoneypot.org/faq.php (retrieved 13. Nov 2009)

[19] http://labrea.sourceforge.net/Intro-History.html (retrieved 13. Nov 2009)

[20] http://en.wikipedia.org/wiki/Code_Red_(computer_worm) (retrieved 13. Nov 2009)

[21] http://en.wikipedia.org/wiki/Japanese_castle#Layout (retrieved 13. Nov 2009)

[22] Jurgen Brauer and Hubert van Tuyll: Castles, Battles, and Bombs: How Economics Explains Mili-
tary Historyl’2008, ISBN: 978-0-226-07163-3 (ISBN-10: 0-226-07163-4), pages 45–66

[23] http://en.wikipedia.org/wiki/Castle#Gatehouse (retrieved 13. Nov 2009)

[24] http://upload.wikimedia.org/wikipedia/commons/a/a9/Old_painting_of_Himeji_castle.jpg (re-
trieved 13. Nov 2009)

F1-8

F2 - 1

Towards a Pattern Language which Supports the Migration of
Systems from Event-Triggered Pre-emptive (ETP) to Time-Triggered
Co-operative (TTC) Software Architectures

Farah N. Lakhani1, Anjali Das2 and Michael J. Pont1

1Embedded Systems Laboratory, University of Leicester,
University Road, LEICESTER LE1 7RH, UK .

2TTE Systems Ltd,
106 New Walk, LEICESTER LE1 7EA,, UK .

fnl1@le.ac.uk;; a.das@tte-systems.com;; M.Pont@le.ac.uk

Abstract

We have previously described a language consisting of more than seventy patterns. This
language is intended to support the development of reliable embedded systems: the particular
focus of the collection is on systems with a time triggered (TT) system architecture.

The present paper has a focus on techniques for converting an event-triggered (ET) system to
an equivalent TT system.

The introduction to this paper describes the approach that we have taken to migrate from an
ET to a TT architecture, and the motivation for making such a change. The core of the paper
then goes on to describe some new patterns which represent the first parts of what is intended
to be a small pattern collection.

Acknowledgements
We are grateful Bob Hanmer, to our Shepherd at EuroPLoP 2009, for his numerous helpful
comments on this paper (and for his patience).

This work is supported by an HEC scholarship awarded to Farah N Lakhani from the Pakistan
government. Additional support is provided by TTE Systems Ltd.

Copyright

Copyright retained by Farah N. Lakhani, Anjali Das and Michael J. Pont. Permission is
granted to Hillside Europe for inclusion in the CEUR archive of conference proceedings and
for publication on the Hillside Europe website.

F2 - 2

Introduction
We have previously described a language consisting of more than seventy patterns, which
will be referred to here as the PTTES Collection (see Pont, 2001). This language is
intended to support the development of reliable embedded systems: the particular focus of the
collection is on systems with a time triggered (TT) system architecture. Work began on these
patterns in 1996, and they have since been used in a range of industrial systems, numerous
university research projects (e.g. see Kurian and Pont, 2005; Phatrapornnant and Pont, 2006;
Short and Pont, 2007; Bautista-Quintero and Pont, 2008; Gendy and Pont, 2008; Hughes and
Pont, 2008) as well as in undergraduate and postgraduate teaching on many university
courses.

-
main alternative to which is an een these
two alternatives in as shown in Figure 1 below:

Figure 1: One way of distinguishing between time-triggered (T T) and event-tr iggered (E T)

software architectures in a system design.

We assume that - in a static TT system - we always know (i) when the next interrupt will
occur, and (ii) exactly what the system will do in response to this interrupt. At the other
extreme, we have dynamic ET systems: in such designs we assume that (i) we never know
when the next interrupt will occur, and (ii) that we do not know exactly what the system will
do in response to this interrupt. In reality, many systems lie somewhere between these two
extremes.

When and why should you migrate?
Our underlying assumption is that, in most cases, making a system
make it easier to predict how the system will behave and will therefore improve reliability.

F2 - 3

ehaviour between ET and TT
systems, Short et al, 2008 describe, in detail, the results from a 4-year study which compared
ET and TT architectures when used in a multi-processor automotive system. In summary, the
results demonstrated that ET systems had a greater failure rate. For systems which are not
safety related (for example, simple consumer products), we find that the greatest single
benefit obtained through the use of TT architectures is a reduction in testing times.

Organisation of this paper
We have structured this paper in the form of a new (abstract) pattern (EVENTS TO TIME
(TTC)), two new design patterns (BUFFERED OUTPUT and POLLED INPUT), plus two pattern
implementation examples (RS 232 DATA TRANSFER and SWITCH INTERFACE).

Please note that EVENTS TO TIME (TTC) describes conversion to one possible TT architecture

 provides a single tasking system architecture. In the future we will explore
conversions to a range of different TT architectures.

References
Bautista-Quintero, R. and Pon H-infinity control algorithms for

sensor-constrained mechatronic systems using low- IEEE
Transactions on Industrial Informatics, 16(4): 175-184.

guring time-triggered schedulers for use
with resource-constrained, single- IEEE Transactions on
Industrial Informatics, 4(1): 37-46.

-
constrained embedded systems in which a time-
Trans Institute of Measurement and Control, 30(5): 427-450.

patterns and pattern i
forum (Birmingham UK 2005) pp. 36-59. Published by University of Newcastle upon Tyne
[ISBN: 0-7017-0191-9].

ng a
time- IEEE Transactions on
Computers, 55(2): 113-124.

-Triggered Embedded Systems: Building Reliable
Applications with the 8051 Family of Microcontrollers -Wesley / ACM Press.
ISBN: 0-201-331381.

Short, M.J and Pont, M.J. (2007 Fault-tolerant time-triggere
Transactions on Industrial Informatics, 3(2):131-142

Short, M.J, Pont, M.J and Fang,Jiangzhong. (2008 Assessment of performance and
dependability in embedded control systems: methodology and case study Control
Engineering Practice, Vol. 16, pp. 1293 1307, July 2008

F2 - 4

EVENTS TO TIME (TTC)
{abstract pattern}

Context
 -

triggered and / or pre-
may involve use of conventional real-time operating system (RTOS) and / or multiple
interrupt-service routines (linked to different interrupt sources) and / or task pre-emption.

 You are in the process of creating or upgrading an embedded system, based on a single
processor.

 You already have at least a design or prototype for your system based on some form of
ET/P architecture.

 Because predictable and highly-reliable system operation is a key design requirement, you
-triggered co- in your

system, if this proves practical.

Problem
How can you convert event triggered / pre-emptive designs and code (and mindsets) to allow
effective use of a TTC scheduler as the basis of your embedded system?

Background

Event triggered behaviour in systems is usually achieved through the use of such interrupts.
The system is designed to handle interrupts associated with a range of sources (e.g. switch
inputs, CAN interface, RS-232, analogue inputs, etc). Each interrupt source will have an
associated priority. Each interrupt source will also require the creation of a corresponding

hich is triggered

Creating such (ET/P) systems is on the surface at least straightforward. However,
challenges often begin to arise (in non-trivial designs) at the testing stage. It is generally
impossible to determine what state the system will be in when any interrupt occurs, which
makes comprehensive testing almost impossible.

A time-triggered system also requires an understanding of interrupts, but the operation is
fundamentally different. -triggered co-

 which supports single- tasking system. In such systems only
one task is active at any point in time: this task runs to completion and then return control to
the scheduler. At the heart of a TTC system is a cooperative scheduler which determines

F2 - 5

-empted by another task. In such a system, there is only a
.

Solution
 to migrate to a TTC design:

 You need to ensure that only a single periodic - timer interrupt is enabled (all other
interrupt sources will be converted to flags, which will be polled as required).

determine how frequently the timer interrupts need to take place).

 You have to convert any ET ISRs into periodic tasks and add these to the schedule.
 You need to deal cleanly

execution time greater than your chosen tick interval.

To illustrate part of the translation process consider a simple ET system running two tasks, X
and Y. These tasks are invoked by separate interrupts and implemented by associated ISRs.
Table 1 illustrates one alternative TTC system, implemented using a standard TTC scheduler
(Pont, 2001).

Events

T ime

void main(void)

 {

 X_init();;

 Y_init();;

 EA = 1 ;; // Enable all interrupts

 while(1)

 {

 PCON |= 0x01;;

 }

 }

void X_ISR(void) interrupt IEIndex

 {

 }

void Y_ISR(void) interrupt IEIndex

 {

 }

void main(void)

 {

 SCH_Init();; // Set up the scheduler

 X_Init();;

 Y_Init();;

 // Add tasks to scheduler

 SCH_Add_Task(X_Update(), 0, 100);;

 SCH_Add_Task(Y_Update(), 20, 200);;

 // Start the scheduler

 SCH_Start();;

 while(1)

 {

 SCH_Dispatch_Tasks();;

 }

 }

Table 1: Converting a system from Event tr iggered pre-emptive to T ime triggered Cooperative

F2 - 6

Dealing with long tasks
To deal with the problem of long task, we need to find an elegant way of splitting up long
tasks (which are called infrequently) into a series of much shorter tasks (called frequently).
The pattern BUFFERED OUTPUT [later in this paper] describes a solution to this problem.

 , we need to convert all
other interrupt sources to flags
these flags have been set. The pattern POLLED INPUT [later in this paper] describes how we
can achieve this.

Related patterns and alternative solutions
The PTTES collection
The PTTES collection (Pont, 2001) describes, in detail, a range of techniques which can be
used to implement embedded systems with TTC architecture. This book can now be
downloaded (free of charge) from the following WWW site:
http://www.tte-systems.com/books/pttes

TT Schedulers
The pattern TT SCHEDULER* provides relevant background information on tasks, basic
scheduling concepts and the situations in which it may be appropriate to use a TTC scheduler
in your application.

Reliability and safety implications
When compared to pre-emptive schedulers, co-operative schedulers have a number of desirable
features, particularly for use in safety-related systems (Allworth, 1981; Ward, 1991; Nissanke,
1997; Bate, 2000).

For example, Nissanke (1997, p. 237) -emptive] schedules carry greater runtime
overheads because of the need for context switching storage and retrieval of partially
computed results. [Co-operative] algorithms do not incur such overheads. Other advantages of
[co-operative] algorithms include their better understandability, greater predictability, ease of
testing and their inherent capability for guaranteeing exclusive access to any shared resource

.

Allworth (1981, pp. 53 54) also
[co-operative] technique. Since the processes are not interruptable, poor synchronisation does
not give rise to the problem of shared data. Shared subroutines can be implemented without
producing re-entrant code or implementing lock and unlock mechanisms

* Wang, H., M. J. Pont, et al. (2007). Patterns which help to avoid conflicts over share resources in time-
 triggered embedded systems which employ a pre-emptive schedule the 12th European Conference on
 Pattern Languages of Programs (EuoPLoP 2007),Irsee, Germany

F2 - 7

Although not the main focus of this pattern, the advantages of a TT(C) approach also apply in
distributed systems: see, for example, Scarlett and Brennan (2006).

Overall strengths and weaknesses
 Use of TTC architecture tends to result in a system with highly predictable patterns of

behaviour.

 Inappropriate system design using this approach can result in applications which have a
comparatively slow response to external events.

Examples
In applications where systems have been designed using event-triggered architecture it is
occasionally later found to be necessary for higher reliability to migrate to time-triggered
architectures. One such example is found in a recently published article (Turley, 2009). The
article has mentioned the changes in the architecture design Sony Electronics have done to
improve the performance. It states

r, frequent interrupts turned from being a
necessity to being a problem. In their experience, most network stacks are interrupt driven,
especially from the hardware interface when it needs servicing. As data rates climb, these
interrupts (and their attendant context switching) become so frequent that the overhead
overwhelms the actual task. To fix this, the team has decided to switch from an interrupt

This pattern can be applied to a variety of systems from drive by x-wire systems to simple
control systems where performance and reliability is an important issue.

F2 - 8

BUFFERED OUTPUT
{design pattern}

Context
 You are applying the pattern EVENTS TO TIME (TTC)
 You need to deal cleanly

execution time greater than your chosen tick interval.
 You need to send a significant amount of data between your processor / system and an

external device: the data transfer process will take some time.

Problem
How can you structure the data-transfer tasks in your application in a manner which is
compatible with TTC architecture?

Background
We illustrate the need for the present pattern with an example.

Suppose we wish to transfer data to a PC at a standard 9600 baud. Transmitting each byte of
data, plus stop and start bits, involves the transmission of 10 bits of information (assuming a
single stop bit is used). As a result, each byte takes approximately 1 ms to transmit.

Now, suppose we wish to send this information to the PC:

Current core temperature is 36.678 degrees

If we use a standard function (such as some form of printf()) the task sending these 42
characters will take more than 40 milliseconds to complete. In a system supporting task pre-
emption, we may be able to treat this as a low-priority task and let it run as required. This
approach is not without difficulties (for example, if a high-priority task requires access to the
same communication interface while the low-priority task is running). However, with
appropriate system design we will be able to make this operate correctly under most
circumstances.

-emption and a long data-
transmission task (around 40 ms) is likely to cause significant problems. More specifically, if
this time is greater than the system tick interval (often 1 ms, rarely greater than 10 ms) then
this is likely to present a problem as shown in Figure 2. The RS-
duration greater than the system tick and so is missing the next tick intervals.

F2 - 9

Figure 2: A schematic representation of the problems caused by sending a long character str ing

on an embedded system. In this case, sending the massage takes 42 ms while the System tick
interval is 10 ms.

Perhaps the most obvious way of addressing this issue is to increase the baud rate; however,
this is not always possible, and - even with very high baud rates - long messages or irregular
bursts of data can still cause difficulties.

More generally, the underlying problem here is that the data transfer operation has a duration
which depends on the length of the string which we wish to submit. As such, the worst-case
execution time (WCET) of the data transfer task is highly variable (and, in a general case,
may vary depending on conditions at run time). In a TTC design, we need to know all WCET
data for all tasks at design time. We require a different system design. As Gergeleit
and Nett (2002) have noted Nearly all known real-time scheduling approaches rely on the

 The known WCET of tasks will be helpful
for developers in designing the offline schedule and preventing task overrun.

Solution
Convert a long data-transfer task (which is called infrequently and may have a variable
duration) into a periodic task (which is called comparatively frequently and which has a very
short and known duration).

A BUFFERED OUTPUT consists of three key components:
 A buffer (usually just an array, implemented in software)

 A function (or small set of functions) which can be used by the tasks in your system to
write data to the array.

 A periodic (scheduled) task which checks the buffer and sends a block of data to the
receiving device (when there are data to send).

Figure 3 below provides an overview of this system architecture. All data to be sent are first
moved to a software buffer (a very fast operation). The data is then shifted one block at a
time to the relevant hardware buffer in the microcontroller (e.g. 1 byte at a time for a
UART, 8 bytes at a time for CAN, etc): this software-to-hardware transfer is carried out every
1ms (for example), using a (short) periodic task.

Time

Rs-232 Task

F2 - 10

Figure 3: An overview of the B U F F E R E D O U TPU T architecture.

From Figure 3, it should be noted that the - in Figure 2 has been
replaced by two short (high frequency) tasks, as shown in Figure 4:

Figure 4: -

Hardware resource implications
In most cases, the CPU requirements for BUFFERED OUTPUT are very limited, provided we
take reasonable care at the design stage. For example, if we are sending message over a CAN
bus and we know that each message takes approximately 0.15 ms to transmit; we should
schedule the data transmission task to check the buffer at an interval > 0.15 ms. If we do this,
the process of copying data from the software buffer to the (CAN) hardware will take very
little time (usually a small fraction of a millisecond).

For very small designs (e.g. 8-bit systems) the memory requirements for the software buffer

umstances, you will need
to use a small buffer and send data as frequently as possible (but see the comment above).

In some cases, hardware support can help to reduce both memory requirements and processor
load. For example, if using UART-based data transmission, UARTs often have 16-byte
hardware buffers: if you have these available, it makes sense to employ them.

Portability
This technique is generic and highly portable.

F2 - 11

Reliability and Safety Issues
 Special care must be taken while defining buffer length, the data transfer should not cause

any buffer overflow

 Applications that involve high amount of data transfer like video and DSP applications or
data acquisition systems the use of buffer might not be a viable solution.

Overall strengths and weaknesses
 Use of buffered output is an easy solution for faster data transfer from a task running in

an embedded application

 One has to be very careful while defining the buffer length, inappropriate buffer
definitions may cause buffer overflow and data loss.

F2 - 12

RS-232 DATA TRANSFER (BUFFERED OUTPUT)
{pattern implementation example}

Context
 -
 You wish to transmit the data using a BUFFERED OUTPUT [this paper].

 Your chosen implementation language is C.
 Your chosen implementation platform is 8051 family of microcontrollers.

Problem
How can you implement a BUFFERED OUTPUT in C for the 8051 family of microcontrollers?

Background
RS232 is a standard asynchronous protocol used for serial communication between the
processor and the peripherals; it is character oriented and is intended to be used with single 8-
bit blocks of data. To transmit a byte of data over a serial link the data frame consists of a start
bit to indicate start of transmission, the data itself(5 to 8 bits) and one or more stop bits to
indicate the end of data block. RS232 can operate at different baud rates ranging from value
of 75 to 330,000, however a baud rate of 9600 (a value lies in mid of the range) is
recommended for safe use in our context.

Solution
Use of Buffered output can greatly reduce the time for data transfer task as compared to
printf() function. The printf() function sends data immediately to UART. As a result the
duration of the transmission is usually too long. The pattern buffered output makes use of
an intermediate software buffer (character array) in between. Sending data to buffer is a
fast operation. Our code library of RS232 data transfer as shown in Listing 1 replaces the
printf() function. A brief functionality of each function is shown in Table 2:

F unction F unctionality
PC_LINK_IO_Write_String_To_Buffer() This function copies a null terminated string to

the character buffer. The contents of the buffer
then passed over a serial link.

PC_LINK_IO_Write_Char_To_Buffer() Stores a character in the 'write' buffer, ready
for later transmission.

PC_LINK_IO_Get_Char_From_Buffer() Retrieves a character from the (software) buffer, if
one is available.

PC_LINK_IO_Update() Checks for characters in the UART (hardware)
receive buffer and sends next character from
the software transmit buffer.

Table 2: RS-232 code library functions descriptions

F2 - 13

void PC_LINK_IO_Write_String_To_Buffer(const char* const STR_PTR)

 {
 tByte i = 0;;

 while (STR_PTR[i] != '\0')
 {
 PC_LINK_IO_Write_Char_To_Buffer(STR_PTR[i]);;
 i++;;
 }
 }

void PC_LINK_IO_Write_Char_To_Buffer(const char CHARACTER)
 {
 // Write to the buffer *only* if there is space
 if (Out_waiting_index_G < TRAN_BUFFER_LENGTH)
 {
 Tran_buffer[Out_waiting_index_G] = CHARACTER;;
 Out_waiting_index_G++;;
 }
 else
 {
 // Write buffer is full
 // Increase the size of TRAN_BUFFER_LENGTH
 // or increase the rate at which UART 'update' function is called
 // or reduce the amount of data sent to PC
 Error_code_G = ERROR_USART_WRITE_CHAR;;
 }
 }

char PC_LINK_IO_Get_Char_From_Buffer(void)
 {
 char Ch = PC_LINK_IO_NO_CHAR;;

 // If there is new data in the buffer
 if (In_read_index_G < In_waiting_index_G)
 {
 Ch = Recv_buffer[In_read_index_G];;

 if (In_read_index_G < RECV_BUFFER_LENGTH)
 {
 In_read_index_G++;;
 }
 }

 return Ch;;
 }

void PC_LINK_IO_Update(void)
 {

 // Deal with transmit bytes here

 // Is there any data ready to send?
 if (Out_written_index_G < Out_waiting_index_G)
 {
 PC_LINK_IO_Send_Char(Tran_buffer[Out_written_index_G]);;

 Out_written_index_G++;;
 }
 else
 {
 // No data to send - just reset the buffer index
 Out_waiting_index_G = 0;;
 Out_written_index_G = 0;;

F2 - 14

 }

 // Only dealing with received bytes here
 // -> Just check the RI flag
 if (RI == 1)
 {
 // Flag only set when a valid stop bit is received,
 // -> data ready to be read into the received buffer

 // Want to read into index 0, if old data has been read
 // (simple ~circular buffer)
 if (In_waiting_index_G == In_read_index_G)
 {
 In_waiting_index_G = 0;;
 In_read_index_G = 0;;
 }

 // Read the data from USART buffer
 Recv_buffer[In_waiting_index_G] = SBUF;;

 if (In_waiting_index_G < RECV_BUFFER_LENGTH)
 {
 // Increment without overflowing buffer
 In_waiting_index_G++;;
 }

 RI = 0;; // Clear RT flag
 }

 }

void PC_LINK_IO_Send_Char(const char CHARACTER)
 {

 tLong Timeout1 = 0;;
 tLong Timeout2 = 0;;

 if (CHARACTER == '\n')
 {
 if (RI)
 {
 if (SBUF == XOFF)
 {
 Timeout2 = 0;;
 do {
 RI = 0;;

 // Wait for uart (with simple timeout)
 Timeout1 = 0;;
 while ((++Timeout1) && (RI == 0));;

 if (Timeout1 == 0)
 {
 // USART did not respond - error
 Error_code_G = ERROR_USART_TI;;
 return;;
 }

 } while ((++Timeout2) && (SBUF != XON));;

 if (Timeout2 == 0)
 {
 // uart did not respond - error
 Error_code_G = ERROR_USART_TI;;
 return;;
 }

F2 - 15

 RI = 0;;
 }
 }

 Timeout1 = 0;;
 while ((++Timeout1) && (TI == 0));;

 if (Timeout1 == 0)
 {
 // uart did not respond - error
 Error_code_G = ERROR_USART_TI;;
 return;;
 }

 TI = 0;;
 SBUF = 0x0d;; // output CR
 }

 if (RI)
 {
 if (SBUF == XOFF)
 {
 Timeout2 = 0;;

 do {
 RI = 0;;

 // Wait for USART (with simple timeout)
 Timeout1 = 0;;
 while ((++Timeout1) && (RI == 0));;

 if (Timeout1 == 0)
 {
 // USART did not respond - error
 Error_code_G = ERROR_USART_TI;;
 return;;
 }

 } while ((++Timeout2) && (SBUF != XON));;

 RI = 0;;
 }
 }

 Timeout1 = 0;;
 while ((++Timeout1) && (TI == 0));;

 if (Timeout1 == 0)
 {
 // USART did not respond - error
 Error_code_G = ERROR_USART_TI;;
 return;;
 }

 TI = 0;;

 SBUF = CHARACTER;;
 }

L isting 1: RS232 Data transfer code Library using Buffered output

F2 - 16

POLLED INPUT
{design pattern}

Context
 You are applying the pattern EVENTS TO TIME(TTC)
 You need to poll inputs from the available interfaces (switches, keypads, sensors, ADCs)

etc

Problem
How do I build a TT system which is equivalent of my ET system such that it can respond to
all (external/internal) input interfaces?

Background
Designing a TT system requires more planning efforts sign the possible
occurrence and the execution times of all the tasks needs to be known in advance. The
designer has to plan a task schedule which must execute all the tasks periodically at their
allocated time intervals. This effort makes the system more predictable. In contrast to this, in
an event triggered system the schedule executes the tasks dynamically as the events arrive
thus no guarantee that they meet any timeliness constraints. This is the reason that ET
designs are not recommended for safety critical applications. The event triggered behaviour
in systems is achieved through the use of interrupts. To support these interrupts, Interrupt
Service Routines (ISRs) are provided. Whenever an interrupt occurs it stops the currently
running task and ISR executes to respond to the interrupt.
overhead that sometimes raised serious complications in systems.

The abstract pattern EVENTS TO TIME [this paper] provides more relevant background
information.

Solution
A POLLED INPUT should meet the following specification:

 It should include a periodic task which polls for the occurrence of the event.
 The period of the above task should be set to some value less than or equal to

minimum inter-arrival time* of the event in question.
 The interrupt associated with this event should not be enabled. In fact only one

interrupt associated with the timer responsible for generating system ticks should be
enabled.

* In ET systems the exact arrival time of events is not known so we assume a minimum distance between the

arrivals of two consecutive events.

F2 - 17

Hardware resource implications
Different interfaces have different implications under various circumstances. Reading a
switch input imposes minimal loads on CPU and memory resources whereas scanning the
keypad interface imposes both a CPU and memory load.

Reliability and safety issues
One major concern here in migrating from event triggered to time triggered is to make
systems more predictable. Characteristic for the time triggered architecture is the treatment of
(physical) real time as a first order quantity (Kopetz and Bauer 2002) this implies to the fact
that time triggered systems must be very carefully designed, the task activation rates must be
fixed according to the system dynamics i.e. how frequent an input needs to be polled.

Portability
This technique is generic and highly portable.

Overall strengths and weaknesses
 A flexible technique, programmer can easily do changes in code for example if auto repeat

is required in case of SWITCH INTERFACE

 It is simple and cheap to implement.

 Provides no protection against out of range inputs or electrostatic discharge (ESD)

 More processor utilization in polling for tasks which are unlikely to occur, because the
tasks are always tested for readiness whether actually enable or not.

F2 - 18

SWITCH INTERFACE (POLLED INPUT)
{pattern implementation example}

Context
 You need to respond to a switch press from your embedded application
 Your chosen implementation language is C
 Your chosen implementation platform is NXP LPC2000 family of ARM7-based

microcontrollers

Problem
How can you implement POLLED INPUT for a simple switch press in C for NXP LPC2000
family of microcontrollers?

Background
 Simple push button switches as given in Figure 5 are very common in embedded
applications. Pressing them causes a voltage change from Vcc to 0 volts at the input port. (For
a detailed explanation see pattern SWITCH INTERFACE in PTTES (Pont 2001)

Figure 5: A simple push button switch with no internal pull-up

Note: There could be various types of switches (reset, on-off, multistate) for simplicity we are
considering here only the simple interface push button switch with debounce support.

In an ideal world the change in voltage would take the form as shown in Figure 6:

Figure 6: The voltage signal resulting from switch

F2 - 19

In practical all mechanical switch contacts bounce (that is, turn on and off, repeatedly, for a
short period of time) after the switch is closed or opened. As a result the actual waveform
looks more like that shown in Figure 6 (bottom).

Solution
Polling a switch for an input involves the following steps:

1. A relevant port pin is read and if a switch depression is detected it will be read again
after their debounce period (provided in datasheets) to confirm the detection.

2. If it is confirmed that switch is pressed a task is run to respond to the switch press.

A simple code example illustrating simple switch detection and debounce system is given in
Listing 2. This example demonstrates a simple switch interface with debounce support. The
interface is implemented as a task which periodically checks a switch pin to see if it is pressed
or not.

/*--*-

 switch.c (v1.00)

 --*/

 Simple switch detection and debounce system.

#include "main.h"
#include "switch.h"
#include "port.h"
#define PORTS (1)

// ------ Private variable definitions ------------------------------

static uint32_t gSwitchListeners[PORTS],gLastState[PORTS],gCurState[PORTS];;

// ------ Private constants --

//Allows NO or NC switch to be used (or other wiring variations)

#define SW_PRESSED (0)

/*--*-

 Switch_Pin_Read()

 Checks the read register bits locally to avoid excess overhead.

-*--*/

#define Switch_Pin_Read(l,m,n) \
 ((((l) ? (IOPIN1) : (IOPIN0)) & n) ? (SW_PRESSED) : (1 - SW_PRESSED))

/*--*-

 Switch_Init()

 Initialising the switches.

F2 - 20

-*--*/

void Switch_Init()
 {
 uint8_t port;;

 for (port = 0;; port < PORTS;; port++)
 {
 gSwitchListeners[port] = 0;;
 gLastState[port] = 0;;
 gCurState[port] = 0;;
 }

 //Initialise the output LED pin (LED_pin2) to indicate
 //switch is pressed
 PORT_Pin_GPIO_Set_Direction(LED_pin2, 1);;
 PORT_Pin_Write(LED_pin2, 1);;

 //Add Button_Pin to the switch listener
 Switch_AddListener(Button_Pin);;
}
/*--*-

 Switch_AddListener()

 Adds a switch to the listen list for pins.

-*--*/

void Switch_AddListener(uint16_t pin)
 {
 // Get the port
 uint8_t
 port = (uint8_t)(pin / 100);;
 if (port < PORTS)
 {
 pin %= 100;;
 gSwitchListeners[port] |= 1 << pin;;
 PORT_Pin_Set_Mode(pin, 0, 0);;

 PORT_Pin_GPIO_Set_Direction(pin, 0);;

 }
 }

/*--*-

 Switch_RemoveListener()

 Removes a switch from the listen list for pins. Does not remove the pin's mode.

-*--*/

void Switch_RemoveListener(uint16_t pin)
 {
 // Get the port
 uint8_t
 port = (uint8_t)(pin / 100), bit;;
 if (port < PORTS)
 {
 pin %= 100;;
 bit = ~(1 << pin);;
 gSwitchListeners[port] &= bit;;
 gLastState[port] &= bit;;
 gCurState[port] &= bit;;
 }

F2 - 21

 }

 Switch_Update()

Detects and debounces switch presses on hooked pins. Could be recorded VERY
efficiently with direct HW access as this already has the bits to check in the pin
registers.

-*--*/
void Switch_Update()
 {
 // Used for debugging with RapidiTTy
 T0TCR = 0;;
 T0TCR = 1;;

 uint8_t port, pin;;
 uint32_t temp, bit;;
 for (port = 0;; port < PORTS;; port++)
 {
 //Check for switches on this port

 if ((temp = gSwitchListeners[port]))
 {
 pin = port * 100;;
 bit = 1;;
 do
 {
 if (temp & bit)
 {
 if (Switch_Pin_Read(port, pin, bit))
 {
 if (!(gCurState[port] & bit) && (gLastState[port] & bit))
 {
 // Was held before, debounced
 // Call the callback
 gCurState[port] |= bit;;
 Switch_Pressed(pin);;
 }
 else
 {
 // Start debouncing
 gLastState[port] |= bit;;
 }
 }
 else
 {
 if ((gCurState[port] & bit) && !(gLastState[port] & bit))
 {
 // Was released before, debounced
 // Call the callback
 gCurState[port] &= ~bit;;
 Switch_Released(pin);;
 }
 else
 {
 // Start debouncing
 gLastState[port] &= ~bit;;
 } }
 temp &= ~bit;;
 }
 pin++;;
 bit <<= 1;;
 }
 while (temp);;
 }
 }

F2 - 22

 // Used for debugging with RapidiTTy
 T0TCR = 0;;
 T0TCR = 1;;
 }

/*--*-

 Switch_Pressed()

 Called when a switch is first pressed and debounced.
 Passes the full pin id of the activated input.

-*--*/

void Switch_Pressed(uint16_t pin)
 {
 if (pin == Button_Pin)
 {
 // Set to 0 to turn LED on
 PORT_Pin_Write(LED_pin2, 0);;

 }
 }
/*--*-

 Switch_Released()

 Called when a switch is released. Passes the full pin id of the activated input.

-*--*/
void Switch_Released(uint16_t pin)
 {
 if (pin == Button_Pin)
 {
 // Set to 1 to turn LED off
 PORT_Pin_Write(LED_pin2, 1);;

 }
 }
/*--*-

 Switch_IsPressed()

 Checks if a given pin is currently pressed and debounced.

-*--*/
uint8_t Switch_IsPressed(uint16_t pin)
 {
 uint8_t
 port = pin / 100;;
 if (port > PORTS)
 {
 return 0;;
 }
 return (gCurState[port] & (1 << (pin % 100))) ? (1) : (0);;
 }
/*--*-
 ---- END OF FILE ---
-*--*/

L isting 2: Simple switch press and debounce system using Polled Input

F2 - 23

Further reading
Albert, A. and R. Bosch GmbH,(2004) Comparison of Event-Triggered and Time-Triggered

Concepts with regard to Distributed Control Systems , in Embedded World. : Nurnberg.
p. 235-252.

Allworth, S.T., 1981. An Introduction to Real-Time Software Design. , Macmillan, London.
Audsley, N., Tindell, K. and Burns, A. (1993), " The end of the line for static cyclic

scheduling?" Proceedings of the 5th Euromicro Workshop on Real-time Systems,
Finland, pp. 36-41.

-Time Systems,
1(1): 7-25.

-
thesis, University of York, UK.

Bate,I.J
 (6 April, 2000). IEE Conference Publication 00/034

Bennett, S. (1994) - (Second Edition) Prentice-Hall.
Buschmann, F., Henney, K -Oriented Software

ISBN: 978-0-470-05902-9

Buttazzo, G. C. (2004), " Hard Real-time Computing Systems: Predictable Scheduling
Algorithms and Applications " , 2nd ed, Springer.

scheduling of real- -Time Technology and
Applications Symposium - WIP, Vancouver, Canada, pp. 33-38.

E -bed for evaluating and

Pont, M.J. (Eds.) Proceedings of the UK Embedded Forum 2004 (Birmingham, UK,
October 2004). Published by University of Newcastle.

- Towards Predictably Flexible Real-
-Time Systems, May

1999.

Gergeleit, M. and Nett, E. 2002: SchedulingTRANSIENT OVERLOAD with the TAFT
 Scheduler. GI/ITG specialized group of operating systems.

Hartwich F., Muller B., Fuhrer T., Hugel R., Bosh R. GmbH, (2002), Timing in the TTCAN

Network, Proceedings 8th International CAN Conference.
-T - A system of patterns for

reliable communication in hard real-
Noble (eds): Pattern Languages of Program Design 5 (PLOPD5); pp.89-126; Software
Engineering/Patterns Series, Addison-Wesley, Boston. ISBN 0-321-32194-4

Technology, 3(2): 225-230

F2 - 24

Kalinsky, D., 2001. Context switch, Embedded Systems Programming, 14(1), 94-105.

-time systems: Design principles for distributed embedded

- Special Issue on
Modeling and Design of Embedded Software pp.112-126.

-constrained embedded
Journal of Systems and Software, 80(1): 32-41.

Liu, -programming in a
hard real- Journal of the ACM, 20(1): 40-61.

-time systems: Cyclic executives vs.
Fixed priority exe The Journal of Real-Time Systems, 4: 37-53.

-
time- In: Koelmans, A., Bystrov, A., Pont, M.J., Ong, R. and
Brown, A. (Eds.), Proceedings of the Second UK Embedded Forum (Birmingham, UK,
October 2005), pp.18-35. Published by University of Newcastle upon Tyne [ISBN: 0-7017-
0191-9].

-
13-035473-2.

Nissanke, N., 1997. Realtime Systems. , Prentice-Hall.

-Triggered Embedded Systems: Building Reliable
-Wesley / ACM

Press. ISBN: 0-201-331381.
-Wesley. ISBN: 0-201-79523-X.

Applying time-triggered architectures in reliable embedded systems:
Challenges and solutions", Elektrotechnik & Informationstechnik

-
[ISBN 0-471-35490-2]

Scarlett, J.J. and Brennan,R.W(2006) Re-evaluating Event-Triggerd and Time-Triggered
Systems , in IEEE conference on Emerging technologies and factory automation. p. 655-
661.

-time control applications in
-Time Systems, vol.14, pp.219-250.

Embedded.com Issue September 2009.
-critical avionics in

Air Transport Safety: Proceedings of the Safety
Published by SaRS, Ltd.

Multiprocessor Scheduling of Processes with Release Times, Deadlines,
Precedence, and Exclusion Relations
19(2), pp. 139-154.

F2 - 25

Xu , J. and P Scheduling Processes with Release Times, Deadlines,
Precedence and Exclusion Relations
16(3), pp. 360-369.

Xu , J. and Parnas, D.L. (1 On Satisfying Timing Constraints in Hard-Real-Time
Systems IEEE Transactions on Software Engineering, 19(1), pp. 70-84.

Priority Scheduling Versus Pre-Run-Time Scheduling
International Journal of Time-Critical Systems, 18, 7-23, Kluwer Academic
Publishers.

Invocation Assembly Lines

Patterns of Invocation and Message Processing in Object Remoting Middleware

Stefan Sobernig1 and Uwe Zdun2

1Institute for Information Systems and New Media
Vienna University of Economics and Business (WU Vienna), Austria

stefan.sobernig@wu.ac.at
2Distributed Systems Group, Information Systems Institute

Vienna University of Technology, Austria
zdun@infosys.tuwien.ac.at

Object remoting middleware greatly facilitates creating distributed, object-oriented systems. How-
ever, developers face many situations in which a middleware’s invocation and message processing
architecture fails to fully support all their requirements. This problem is caused, for instance, by
limitations in realising certain invocation styles (e.g., one-way and two-way conversations) on top
of a shared processing infrastructure, in adding extensions to invocation handling (i.e., add-on ser-
vices such as security and inspection), and in bypassing selected steps in the invocation handling
to balance resource consumption and invocation performance. Often, these limitations are caused
by design and implementation decisions taken early when crafting the middleware framework.
To better explain the needed decision making, and help developers to apply adaptations or guide
the selection of alternatives, we present a pattern language that captures the essentials of invoca-
tion and message processing in object remoting middleware. We also outline instantiations of the
patterns and their relationships in existing middleware frameworks.

Evans’ improved mill [22, Plate VIII] advanced the automation of pre-industrial further processing and refinement of wheat
into flour. It is commonly regarded as an early predecessor of Fordist and more recent assembly line or production flow

systems [44].

Copyright retain by author(s). Permission granted to Hillside Europe for inclusion in the CEUR archive of conference
proceedings and for Hillside Europe website

F3 – 1

1 Introduction

Developers who design and implement object remoting middleware are confronted with the task of
supporting many different kinds of remote invocations. On the one hand, this variety is caused by
the architectural setting in which the middleware is deployed and used. On the other hand, realising
different kinds of remote invocations affects many spots of your middleware framework’s design and
implementation. These two issues are the root of two challenging design problems for the messaging
processing infrastructure of a middleware.

The first design problem is the issue of role distribution (see e.g. [67, 63, 52, 3]): Applications built
on top of your middleware framework must often play different roles, for example, they are expected
to act both as a client issuing and as a server performing remote invocations. As these applications
integrate the facilities offered by your middleware framework, your framework must facilitate the
adoption by client- as well as server-side applications.

The second design problem is that there are a number of crosscutting concerns to be considered in
your middleware framework design (see e.g. [34, 54, 70]): First, many application scenarios for your
middleware require different remote invocation styles, component interaction styles, inter-component
dependencies, levels of communication coupling, and so on. Second, many add-on tasks might be
required, such as security or inspection add-ons. Finally, certain application scenarios are better ad-
dressed if your framework provides the flexibility to selectively omit certain steps in handling remote
invocations. For example, optimisations may be applicable if signatures in interfaces of remote objects
change frequently. This usually requires bypassing certain steps in the default control and data flow of
your middleware framework. Each of these aspects, i.e., add-on services, component interaction and
invocation styles, and bypassing, requires the interplay of different parts of the framework. Therefore,
when developing your framework, you must anticipate a certain flexibility across essential building
blocks of your framework.

This paper documents established design practises for realising versatile message processing in-
frastructures for remote invocations in object remoting middleware. The identified design practises set
out to tackle the tensions caused by the crosscutting concerns of invocation handling and the issue
of role distribution. We mined the design practises from existing object remoting middleware frame-
works such as OpenORB [58], Mono .NET Remoting (Mono/R; see [40]), Mono Olive (Mono/O,
[41]), Apache Axis2/Java (Axis2; see [5, 46, 21]), and Apache CXF (CXF; see [6]). We present our
findings in terms of a pattern language and comment on the identified uses of the documented patterns.

This paper and the pattern language described herein are meant for those developers who must
deepen their understanding of how object middleware frameworks can be designed in a manner to
support varieties of remote invocations. The paper introduces the necessary terminology to foster your
conceptual understanding of the inner workings of the middleware’s invocation and message process-
ing architecture. The background of this work are established remoting patterns – in the architectural
context of the BROKER pattern [14, 32, 63, 55, 12]. The resulting pattern language provides links to
existing remoting pattern collections [63, 12] and helps navigate in this body of established and docu-
mented design practises. An additional audience is the group of middleware users, who find structured
guidance to evaluate existing object remoting middleware regarding its fit with requirements on sup-
porting diverse invocation styles and on the middleware’s extensibility. Finally, our pattern language
targets developers who must further develop or adapt an existing middleware framework for complying
with certain remote invocation types.

The paper is structured as follows. In the next section, we provide an overview of elementary ter-
minology on object remoting and give some background on the BROKER pattern (see Section 2). Then,
we introduce the reader to the pattern language as a whole and provide some hints on navigating be-
tween its patterns (see Section 3). Before giving the pattern descriptions themselves, we discuss the
challenges of adaptable invocation and message processing (see Section 4). We provide a motivating

F3 – 2

example in Section 4.2. In Section 5, the individual patterns of our pattern language are presented in
detail. After having resolved the motivating example in Section 6, we describe known uses of the indi-
vidual patterns in existing middleware frameworks (see Section 7). Finally, we conclude by discussing
our pattern language and how it integrates with existing remoting patterns (see Section 8).

2 Some Background: Broker-Based Object Middleware

Assume you are using a middleware framework which follows the BROKER pattern [14, 32, 63, 55, 12],
as it is the case for most modern object-oriented RPC middlewares, such as CORBA, .NET Remoting
[40, 50], Windows Communication Foundation [41], and Web Services [9, 39, 16, 17] frameworks
such as Axis2 [5] or CXF [6]. Figure 1 shows a set of basic remoting patterns from [63] and their inter-
actions, forming a bare BROKER-based middleware framework. For a thumbnail overview of relevant
object remoting patterns (and, for later reference) see Appendix A.

The exemplary BROKER is shown in the configuration for performing a remote invocation between
a client component and a remote object: The client component performs an invocation on the remote
object. Crossing the network boundary is handled by the middleware. That is, the REQUESTOR re-
ceives the invocation and constructs a request from the essential invocation data, i.e., the reference to
remote object, the operation name, and the parameters. This results in a canonical object representa-
tion of the request. Then, the REQUESTOR uses a MARSHALLER to stream the objectified invocation
data into a MESSAGE [29]. The MESSAGE is handed over to the CLIENT REQUEST HANDLER, along
with the reference to the targeted remote object, for resolving the corresponding network endpoint,
establishing a connection, and delivering this request MESSAGE. The MESSAGE arrives at the SERVER
REQUEST HANDLER at the server side. Subsequently, the MESSAGE is forwarded to the INVOKER that
initiates the disassembling of the MESSAGE. Disassembly involves demarshaling of the MESSAGE by
a MARSHALLER. Demarshaling means to extract object references, contextual invocation data, and the
core invocation data based on a canonical in-memory representation. Finally, the INVOKER resolves
the remote object and dispatches the actual invocation. The invocation result is processed and returned
in reverse order.

Figure 1: Relevant remoting patterns and their interactions

The structure of these remoting patterns and their interactions involve the processing and exchang-
ing of invocation data items. This includes core invocation and result data (e.g., object references, op-
eration names, parameters, object-type meta-data, MESSAGES [29, 12], and REMOTING ERRORS [63]),
contextual invocation data (e.g., kinds of INVOCATION CONTEXTS [63]), and auxiliary invocation data

F3 – 3

items which is not directly involved in a remote invocation (e.g., an INTERFACE DESCRIPTION [63]).
In Figure 1, the invocation data items are represented by horizontal connectors that relate the instances
of the remoting patterns operating on invocation data items at the same LAYER. For instance, the RE-
QUESTOR constructs requests targeted at the INVOKER, and it processes reply objects generated by
the INVOKER. The invocation data items involved are described in a number of remoting patterns. An
overview of these patterns is provided by pattern thumbnails in Appendix A. More in-depth pattern
descriptions and known uses are given in Appendix B.

3 Pattern Language Overview

This paper presents patterns focused on adaptable message processing infrastructures as they can
be found in current object remoting frameworks, such as OpenORB [58], Mono .NET Remoting
(Mono/R; see [40]), Mono Olive (Mono/O, [41]), Apache Axis2/Java (Axis2; see [5, 46, 21]), and
Apache CXF (CXF; see [6]). The invocation and message processing infrastructures represent an inte-
gral extension mechanism of these middleware frameworks for realising support for add-on services,
multiple invocation styles, and the selective bypassing of message processing steps.

The pattern language integrates the six patterns documented in this paper (see also Figure 2) with
remoting patterns organised in two existing pattern languages: On the one hand, it extends the Re-
moting Patterns language documented in [63]. On the other hand, the patterns presented here link to
the Pattern Language for Distributed Computing [12]. Whilst there is a certain overlap between these
two pattern languages, in particular regarding the foundational BROKER pattern, each of these pattern
languages contributes distinct patterns for better understanding of invocation and message processing.
The Remoting Patterns contain extension and extended infrastructure patterns (e.g., INVOCATION IN-
TERCEPTORS and CONFIGURATION GROUPS) which emphasise an adaptation view of a middleware
framework. As a complement, the Pattern Language for Distributed Computing provides details on
invocation data items processed, that is, kinds of MESSAGES. In this sense, this language stresses a
data flow view of middleware frameworks. We aim at combining the adaptation and data flow views
into a coherent description. Relevant patterns taken from these two pattern languages (and beyond) are
presented as pattern thumbnails in Appendix A.

As a developer of a middleware framework, you usually foresee at least one of the following kinds of
adaptability. In complex requirements settings, your framework must support all of them. The three
kinds of adaptability correspond to the first three patterns in our pattern language:

• PARTIAL PROCESSING PATHS (see Section 5, pp. 15) are required to support different variants of
one-way invocations. They allow you to lay out a complex processing scheme for invocation data
and, in certain invocation scenarios, only to enact selected ranges of this scheme. This is needed
for FIRE AND FORGET invocations, such as WSDL/1.1 one-way operations [16] or WSDL/2.0
in-only operations [17].

• RECONFIGURABLE PROCESSING PATHS (see Section 5, pp. 18) allow you to introduce addi-
tional processing operations, on demand and at arbitrary times in invocation processing. Thus,
you can define a minimum processing scheme expected to be common to all or most invocation
scenarios and permit extension developers to add processing operations as needed. Important
examples of extended processing requirements are security-related, add-on invocation services,
such as those described by the Web Services Security Core Specification (WSS/Core 1.0/1.1;
[42]).

• PROCESSING SHORTCUTS (see Section 5, pp. 20) put you into the position to describe several
possible walks through a processing scheme. While you lay out a basic scheme common to all or
most invocations processed, you can still allow for deviating processing flows, for instance, by
skipping a number of processing steps if required. This helps you to realise more complex forms

F3 – 4

of exception handling, client- and server-side caching, redirecting invocations upon collocated
remote objects, and so on.

Facing these requirements on adapting the message processing infrastructure, i.e., supporting previ-
ously unanticipated invocation styles, attaching add-on processing behaviour on demand, or bypassing
of scheduled processing operations, you proceed by applying the INVOCATION ASSEMBLY LINE pat-
tern. The INVOCATION ASSEMBLY LINE pattern describes your processing infrastructure in terms of
processing stations and processing tasks. Processing stations denote elementary steps in the lifecy-
cles of your REQUESTOR and INVOKER, or, similarly, the invocation data items processed. Invocation
data items are characterised by certain processing states, e.g., message constructed, message
marshaled, message delivered, and so on. Processing tasks describe processing operations
performed on invocation data items in certain lifecycle states, e.g., a marshaling operation once
entering the state message constructed.

Once you decided to adopt the INVOCATION ASSEMBLY LINE pattern, you face two further design
problems:

• Is the number of processing stations fixed or adjustable?

• Do processing stations accept multiple task assignments or can each processing station only
perform a single processing task?

The former design problem relates to designing and managing the processing station layout and the
latter relates to the station-task assignment. In resolving these two issues differently, you have two
choices for realising the INVOCATION ASSEMBLY LINE pattern:

• SINGLE-TASK PROCESSING STATIONS (see Section 5, pp. 22) describes the processing infras-
tructure by a number of processing stations and each of them is performing only a single process-
ing task. In its extreme, you abandon the distinction of processing task and processing stations.
The ultimate advantage of this variant is that there is no need for a dedicated, central manage-
ment facility that allows you to map tasks to processing stations. You can adopt a decentralised
organisation of invocation processing tasks.

• MULTI-TASK PROCESSING STATIONS (see Section 5, pp. 24), in contrast, allows you to assign
multiple processing tasks to single processing stations. This involves applying absolute or rela-
tive ordering strategies for tasks attached to a single station. This variant puts you into the posi-
tion of describing a common layout of processing stations, which is commonly fixed at design or
configuration time, with distinct invocation scenarios resulting in different task configurations.
The variable assignment often requires a central management of station-task mappings which
entails changes at several spots (e.g., a manager and the station entities) to adjust the processing
infrastructure to a new invocation scenario.

The patterns outlined above form a web of relations (see Figure 2). The INVOCATION ASSEMBLY LINE
pattern is the main pattern of this language. It focuses on conceptualising and specifying invocation and
MESSAGE processing. However, both the problem and solution of that pattern appear in a considerable
number of variations so that we decided to treat these variations as distinct patterns. To begin with,
we identified three problem variants: PARTIAL PROCESSING PATHS, RECONFIGURABLE PROCESS-
ING PATHS, and PROCESSING SHORTCUTS. These three patterns vary from the main INVOCATION
ASSEMBLY LINE pattern by problem, i.e., the INVOCATION ASSEMBLY LINE pattern is equally used
to resolve three related, but sufficiently distinct problems. You may also think of use relationships
between the three patterns and the INVOCATION ASSEMBLY LINE pattern. Similarly, there are two so-
lution variants: MULTI-TASK PROCESSING STATIONS and SINGLE-TASK PROCESSING STATIONS. A

F3 – 5

Figure 2: The patterns and their relationships

solution variant describes an alternative solution to the same problem. These variants share the prob-
lem stated in the main INVOCATION ASSEMBLY LINE pattern. Problem and solution variants form the
two fragments [43] of our pattern language.

4 Challenges of Adaptable Invocation and Message Processing

The pattern language documented in this paper addresses situations in which a LAYERS-based view
of a BROKER-based middleware framework (see also Figure 1; [14, 8]) turns out to be insufficient to
effectively design and implement a middleware framework with particular extension capabilities. In
such a view, the BROKER is segregated into layers of functional responsibilities under a rigid direc-
tionality. Components at higher-level layers, e.g., the client component, are constrained to use only
functionality offered by components residing at their direct descendant layers, e.g., the REQUESTOR.
As for crosscuts, applying modifications to components residing at all LAYERS or conditionally cir-
cumventing components in intermediate LAYERS is not considered. For instance, the client component
is not expected to construct a request object on its own and hand it over to the MARSHALLER and
CLIENT REQUEST HANDLER.

The LAYERS structure illustrated in Figure 1 also shows the client component and the remote ob-
ject, as part of the server application, as conceptually separated. There is no notion of these two com-
ponents exchanging their roles, so that the client turns into the server side (and vice versa). Also, since
your framework is to be integrated by both client and server applications, it must integrate support
for either side on a common ground. Otherwise, you risk introducing an unfavourable distinction be-
tween a client- and the server-concrete framework (see e.g. [52]), thus developing two sub-frameworks
design- and implementation-wise. Such a distinction overlooks potentials for reducing design and im-
plementation complexity by identifying shared characteristics in organising the processing of invoca-
tions and MESSAGES between, e.g., the INVOKER and the REQUESTOR components.

4.1 Realising Adaptability in Middleware Framework Design

Existing middleware frameworks provide variants of the INVOCATION INTERCEPTOR [63, 52, 53] pat-
tern to extend this LAYERS structure by means of indirection: The INVOCATION INTERCEPTOR pattern
[63] supports the definition of single processing operations that operate on invocation data items which
are then transmitted using INVOCATION CONTEXTS [63] from the client to the server (and vice versa).
INVOCATION INTERCEPTORS are registered with hooks placed within the processing infrastructure,
for instance upon entering and upon exiting the MARSHALLER. Once reached, the hooks intercept the
invocation data items processed (e.g., the request and reply objects) and have the processing operations
defined by the INVOCATION INTERCEPTORS performed on them. The INVOCATION INTERCEPTORS

F3 – 6

can be user-configured using CONFIGURATION GROUPS [63] that allow developers to define a number
of related interceptors in a reusable group.

These patterns describe a common extension architecture, but they do not explain the internal
mechanisms of the middleware to realise the composition of the processing tasks. In addition, not all
processing tasks in middleware frameworks are INVOCATION INTERCEPTORS, and not all invocation
data items are transmitted using INVOCATION CONTEXTS. For instance, some middleware frameworks
define only the user-defined extensions as interceptors and use other mechanisms to define the basic
processing tasks. It would be desirable both for the middleware designer and the middleware user to
use one and the same internal mechanism to define and configure all processing tasks in a middleware.

Figure 3: Requirement dimensions: role distribution and crosscutting processing concerns

There are two particular design problems related to finding such a canonical mechanism, originally
discussed for the INVOCATION INTERCEPTOR pattern (see in particular [52]):

• Hook selection: At which LAYERS should hooks be placed? Also, at which spots should the
invocation data items be indirected, e.g., on exiting, on entering, or somewhere within a given
LAYER? The time of fixing this layout, e.g., the design, the configuration, or even runtime, is
equally important. Providing for a wide and predetermined coverage through hooks risks caus-
ing substantial resource overhead and architectural complexity. Adopting a too limited number
might prevent you or framework integrators from realising future extensions without modifying
the basic INVOCATION INTERCEPTOR infrastructure.

• Access protocol: The access protocol regulates which elements of the invocation data items are
exposed to and are made mutable by INVOCATION INTERCEPTORS. In addition, it regulates
to which extent INVOCATION INTERCEPTORS influence the overall control flow. For instance,
INVOCATION INTERCEPTORS might be allowed or disallowed to issue or process REMOTING
ERRORS. The permissiveness of the access protocol balances the extensibility of the framework
and the need for reliability when handling invocations on behalf of the middleware users. For
instance, a too permissive access protocol might allow extension developers to manipulate core
invocation data (e.g., the number of parameters), causing behaviour unexpected by the client
application developer.

The pattern language presented in this paper helps you to understand and to address these two design
problems. We focus on four classes of concerns which complicate the decision finding process due

F3 – 7

to crosscutting the LAYERS structure of your middleware framework (see the vertical axis shown in
Figure 3). They relate to components at several or all LAYERS: orthogonal add-on services, support
for component interaction and their underlying invocation patterns, and kinds of LAYERS bypassing,
and role distribution. The crosscutting structure of these concerns make it difficult to implement add-
on services, different invocation styles, and kinds of bypassing in a fixed, foreseen way. Also, your
framework design must be integratable by applications which take the client and server roles in turn.
Following from this, the realisation of add-on services, invocation styles, and LAYERS bypassing must
take into account framework support for both the client and server sides. We discuss this escalation in
design complexity as the issue of role distribution (see the horizontal axis of Figure 3). A more detailed
discussion of these four areas of challenge is provided in Appendix C.

4.2 A Motivating Example

Let us consider the situation shown in Figure 4 as an example. You need to secure remote invocations
by means of encryption. There are many alternatives available to tackle such a requirement, most
notably, transport-level encryption (for instance, TLS [20] or SSL [24]) and MESSAGE-level encryption
(e.g., S/MIME; see [51]). However, both lack guarantees for secure end-to-end deliveries between a
client and server application regarding transport intermediaries and MESSAGE authenticity. In addition,
invocation data passes lower LAYERS of the BROKER unencrypted (see also Figure 1). Also, you are
expected to add an invocation-level facility which permits client and server application developers
to make use of selective encryption and decryption of MESSAGES sent and received. By selective,
we mean that only parts of the MESSAGES are to be sealed, in particular the core invocation data.
Data transmitted as the INVOCATION CONTEXT, which is also relevant for negotiating an en- and
decryption scheme and routing MESSAGES, is to be left untouched. The requirements of end-to-end
security and selectivity ruling out basic transport-level and MESSAGE-level options. Consequently, you
must address this issue as an integral part of your invocation and MESSAGE processing infrastructure.

The UML activity diagram in Figure 4 presents a control and data flow view of the client side of
processing invocations and MESSAGES (see also Figure 1). While the essential processing steps (e.g.,
Construct request, Stream request) are modelled as activities, activity partitions are used
to identify the responsible remoting pattern for each of these steps (e.g., REQUESTOR, MARSHALLER).
In addition, we represent data flow artefacts by means of input and output pins to activity nodes. For
instance, Invocation data is the required input, and a Request object is the expected output
of the Construct request activity owned by the REQUESTOR. Note that this activity diagram
visualises the two-pass processing involved for the client side. That is, once the processing steps are
performed on the request, and once on the reply (shown using the swimlane notation for activity
partitions).

Given this control and data flow view of your given framework, you must decide how to realise
the selective encryption facility, the Security provider (see Figure 4). This is essentially deter-
mined by the input required by such a facility, namely a streamed MESSAGE. The object representation
of either request and reply are not suitable for applying encryption or decryption. This is mainly be-
cause their state is usually subject to further mutation and because they can’t be properly constructed
from the encrypted data enclosed by the MESSAGE. Therefore, you must provide means to operate
on either the Request or Reply message, i.e., the output of the MARSHALLER for the outgoing
request and the output of the CLIENT REQUEST HANDLER for the incoming reply. Which options are
available to you?

1. Security-aware MARSHALLER: You might want to consider refining your MARSHALLER instan-
tiation to perform the selective encryption. While this appears as a viable option at first sight,
it would soon turn out impracticable because of code cluttering and constrained extensibility.
Code cluttering would result from introducing conditional branching in the MARSHALLER to al-

F3 – 8

Figure 4: Example of an add-on service: Security provider for selective message encryption

low for selectively enabling or disabling encryption by clients. Extensibility and maintainability
would be constrained if you supported a set of MARSHALLERS for different MESSAGE formats.
In that case, future adjustments would have to be tracked by each of them.

2. Security-aware REQUEST HANDLERS: Alternatively, you could turn selective encryption into a
responsibility of the CLIENT REQUEST HANDLER which has access to the required MESSAGE
representations. Here, the critique put forth against the first, MARSHALLER-only refinement
strategy applies as well. However, the situation turns out even worse: Given CLIENT REQUEST
HANDLER variants for different transport protocols, you would also couple the transport to the
message handling concern. This is due to the fact that the Security Provider requires
intimate knowledge of the MESSAGE format (e.g., a SOAP/XML dialect) in order to select the
parts meant to be encrypted or decrypted. Transport handling and transport protocol adoption
(e.g., TCP [47], HTTP [23], or SMTP [48]) would be limited in their reusability. They would
lose their independence from the MESSAGE format applied.

3. Security provider through INVOCATION INTERCEPTORS: Provided that your framework
provides an INVOCATION INTERCEPTOR infrastructure (or, you plan to equip it with one), you
can solve this extension problem by turning the Security provider into a set of INVOCA-
TION INTERCEPTORS. You need at least two interceptors; one for providing the encryption and
the other the decryption service. However, it is important that your INVOCATION INTERCEPTOR
infrastructure is compatible with the specific requirements of a selective en- and decryption ser-
vice (as shown in Figure 4). First, we require hooks placed at the end of the processing activities
performed by the MARSHALLER or, alternatively, before the CLIENT REQUEST HANDLER. If
either was missing, the Security provider would not be realisable by means of INVOCA-
TION INTERCEPTORS because the MESSAGE representations needed could not be intercepted.

F3 – 9

Second, the access protocol to the invocation data (i.e., the Request and Reply messages)
must be permissive enough. For instance, if the access to and the mutation of the request and
reply bodies was denied and only context data (e.g., for setting the encryption scheme and its de-
tails) was exposed to the INVOCATION INTERCEPTORS, realising the Security provider
would not be feasible.

Given the three strategies outlined above, their inadequacies and possible constraints, what mecha-
nisms remain open to you if you want to incorporate the Security provider into the processing
control and data flow, as shown in Figure 4? When looking at a general-purpose extension infrastruc-
ture such as INVOCATION INTERCEPTORS, how can its design anticipate a wider range of extension
requirements? How can it be made adjustable to fit those emerging in the continued lifecycle of your
framework?

Not enough, this problem turns even more complicated. What if this addition must be configurable
for different scopes, e.g., per-client or per-endpoint? How can you ensure that the addition of this en-
cryption add-on preserves the modular organisation of REQUESTOR and CLIENT REQUEST HANDLER?
Also, realising a Security provider both for client and server applications reinforces the prob-
lem. All this points to the issue whether the LAYERS structure still serves for the task of designing
such an add-on service and the necessary framework facilities. This example reflects our motivation to
mine existing middleware frameworks for the solutions adopted in response to more general classes of
requirements on adaptable invocation and message processing.

F3 – 10

5 Pattern Descriptions

Invocation Assembly Line

As an application developer, you use an existing BROKER-based middleware framework and you want
to extend the message processing operations offered by this middleware framework. Or, as a framework
developer, you design an extensible BROKER-based middleware framework. Extensibility is required to
support application developers in adapting infrastructure for message processing to their application-
specific requirements. This involves adding, removing, or replacing custom processing steps on various
invocation data items. Certain kinds of invocation data items are found in almost all BROKER-based
middleware frameworks, e.g., different types of messages, interface descriptions, etc. In addition, these
invocation data items are subject to common processing operations, such as adopting a uniform object
representation or their transformation into structured character or byte streams.

How do you extend a BROKER-based middleware framework with extra processing operations
and application-specific refinements over invocation data items?

Functional extensions take either the form of application-specific ones or framework refinements as
such, the latter being applicable to multiple, possibly related applications built on top of the middle-
ware framework. To create such extensions, application and framework developers require access to
the processing infrastructure for invocation data encapsulated by the INVOKER and the REQUESTOR.
The processing infrastructure should be configurable and adaptable through a canonical programming
model, at design time by the extension developer and at runtime by means of reflection, respectively.
However, providing such a canonical programming model for configuring and adapting the processing
infrastructure bears the risk of lacking the needed flexibility if the variety of invocation data items
(e.g., MESSAGE kinds), the invocation patterns, the processing operations, and their interdependencies
are not known when designing the middleware core. A threat to finding a balanced solution comes
through the considerable variety of processing operations to be supported. This variety results both
from different kinds of invocations to process and the processing range to cover.

To begin with, processing does not only refer to handling core invocation data. On the contrary,
a BROKER must handle auxiliary kinds of invocations. These often require a very different process-
ing scheme. Examples include the generation and delivery of INTERFACE DESCRIPTIONS (such as in
Mono .NET Remoting) as well as certain auxiliary event MESSAGES. The latter commonly represent
notifications orthogonal to the underlying remote invocation. In Web Services Reliable Messaging
(WS/RM; [19]), for instance, message sequencing is implemented by particular notification messages
which are exchanged completely transparent to the actual invocation messages. Also REMOTING ER-
RORS form a distinct group of invocation data to process.

When being processed, invocation data items pass different processing stages. When designing a
programming model providing access to the processing infrastructure, it is difficult to decide which
processing stage at which level of granularity should be incorporated into this programming model, in
terms of extension points. Candidates are the REQUESTOR and INVOKER which describe their range
of processing in terms of demarshaled and marshaled core invocation data and results, their delivery
and reception, and so on. In addition, the CLIENT PROXY and groups of remote objects could be in-
corporated into the design of such an extensible processing infrastructure. The latter is exemplified by
contexts in Mono/R which are controlled execution environments for remote objects.

The design task for a versatile processing infrastructure in your middleware framework is further
complicated by the processing roles (simply role hereafter) to be supported. In different component in-
teraction and invocation styles, the middleware framework needs to take different roles (e.g., the client
or server role in a REQUEST-REPLY invocation). A processing role is described by a set of process-
ing operations and a sequencing of these operations which are specific to this role. The number and

F3 – 11

characteristics of processing roles escalate with each component interaction style, invocation pattern,
and their variants specific to a remoting technology family supported. This motivates to identify sim-
ilarities and points of variations between processing roles in terms of processing operations and their
dependency relations.

You also risk introducing unwanted design complexity through invocation style emulation: This
problem describes the situation when the design of your BROKER incarnation is centred around a
predominant invocation pattern, e.g., REQUEST-REPLY. From the perspective of evolvability, adding
support for e.g. FIRE AND FORGET means to build an additional MESSAGE processing scheme on top
of a processing infrastructure aligned to the predominant pattern. This strategy of emulation has been
reported to bear the risk of introducing complexity. This extra complexity is due to static and dynamic
crosscutting. On the one hand, there is the risk of increased code interlacing (see e.g. [34, 54]). On the
other hand, the additional need for conditional branching (see, e.g., [70]) complicates the control flow
inherent to such a processing infrastructure.

Therefore:
Organise the invocation and MESSAGE processing of your middleware in terms of INVOCATION
ASSEMBLY LINES. INVOCATION ASSEMBLY LINES are configurable and extensible chains of
message processing tasks used both on the client (e.g., owned by the REQUESTOR) and the server
side (e.g., owned by the SERVER REQUEST HANDLER). These processing chains are put in place
for both request and reply MESSAGES. They are partitioned into processing stations which form
the message processing flow. Each processing station contains one or more processing tasks in a
specific order. The processing tasks are to be performed on certain invocation data items (e.g.,
MESSAGES or INVOCATION CONTEXTS) to be handled by the station. An INVOCATION ASSEM-
BLY LINE exposes a programming model to adjust the number of processing stations and offers
different strategies to assign processing tasks to the available processing stations. INVOCATION
ASSEMBLY LINES should be constructable at design and at activation time (e.g., through deploy-
ment descriptors), as well as changeable through the programming model at runtime.

Figure 5: Conceptual sketch of INVOCATION ASSEMBLY LINES in a REQUEST-REPLY scenario

The INVOCATION ASSEMBLY LINE pattern describes the BROKER or a selection of its component
patterns as a reconfigurable, flow-oriented processing infrastructure (see Figure 5). There are the fol-
lowing participants:

• Processing station (ps): An INVOCATION ASSEMBLY LINE consists of processing stations.
They perform specific assembly, disassembly, and transformation operations on invocation data
items. For each incoming or outgoing message (request or reply), invocation data items are
transported along the INVOCATION ASSEMBLY LINE by passing them from station to station.
Different stations can potentially process different kinds of invocation data items, The recon-
figuration of an INVOCATION ASSEMBLY LINE means adding or removing processing stations

F3 – 12

from a given configuration. In addition, a processing station can participate in several indepen-
dent INVOCATION ASSEMBLY LINES. This permits us to create processing layouts beyond mere
serial processing.

• Processing task (pt): Different kinds of invocation data items are subject to a set of related
processing tasks. The tasks necessary to process these invocation data items vary considerably
in different component interaction styles, dependency couplings, invocation styles, add-on in-
frastructure services, and remoting technology families. The kind of assembly, disassembly, or
transformation operation described by a task is depending on the kind of invocation data item,
such as core, contextual, or auxiliary invocation data. A particular processing task may be rel-
evant for several MESSAGE kinds, possibly leading to reusing task descriptions and their im-
plementations. Looking at the REQUEST-REPLY example in Figure 5, for instance, we find the
processing tasks of marshaling and demarshaling the objectified MESSAGES.

Processing tasks are interrelated by an explicit ordering. The example in Figure 5 shows, for
instance, that a canonical MESSAGE object representation must be constructed by the INVOKER
or REQUESTOR before being marshaled into the actual MESSAGE by the MARSHALLER. The
ordering structure of processing tasks are represented as a graph. This graph is formed by the
pt-labelled vertices representing processing tasks, while edges denote their directed dependency
relations. These precedence structures often reveal a symmetry of tasks within a given processing
roles or between two processing roles. Looking at Figure 5, the marshaling (pt2) operation
performed in the outbound direction mates with a demarshaling (pt5) operation on incoming
invocation messages.

• Invocation data item: An invocation data item represents a workpiece to be processed by the
processing stations grouped into an INVOCATION ASSEMBLY LINE. Relevant invocation data
items are the introspection data of the indirected invocation and the result. They are then ex-
tracted from or transformed into MESSAGES. Further examples are INVOCATION CONTEXTS and
context-related MESSAGES. Furthermore, auxiliary invocation data kinds such as INTERFACE
DESCRIPTIONS are important to consider. The REQUEST-REPLY invocation example in Figure 5
shows MESSAGES representing invocation requests and invocation replies in various processing
states, i.e., runtime information about an invocation, an invocation object, and a streamed invo-
cation message. In addition, REMOTING ERRORS must be processed, if they occur. They must
be signalled between the remoting endpoints.

• Line owner: INVOCATION ASSEMBLY LINES can be applied to structure the processing ac-
tivities described by certain component patterns of the BROKER. For example, INVOCATION
ASSEMBLY LINES are used by the REQUESTOR and SERVER REQUEST HANDLER as a part of
their solution. We refer to the using framework components as line owners in the collaboration
described by the INVOCATION ASSEMBLY LINE pattern. Also, we find INVOCATION ASSEM-
BLY LINES applied to INVOKER implementations to keep the invocation dispatch mechanisms
reconfigurable and extensible.

• Binding scope and times: Binding, in this context, refers to the scopes and the times for activat-
ing and deactivating a particular INVOCATION ASSEMBLY LINE configuration. An INVOCATION
ASSEMBLY LINE configuration describes a number of processing stations and the processing
tasks assigned to them according to their precedence requirements.

Valid and relevant scopes for binding a processing configuration are single remote objects. If
shared by many remote objects, the REQUESTOR and the INVOKER are appropriate scopes. A
more general and reuse-driven approach is to bind a processing configuration to a CONFIGU-
RATION GROUP. A CONFIGURATION GROUP [63] describes the configuration of the MESSAGE
processing and the lifecycle management infrastructures shared by a set of remote objects. In
addition, a CONFIGURATION GROUP can act as controlled execution environments for remote
objects. Examples include contexts in Mono .NET Remoting (Mono/R; see [40]).

F3 – 13

Besides the scope of enactment, various points in the lifecycle of a BROKER instance are can-
didates for defining the binding times to specify, activate, and deactivate a processing configu-
ration. In the middleware frameworks reviewed, the deployment time of either remote objects
or CONFIGURATION GROUPS has been chosen as the binding time. The issue of binding times
also leads us to ask for an appropriate specification and deployment technique. Options include
registration through the programming model at runtime (PASSIVE and ACTIVE REGISTRATION
[37]) or by means of deployment descriptors [63] at activation time. The late negotiation and
acquisition of such a configuration, i.e., at invocation time, can be a further requirement. For
instance, invocation pattern variants (such as SOAP/1.2 or WSDL/2.0 Message Exchange Pat-
terns, MEPs; [17, 25]) can be lazily negotiated between a client and a remote object. Either, the
INTERFACE DESCRIPTION stipulating the invocation pattern is introspected just in time (e.g., in
forms of dynamic invocation) or the invocation pattern is communicated through the INVOCA-
TION CONTEXT. In either case, the INVOCATION ASSEMBLY LINE needs to be assembled and
activated at runtime.

INVOCATION ASSEMBLY LINES organise the control and data flow for their line owners, such as the
SERVER REQUEST HANDLER or REQUESTOR. There are two dimensions of control and data flow to
consider: the placement and the centralisation of the control and data flow layout.

The placement of control and data flow information can either be extrinsic or intrinsic to the pro-
cessing stations. An extrinsic placement refers to capturing the overall processing-related control flow
information in dedicated runtime entities different to processing stations. In particular, relevant con-
trol and data flow information can be stored and managed by invocation data items. The INVOCATION
CONTEXT is sometimes used for this purpose. An intrinsic placement challenges the above view by
locating control and data flow information in the processing stations directly.

With regard to centralisation, the control and data flow layouts can be organised in a centralised
or dispersed manner. A centralised INVOCATION ASSEMBLY LINE lays out the control and data
flow in single, state-carrying entities different from the actual processing stations. For instance, the
AxisEngine object-class as an essential component of this combined INVOKER and REQUESTOR
variant in Axis2 stipulates the overall control and data flow centrally, in its send and receive
operations. Conversely, a dispersed specification of the control and data flow allows for distributing
responsibilities among several processing stations. In Mono/R, for instance, sinks realise this idea of
dispersed control and data flow management for INVOCATION ASSEMBLY LINES. Each sink is only
aware of its neighbour sinks, leaving the ultimate succession of sinks managed in a decentralised man-
ner.

Combining these placement and centralisation strategies shows different effects on the targeted
adaptability of processing behaviour, the locality of modifications and the perceived complexity of the
processing infrastructure. This is particularly important when considering the need to provide intro-
spective facilities upon the control and data flow to realise runtime and invocation time adaptability of
INVOCATION ASSEMBLY LINES. Also, you may consider assigning one or multiple processing tasks
to a given processing station. Different strategies of station-task assignments, placement, and central-
isation as well as an assessment of their consequences are covered by the SINGLE- (pp. 22) and the
MULTI-TASK PROCESSING STATIONS (pp. 24) patterns.

F3 – 14

Partial Processing Paths

Assume that you have decided to build or adapt a certain BROKER incarnation. The kinds of remote
invocation (e.g., REQUEST-REPLY and FIRE AND FORGET RPCs) and the remoting styles (e.g., func-
tional subsets of ICE [27] and WS [9, 39, 16, 17]) which this BROKER realisation is meant to support
are given. Assume further that your BROKER-based framework is intended to serve as a surrogate for
both client- and server-side applications. In order to be sure that the processing of MESSAGES is suit-
able for serving the given set of invocation patterns for the range of remoting styles and roles (i.e.,
client and server) supported, you must decide how to lay out the MESSAGE processing infrastructure.
Invocation patterns (e.g., REQUEST-REPLY, FIRE AND FORGET) do not reveal insights on the differ-
ent processing needs of MESSAGES within an invocation pattern realisation. Processing operations
and sequencing rules between single operations (e.g., marshaling, MESSAGE construction, etc.) could
be reused for realising different invocation patterns. Others might be conflicting in the context of a
particular invocation pattern.

Your invocation and MESSAGE processing infrastructure must allow to perform selected ranges
of designed paths of processing operations alone. How can a processing infrastructure be de-
signed out of a set of composable path sections which can be combined into a bound variety of
processing paths?

Consider an example: A processing scheme originally designed to realise REQUEST-REPLY invocation
variants might be required to put only the request-specific range into effect to enact kinds of FIRE AND
FORGET invocations (see also Figure 6). If, in a FIRE AND FORGET scenario, reply-specific processing
steps would be scheduled, the responsible entities would, at least, have to operate on the control flow in
a manner to be effectively skipped. The risk of excessive conditional branching would be the result, to
give a single concrete example. Besides, maintainability is potentially reduced because these decision
points which implement the processing line in a requested invocation pattern are squattered over sev-
eral implementation entities. More generally speaking, this compositional flexibility is demanded by
different types of one-way invocation, such as forms of synchronisation decoupled and non-blocking
invocations (e.g., FIRE AND FORGET) as well as timely decoupled one-way acts in MESSAGING and
PUBLISH-SUBSCRIBE [12].

Also, you might want to consider support for batch processing of invocations [59]. To realise
batching support, you must define a processing scheme which permits the repetitive execution of sin-
gle processing operations early in the lifecycle of remote invocations. Either the CLIENT PROXY or the
REQUESTOR must be capable of accumulating invocation dispatches. Accumulation involves the incre-
mental assembly and later disassembly of batch MESSAGES. Only upon signalling the end of the batch
invocation (e.g., through an explicit flush operation), the REQUESTOR proceeds in further-processing
the accumulated MESSAGE, i.e., its marshaling and delivery. In an inverse manner, the INVOKER has to
disassemble the batch MESSAGE, perform the individual invocation dispatches, compile a reply MES-
SAGE, and, finally, have it streamed and returned. Hence, batching causes single processing steps to
be repeatedly performed in a row (e.g., MESSAGE construction) while others are only scheduled once
(e.g., marshaling).

In addition, you are often faced with the requirement of handling and even recovering from RE-
MOTING ERRORS [63] as well as exceptional conditions when processing MESSAGES. This very re-
quirement can be raised from different angles:

1. To begin with, REMOTING ERRORS can be raised at different locations (e.g., the client, server
application or the transport logic). In particular, they can be issued from within the MESSAGE
processing infrastructure, for instance, upon sensing exceptions when turning a MESSAGE object
into a structured byte stream representation (e.g., an IIOP [45] message). Depending on the
concrete type of REMOTING ERROR, they must be propagated back to the remote endpoint, i.e.,
the client application or its underlying BROKER, where the encapsulated REMOTING ERROR is

F3 – 15

injected into the control flow. This involves processing REMOTING ERRORS as MESSAGES to be
delivered to the remote endpoint. The processing steps for these REMOTING ERRORS and their
sequencing are essentially similar to those of core invocation data (i.e., the request and reply
data).

2. Forms of reliable messaging (e.g., the error recovery model in ICE [27] or WS/RM [19]) pre-
suppose that the MESSAGE processing infrastructure can automatically replay sequences of pro-
cessing steps to realise quality constraints on MESSAGE delivery, e.g., at-most-once delivery
guarantees. Replaying refers to performing varying ranges of processing steps depending on the
point of exception or failure, possibly in a repeated manner.

Figure 6: Composable processing of invocations

Therefore:
Organise your MESSAGE processing infrastructure in terms of PARTIAL PROCESSING PATHS.
Each PARTIAL PROCESSING PATH is realised by a dedicated INVOCATION ASSEMBLY LINE rep-
resenting a set of functionally linked processing operations which recurs in different targeted
invocation pattern realisations. As INVOCATION ASSEMBLY LINES are joinable, combine their
instantiations for expressing different processing roles (client or server side) and invocation pat-
tern implementations.

PARTIAL PROCESSING PATHS promote the idea of structuring the processing infrastructure in smaller
parts which can be reused by composing the actual processing paths as compounds from such building
blocks. Each part groups processing tasks (e.g., marshaling, decryption, etc.) which are found recur-
ring jointly in different invocation scenarios. By joint recurrence, we mean that they are applied in a
sequence which is found stable for a number of invocation scenarios. Each part is represented by a
dedicated INVOCATION ASSEMBLY LINE. An INVOCATION ASSEMBLY LINE can take the form of a
compound (e.g., line E in Figure 6), assembled from other INVOCATION ASSEMBLY LINES (e.g., lines
A and B in Figure 6). While the number of possible scenarios is certainly vast, you will find certain,
characteristic decomposition strategies across current middleware examples:

• Per processing direction: Provide INVOCATION ASSEMBLY LINES which represent processing
directions, i.e., outward- and inward-directed invocations and MESSAGES. In Figure 6, there
are the outgoing line C and the incoming line E. Such a decomposition strategy makes it con-
venient to express the client and server roles in the light of a given invocation patterns. As
for REQUEST-REPLY invocations, the composition set (C,E) represents the client-side, the set
(E,C) the respective server side of processing. If FIRE AND FORGET is requested, the processing
infrastructure is limited to the line C at the client and the line E at the server side.

F3 – 16

• Per kind of invocation data: Certain processing tasks appear shared between different types of
invocation data items, while others are type-specific. Sets of shared processing tasks are then
composed into compound INVOCATION ASSEMBLY LINES to handle a specific type of invoca-
tion data item. Important examples are REMOTING ERRORS, INTERFACE DESCRIPTIONS, and
certain auxiliary MESSAGE kinds underlying advanced invocation patterns (e.g, notifications in
WS/RM [19]).

• Per lifecycle strategy: Certain sections of the processing path are performed repeatedly. This is
particularly important for strategies of failure recovery and invocation batching. The repetitive
character of a set of processing steps qualifies these to form INVOCATION ASSEMBLY LINES
which then are grouped into compound lines. In Figure 6, the component line A provides an ex-
ample in the context of incoming invocations requests. This maps to a server-side infrastructure
which is capable of recovering from errors encountered in early processing steps (e.g., transport
and demarshaling).

Use PROCESSING SHORTCUTS (p. 20) to provide the links between the resulting INVOCATION ASSEM-
BLY LINES. For example, INVOCATION ASSEMBLY LINES operating one core invocation data should
include PROCESSING SHORTCUTS to those responsible for possible REMOTING ERRORS. Make sure
that the decomposition into PARTIAL PROCESSING PATHS is not hindered by a lack of genericity of
the components realising the actual processing tasks. Consider a MARSHALLER which is bound to the
canonical object representation of core invocation data (i.e., request and reply objects) and which is
only capable of processing these. As a result, you cannot create a PARTIAL PROCESSING PATH to be
reused for various data kinds (e.g., INTERFACE DESCRIPTIONS).

F3 – 17

Reconfigurable Processing Paths

When you plan to provide framework extensions to a middleware, it is important to verify that you can
actually weave the extension behaviour into the framework and that the framework provides the nec-
essary extension points to realise the add-on behaviour. Similarly, if your role is that of the framework
developer, you will certainly find yourself in the situation that prospective extension developers ex-
press requirements on extension points to be exposed by the processing infrastructure. It is particularly
hard to foresee the number and kind of extension points becoming necessary at the time of creating
the processing infrastructure. Each step in a processing path can be turned into an extension point by
refining it into a hook for INVOCATION INTERCEPTORS [63, 52]. However, not each processing step
should be fixed as a hook. This patterns helps avoid predetermining a web of hooks at design time.
Such a predetermination bears the risks of excessive resource consumption and an increased design
complexity which reduces the communicability of the hooks and their interdependencies to extension
developers.

Providing support for extensions and add-on services plays a central role for the adoption and
the further-development of a middleware framework. Unless you can add or remove extension
points to the processing infrastructure for invocations and MESSAGES in a principled manner, the
middleware will not fit unanticipated deployment scenarios while preserving its maintainability.

A middleware framework, as a variant of an object-oriented application framework, is not meant to
be a ready-made piece of software. Rather it is to be completed through integration by client and
server applications. Integration also means to attach framework extensions, shared by a group of client
or server applications. Designed processing paths must remain adaptable to cover a modified set of
processing operations and changing dependency relations between them. This is particularly important
regarding your framework’s extension infrastructure which might be built around an INVOCATION
INTERCEPTOR [63, 52] variant. From this perspective, processing operations are potential points of
interception. In order to extend (or reduce) the INVOCATION INTERCEPTOR’s reach, processing steps
must be addable (or removable). Important examples are found in securing remote invocations because
security-related, orthogonal extensions such as implementations of the Web Services Security Core
Specification (WSS/Core; [42]) commonly operate on MESSAGES before and after core processing
steps, such as demarshaling and marshaling.

Figure 7: Extending processing paths

Therefore:
Preserve RECONFIGURABLE PROCESSING PATHS by realising each processing path as an INVO-
CATION ASSEMBLY LINE. Allow to insert into or remove processing stations from these INVOCA-
TION ASSEMBLY LINES. Alternatively, if the layout of processing stations is fixed, make sure that

F3 – 18

processing stations can either be effectively discharged from all processing tasks (i.e., a de facto
removal) or that they can be attached more than one processing task (i.e., a de facto insertion).

At design time of your framework, make sure that you apply the PARTIAL PROCESSING PATH pattern
to obtain an initial set of relatively robust INVOCATION ASSEMBLY LINES. They can then be exposed
for refinement into RECONFIGURABLE PROCESSING PATHS. The sketch provided in Figure 7 shows
a compound of two INVOCATION ASSEMBLY LINES to realise a client-side processing configuration
for a REQUEST-REPLY invocation variant. In its initial configuration, there are four processing steps
(i.e., A,B,C,D) and, thus, candidate extension points. By adding a processing station to each line,
you obtain the further processing step E. Note that this exemplary insertion preserves the processing
symmetry [63, 52], by considering two symmetric processing stations. This is, however, not strictly
necessary. It would be equally possible to amend only one of the two INVOCATION ASSEMBLY LINES
in Figure 7. For instance, if only logging of outgoing invocation data items was required, this would
suffice as an extension point.

Arrange the protocol to reconfigure the processing paths in a way that adaptations to the pro-
cessing path can be performed by the extension developers themselves. This avoids conflicts between
reconfiguration requirements of different extensions. This requires respective hooks being activated
and deactivated at configuration and runtime. Details for these issues of binding scope and binding
time are treated by the INVOCATION ASSEMBLY LINE pattern (pp. 11).

The need for RECONFIGURABLE PROCESSING PATHS is exemplified by the scheduled design ele-
ment of dynamic phases in Axis2 [5]. So far, Axis2 extension developers cannot revise and introduce
their own set of phases, i.e., processing steps, through their CONFIGURATION GROUPS contributed.
This, however, turned out critical because the global phase configuration must be adjusted or vari-
ous variations thereof need to be shipped in order to support individual extensions. This breaks the
fundamental idea of orthogonal extensibility and introduces an unwanted coupling between the core
framework and its extensions. The planned design revision will allow for per-extension phases to over-
come this limitation [30].

F3 – 19

Processing Shortcuts

Within processing paths – as yielded by applying the PARTIAL PROCESSING PATH (pp. 15) – there
are situations which either demand an interruption of the processing sequence or rather skipping sub-
sequent processing steps. To complicate things, these situations are sometimes only identifiable at
runtime. Skipping does not necessarily require these processing steps to be circumvented. However,
the input and output requirements for the follow-up processing steps might not be met and, thus,
special care would be required, e.g., by providing mock entities. While the interruption case refers
to the occurrence of REMOTING ERRORS, the skipping requirement relates to forms of bypassing in
the LAYERS structure of your processing infrastructure. This pattern describes the details of splitting
predetermined processing chains and of laying out alternative processing walks.

Processing paths describe sequences of processing operations applied to invocation data items.
These processing chains are the most natural way to think of your processing infrastructure.
However, certain optimisations towards resource consumption, invocation performance, and de-
coupling between remote ends are impossible to achieve with such processing chains in place.

A designed processing layout breaks down into a single dominant processing path for invocation data.
However, there are scenarios which require multiple possible processing paths by mutating the se-
quencing of a given set of processing steps. Relevant examples are:

• MESSAGE caching and differential marshaling (see e.g. [4, 1]): These optimisations aim at reduc-
ing the time spent in the MARSHALLER, either by caching MESSAGES (or their object represen-
tations) entirely or partially. As for partial caching, only the meta-data specific to the MESSAGE
structure is put into a cache storage. This allows for applying caching though the invocation data
constantly change.

• Handling exceptional values, in particular REMOTING ERRORS [63]: Upon the signalling a fail-
ure condition, e.g., through the exception propagation mechanism of the hosting runtime envi-
ronment, the processing is expected to be forward-skipped (e.g., to cleanup resources already
allocated such as connections etc.) or control is handed over to a processing path specific to
REMOTING ERRORS (e.g., to marshal and deliver them to the remote end).

• Invoking upon collocated remote objects (see e.g. [61]): The remote object targeted lives at the
same remote end as the issuing client, though not necessarily in the same process habitat. In
these situations, the majority of core processing steps (e.g., objectifying requests, marshaling,
transport) can be considered pure overhead and are to be avoided.

Figure 8: Permitting multiple, conditional processing walks

Therefore:
Provide PROCESSING SHORTCUTS for INVOCATION ASSEMBLY LINES which can redirect the
control and data flow from one processing station to another one. This target processing station
can be located in the same INVOCATION ASSEMBLY LINE, e.g., further down the line so that in-
termittent processing steps are skipped. Also, the target processing station can be part of another
INVOCATION ASSEMBLY LINE. So, you can redirect the control and data flow between the two

F3 – 20

lines and you can have the receiving line continue (or even complete) the invocation and message
processing.

The requirement of bypassing is realised by redirecting the control and data flow between two INVO-
CATION ASSEMBLY LINES. Details on how PROCESSING SHORTCUTS can be laid out and how these
line-crossing processing stations can be constructed are dependent on the realisation variant of the
INVOCATION ASSEMBLY LINE pattern used (see also Figure 8): If the layout of processing stations
is global and fixed during runtime (i.e., the MULTI-TASK PROCESSING STATION pattern applies; pp.
24), PROCESSING SHORTCUTS can bridge between different processing steps. Consider the example in
Figure 8: The outgoing activity of processing step C could redirect to the incoming activity of process-
ing B. This is because processing stations can be made aware of each other. Conversely, if the station
layout is not predetermined (i.e., the SINGLE-TASK PROCESSING STATION pattern applies; pp. 22), a
cross-line station can only be created within a single processing step. Hence, the outgoing activity can
only point to the incoming activity in step C (see Figure 8).

Use this pattern jointly with PARTIAL PROCESSING PATHS (pp. 15) to provide the necessary con-
nectors between INVOCATION ASSEMBLY LINES specific to a processing direction and to a type of
invocation data. The PROCESSING SHORTCUT pattern implies that, when applied along with RECON-
FIGURABLE PROCESSING PATHS (pp. 18), inserted processing steps are to be symmetric.

F3 – 21

Single-Task Processing Stations

You chose to adopt the INVOCATION ASSEMBLY LINE (pp. 11) pattern. It remains to select a strategy
for laying out the processing stations and the assignment of processing task to these stations. This
strategy is largely about where to place the control for the station layout and the task assignments; and
whether the control and data flows are centrally managed. Your main objective is to ease the future ad-
dition of framework extensions (e.g., an encryption add-on) which come in form of CONFIGURATION
GROUPS. Your middleware framework is required to facilitate the extensibility towards orthogonal
add-on services (e.g., for securing the BROKER). Framework extensions risk entailing hidden interde-
pendencies, when being deployed together, which can cause single extensions to fail unexpectedly.

How can you realise an extensible processing infrastructure which minimises the risk of intro-
ducing hidden interdependencies between framework extensions?

To avoid unwanted interdependencies between extensions, it is recommended to decouple the add-on
behaviour introduced by two extensions. To achieve this, you must balance two forces: the placement
and the centralisation of the control and data flow in your processing infrastructure. Decoupling is best
achieved through a decentralised specification of the control and data flow layout, i.e. each extension
remains unaware of other, currently active ones. Recording and storing control flow information should
also be kept within an extension’s realm (i.e., by an intrinsic placement of information).

Following from this, an extension is inserted without full knowledge of the global configuration.
Extension developers will not have to be concerned with the global state of the processing infrastruc-
ture, the resulting processing behaviour can only be stated (and verified) upon runtime. In other words,
you must design your processing infrastructure according to a strict LAYERS structure.

Figure 9: Single-task assignments, variable, and decentralised station layout

Therefore:
Arrange the INVOCATION ASSEMBLY LINES with a variable number of processing stations
which chain themselves in a decentralised manner, i.e., through forward references owned locally
by each processing station. Attach a single processing task to each station. RECONFIGURABLE
PROCESSING PATHS are realised by varying the number and positioning of the processing sta-
tions alone.

In some detail: You can learn the essentials of this INVOCATION ASSEMBLY LINE variant from Figure
9 which shows two INVOCATION ASSEMBLY LINES. While they are made of a number of processing
stations, each being assigned a single processing task, their exact number and quality is not known
to any central entity which is extrinsic to the INVOCATION ASSEMBLY LINES themselves. Most im-
portantly, the line owners do not manage, nor are they aware of the station layout to be enacted when
processing an invocation. Rather, each processing station (ps) points to a successor station (ps + 1),
if available. In turn, inserting processing stations on demand requires identifying the right location in
terms of its direct antecedent station as the registrar. Therefore, the control and data flow is the result
of a decentralised composition process.

F3 – 22

This has important consequences, especially for realising PROCESSING SHORTCUTS (pp. 20) and
RECONFIGURABLE PROCESSING PATHS (pp. 18). Shortcuts can basically be achieved by resolving
the targeted processing step by following the forward references along the station chain. However,
the target station must be known to the extension developer and, thus, the source processing station.
Also reconfigurations of the station chain happen under conditions of decentralised flow control. It is
possible to allow processing station may insert or remove subsequent ones by tracking the forward
references. Note, however, that the absolute positioning of a processing stations is not guaranteed in
the presence of multiple, active framework extensions which manipulate this station layout.

This SINGLE-TASK PROCESSING STATION strategy, incarnating a LAYER variant for the processing
infrastructure, is found for Mono .NET Remoting (Mono/R, see [40, 50]) and Mono Olive (Mono/O;
see [41]). Details are given in Section 7 on known uses.

F3 – 23

Multi-Task Processing Stations

You are in a situation in which invocation pattern variants (e.g., an in-only MEP [17, 25]) are nego-
tiated through INTERFACE DESCRIPTIONS or, even more lazily, through the INVOCATION CONTEXT.
Once registered, this invocation pattern is mapped to a configuration to be applied to the processing
infrastructure. Such a configuration involves a specific set of INVOCATION ASSEMBLY LINES. Also,
you are required to track the state of the underlying MESSAGE exchanges precisely, e.g., in order to
verify completion and failure conditions.

The middleware framework must be able to devise arrangements of INVOCATION ASSEMBLY
LINES which can be monitored for specified events (i.e., completions, failures, and notifications)
and for processing states. At the same time it must not lose its capability of forming PARTIAL
PROCESSING PATHS. How can a processing infrastructure, which appears predetermined in
terms of processing steps and operations covered, preserve the adaptability still required?

Similar to the SINGLE-TASK PROCESSING STATIONS (pp. 22), you must review the design dimensions
of organising the control and data flow in the light of the above requirements: the centralisation and the
placement. A centralised organisation of the processing infrastructure fits the monitoring requirement
better than a decentralised one. Therefore, the INVOCATION ASSEMBLY LINES should be managed
and tracked by a central controller entity.

Where to place the flow information (e.g., processing state flags), which is used to monitor and
regulate the control and data flow, is more difficult to answer. An intrinsic placement would store this
kind of control information with the core elements of the processing infrastructure, i.e. processing sta-
tions. In that sense, they would turn stateful. Statefulness, however, limits the reusability of processing
paths in the sense of PARTIAL PROCESSING PATHS (pp. 11). An extrinsic placement would have this
information bits managed with the invocation data items, e.g., the INVOCATION CONTEXT. This, how-
ever, makes it more challenging to provide for the introspection of the processing state from the angle
of the controller entity.

Figure 10: Multi-task assignments, fixed, and centralised station layout

Therefore:
Devise a fixed layout of processing stations which is then shared by different INVOCATION AS-
SEMBLY LINES. As for fixing, arrange for a manager entity which stores the processing layout
as well as the task assignment. Provide for a protocol to access and query the station layout.
Make processing stations capable of managing and performing multiple processing tasks. This
permits you to enforce dependency constraints between processing tasks without stations being
arrangeable.

The solution involves a fixed number of multi-task processing stations: Figure 10 shows two INVO-

F3 – 24

CATION ASSEMBLY LINES, each containing three explicitly labelled processing stations (i.e., ps1,ps2,
etc.). The processing stations are managed by and their participation in realising the two INVOCATION
ASSEMBLY LINES is registered with the line owners, either the REQUESTOR or the SERVER REQUEST
HANDLER. Thus, the current processing state (in the light of a ruling invocation pattern) can be intro-
spected at any time from the line owners as manager and monitoring entities. The line owner are also
responsible to serve with a task registration and introspection interface to client applications. To give
the processing infrastructure the needed flexibility, you must allow for fine grained techniques for as-
signing multiple processing tasks to this set of processing stations. The assignment mechanism needs
to be versatile enough to express the precedence constraints as a particular ordering upon assigning
tasks. This strategy is often found realised by or deeply integrated with INVOCATION INTERCEPTORS.

Known uses of this INVOCATION ASSEMBLY LINE variant are Apache Axis2/Java (Axis2; see
[5, 46, 21]) and Apache CXF (CXF; see [6]). These two frameworks lay out a predetermined, though
reconfigurable, arrangement of processing stations referred to as phases in both cases. These layouts
can only be accessed through and are effectively managed by central manager entities. While these lay-
outs comprise default sets of processing stations, the manager delivers predefined subsets thereof for
forming special-purpose INVOCATION ASSEMBLY LINES on demand, e.g., for handling REMOTING
ERRORS. In these two variants, the processing stations serve for interception points. So, processing
tasks are realised through CXF’s and Axis2’s INVOCATION INTERCEPTORS. The registration protocol
for INVOCATION INTERCEPTORS permits the developer to assign processing tasks in a fine-grained
manner, including positioning relative to other INVOCATION INTERCEPTORS and absolute position-
ing rules. The latter is important to provide guarantees that core processing tasks are executed at the
appropriate positions. Details follow in the subsequent section.

F3 – 25

6 Motivating Example Resolved

Let us return to the motivating example considered in Section 4.2 and let us briefly walk through
applying the small pattern language presented here to structure this design decision space. As frame-
work developers, the example confronts us with the requirement of providing support for optionally
securing end-to-end message delivery. This requirement was evaluated against three possible strate-
gies: the refinement of the MARSHALLER or the REQUEST HANDLER components alone, as well as an
INVOCATION INTERCEPTOR variant. Each of these approaches reflects requirements and forces cap-
tured by the RECONFIGURABLE PROCESSING PATHS pattern (see Section 5, pp. 18). An application
which requires delivery encryption should be able to add both encrypting and decrypting operations
at processing stages which provide read and write access to the streamed outgoing and the streamed
incoming messages. In addition, such an application might act both as client- and server application
so that this end-to-end encryption service must be realised for the client- and server roles taken by our
middleware framework. Also, this framework extension should only be activated when being used by
this application. That is, this application-specific extension should not interfere with other remoting
applications integrating our middleware framework. Finally, the extension should be applicable under
the entire range of possible service configurations, e.g., different marshaling and transport strategies.

Figure 11: Using INVOCATION ASSEMBLY LINES in a REQUEST-REPLY scenario with message-level
encryption

Adopting a RECONFIGURABLE PROCESSING PATHS variant implies applying the INVOCATION AS-
SEMBLY LINE pattern (see Section 5, pp. 18). Hence, we conceptualise and design the message pro-
cessing infrastructure in terms of processing stations and processing tasks. Figure 11 provides an ex-
emplary instantiation of the INVOCATION ASSEMBLY LINE pattern. We devise outbound and inbound
INVOCATION ASSEMBLY LINES for both the client- and server-side processing infrastructure of our
framework. Each INVOCATION ASSEMBLY LINE consists of three processing stations, reflecting the
elementary life-cycle stages of the invocation requests and replies processed, such as objectified,
marshaled, and delivered (or, received). As for the basic processing tasks in a secured
REQUEST-REPLY invocation, as shown in Figure 11, both the client-side, outbound and the server-side,
outbound INVOCATION ASSEMBLY LINES perform a set of four processing tasks: message construc-
tion (pt1), marshaling (pt2), encrypting (pt3), and delivering (pt4). Similarly, the client-
side, inbound and the server-side, inbound INVOCATION ASSEMBLY LINES are characterised by the
succession of receiving (pt5), decrypting (pt6), demarshaling (pt7), and extracting

F3 – 26

(pt8) invocation data from incoming MESSAGES. This sharing of processing tasks between the client
and server side, though in different configurations, reflects a certain processing role symmetry This
symmetry mates with the ideas of freestanding MARSHALLER and PROTOCOL PLUG-IN [63, 53] com-
ponents which can be reused to realise either framework role.

In a next step, we plan to support secure delivery under invocation patterns other than REQUEST-
REPLY. Also, secure delivery requires a centralised monitoring of the ongoing processing operations.
Hence, we apply a strategy of MULTI-TASK PROCESSING STATIONS (see Section 5, pp. 24). The
second processing stations in each of the four INVOCATION ASSEMBLY LINES is responsible for
performing two tasks. The sequencing within the two resulting pairs of tasks (i.e., marshaling/
encrypting and decrypting/ demarshaling) realises our motivating example of a Security
provider (see also Figure 4). Again, the symmetry between the client- and server-side roles is pre-
served. When applying a MULTI-TASK PROCESSING STATIONS strategy, the processing station layout
is not only fixed, but also centrally controlled. That is, the REQUESTOR and SERVER REQUEST HAN-
DLER components as owners of the INVOCATION ASSEMBLY LINES store the station layout, provide a
management interface to maintain the station configuration as well as the processing task assignments
of the stations, and organise the dispatch upon the processing stations. This strategy is commonly im-
plemented by an INVOCATION INTERCEPTOR variant (see, e.g., [53]). By adopting the MULTI-TASK
PROCESSING STATIONS pattern, we obtained a design which facilitates realising PARTIAL PROCESS-
ING PATHS (see Section 5, pp. 18).

7 Known Uses

INVOCATION ASSEMBLY LINES are found in a selection of existing middleware frameworks: OpenORB
[58], Mono .NET Remoting (Mono/R; see [40]), Mono Olive (Mono/O, [41]), Apache Axis2/Java
(Axis2; see [5, 46, 21]), and Apache CXF (CXF; see [6]). In the following, we reflect on instantiations
of member entities (i.e., processing stations, processing tasks, line owners, etc.) and their interactions
characteristic for the INVOCATION ASSEMBLY LINE pattern.

7.1 OpenORB

The Java-based CORBA implementation OpenORB realises an INVOCATION ASSEMBLY LINE based
on a TEMPLATE CLASS [49, 53] collaboration between client and server managers, on the hand, and
the CORBA-specific COMMAND MESSAGE objects (i.e., ClientRequest and ServerRequest;
see [29, 13]), on the other hand.

OpenORB realises the SINGLE-TASK PROCESSING STATION variant of the INVOCATION ASSEM-
BLY LINE pattern, characterised by (a) a weak distinction between processing stations and tasks and
(b) a rigidly fixed number of processing stations or tasks. Processing stations are realised as operation
records of the COMMAND MESSAGE object-classes. Each COMMAND MESSAGE stipulates a signature
interface with a set of deferred operations, that is, HOOK METHODS to be completed by protocol-
specific implementations (e.g., RMI [57], IIOP [45], etc.). These operation implementation take the
role of processing tasks. Notably, processing tasks pertaining to protocol-specific MARSHALLERS
can be assigned this way. The processing flow is laid out by the client and server managers in terms of
an abstracted call sequence of HOOK METHODS.

The flexibility of task assignments, however, is limited to the possible method combinations along
a hierarchy of object-types compliant to the COMMAND MESSAGE interfaces. The task precedence is
bound to the call sequence of deferred operations implemented in the line owners and is, therefore,
fixed during runtime. The invocation data items actually processed are equally encapsulated by the
COMMAND MESSAGE objects. The central ORB object-classes act as line owners. The major limita-

F3 – 27

tions of this implementation variant of SINGLE-TASK PROCESSING STATIONS are also discussed in
[53].

7.2 Mono .NET Remoting

In Mono/R as a F/LOSS implementation of Microsoft .NET Remoting, the INVOCATION ASSEMBLY
LINE variant takes a dominant position in the overall design. Processing tasks are realised by sinks
[63, 50]. They incorporate properties of both INVOCATION ASSEMBLY LINES and INVOCATION IN-
TERCEPTORS which appear heavily interwoven.

As for INVOCATION ASSEMBLY LINE, the concepts of processing station and processing tasks
fuse to a large extent. They are embodied as so-called message, formatter, and channel sinks. They
are supported by sink providers or sink contributors. They provide an interface which is used by the
line owner elements, i.e., contexts and channels, to establish chains of sinks. Each sink provider can
only provide for registering a single sink. Message sinks aim at processing objectified representations
of MESSAGES while channel sinks operate on streamed forms of MESSAGES. Therefore, the invoca-
tion data items targeted are clearly MESSAGES. Message and channel sinks are linked in chains to
represent what we identified as instantiations of INVOCATION ASSEMBLY LINE variants. Sinks are or-
ganised as forward-linked lists and, hence, represent an intrinsic and dispersed design of SINGLE-TASK
PROCESSING STATIONS.

Line ownership and binding scopes are interdependent. On the one hand, these are variants of
CONFIGURATION GROUPS referred to as contexts. On the other hand, they cover the scope of PRO-
TOCOL PLUG-INS known as channels. Contexts [50] represent controlled execution domains for re-
mote objects and, therefore, participate in realising CONFIGURATION GROUPS. Contexts allow for at-
taching context-specific activation, lifecycle management, and extension behaviour to remote objects.
These are all realised in terms of message sinks. At the provider side, message sinks act as ultimate
invocation dispatchers (i.e., the StackBuilderSink) and lifecycle managers (i.e., the Lease-
Sink; see [63]). Channels provide the actual core BROKER functionality to the context-bound RE-
MOTE OBJECTS. Provided that target remote objects are collocated, a special-purpose channel (i.e.,
the CrossContextChannel) offers a shortcut invocation path between local contexts. If machine
boundaries need to be passed, channels represent CONFIGURATION GROUPS which install and set up
PROTOCOL PLUG-INS for the CLIENT and SERVER REQUEST HANDLERS. For the realm of channels,
the processing tasks represent core behaviour described for the BROKER and its essential component
patterns: We, roughly, find correspondences of pre-, post-, and marshaling phases for either invocation
direction. They are realised over the transition from message over formatter to channel sinks [63, 50].

7.3 Mono Olive

Two INVOCATION ASSEMBLY LINE solution variants are found in Mono/O, a F/LOSS implementation
of the Microsoft Windows Communication Foundation (WCF), formerly known as Indigo. While the
first, centred around the design elements of channels, is most visible and relevant for the overall de-
sign, the second is a small-scale, yet illustrative example hidden in the internals of Mono/O’s INVOKER
instantiation.

This first INVOCATION ASSEMBLY LINE occurrence is encountered in the collaboration of channels
and channel managers. This collaboration realises the SINGLE-TASK PROCESSING STATION vari-
ant of the pattern. Channels represent processing stations that are configured to perform a single-
only task on the invocation data items processed, i.e., MESSAGE operations. Stock channels that
come with Mono/O are limited to performing the role of MARSHALLERS (i.e., MessageEncoders)
and CLIENT or SERVER REQUEST HANDLERS. Certain channels, such as the REQUESTOR-specific
ClientRuntimeChannel, are core and non-optional elements of a Mono/O setup. Channels form

F3 – 28

INVOCATION ASSEMBLY LINES in terms of a channel stack or rather a forward-linked list of channels.
Internally, they are referred to as layered channels in such a configuration.

The idea of describing processing configurations underlying certain invocation patterns, which is
central to the INVOCATION ASSEMBLY LINE pattern, is clearly visible in Mono/O’s channels. There are
different kinds of channels which express three different invocation patterns in terms of their interfaces;
REQUEST-REPLY, FIRE AND FORGET, and a PEER-TO-PEER variant. Depending on the enclosing in-
vocation pattern, channels describe two INVOCATION ASSEMBLY LINES in terms of operation records,
one for blocking and one for non-blocking scenarios. At runtime, only one INVOCATION ASSEMBLY
LINE configuration manifests effectively.

The role of line owners is taken by the channel managers which also realise different kinds CLIENT
PROXIES. The invocation data items processed are the object representations of MESSAGES. The
binding scope is described by so-called bindings, Mono/O’s taste of CONFIGURATION GROUPS. They
provide custom channel managers and channels to realise certain remoting and transport protocols.
They are enacted either through a programming model or by deployment descriptors.

Internally, the INVOKER incarnation of Mono/O which is referred to as RequestProcessor re-
alises a second variant of the INVOCATION ASSEMBLY LINE pattern. Its processing infrastructure is
organised as a chain of ProcessorHandlers that can be compressed or extended to describe the
responsibilities of the INVOKER as a configurable set of processing tasks. Currently, this set describes
the tasks of dispatching the invocation upon the servant addressed and triggering the provider-side
INVOCATION INTERCEPTORS. This second occurrence of the INVOCATION ASSEMBLY LINE is an
example of a MULTI-TASK PROCESSING STATION implementation.

7.4 Apache Axis2

Another implementation variant of the MULTI-TASK PROCESSING STATIONS pattern is found in Axis2.
It is built around a strong conceptual discrimination between processing stations and processing tasks.
Processing stations are referred to as phases that are laid out in the global deployment descriptor;
therefore, phases are defined for the scope of the entire Axis2 BROKER. More recently, the addition
of phases through extension modules, referred to as dynamic phases, has been considered. Processing
tasks are represented by Axis2’s INVOCATION INTERCEPTORS, i.e., handlers, which are organised as
modules. Modules and per-module (i.e., dynamic) phases foster the idea of the INVOCATION ASSEM-
BLY LINE pattern. Processing stations are organised into different kinds of INVOCATION ASSEMBLY
LINES which are also specified at deployment time as so-called flows. The number of flows is prede-
termined and restricted. Axis2 distinguishes between flows for inward and outward bound invocation
data (i.e., in- and out-flow), and in- and outward bound REMOTING ERRORS (i.e., in- and out-fault
flow). Each flow manifests as an ordered set of phases. This represents an example of an extrinsically
and centrally organised control flow.

The data item processed is the INVOCATION CONTEXT which comes as a composite element
in Axis2, including the per-interaction, per-operation, per-service contexts. The INVOCATION AS-
SEMBLY LINES are attached to the combined REQUESTOR and INVOKER entity in Axis2, i.e., the
AxisEngine, as the line owner. In Axis2, we consider the INVOCATION ASSEMBLY LINE to be
found in the inter-workings of flows, phases, modules, and, finally, handlers; once per-module phases
are fully supported, the reach of this INVOCATION ASSEMBLY LINE variant will be substantially ex-
tended.

F3 – 29

7.5 Apache CXF

A further MULTI-TASK PROCESSING STATIONS instantiation comes with Apache CXF. Processing
stations, again first concepts in terms of phases, are solely deployed through PASSIVE REGISTRATION
[37] upon initialisation time. Custom phase definitions would have to be provided by injecting dedi-
cated phase managers. Processing tasks are modelled and implemented as PhaseInterceptors
which can be assigned to (a) multiple processing stations and (b) each phase can be assigned multiple
tasks. When assigning a task set to a processing station, the configuration strategy permits to specify
relative ordering for tasks handled by the same processing station.

CXF organises its phases into two major INVOCATION ASSEMBLY LINES reflecting inbound and
outbound directions, respectively. Each line owner, i.e., the REQUESTOR and INVOKER, has a pair
of inbound and outbound lines. This leaves aside lines for handling REMOTING ERRORS. REMOT-
ING ERRORS are processed by two dedicated INVOCATION ASSEMBLY LINES which branch from the
main INVOCATION ASSEMBLY LINES. Due to the dependency on phase managers, this INVOCATION
ASSEMBLY LINE variant is extrinsically mastered and centrally organised. While the INVOCATION
ASSEMBLY LINES are bound to their owners, their task assignments can be scoped in a fine grained
manner. As for the binding scope, PhaseInterceptors are registered for either the global, per-
binding, per-service, per-client, or per-endpoint scope. The invocation data items processed are MES-
SAGES only.

8 Discussion

The pattern language for INVOCATION ASSEMBLY LINES assists in (a) identifying processing com-
monalities for different BROKER roles and in (b) revealing the structural equivalence of central col-
laborators such as the REQUESTOR and the INVOKER. Processing tasks specific to each role are fully
qualified by the representational form of invocation data (i.e., kinds and strategies of marshaling and
demarshaling, canonical forms of objectified representation, etc.), their processing directions (inward,
outward) and the MESSAGE kinds to process. Therefore, the pattern language suggests a data flow
view [8] of the middleware. It aims at describing a middleware design as a series of transformations
on invocation-related data. From this angle, we aim at identifying design elements that are responsi-
ble for the transformations, the elements actually transformed, and the quality of the transformations
applied. The conceptual decomposition into atomic concepts such as processing stations organised in
processing lines, tasks, invocation data items, and binding scopes permits to express complementary
roles (e.g., consumer/provider, publisher/subscriber/notifier, etc.) based on a shared vocabulary.

When designing and developing a middleware framework, you are often required to support more than
one remoting technology based on a shared invocation and MESSAGE processing infrastructure. Web
Services (WS; [9, 39, 16, 17]), the Common Object Request Broker Architecture (CORBA; [45]),
Java Remote Method Invocation (Java RMI; [57]), Java Messaging Service (JMS; [56]), as well as
proprietary and ad hoc styles introduce important idiosyncrasies and specify control and data flow
requirements which are potentially conflicting when built on top of such a shared infrastructure. Re-
sulting design forces are addressed by the SERVICE ABSTRACTION LAYER [62, 64, 68] pattern. Such
an intermediate infrastructure distinguishes between the BROKER core infrastructure and possibly mul-
tiple frontend channels which mediate invocations in certain remoting styles and technology families.
This shields either side, the BROKER core and the frontend channels, from details orthogonal to their
concerns. Each frontend channel is realised by a CONFIGURATION GROUP [63]. CONFIGURATION
GROUPS make use of the facilities offered by the INVOCATION ASSEMBLY LINE pattern to adjust the
processing infrastructure for their needs and assign their processing tasks, represented by a proprietary
set of MARSHALLERS, PROTOCOL PLUG-INS, and INVOCATION INTERCEPTORS, accordingly.

In exemplary detail: You might plan to comply with the CORBA [45] or JAX-WS [15] speci-

F3 – 30

fications, beyond the core invocation and MESSAGE handling (e.g., MESSAGE formats). In this, you
are expected to implement CORBA-specific and JAX-WS-specific INVOCATION INTERCEPTOR se-
mantics, i.e., CORBA’s portable interceptors and JAX-WS’s handlers. This poses important design
problems: Do you foresee two widely independent INVOCATION INTERCEPTOR designs co-existing
in your framework? Or, do you plan to provide a common INVOCATION INTERCEPTOR instantiation
which is suitable for realising portable interceptors and handlers on top? This design problem is ag-
gravated because CORBA’s and JAX-WS’s INVOCATION INTERCEPTOR instantiations are situated in
predefined failure recovery schemes. These recovery models (informally labelled “flow stack model”
in the family of CORBA specifications [45, Section 1.6.4.3] or “handler execution model” in JAX-WS
[15, Section 9.3.2]) define that special-purpose points of interception are to be enforced (in a particular
ordering) once an exceptional condition is sensed. This allows developers to foresee limited recovery
or, at least, cleanup tasks. INVOCATION ASSEMBLY LINES help understand and realise such deviating
control and data flow designs.

A tentative survey of existing middleware frameworks gives credence to this problem statement
related to SERVICE ABSTRACTION LAYERS. For example, both Mono/R [40] and Apache CXF [6]
provide CORBA frontend channels (i.e., Mono/R’s IIOP channel and CXF’s CORBA binding). As
for specification-compliant INVOCATION INTERCEPTORS, CXF does not only provide its framework-
specific INVOCATION INTERCEPTOR variant (i.e., phase interceptors), but also JAX-WS handlers.

We want to recapitulate the relationship between INVOCATION ASSEMBLY LINE and INVOCATION
INTERCEPTOR, commonly found heavily interwoven in known uses of these two patterns. We may
attempt to discriminate between their matters by looking at established kinds of pattern relationships;
we limit ourselves to the usage relationship as identified by [43].

• INVOCATION ASSEMBLY LINE uses INVOCATION INTERCEPTOR: We aim at providing a SER-
VICE ABSTRACTION LAYER and devise CONFIGURATION GROUPS based thereupon. A variant
of INVOCATION ASSEMBLY LINE uses INVOCATION INTERCEPTORS to enforce the decoupling
of processing stations and processing tasks. In a straightforward reading, INVOCATION ASSEM-
BLY LINES assign a single task to each processing station. However, more complex task prece-
dence structures and the need for organising processing tasks in an atomic and modular manner
require processing stations to take responsibilities for several interdependent tasks. This task
assignment strategy can be realised by devising each processing station as a point of intercep-
tion, and, therefore, dispatcher for INVOCATION INTERCEPTORS. Tasks, in turn, are realised
as concrete INVOCATION INTERCEPTORS to be registered with a particular processing station.
It should be possible to express relative orderings of the task-representing INVOCATION IN-
TERCEPTORS to be able to enforce more complex task precedence constraints. Axis2 and CXF
provide occurrences of this relationship.

• INVOCATION INTERCEPTOR uses INVOCATION ASSEMBLY LINE: A realisation of the INVOCA-
TION INTERCEPTOR patterns calls for a versatile or extensible set of points of interception. As
prominently stated in [52, p. 137], designing an adequate model domain of interception points
which anticipates the manifold requirements of integrating applications and framework exten-
sions is non-trivial. There is both the risk of devising too limited or too bloated a number of
interception points. The INVOCATION ASSEMBLY LINE pattern can help balance these forces
by allowing to vary the number of interception points (i.e., processing stations) as needed. This
can be used to organise the registration and dispatch of INVOCATION INTERCEPTORS in a more
flexible manner.

Known uses of both the INVOCATION ASSEMBLY LINE and INVOCATION INTERCEPTOR pat-
terns exemplify this use relationship, e.g., dynamic message sinks in Mono/R [40] and message
inspectors in Mono/O [41]. The pattern story on Axis2 in [63, pp. 238] provides an outlook on
shifting the responsibility for laying out the model of interception points into the INVOCATION
INTERCEPTORS themselves by means of an AspectHandler.

F3 – 31

You may think of these two patterns as being at either end of a continuous spectrum. In its strictest
variations, the INVOCATION INTERCEPTOR pattern has been documented as a hooking technique that
preserves orthogonality to the surrounding invocation infrastructure of the BROKER [63, p. 130]. Add-
on functionality provided by INVOCATION INTERCEPTOR is allowed constrained access to the overall
BROKER state only. This characterisation applies to CORBA’s portable interceptors and certain uses
of INVOCATION INTERCEPTOR in Mono/R, i.e., dynamic message sinks. The more this orthogonality
and sanity requirements are loosened, the more appropriate is the INVOCATION INTERCEPTOR as a
solution part of the INVOCATION ASSEMBLY LINE pattern.

The inter-workings between the INVOCATION ASSEMBLY LINE and INVOCATION CONTEXT patterns
must be considered thoroughly. Both as an argument-passing strategy and as a participant in the INVO-
CATION INTERCEPTOR [31, 65], the INVOCATION CONTEXT already serves the purpose of capturing
processing information. By representing an invocation’s compositional layout in the INVOCATION
CONTEXT, e.g., by storing MESSAGES in different processing states, the necessary processing tasks
may be inferred from the compositional state of the INVOCATION CONTEXT. The INVOCATION CON-
TEXT’s composition as a state compound allows for varying processing behaviour.

Alternatively, the INVOCATION CONTEXT can be used to realise a FLAGS FOR STATES [26] strat-
egy. If the processing model throughout the BROKER or parts thereof, i.e., the INVOCATION INTER-
CEPTOR infrastructure, is organised around state flags, the INVOCATION CONTEXT offers itself as a
delivery vehicle. The state flags are accessed at important decision points and used to realise condi-
tional branching. The use of the INVOCATION CONTEXT with state flags is an example of a central
and extrinsic organisation of processing behaviour. Considering the INVOCATION CONTEXT as a state
compound represents a dispersed and extrinsic approach.

Applying the INVOCATION ASSEMBLY LINE pattern comes with certain advantages and drawbacks.
Major advantages result from an increased level of separating between concerns of developing a
framework as an intentionally incomplete, cross-domain infrastructure and concerns pertaining to
domain-specific framework extensions. Drawbacks can be explained by the increased design com-
plexity, caused by adding a further piece of abstracted-general design to your framework. Besides, we
may encounter negative effects on runtime qualities due to more extensive resource usage.

By specifying custom configurations for processing stations, tasks, task assignments, and layouts
for the so-realised INVOCATION ASSEMBLY LINES, developers of framework extensions can achieve
necessary behavioural variations through a piece of abstracted-general design and a dedicated pro-
gramming model. This facilitates adding support for component interaction styles and invocation pat-
terns not anticipated initially. The division of development labour, in particular between framework
and extension developers, can be deepened.

The ability to adjust the processing infrastructure and the decoupling of processing stations from
tasks permits to reuse existing processing facilities for developing new CONFIGURATION GROUPS.
Reuse candidates are MARSHALLERS and INVOCATION INTERCEPTORS bundled with existing ones.
More generally, INVOCATION ASSEMBLY LINES allow to capture symmetry and asymmetry found
crosscutting the BROKER pattern compound decomposed into responsibility-based LAYERS [8]. Com-
ponents residing at each layer exhibit similar or comparable requirements on the processing infrastruc-
ture. INVOCATION ASSEMBLY LINES can be used to express these commonalities and refine variations
as a composition and reconfiguration problem. Framework reuse is therefore fostered by an improved
composability.

There are important tensions caused by potential gains and losses in modular comprehensibility.
On the one hand, actual responsibilities for processing invocation data are more clearly separated from
organising them in a particular flow of processing tasks. This permits to reason about MARSHALLER,
PROTOCOL PLUG-INS, etc. in a modular manner. In addition, otherwise squattered decision points
which shape the control and data flow in the processing infrastructure can be concentrated at certain

F3 – 32

places of control. At the same time, the modular self-sufficiency of CONFIGURATION GROUPS is po-
tentially reduced. The INVOCATION ASSEMBLY LINE pattern promotes the idea of expressing a variety
of processing task dependencies based on a common infrastructure of processing stations and explicit
behavioural models. The expressible variety risks burdening the development of framework extensions
with the extra need for scrutinising the subtle details of specifying INVOCATION ASSEMBLY LINES.

Acknowledgments

We would like to thank our EuroPLoP 2009 shepherd Didi Schütz for his constructive and insightful
feedback on this paper. Thanks are also due to the participants of the writer’s workshop F for providing
substantial feedback: Anjali Das, Veli-Pekka Eloranta, Arto Juhola, Farah Lakhani, Marko Leppänen,
Ville Reijonen, Martin Wagner, and Tim Wellhausen.

References

[1] N. Abu-Ghazaleh, M. J. Lewis, and M. Govindaraju. Differential Serialization for Optimized SOAP
Performance. In Proceedings of the 13th International Symposium on High Performance Distributed
Computing (HPDC), pages 55–64, Honululu, Hawaii, June 2004.

[2] L. Aldred, W. M. P. van der Aalst, M. Dumas, and A. H. M. ter Hofstede. On the Notion of Coupling
in Communication Middleware. In Meersman et al. [38], pages 1015–1033.

[3] N. Allen. Asymmetry Between Listeners and Factories. Discussion Blog [In-
ternet], [unknow location] : Nicholas Allen, 2006 Oct - [cited 2009 June 3],
Available from: http://blogs.msdn.com/drnick/archive/2006/10/25/
asymmetry-between-listeners-and-factories.aspx, 2006.

[4] D. Andresen, D. Sexton, K. Devaram, and V. P. Ranganath. LYE: A High-Performance Caching
SOAP Implementation,. In Proceedings of the 2004 International Conference on Parallel Process-
ing (ICPP’04), pages 143–150, Los Alamitos, CA, USA, 2004. IEEE Computer Society.

[5] Apache Foundation. Apache Axis2/Java - Next Generation Web Services. http://ws.apache.
org/axis2/, last accessed: October 13, 2008.

[6] Apache Foundation. Apache CXF: An Open Source Service Framework. http://cxf.apache.
org/, last accessed: October 13, 2008.

[7] P. Avgeriou. Run-time Reconfiguration of Service-Centric Systems. In Proceedings of 11th European
Conference on Pattern Languages of Programs (EuroPlop 2006), Irsee, Germany, 2005.

[8] P. Avgeriou and U. Zdun. Architectural Patterns Revisited – A Pattern Language. In Proceedings of
10th European Conference on Pattern Languages of Programs (EuroPlop 2005), pages 1 – 39, Irsee,
Germany, July 2005.

[9] D. Box, D. Ehnebuske, G. Kakivaya, A. Layman, N. Mendelsohn, H. F. Nielsen, S. Thattle, and
D. Winer. Simpe Object Access Protocol (SOAP) 1.1. W3C Note, W3C, 2000.

[10] T. Bray, J. Paoli, C. M. Sperberg-McQueen, E. Maler, and F. Yergeau. Extensible Markup Language
(XML) 1.0 (Fifth Edition). W3C Recommendation, World Wide Web Consortium (W3C), 2008.

[11] P. A. Buhler, C. Starr, W. H. Schroder, and J. Vidal. Preparing for Service-Oriented Computing: A
Composite Design Pattern for Stubless Web Service Invocation. In Proceedings of the 4th International
Conference on Web Engineering (ICWE 2004), Munich, Germany, volume 3140 of Lecture Notes in
Computer Science, pages 603–604. Springer Berlin / Heidelberg, July 2004.

[12] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architecture — A Pattern
Language for Distributed Computing, volume 4 of Wiley Series in Software Design Patterns. John
Wiley & Sons Ltd., New York, 2007.

[13] F. Buschmann, K. Henney, and D. C. Schmidt. Pattern-Oriented Software Architecture – On Pat-
terns and Pattern Languages. Wiley Series on Software Design Patterns. John Wiley & Sons Ltd.,
Chichester, England, April 2007.

[14] F. Buschmann, R. Meunier, H. Rohnert, P. Sommerlad, and M. Stal, editors. Pattern-Oriented Software
Architecture – A System of Patterns. John Wiley & Sons Ltd., Chichester, England, 2000.

[15] R. Chinnici, M. Hadley, and R. Mordani. The Java API for XML Web Services (JAX-WS) 2.0. Java
Specification Request 224, Sun Microsystems Inc., 2005.

[16] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 1.1. W3C Note, W3C, 2001.

F3 – 33

[17] E. Christensen, F. Curbera, G. Meredith, and S. Weerawarana. Web Services Description Language
(WSDL) 2.0. W3C Recommendation, W3C, 2007.

[18] J. O. Coplien and D. C. Schmidt, editors. Pattern Languages of Program Design. Addison-Wesley,
Reading, MA, USA, 1st edition, 1995.

[19] D. Davis, A. Karmarkar, G. Pilz, S. Winkler, and Ü. Yalçinalp. Web Services Reliable Messaging
(WS-ReliableMessaging) 1.2. OASIS Standard Specification, OASIS Web Services Reliable Exchange
(WS-RX) TC, 2008.

[20] T. Dierks and C. Allen. The TLS Protocol Version 1.0. Request for Comments (RFC) 2246, The
Internet Society – Network Working Group, 1999.

[21] J. Ekanayake and D. Gannon. Common Architecture for Functional Extensions on Top of Apache Axis
2. Draft report Y790, Department of Computer Science, School of Informatics, Indiana University,
2006.

[22] O. Evans. The Young Mill-Wright and Millers Guide: Illustrated by Twenty-Eight Descriptive Plates
and a Description of an Improved Merchant Flour Mill with Engravings by C. and O. Eveans, Engi-
neers. Carey, Lea and Blanchard, Philadelphia, 1834.

[23] R. T. Fielding, J. Gettys, J. Mogul, H. Frystyk, L. Masinter, P. Leach, and T. Berners-Lee. Hypertext
Transfer Protocol – HTTP/1.1. Request for Comments (RFC) 2616, The Internet Society – Network
Working Group, June 1999.

[24] A. O. Freier, P. Karlton, and P. C. Kocher. The SSL Protocol Version 3.0. Internet draft, Netscape
Communications, November 1996.

[25] M. Gudgin, M. Hadley, N. Mendelsohn, J.-J. Moreau, H. F. Nielsen, A. Karmarkar, and Y. Lafon.
Simpe Object Access Protocol (SOAP) 1.2: Adjuncts. W3C Recommendation, W3C, April 2007.

[26] K. Henney. Methods for States. In P. Hruby and K. E. Sørensen, editors, Proceedings of the First
Nordic Conference of Pattern Languages of Programs (VikingPLoP 2002), Copenhagen, Denmark,
September 2003.

[27] M. Henning. A New Approach to Object-Oriented Middleware. IEEE Internet Computing, May-
June:66–75, 2004.

[28] M. Henning and M. Spruiell. Distributed Programming with Ice. Manual 3.3.1, ZeroC, Inc., 2009.
[29] G. Hohpe. Enterprise Integration Patterns: Designing, Building, and Deploying Messaging Solutions.

Addison-Wesley, 2nd edition, 2004.
[30] D. Jayasinghe. Dynamic Phase support. Mailing List Document, last accessed August 18, 2008, May

2007.
[31] A. Kelly. Encapsulated Execution Context. In Proceedings of EuroPLoP 2003, Workshop D, 2003.
[32] M. Kircher, M. Völter, K. Jank, C. Schwanninger, and M. Stal. Broker Revisited. In Proceedings of

EuroPLoP 2004, Irsee, Germany, 2004.
[33] P. Leitner, F. Reisenberg, and S. Dustdar. DAIOS – Efficient Dynamic Web Service Invocation. Techni-

cal Report TUV-1841-2007-01, Distributed Systems Group, Information Systems Institute, Technical
University of Vienna, 2007.

[34] C. I. V. Lopes. D: A Language Framework For Distributed Programming. Phd thesis, College of
Computer Science, Northeastern University, November 1997.

[35] O. L. Madsen. Towards Integration of State Machines and Object-Oriented Languages. In TOOLS
Europe [60], pages 261–274.

[36] D. Manolescu, M. Völter, and J. Noble, editors. Pattern Languages of Program Design 5. Addison-
Wesley Professional, 2005.

[37] K. Marquardt. Patterns for Plug-ins. In Manolescu et al. [36].
[38] R. Meersman, Z. Tari, M.-S. Hacid, J. Mylopoulos, B. Pernici, Ö. Babaoglu, H.-A. Jacobsen, J. P.

Loyall, M. Kifer, and S. Spaccapietra, editors. Proceedings of the On the Move to Meaningful In-
ternet Systems Conferences (Part I): CoopIS, DOA, and ODBASE, OTM Confederated International
Conferences, CoopIS, DOA, and ODBASE 2005, Agia Napa, Cyprus, October 31 - November 4, 2005,
volume 3760 of Lecture Notes in Computer Science. Springer, 2005.

[39] N. Mitra and Y. Lafon. Simpe Object Access Protocol (SOAP) 1.2. W3C Recommendation, W3C,
2007.

[40] Mono Project. Mono .NET Remoting. http://www.mono-project.com/, last accessed:
February 12, 2009.

[41] Mono Project. Mono Olive. http://www.mono-project.com/Olive, last accessed: February
12, 2009.

[42] A. Nadalin, C. Kaler, R. Monzillo, and P. Hallam-Baker. Web Services Security Core Specification 1.1
(WS-Security 2004). OASIS Standard Specification, Organization for the Advancement of Structured
Information Standards (OASIS), 2006.

F3 – 34

[43] J. Noble. Classifying Relationships between Object-Oriented Design Patterns. In Proceedings of the
Australian Software Engineering Conference 1998 (ASWEC’98), pages 98–109, Adelaide, Australia,
November 1998.

[44] S. Y. Nof, W. E. Wilhelm, and H.-J. Warnecke. Industrial Assembly. Chapman & Hall, 1st edition,
January 1997.

[45] OMG. Common Object Request Broker Architecture (CORBA). Core Specification 3.0.3, Object
Management Group, Inc., 2004.

[46] S. Perera, C. Herath, J. Ekanayake, E. Chinthaka, A. Ranabahu, D. Jayasinghe, S. Weerawarana, and
G. Daniels. Axis2, Middleware for Next Generation Web Services. In Proceedings of the IEEE
International Conference on Web Services (ICWS’06), pages 833–840, Los Alamitos, CA, USA, 2006.
IEEE Computer Society.

[47] J. Postel. Transmission Control Protocol. Request for Comments (RFC) 793, Information Sciences
Institute, University of Soutern California; Defense Advanced Research Projects Agency (DARPA),
1981.

[48] J. Postel. Simple Mail Transfer Protocol. Request for Comments (RFC) 821, Information Sciences
Institute, University of Soutern California, 1982.

[49] W. Pree. Framework Patterns. SIGS Books & Multimedia, 1996.
[50] I. Rammer and M. Szpuszta. Advanced .NET Remoting. APress Computer Bookshops, 2nd edition,

September 2004.
[51] B. Ramsdell. The TLS Protocol Version 1.0. Request for Comments (RFC) 2633, IETF – Network

Working Group, 2004.
[52] D. C. Schmidt, M. Stal, H. Rohnert, and F. Buschmann. Pattern-Oriented Software Architecture,

chapter Interceptor, pages 109–141. John Wiley & Sons Ltd.Wiley, Chichester, England, 2000.
[53] J. Siddle. An interactive pattern story about remote object invocation. In Proceedings of the 16th

Conference on Pattern Languages of Programs (PLOP’09), Chicago, Illinois, USA, 2009.
[54] S. Soares, P. Borba, and E. Laureano. Distribution and persistence as aspects. Software – Practice and

Experience, 36:711–759, March 2006.
[55] M. Stal. Using Architectural Patterns and Blueprints for Service-Oriented Architecture. IEEE Soft-

ware, 23(2):54–61, March-April 2006.
[56] Sun Microsystems Inc. Java Messaging Service 1.1. Java Community Specification (last accessed:

February 13, 2009), Sun Microsystems Inc., 2008.
[57] Sun Microsystems Inc. Java Remote Method Invocation. White Paper (last accessed: April 14, 2008),

Sun Microsystems Inc., 2008.
[58] The Community OpenORB Project. OpenORB 1.4.0. http://openorb.sourceforge.net/,

last accessed: November 9, 2008.
[59] E. Tilevich, W. R. Cook, and Y. Jiao. Explicit Batching for Distributed Objects. Working paper,

Department of Computer Sciences, UT Austin, 2009.
[60] TOOLS Europe, editor. 29th International Conference on Technology of Object-Oriented Languages

and Systems (TOOLS Europe 1999), 7-10 June 1999, Nancy, France. IEEE Computer Society, 1999.
[61] M. T. Valente and R. Palhares. Collocation optimizations in an aspect-oriented middleware system.

Journal of Systems and Software, 80(10):1659–1666, 2007.
[62] O. Vogel. Service Abstraction Layer. In Proceedings of EuroPLoP 2001, Irsee, Germany, 2001.
[63] M. Völter, M. Kircher, and U. Zdun. Remoting Patterns: Foundations of Enterprise, Internet and Re-

altime Distributed Object Middleware. Software Design Patterns. John Wiley & Sons Ltd., Chichester,
England, 2005.

[64] U. Zdun. Reengineering to the Web: Towards a Reference Architecture. In Proceedings of Sixth Euro-
pean Conference on Software Maintenance and Reengineering (CSMR’02), pages 164–176, Budapest,
Hungary, March 2002.

[65] U. Zdun. Patterns of Argument Passing. In Proceedings of the 4th Nordic Conference of Pattern
Language of Programs (VikingPLoP2005), pages 1 – 25, Otaniemi, Finland, 2005.

[66] U. Zdun. Engineering Loosely Coupled Software Architectures — A Pattern-Based Approach. Habil-
itation thesis, Vienna University of Economics and Business Administration, Vienna, Austria, January
2006.

[67] U. Zdun. Pattern-Based Design of a Service-Oriented Middleware for Remote Object Federations.
ACM Transactions on Internet Technology, 8(3):1–38, 2008.

[68] U. Zdun, C. Hentrich, and W. M. P. V. der Aalst. A Survey of Patterns for Service-Oriented Architec-
tures. International Journal of Internet Protocol Technology, 1(2):132–143, 2006.

[69] U. Zdun, M. Völter, and M. Kircher. Pattern-Based Design of an Asynchronous Invocation Framework
for Web Services. International Journal of Web Service Research, 1(3):42–62, 2004.

[70] C. Zhang and H.-A. Jacobsen. Resolving Feature Convolution in Middleware Systems. SIGPLAN
Notices, 39(10):188–205, 2004.

F3 – 35

A Pattern Thumbnails

Pattern Problem Solution

SERVICE ABSTRACTION LAYER (see [62,
64, 68])

Your middleware system must allow for
providing and consuming remote objects
through multiple channels, i.e., remot-
ing technologies and transport protocols.
This channel support should be indepen-
dent from the core invocation handling on
remote objects. New channel should be
addable on demand.

The SERVICE ABSTRACTION LAYER
adds an extra layer which receives and
mediates requests originating from dif-
ferent channels. Each channel contains a
channel adapter which translates back and
forth requests between the backend and
frontend channel formats. This permits
you to separate between a core BROKER
and frontend channel extensions on top of
it.

REQUESTOR (see [63, 66, 13, 32]) How can the assembly of invocation data
and disassembly of invocation results
(e.g., compiling the data needed, mar-
shaling to and demarshaling from mes-
sage representations) be organised in a
centralised manner? Can we avoid re-
implementing this functionality repeat-
edly when targeting an arbitrary number
of REMOTE OBJECTS?

REQUESTORS broker invocation data and
results between a calling and called RE-
MOTE OBJECT. They construct canoni-
cal, objectified representations of invoca-
tion data, i.e., MESSAGES. They orches-
trate the subsequent processing steps and,
thereby, shield its ancestor LAYERS from
remoting details.

INVOKER (see [63, 66, 32]) There are recurring and possibly redun-
dant processing tasks to achieve when a
MESSAGE arrives at an transport endpoint.
This includes demarshaling and disassem-
bling the invocation data, extracting con-
textual dispatch data etc. These tasks are
general for an arbitrary number of tar-
geted REMOTE OBJECTS. Can we avoid
redundancy and resulting complexity in
MESSAGE processing, invocation setup,
and invocation dispatch?

The INVOKER accepts incoming MES-
SAGES and proceeds by disassembling
them. Based on the extracted object ref-
erences, transmitted by the remote RE-
QUESTOR, the INVOKER may assemble
the actual invocation accordingly and dis-
patch it to the correct REMOTE OBJECT.
The invocation result is obtained and re-
turned to the remote REQUESTOR in re-
verse processing order.

MARSHALLER (see [63, 66, 32]); relates
to the MESSAGE pattern and its variants
(see e.g. [12, 29])

Invocation and contextual data must be
transported in the shape of MESSAGES,
i.e., as structured character and, ulti-
mately, as structured byte streams. Re-
moting technologies differ in their choice
for constructing MESSAGES. How can the
transformation back and forth between in-
memory representations and MESSAGES
be organised?

A MARSHALLER is in charge of trans-
forming invocation data, invocation re-
sults, and contextual data in either repre-
sentation. MARSHALLERS reside at both
ends of a remote invocation and they must
be customisable to support different mar-
shaling strategies and optimisations.

CLIENT and SERVER REQUEST HAN-
DLER (see [63, 66])

Managing the transport of MESSAGES in-
volves redundant and recurring tasks to be
achieved by the REQUESTOR/ INVOKER
or REMOTE OBJECTS. Transport-level
tasks include connection and resource
management, as well as the accommo-
dation of application-level and transport-
level modes of synchronisation. In addi-
tion, transport errors need to be propa-
gated or constraints enforced (e.g., time-
outs). How can we dissociate this respon-
sibility from the REQUESTOR/ INVOKER
or the REMOTE OBJECT?

The CLIENT and SERVER REQUEST HAN-
DLER are shared by all REQUESTORS
and INVOKERS of a BROKER incarnation,
respectively. They enclose all transport-
level details, the processing of REMOT-
ING ERRORS, and the transport-specific
resource management (e.g., concurrency
requirements etc.). They are either di-
rectly instructed by the REQUESTOR and
INVOKER or yield the control upon recep-
tion of transport-level events.

continued on next page

F3 – 36

continued from previous page
Pattern Problem Solution
REQUEST-REPLY [29] Two applications communicate through

an exchange of MESSAGES. Each MES-
SAGE realises a one-way conversation.
What if the sending application requires a
reply from the receiver of the initial MES-
SAGE?

To realise a two-way conversation, ex-
change pairs of request and reply MES-
SAGES. Depending on the intended cou-
pling between the sender and receiver,
send the reply MESSAGE either via the re-
quest’s back channel or, alternatively, via
its own communication channel.

FIRE AND FORGET [63] A client application wants to notify a re-
mote object of an event. Neither a result
is expected, nor does the delivery have to
be guaranteed. A one-way exchange of a
single MESSAGE is sufficient.

A FIRE AN FORGET operations is per-
formed by the REQUESTOR without ac-
knowledging the processing or delivery
status to the client. The thread of control
is yielded to the client immediately.

MESSAGE [29, 12] How can we provide (semi-) structured
exchange formats for streamed invocation
data between remoting ends?

Organise invocation (and contextual) data
in terms of MESSAGES which annotate
the streamed invocation data with certain
meta-data, e.g., identifying the streamed
data kind, its origin and destination, size.
For processing purpose, provide for a uni-
form reification in object structures.

REMOTING ERROR [63] Invocation handling by a BROKER con-
tains many sources of failure. Particular
types of error conditions are found within
the BROKER, such as network and ma-
chine failures, unavailability or miscon-
figuration of remote objects.

Capture and propagate such error condi-
tions as REMOTING ERRORS between the
remoting middleware involved. Allow for
discriminating between REMOTING ER-
RORS emanating from different sources
such as MESSAGE handling and transmis-
sion.

INTERFACE DESCRIPTION [63] Developers of client and server applica-
tions, and their toolkit of proxy and stub
code generators, must access the inter-
faces of remote objects.

Prepare and offer INTERFACE DESCRIP-
TIONS which describe the interface of
remote objects, e.g. in terms of an in-
terface description language. INTERFACE
DESCRIPTIONS negotiate operation signa-
tures and REMOTING ERROR types be-
tween the remote ends.

CONFIGURATION GROUP [63] Remote objects often share configuration
properties regarding e.g. marshaling tech-
niques and transport protocols. What is an
appropriate scope for defining and activat-
ing such properties?

Provide CONFIGURATION GROUPS which
organise INVOCATION INTERCEPTORS
and MARSHALLERS shared by a coherent
group of remote objects. Activating such
a CONFIGURATION GROUP means enact-
ing the contained marshaling and exten-
sion operations.

INVOCATION INTERCEPTOR [63] Developers of client and server applica-
tions often must provide support and add-
on functionality on top of remote invoca-
tions (e.g., securing remote invocations).
These add-ons should be realised trans-
parently without affecting remote invo-
cations directly. Also, these add-ons can
be shared between clients and remote ob-
jects.

Provide hooks placed along the invoca-
tion path. Have INVOCATION INTERCEP-
TORS operate on the invocation data di-
rectly or have them exchange informa-
tion via an INVOCATION CONTEXT to re-
alise the add-on services. INVOCATION
INTERCEPTORS are managed by middle-
ware users to create extensions.

INVOCATION CONTEXT [63] How to organise and manage contextual
or auxiliary data related to underlying re-
mote invocations without modifying the
latter and breaking orthogonality?

Contextual invocation data is embodied
by a dedicated object structure, the INVO-
CATION CONTEXT. This object structure
provides a uniform interface for manipu-
lating and extracting this context data. In
addition, it serves as a CONTEXT OBJECT
[65] for arguments passing between e.g.
INVOCATION INTERCEPTORS [63].

Table 1: Thumbnail sketches of relevant remoting patterns (see e.g. [63, 32, 66])

F3 – 37

B Invocation Data Items

The following four kinds of invocation data items can be found in BROKER-based middleware frame-
works:

• A MESSAGE [29, 12] provides means to exchange core, contextual, and auxiliary invocation
data between remoting ends, i.e., across machine and process boundaries. MESSAGES allow
us to stream in-memory information (e.g., requests and replies) into structured byte and char-
acter sequences. By structured, we mean that MESSAGES contain annotating meta-data which
describes the streamed data and facilitates its interpretation and restoration into in-memory rep-
resentations. This meta-data identifies different types of streamed data (e.g., the operation name,
parameters, etc.), its size, its origin, and its destination. Examples include a wide range of binary
(e.g., CORBA’s IIOP binary encoding [45] or ICE’s binary encoding [28]) or structured markup
MESSAGE formats (e.g., XML [10] encodings such as the different SOAP/XML variants [9, 39]).

• An INTERFACE DESCRIPTION [63] represents the interface of the remote object accessed by
the client component. These INTERFACE DESCRIPTIONS are important for client developers.
On the one hand, they permit developers to inspect interface capabilities and generate requests
manually. On the other hand, INTERFACE DESCRIPTIONS assist in generating client-side code
representations of remote interfaces, either ahead of time (i.e., by a code generator) or just in
time (i.e., by means of reflection). INTERFACE DESCRIPTIONS are often realised through an
interface description language. Commonly known examples are the Web Service Description
Language (WSDL 1.1/ 2.0; [16, 17]) and the CORBA Interface Description Language (IDL;
[45]).

• INVOCATION CONTEXTS [63] are used in situations that demand the exchange of contextual
invocation data which describes certain conditions, constraints, and processing rules imposed
upon the underlying remote invocation (for instance, negotiating message exchange patterns as
described by WSDL 2.0 [17]). At the same time, it is tedious and invasive to attach this informa-
tion to the core invocation data explicitly. This would effectively clutter the signature interfaces
of remote operations. Therefore, dedicated object structures are used to pass contextual invo-
cation data through and between the client and server endpoints. For transport, INVOCATION
CONTEXTS are streamed into dedicated parts of invocation MESSAGES. Consider SOAP headers
[9, 39] or CORBA service contexts [45] as prominent examples. Note that INVOCATION CON-
TEXTS are also important for realising an extension infrastructure for add-on services in your
middleware framework. This will be discussed in the next section.

• REMOTING ERRORS [63] are particular exceptional values reported by the REQUESTOR, IN-
VOKER, and the REQUEST HANDLERS upon sensing errors in processing invocations and MES-
SAGES, as well as in connection and transport management. REMOTING ERRORS are also com-
municated between client and server endpoints and, thus, appear in the form of particularly
structured MESSAGES. They are also commonly mapped to concrete object types in order to
be injected into the local exception handling. For example, SOAP faults [9, 39] are used in the
context of Web Services to signal REMOTING ERRORS in invocations.

C Adaptability Requirements

C.1 Orthogonal Add-on Services

By orthogonal add-on services, we mean extensions which wrap around remote invocations without
affecting the structure and format of the core invocation data and its processing. In addition, they may
apply to several variants of remote invocations at the same time. Examples include security-related

F3 – 38

add-ons (e.g., authentication and authorisation mechanisms), transaction control, logging facilities,
persistent storage, and reliable messaging solutions. The example of the Security provider and
selective encryption (see also Figure 4) falls into the category of orthogonal add-on services. Further
examples and elaborations on add-on services are provided in [52] and, in particular, [63].

C.2 Invocation Styles

When creating a BROKER-based middleware, you will find yourself confronted with the requirement
to support multiple invocation styles, e.g., kinds of two-way and one-way invocations. This is often
demanded by families of remoting technologies. For instance, Web Services (WS) describe different
message exchange patterns (MEPs; [39]) between client and server components, such as out-in, in-
only, and so on. Invocation styles represent an inherently crosscutting concern, i.e., they affect several
LAYERS at once. For instance, different invocation styles require different REQUESTOR and INVOKER
interfaces and, therefore, introduce a coupling between the BROKER core and the integrating client and
server components. Transport-level requirements often differ substantially and cause special treatment
by the CLIENT and SERVER REQUEST HANDLERS.

Invocation styles fall into a set of common invocation patterns [69, 63]. For the scope of this paper,
we emphasise the following two invocation patterns:

• The REQUEST-REPLY pattern [29] describes a two-way conversation between a client and a
server component. It involves two MESSAGES being exchanged. This pattern is found in com-
ponent interactions adopting remote procedure calls (RPCs), for instance, but is not limited to
these.

• The FIRE AND FORGET invocation pattern [69, 63] captures kinds of one-way conversation
between a client and server component. This pattern comforts scenarios in which no invocation
result is expected and the reliable delivery is not guaranteed on behalf of the client application.
There is only a single MESSAGE exchange between the two remote ends. FIRE AND FORGET
operations are commonly found in event-based and publish-subscribe component interactions.

Invocation patterns are characterised by different kinds of invocation artefacts, e.g., MESSAGES repre-
senting invocations or notifications [29, 12], and their patterns of exchange (e.g., one-way, two-way).
The multitude of design requirements and design options is further aggravated because invocation pat-
terns, being located at the application level, map to communication abstractions (e.g., send/receive) at
the transport protocol level. Invocation patterns are further qualified by different coupling dependen-
cies in terms of location, time, and process synchronisation [2]. We find, for instance, both REQUEST-
REPLY invocations that realise a process synchronisation (i.e., blocking REQUEST-REPLY) and those
which don’t (i.e., non-blocking REQUEST-REPLY). Finally, providing support for different invocation
patterns at both the client- and server-side of your framework adds further complexity to your design.

C.3 Bypassing of Layers

Bypassing describes the capability of selectively omitting processing steps (e.g., the processing of
MESSAGES by the MARSHALLER) in the LAYERS structure of your middleware framework. This serves
the purpose of realising optimisations and gaining a certain flexibility. Looking at the selective encryp-
tion example (see also Figure 4), once the Security provider has been successfully added to the
processing flow of your middleware framework, you still want to preserve the flexibility of disabling
the encryption on selected remote invocations or certain endpoints. More generally speaking, areas of
bypassing include:

F3 – 39

• Stub- or proxyless invocation handling [11, 33]: Using negotiated INTERFACE DESCRIPTIONS to
perform remote invocations often means to couple client and server components to rigid signa-
ture interfaces. Upon interface changes, client and server components must track these changes
(e.g., by regenerating stub or proxy code). This adds maintenance overhead and means a form
of coupling to be avoided in certain component interaction styles such as event-based interac-
tions. Therefore, client- and server-side interface proxies are bypassed so that REQUESTOR and
INVOKER are directly addressed to handle and to dispatch invocations.

• Message caching [4], partial (differential) marshaling [1]: These examples try to avoid the repet-
itive streaming into and the redundant objectifying from MESSAGES. This is achieved by factor-
ing out MESSAGE parts (e.g., XML markup) which remain unchanged between invocations. In
other words, these strategies mean to bypass the MARSHALLER, at least partially.

• Batched invocations [59]: Remote invocations are often performed in an atomic manner and map
directly to invocations upon single operations of remote objects. These are often small-scale op-
erations so that the tasks performed by the client components are split into a series of successive
remote invocations on the same remote object. Given that remote invocations are comparably ex-
pensive to process, negative impact on the overall client-perceived performance can be expected.
Grouping invocations into batches and processing them in such lots is a viable option, provided
that batched invocation results can be assigned to the individual invocation sources. Besides,
you have to treat intermediate invocation results specifically. Batching, therefore, groups pro-
cessing steps into blocks of request and, then, blocks of reply handling, rather than processing
pairs of requests and replies as shown in Figure 4. From the perspective of a member invocation
in a given batch, different processing steps (e.g., marshaling and/or transport operations) are
effectively omitted. They are only performed on the containing batch once.

• Collocation [61]: In case the targeted remote object resides within the same machine or even
process boundaries, important steps of processing the remote invocation can be spared. In par-
ticular, certain services offered by the MARSHALLER and REQUEST HANDLERS are superfluous.

C.4 Role Distribution

We have explained how invocation and MESSAGE handling faces extension requirements which cross-
cut the LAYERS structure of the BROKER. The LAYERS structure, while highlighting most general
aspects of the BROKER, introduces a strong notion of CLIENT-SERVER [8] relations, not only between
the higher and the lower-level LAYERS, but also between a client application and a remote object.
We say that the distribution of the client and server roles over applications and components is asym-
metric. As a result, there are disjoint sets of client- and server-only components. Asymmetry means
that (possibly multiple) client-only components are meant to initiate requests for remote invocations
from server-only components, or, more precisely, from their remote objects exposed. This asymmetry
between client-only and server-only components manifests in the unequal distribution of lookup in-
formation, i.e., server applications are only aware of clients for the scope of an incoming invocation.
Also, different resource management strategies apply to client-only and server-only applications, the
latter putting emphasis on handling multiple and possibly concurrent invocation requests. While the
CLIENT-SERVER conceptualisation is simple yet powerful for capturing remote invocation details in
distributed object systems, it is the exact opposite of what is found in certain middleware framework
designs and of what is required in advanced deployment scenarios. The following examples provide
evidence for different appearances of role symmetry. In these examples, an application takes and its
underlying middleware framework supports the role of both server and client within single component
interactions.

• Layer symmetry in invocation and MESSAGE processing: The functional decomposition of the
BROKER into LAYERS itself reflects “that there is a certain symmetry between client and server

F3 – 40

in the layered architecture. This is because the processing patterns at each layer depend on their
remote counterpart” [63, p. 128]. This layer symmetry [52, p. 136] is yielded by a dependence
between remote components within a given LAYER. This dependence is due to most processing
steps being performed on invocation data at either the client or server side requiring a counter
operation at the respective remote end. Applied to the exemplary BROKER shown in Figure 3,
this becomes most visible for the MARSHALLER. Each marshaling operation demands a corre-
sponding demarshaling operation, and vice versa. The MARSHALLER components can, thus, be
potentially shared in the client- and server-specific infrastructures. This equally applies to pro-
cessing steps for add-on services. In our motivating example of the Security provider
(see Section 4.2), en- and decrypting operations also form pairs across the remote ends. You can
translate this symmetry into a design of entities and processing behaviour shared by client- and
server-specific invocation handling.

• Asynchronous REQUEST-REPLY invocations through RESULT CALLBACKS: You will find situ-
ations in which the interacting client and server applications do not need to be coupled through
process synchronisation, yet a reply is expected by the client application. That is, the process-
ing infrastructure of the middleware yields the thread of control to the client application after
having processed the invocation request. Conversely, at the server side, the server application
yields the thread of control to the processing infrastructure after having received the invoca-
tion dispatch. Now, one strategy available to communicate a result back to the originating client
and, thus, completing the REQUEST-REPLY exchange, are RESULT CALLBACKS [63, 8]. Follow-
ing this pattern, the server side actively notifies and delivers the invocation result to the client
end. At the client side, this is made possible by a RESULT CALLBACK object. This represents a
special-purpose remote object exposing a callback interface. Upon reception of a callback invo-
cation, the callback object processes the result in accordance with the client application logic.
As the callback object is not only part of the client application, but also acts as a remote ob-
ject, a particular role symmetry can be stated. Consequently, your middleware framework needs
to provide server-specific facilities to client applications under the conditions of asynchronous
REQUEST-REPLY invocations.

• Service-oriented, adaptive system distribution: The requirements of adaptable configurations in
distributed, service-centric systems [7] are another argument which helps explain the importance
of symmetric role distributions for middleware designs. By changing configurations, we mean
that, on the one hand, service consumers and providers become available or turn unavailable
dynamically (at runtime) and that, on the other hand, the composition of service providers must
remain adaptable at any time to deliver guaranteed quality attributes. An important example are
distributed systems based on workflow engines which integrate with third-party and legacy sys-
tems through service adapters and interfaces (see e.g. [67]). In these cases, certain requirements
are imposed on your middleware framework. First, if it runs the workflow engine on top, it must
support both the client- and server-side of handling remote invocations. In other words, the work-
flow engine also offers a service interface to receive task results in a process-decoupled manner.
In turn, second, the service-providing applications must be in the position to both receive in-
vocation requests (as servers) and deliver corresponding results in an asynchronous manner (as
clients). Third, the decentralised addition, removal, and upgrade of service-providing compo-
nents requires not only facilitating the creation of service adapters and interfaces, but also the
propagation of interface changes (e.g., dynamic invocation). This is, for instance, where LAYERS
bypassing in your middleware comes into play.

Leela [67] realises such a service-oriented middleware framework. It is built around the idea of
peer components which participate both in client and service applications. That is, each peer acts
both as a remote object and an invocation client. Thus, the peer is in the position to connect to RE-
QUESTORS for handling their invocation requests as well as to serve invocation dispatches from
INVOKERS. Beyond this symmetry in invocation roles, peers are organised in terms of federa-

F3 – 41

tions which provide lookup services to all peers under equal terms, so loosening the asymmetry
in distributing lookup information (e.g., object references).

There are many ways to make use of these forms of role symmetry in your framework design. One
example we experienced is the integration of major components of REQUESTOR and INVOKER in-
carnations into single framework entities. In Axis2 [5], the AxisEngine object-class captures es-
sentials of the INVOKER and the REQUESTOR behaviour in its send and receive operations. The
AxisEngine is used by the SERVER REQUEST HANDLERS, i.e., the transport listeners in Axis2, to
dispatch incoming invocations and, conversely, by ServiceClients as a part of Axis2’s client-side
proxies to process outgoing invocation requests. Another example is found in the Windows Communi-
cation Foundation (WCF; see e.g. [41]). Beyond INVOKER and REQUESTOR (i.e., the channel factory
and the channel listener, respectively), also the REQUEST HANDLER instantiation (i.e., the channels)
is shared between the server- and client-specific infrastructures (see e.g. [3]). This uniform design is
achieved by the WCF channel factory and the channel listener deriving from a shared channel manager
entity.

Note, however, that under certain conditions it may be advisable to break this symmetry in frame-
work design intentionally. To name an example, certain lifecycling requirements and, thus, resource
management strategies may vary between the server- and client-specific elements of the processing
infrastructure. To provide scalability at the server side, imagine that you realise a pooling of INVOK-
ERS for scaling out the handling of concurrent invocations. This pooling, however, is not necessarily
needed at the client side (see e.g. [3]). Therefore, expect a coexistence of symmetric and asymmetric
design elements between the client- and server-side infrastructure of your middleware framework.

F3 – 42

���������	

����������
������

���������	����
������������������������������
�����������

���������	
���

�����������	
������������
������

����	
�����������

	������	����������	��������

�������
����������������
��������������������������
������

�����������

���������	
��	�	

���
������������������ !�����"���

�������
�������

#$�	�%

����������

&��"���������'�����������"�������(��������'�
�����������������������)����������������"���������'��
�*����������������������������

� +�������������������
����

� &����������������������������������

� ���"���������������

� ,�����-�����������������������������

�)����"��������������������������������������.���

� /�������
���������������������	�������

� +��������������������������������

0������������������"��"�����������������������������������
��������������������������	
������)����������������������������
������*�����
�������������������������'����"���������	
��*���������������������������	
�������� ��'�����
�������������������	
����������������"�� ������������������������"���������"�������� ��������� �������"�������
���������&�������������������'��

0���������������
���������������
���	���
�����������	�
���������������������������
��0�������������������������������������	
���"���&��������������������'�
��
���
�����������������������������������

)������������%���
������"��"��
���������������������
���������������������������
�����������������������
��������������&������������1���������������������&����"�������
�����*��������������1�

#$�	�2

���

���������
	�
����
���
����
�

������
	�
����
�
����

	�
����
���
�������

�������
	�
�������
��������

������������
	�
����
�
����

��������
	�
����
��������

	�
����
����

���������

	�
����
�
����

��
����������

������

&�����
���"�����������&���������	
��'������*�����'��������������������������������"��	
��������������"��������'��������'������������'�����������������&��������������������������
���

������

3���������"���������������������������������������"����������������������������������	
�������0�����������������������������
�����������������������������'������������������
��������'��

�����	����
�	�����	��	�����	���������	��������������������

�����

0�������
���

� �������������������������0��������������������	��	�����������������������������
��������� � �� �"���� ��� �� ��������� �
�� � ������� � �� � �� �������� ���"�������� ����
���������0������������
����������"�������������"������������������������������
�����"������������������

� ���!��!�����������"���������������)�����������������������������������"����
��������������������������
���	
�������

������

����	���	���������
�	 �������������������������
��������������	��������	������	���	���

�� � 	 ��������� � 	�
��� � �� � ��	� � 	�� �������� � 	����� � �� � ��� � �������� ��	�
�� � 	��
�
�����!

&����-���"�����������
�����������������'��������������"���������'������"��
��������������������

������������������	�
��	������������
���������"�������������������������"�������������������������������������"���������������
&�)��0������������������4�����������������	�
��������������������"����������������	
����������������������������"����������������

+����������������������������������
��	
�����"����������"���"����"���������

��������������������������"��
�������������������"�������0��������������������������������������*����������������	
�������������

&����������*��"�������������������������
��*�������
������
�

#$�	�5

��������	
������
����	������������

&����������'��
���������������
��������������������'�
�������������������������������������'��������������������	
�����"�����
����������������������������*��

0�������
����6�"��������������
������*������&�)������������������������	�
��������
���

�������������	�������������	���
�
�����
�������	���	�����������������
�������������������������	
��
�����
����������	�� �����! �����"���	�����������# ��������������$���%	
�&'

�����
�����(������������	����������������������������������)�����
�������	������������*����!���������������
�����
��������� ���������+	���# ������)��&'
,

�����������

&����������	�
�������������������
�����������!���

� 0� ��������� �	�
���� ���"���� � � � ��������-�� � ������ ������ � ��� � ��� � ������������
���

� &�������"���)��
���

� 1����������������*�������-����������������������������������'���������������
������"�����������������
�����������������������������)������������'�����������
��"��	
�������

0�����������	�
��������������������
����������������������������!��

� &�������������"������������������������������*������
���������������������������
������������������������������������"�����������)������
���"����������������
���	
4�����������������������������������"��������������������������
����������	
������������*���'��

� 1�����������*�����"�����������*��������������������'�����������������������"�����	
��	
������1����������������������������
����'�����������������������������������
������������������������������������"������

� �"���������������������������������������
������������������������������������	
.�������������������������������1������������������������
����
���������������	
��-������������������������

� 7���"�������������������������������"����	
�������������"��������'������������'��

#$�	�$

��������������������8����������������������"��������������������������������"������

������"���������������������������������������9��:��������������������������	
��"�������������"����������	
������)����������'�������������������������
�����
�����������	�
�����������	
���������������
��
�������������������	
���������������"�����������������

� &���'���
������������������������	
������������������
��������"��������������������;��������������������������
������������������'��
�������������0�������
���"� � �*����������� � ��������� � �� � ���� � ���������� � �� � �� � �������� � ������ �
����
�������� � ������� �0� � �������� � ��� � �������' � �������� ������ � � �����
�����
��

���������	�
����
������
������������������������

� /��'�������"�����������������������
����������������������������"�����������(���"���������������������������������
����������������������� � ������ �����
�����
�����������	�
����
�� ����
����

������������������� ����������������������������������' ��������������������������

������������
���������������������������������to provide aliases.

�)�������������������������������"����������������������'�������������������������
������������'�
��������������������������������� ����
������������	�
�����

���������

� 7��������'������������������"�������������������������������'����������������������
"�����������������������'���
8���� � �����������������
��� � ��� � � � ������ � ����������9� � �������� �����������

��

�)��'���"������'������������������������
���&�����'�����������������
���

���������

0��6�"�����������������������
����������������������&�)����������������������������������
���������������������������������������<$=��0��,��$6��������������
������������������	

�����������
������*�������������������<%%=�

������"��������������;����
�����������������*�����"�������������������'��������������	
���������������7��������
������;��52�&�)'������������������������������������;��	
��
�����������<>=�

:������������������������ ?)@�������������������������"�����������������'����������������
��

#$�	�>

 ����������
�����!�"�����

������

)����������������'�����������������*�������-���

	�
�����������"��������&�)����������"�����"�����������������

������

&��
��������������������������������;���������	
������������������������������������'������*�����'��
����������������������/������
���
���0�������������������
��

���������
��	"���
�����	��	��	�����	�����	��	������������	��	�����	�
���������#
���$
����	����������������������������	�
����

�����

0�������
�����������������������

� #�����������0�����������������������4������������������"���������������������*	
���������
������	�*����������������"����������������������������������"���������	
���������

������

������������������� �	�
��� �	�����������	����������	���	"���	����	
����	�
��	���
���
������	���	�
�������������#
��	��!

1���������������������'������������������������������������
�����������"�����"����������
������������	�
���

0� � �����
��� � �*����� � �*����� � �� � 6�"� � ��������� � ��"�� � ������� � �� � �� � �*����� � �� � ���
���������	�
������������

�����
�����(������������	����������������������������������)�����
�������	������������*����!��������������	�����	�������������
�����
��������� ���������+	���# ������)��!� ���������	���&'

�����������

0����"�����������������������
�����������!���

� 0��

�)��������������������������"�����������������������������"�����������������

0����������������������������������!���

� &�������������"����������������������������
�����������&�)�������������������
��������"������

#$�	�A

� 0����������"���'�
�������������������	
������)����������� �����
�����
�����������	�
���� ��� ����
���������������
��������'��������������*�������-����������������������

���������

0��6�"�����������<$=�����������������������������
�����������������������#)��!�
���	���+	���&�
��

#$�	�B

��
����������#��
�����

������

&������������������������������	�
��

������

;���������������������������������*�������-������������������������'��������������������
����������������������"�����������������������������������"�������������������������������
���������������������������
��
������������������

���������
�"����������	��%����������������������������������	�����	����������

�����

0�������
��������������������������������"���

� $��)�������������������
������������������������������������"���"�������
�������������������

� #�����������&��
������������������������	
�����������
��������
��"�������8�������������������������������
������������"��	
���9���������
�������������

� %������!� �&���
�"���
����������������
��������������"������������"����������������������������������

������

&���
����������� ����������
��� ����������
�����������������	�������	���
������
���������	�����	����� ��	�����	���
�
�����������������	���	��������������	��	��������$
����������	��������	������� ����������� ������	��������	�������
���!

&�������������������
��"����
����������������"������������"�����������������������������������
����

;�������
�"�������������������������������������'������
�������������������
��� ���
��������������'�����������"��
�����������*������'���������"������������������������0�������	
����������������������������8���������9��

�����������

������������������
������������������
�����������!���

� ;�������������������������8������������������������������������9�������
������	
����������������'���"������������������

���������������������������

� 0��
�� ������� ��� � ������ � �� � �� � ����������� � �� � ��������-�� �
�� � �� ������� ����
����������������������������

0�������������������������������
��������������

#$�	�C

� #������������������'�������������������
����'�����������������������"���������������
�������������������������
���������������������������������������"������������������
��������"�����������������"���������;���� �����
�����
�����������	�
��������
���
��� � ���������� � ��������� ��� � ��� � ���� � ��� � ����������� � ������� � ���
�����������������������

� ;�������������������'��*���������������������������"��
��������0�������'��������
���"����������������������	
������������������������

���������

 ��*��������������������������+������<A=����!�:�<B=�����������������������������
���
������������������������������4��

:���/7�@��"���������������������������������������

���	���
�� ���������� �0��� ������� ��������� � <C= � ��� ���������� ��� � �� ����� ��� ����4���
������

���������
��������������6�"��6&!�
������8D)��������9������������������������������������
���������������������<E=��&���*	
�������������������:�"����������������
���
�����6&!������<%2=�

#$�	�E

�������$�������
����������

������

&���������������*�������-��	�
����

�������������������"��������������	���������������"��������&�)����������"�����"���������
��������

������

&���"���������'��������	
������������'�����������������������:���"�������	
���"�����*�����"�'����������������������'�4�������	
���'����������
����������"����������������
���������"����������

�����	����
�������� �	��	�����	�����������
�����%��� � �!�! ������������$�������� ����

���$����������������
�	�������������������
���	���	���������	�	��������������
��	���
�������������	����

�����

7�"��

� $���������������!���"�������)��
����������"������*�������������������'�����"����������������������������������)�����
"��'��������������	
�������������������������

� &����������������)���-��
���
������������������"����������"����������
������������"�������"���������������
���������������

� ������������ �)� � ����������������� ���� ��������� ���
��������������������������

����������������������������������*�������������������������������
��������	
����������������������

� '���������)������ ����������� �������' ���"������� ���������� ��"�������� ���������
��������������������������������"�������
������F��'��������������������������������
��"��������������"��������������������	��������������������

������

���������� ��������� � 	�
��� � ����	��������������	������� ��������������	���
��
�
�����������	����	����������������������	�����	�������������������������������	�������	�
�	�������	������������	�
��������	�������������������	������������������	�
��������	�
������������������	��!

����������������������������������
���	
���������������"����������������������#�������������������"��������'����'����������������
������������� ������������������ ��� ��������� ������ ��������������� �
����"����� ��������
�����������������

;���������������������������'������������
�����
�����������	�
�����������������
����������"��������'����'����������������������������������"���������������������,���
���

#$�	�%G

��������������������"�������������"��"��
���������
"��8�����������������29��

7�������	��"����������������

���������	��7�������������	
��������������������������������������)�������������'������*�����'��������������������������
���
����������������

)����������*���������'���������������������������"��
����������"�������������"���������	
���������������)��������������������������"���'�
�������
�����
�����������	�
��
�"��
�������"����������������������

)��'��	
��������������������������������������"��������'�����������������������������������"��	
��������������� �����
�����
�����������	�
���� �
�����������������������������#���
�*�����'��������������������������������������� �������������������������"��������'�
��� � �� � ���� � �������� � �������� � ����� ����������������
����	
�"�����������'�
�������������	
�"����������������������������	
�"�����������'���������"����

)��'��������������������������������������4����	
�������������������������������"��������'����������������
����������������������	
������ �1�� ��������� ��������� �������� ���� ��� �4�������� ���������� �������"� � �� � ��������"��
���������������*����������"�����4����������������������������"���������������������������
���"��

&��
���0���������������"��������������	
�����������������������������������8���������'������������'�����������9'�������������������"���	
������������������������)������'�4����������'����������������������"�����������������������	
���4������������
���������������������7��������	
����"��������������������'������*�����'������������������	������������������������������(��
�����	����������

#$�	�%%

��������������'����������"���������������������������
�����
�����������	�
���

����
���������

 ��������
����������

�������������	�
������
����

! " #
	�
������������������
����������
���������$������
��������
��������������������
���

%������&
����%������&
����%������&
����%������&
����
%������&
����%������&
����%������&
�����
��'��������
&
����

%������&
����%������&
����%������&
��������'��������
&
����

�����������

0� �����
�����
� � �������� � 	�
���� ������ � ��"���� ��������!��� �"�� � �� � �������
���������	�
����

� !���"����������������"��������	���������
���������������������(��������������������"������

� F��������������������������������"��������	��������������������
���������������
��������������
���"�����������
�����'����	�������������������������

� 0�����4����������������������"��
�� � ��"��������	�������� � �������� � �������� �������� � ���� � �������� � ������� ������
������������������������������

� 0������
�����
�����������	�
���	
"�������������������"���0������������	
��������������������������������������
���������"��������������������������������
��������

� +�"���
�������������	
������������"�����������"����������
���������������������������������������	
��"�����������������������

0������
�����
�����������	�
����������������������������������
��

� 0���"���������
���

� 0���'���������������*�������������
���������������' � ������������� ���� ����������������������� ���� �������������
�
�
�����������������������������������4�������

� 0���"��������'�

��"������	
�-�����"����������)�'������*�����'�������������������
������������������	
������������������4��������'������������������������������"���������������������
�����

�)����"��'�����
����������������������������������(�����������������������������*������

� 1��������"�����������������������������"����'���������������������������������	
�����������
���������������"��������������������������������������"������������	
��

%�������

F������������������������������������"���'�
�������
���������������	�����������	
����������"�����������#����*�����'�������������"��������������������������������������
������������"�����������)���������������'��������������������������"���������������������
�*���������������������"�����������������
����H��������������������������'������������
�
�������� � ���� ��������������	
�"�������	
�"������������ ��� � �"������� � ��� � ���� � ������
��������.���

#$�	�%2

1������ ��������������������"��������' ����' ���������' ����� ������������� ������������� ����

���'������*��

���������

)����������� ?)@��������'���#�����������	
�����'���������������	
�������������������������'������������������������������������	���	
������"����������"��������������������"�����������������������&�
���	���
���������	
���� � ����� � ��� � ������� � �� � /���77�� �)� � ����
� � ��� � ������ � ������������� � ������
��������-������' �����	�������� ���������������
�� ����� �.������������� ������� ����	
����	�������������"����������������/���������"�<2=��

:���������I��;����
����	
�������I�����������������������������'��<5=�

#$�	�%5

!�"�������
�������&�������

������

&�����
����
����������	�
��

������

/����������������������������������*�������-��������������������"���������������������	
����������'��"��������������������������"���������
�������������������������������

���������
�"����������	��%����������������	��	�������	�����	������	�
	���������������
���������	�����	����������

�����

0�������
��������������������������������"���

� #���������� �&��������������������������������"���������� ��� ��������� ����������
"������

� %������� �;�������������������������������������' ���
����������"��������������
������"���������������������������������

� &���������������)��
�������������"����������
8�������������'����������������'��������������������������9'������������"�����������
�������������������"�������������������
�������"��������	������������������
��������������������������������

������

&���
��������������������������	����
������������������������������
�����������������	��
�����	���
���������������	�����	����� ��	����!�'������
�
����������	���	����������
����	��	������������������	���������	��
���	�����	�������������	��	����!

#����'��	
���"�����������"���������&���������������������
������
�����������������������������"����������
����"����������
���	���
�������"����	
����������

1���������������
�����
�����������	�
���'��������������"��������������������"��
���	
�������"��������������������������������

�����������

���
���������������������������������������
�����������!���

� ;�������������������������8������������������������������������9���������
�"��	
����������������������������������'���"��	
����������������
���������������������������

� +�������"���������������������"������������������������������
�������������������
�����������
�������������������������������(��������������������������

#$�	�%$

� +���
���-���
����������������
����������������������������

0�������������������������������
��������������

� ;�����������������"������� ������ � ���"����� ��� �������� ����������� ����������
���������� � ��� ���� ��"��
������ � �������' � �� ����"��� ��� � �� �������� � ������������
�����������
��

� &��������������"�����������������������������������"������������'��������������	
��
8���������
����9���

���������

:���� ��*������������������"��
��������
����������������������	�����������������������
���������������������������������

0��;����
��!��������<>=�����
������������������
������������������������������������
��

#$�	�%>

��
����� �"�������

������

&�����
�����
�����������	�
��"����	
�����'�����'�����������������"��������&�)����������"�����"�����������������

������

;��'������������������
�����������"��"���������

�����	����
����
�����	��	��	��	������������������������������	
����	�
������������
�������	������������������������
��������������������������	���

�����

0�������
����������������������

� (���������)���"������*����'����������������
����������������'������������������������������4�������������������������

�)���"��������)��'���������������������
���������������
������*������������

������

(���	����	��	��������������������������������	
����	�
�������������������	
������������
����	���	���	������	������	�����	�
���������������	����������
�����
� ����������

	�
��� ��	������"���������������	�
���	�� ������	��������	�������������������	��!

)�����������������������������'�����������������"�����������������������������������
���� � ��� � �"� � � � ������� � "���� � �� � � � "���� � ��� � �� � J0/K1�K+�#)?�+L� �&���� � ���
����
�����
�����������	�
��'�
�������������������
����������������������� �������J0/K1�K+�#)?�+L�"������)��
��������'���'������������������������������'��������
�������������������������

�����������

0����"�����������������������
�����������!���

� 1��'�����������
�����������
���������������������������������������

�)��������
���������������������������
�������������������'���������������������
��"�����

0�������������������������������!���

� ��"���������������H�������������������������
���

���������

0�������������;������4���<%$=�

#$�	�%A

'������(����
�����'�������

������

&�8����
�����
������������	�
��"��������&�)�
���������"�����"�����������������

������

7��������' ������ �������������� ���������������������� ��������������������������� �����
���������������������������������������
��������
�����������������������"������������	
������#����*�����'������������"��
��������������'����������'���������
��

���������
����	���	������������ ��������������
	������������������	������������	�
���
�������� ����	�����	�����������	�����	�����	�������

�����

0������������
����������
����"������

� ������������)�������������������������
���������������������'�����������������
���������������������������������

� $���������������)����������������
����������������������������

������

������������������� �	�
��� � ��	����������	 ������������������������������ �������
����������������	�� ����	�����������	�
������������������������	�
������	��������������$
�������	�����������������	��������������	�����	�����	������!

�*�����������������	�
���"��	
��������������������������������
������������"��������4�������������������������
����
�*������

�������
�������

�����	�	 �����������	
���������
�����	�	 �������	����������
����	�	 �����������	
��������
����	�	 �������	���������

�	�	 �����������	
��0�0��������
���,��	�	 �����������	
�,�
�	�	 �������	������0�0��������
���,��	�	 �������	�����,

)� � ��� � �*����� � �� � �������� ��	�	 �����������	
�� �� � ����� � �����"�� � ���
M������	�	 �����������	
�,� ��� � ��� � �� ��������� ���' � �����������'�
�	�	 �������	������ ��������"������������)�����"���������������������������
����

��������������������'����"���������	�	 �����������	
��
����������������������"���
�����������������"���������	�	 �������	�������������

�����������

0����������������������
�����������!���

#$�	�%B

� 1����������������������������"����'����������
�������
���������������������"��	
����

�)��������
�����
�����������	�
�������������'��������������������������"���������
���/�������"�����������
J�
������L���

0����������������������������������!���

� !������"����������������"���
������������������������
���'�����������	
���

���������

0��&��������������������������������
��������
�������������"�����������������	
�����<%>=�"���������������������������������������"���0��!��������������������������
��"�����������������������������"����

��� � �� � � � �������"� � �������� � ���������� � H � ����� � �� � � � ������ � �
��� � ���������
8!&),7K�?39' ����� ����������� �������.������������������<%A=� �0��7������#����
����
<%B= ��������� �� ������ �����������	
����������������� ���' ������ �"�������2�>��� � ���
�����
���'�������������������"���������"�������������

#$�	�%C

!���������
����������

������

&�8����
�����
�9����������	�
��"��������&�)�
���������"�����"�����������������

������

0�����������	�
�����������������������������	���������������������������������������	
�����������������������"���7��������	
����������������������"���������
�������������
���������4��������7����'�������������	
�������"��"���

)������������'���
�����������������������'�
�����*��"��������������������������

�����	�������	�
���������������������� ����	����������
������	����������	�����	�����

�����

0�������
����"������������

� %������ �!��������� ��������������������������������������� ���������� ����������
��
���4�������������	
"����������������)������������'����"��
�������������	���

� *��"���������7
����������������"��������������������������������������"�������	
�����������������'���

������

���������� � ����
�����
�� ��������� �	�
��� � �����	���������	������������������
�����	����������������	���������#
���!

7��������������������������������"����������������������������
�������������������������
�������"���������������������������"����������������������"�������������������������	
�����

)������������������������
��8%9�0�����������
	�
���������������������������������������"�����������������������"�����'�829�����
���859��������"�������&�)����
����*������������������
���

#���������������������������"��
��������������������������������*���������� ������������
��7�����������"������������������������	
���������;��������������"���������'������������
��	
���;����*���������"���������'������	�"��	
��"���������������8�������6:@����	
�����<%G=9��

0�����������
������������������*��������������"���������������������������
����4�����
�����	������������������"��������������������������������������#����*�����'������������

#$�	�%E

���	
����������H��
��

�����������

+�����������������������������������
�����������!���

� �������������������������
��������������������������������

�)��"����������������������������������
���"������������������������������������"��������������������������������������'�
���"���?#7�

0����������������������������������!���

� ��"�����������������������
�������������������������"�������"��������������������

� &�����������������������
���
����
���"����������������������

�)��
��������������(��������������

���������

0��&�����;���7��"���������������"���������������������8	�	���������	�����9����
��	�����������������������������
�������������"���������������<%C=�

0��6��������"��*������������������������������������
����������������������������
������������������������������������<%E=�

:��� ��������� � ������� ��������� ������ ��� � ���� ��
��������������� ��� � �������� ����������
������N ��� ����' ���������������������������� ����������������� ������������������������
7O,�����������&���*���������:�7O,�<2G=�

0��,��$6�6�"��,������������
���	
����������������"�������������������������
������������	�
����������<%%=�

#$�	�2G

����������������� ���
��

0��)��
��� � �������' �
� � ��"� � �� � �*����� � ��������� � �� ��������� � 	�
���! �����
�����
��

�������� �	�
���!� ��������� ��������� ������������ ��� ��������� ������������

�������	

0��6�"�����������������������������&�)��������������������<$=��&�����'�������"���������
��������������*�������F��'�
���"��
����
���&�����������������&���
����

;��
)������������
�����������
������������������������'����
�������������	�����������������	
����� � ���� ���������	��������������� ��� � �� � ����	�������� � �����
�������1�������������� � /� � �� � ���������� � ��"��������' � � � �����
�����������������������"����������������������������

��������������	�����	�����
���������������������	�#2�����������������2&�������� ������	��������������

���3���	�����	�������������	�����	�����
 ������������ ����
����4��#&����������������������� ���	���
��2���2
 ������������� ����
����3����	
�#& ���	���
��2�	���2
 ������������������ ����
����5������6���#& ���	���
��21��2

$���78������������
����72�������2�9�����9�2�����������2!��������������� �������������������
�����2�������2�9������9�2�����������2! �����������	���������

�������2�������2�9�����������9�2�����������28 ����������1��������

����	�����������������������
���������������������������	�#����&
��������	�����������������������
�����������������+	���#��������	
�!���������	���&
��������
����

���(������������������(�����������	�����
�����#����������	�������+	���5���	�����:��������&
���� ���������+	����������;���+	���5���	�����:����������	���
���� ��������+	������
�����������+	��������	��#20�2�9������������	
��9�2,2!������������	���&
��������;���+	���5���	�����:������������+	���#��+	���&
����

������������4������
�����	�����
 ������6%<4$=%4<���2�3> -?:-@4-<4$=%4<"2
�������������	���+	���#6%<4$=%4<&
���������4*��������#2 �
����A�����������������	����������2&

#$�	�2%

	�)������������

0�������������"���������������&�������!P�����
�����"�������"��������������������	
��������������������������;�(��
������(�
���	
������������,���2GGE����������"���������������������������������

'�"�������

&���;;;�����������"�����������6�������%G�'�2G%G�

<%= &�����&������.����	���������������������

<2= /���77���������	�������

�����������������������

<5= 6������������������'�:��������;����
��3�����I������������8�����29�	�
������

�
����
����������������������:�������	;����
�	3����	I����	
������	����2�����

<$= 0��6�"��0���������������������H�
������.�"��"�����������������������

<>= :7+?�H�;����
��!��������H
���������������������������	�������������B2$CB%837�C>9����*�

<A= 0��+������I? �,���*�#&ON��������B��1������������+��������������
������������������H�������

����������������#&O��	���K��������������

<B= :�*�����!�:��0���������!���������������:�������������,����N��������%5�
)���������7����#����H�
������

�����������*	�����%	���	������	�����	����	�������"�������

<C= &���� �+�"������ ������������ �1����� ������������ �I���� �H ���������"������	
���#����������������������#	
1�����������*�����

<E= 0��6�"��0��������������������������������6&!�������H�
������.�"���.�������*�����

<%G= 0��6�"��0����������6�"��:�����������*���������86:@9�H
������.�"������������������������������.�*�����*�����

<%%= ,��$6�:������	����������������������������$.�%�2������������

<%2= :������+�"'�1������1������
���:�"��'��������>�$�%�	�
������

����������"�����������	�����	��"���

<%5= ������������,����������&��������������������	�
���������������������������������������+/�������������Q,�������

<%$=)��������� � ���������� � �&!	;&! � �� � 0����� � 	�
���������������������������������������+/��)���������Q����������Q�&!	
;&!Q��Q0�����

<%>= &��������������������������'�������������������������������	
��	
������������������������������������

<%A= !���������������"����������	��

#$�	�22

<%B= 7������#����
����	�������

�����������������������

<%C= &�����;���7��"��������������������������	�
��������������������������2�2�����������������������

<%E= 6�����7��"����������������*��+��������	
�������������������������������6�00F������*�+��������

<2G= :�7O,�7��"���&��������������+�������������	
��������"����4�����������������>�>�������"��	�������������������

#$�	�25

Software Architecture Patterns for Distributed Machine
Control Systems

Veli-Pekka Eloranta, Johannes Koskinen, Marko Leppänen, and Ville Reijonen �

{firstname.lastname}@tut.fi

Department of Software Systems
Tampere University of Technology

Finland

Abstract. In distributed machine control system the software architecture is typically a
weak spot because developers lack good design practices. Software architecture design
patterns have been found useful for improving the software design. However, there is
no comprehensive collection of patterns for distributed machine control systems even
though many patterns and pattern languages can be applied to this domain. We carried
out architecture assessments in Finnish machine industry and this gave us a possibility
to collect recurring solutions as patterns for this domain. The resulting pattern language
constitutes a comprehensive collection of solutions for distributed machine control sys-
tems. In this paper, we suggest a pattern language for embedded distributed control
systems and introduce seven representative patterns from this language.

1 Introduction

A distributed machine control system consists of multiple embedded controllers which com-
municate with each other. These embedded controllers are devised to control, monitor or
assist the operation of equipment, machinery or plant [1]. In this context, a distributed ma-
chine control system is a software system that controls large machines such as harvesters and
mining trucks. Environments of such systems impose special requirements for the software
architecture such as distribution, real time, and fault tolerance. For example, harvester head
software architecture has to meet certain requirements because productivity demands fast op-
eration and high measurement precision. As machine control systems have become larger and
complex, the software architecture of these systems plays a crucial role in the overall quality
of the products. Yet, there is little systematic support for designing such architectures. We
present a pattern language specifically targeted for this domain. This pattern language assists
software architects in designing high-quality systems.

Although there is a plethora of design patterns for software architectures, there are fewer
patterns for high level distributed embedded control system design. The identification of pat-
terns in this domain is hard due to several reasons. Typically, the software in many embedded
systems has been poorly documented, and the hardware architecture design tends to dominate
development of the software architecture. Designers of such systems have often different area
of expertise than software system design and are more familiar with the hardware technolo-
gies than with modern software engineering. However, there are proven solutions, which are
� Copyright retain by authors. Permission granted to Hillside Europe for inclusion in the CEUR archive

of conference proceedings and for Hillside Europe website.

F5 - 1

informally communicated among the architects. The purpose of this paper is to document this
folklore as patterns.

During years 2008 and 2009, we have visited four sites of Finnish machine industry to
identify design patterns specific to this domain. The target companies are global manufactur-
ers of large machines and highly specialized vehicles intended for different branches of indus-
try. During the visits, patterns were identified in the context of an architectural assessment of
machine control systems provided by the companies. The process for architectural assessment
was derived from ATAM [2]. Because the fundamental goal was to create a comprehensive
pattern language for this domain, essential solutions were captured and documented as pat-
terns regardless of their prior existence in other pattern collections. The collection process of
pattern language is documented in more detail in [3].

In this paper, we introduce a pattern language consisting of found patterns for embedded
distributed control systems. In addition, we describe in more detail seven patterns typical for
the domain that we consider to be the most interesting. The full set is available online [4].

The patterns were formulated and written down by the members of the assessment team.
As the pattern mining process was associated with an architectural assessment, it was easy to
find the quality attributes the patterns are related to. This is visible in pattern descriptions in
the Forces section. Each force is prefixed with the related quality attribute. Quality attributes
make it easy to see which aspects of the system design the pattern affects.

A figure is sketched to describe the idea of the pattern. These figures are intended to give
a quick intuitive idea rather than a technically sound solution model. A example application
of a pattern, abstracted from the actual occurrences, is presented in the pattern description as
Known Usage section. In addition, Known Usage may incorporate a technical diagram.

2 The Pattern Language

Our pattern language consists of 45 patterns in its present form (Fig. 1). The patterns with
gray background color are presented in this paper. When constructing the language, the pat-
terns were at first grouped loosely together based on their area of effect. Patterns which were
affecting the design of larger parts of the system were grouped together and patterns with
smaller impact were put together depending on which part of the system they improve. This
gave an overall view of the pattern relationships.

In the second phase we connected the isolated groups with arrows. The semantics of an
arrow pointing from pattern A to pattern B in our language is "pattern B refines pattern A".
This means that if the architect has solved some design problems with pattern A, the design
context is now compatible with the required context of pattern B. The designer might look at
all refining patterns if there are still some unsolved problems in the context.

The connecting of the patterns simulated the thinking process of an imaginary architect,
who is tackling the problems in the design one by one and advancing from more general
problems towards more detailed design. The key question was to try to understand which is
the problem the architect tries to solve and which patterns are related to this problem. As
the patterns change the system design, the design problems will change. New patterns can be
applied to solve, if necessary, the new design problems.

The simulated use of the pattern language helped to see some "blind spots", solutions that
emerged in the software architecture assessments but were not yet identified as patterns. Often
there were separate groups of patterns that were difficult to link with the rest of the pattern

F5 - 2

������
���	

���
����������

����������	
�����������

�������
���������������

����������
���������

����	� �����!

��������"��
#$�����

%��������	
&'����

&�$�����
%��������

 ������!

%��������
������������	

����!��!
(�

���$
)���

*����������
&����	

+�������
,���!��

�����
�������

�����!�������
���������
+�������+�����������

�����-����

����	
���������

%�����!�&��-���
����,����!����������

&������%�������
���������

&������&��������!
'������������������

���������+������
)��������

.�,����!����
.��	$����
.�
��

#$�����!

)���'���
����������
��	��

(&
����������

,����!�
�/����

����������
%�0����

)��������

&������&��������!

&����&����

���������!������
����������

,����!�
�/�����'���
��������"�����

��������
������

($���������
&'������

&	�����&�����#$
,������

&������$
1�!��������

&��$����

($������
�������

�����������

�����!�������
����������

1����&�����
�&����

�����$����

*�-���
����	

Fig. 1. Pattern language for machine control systems. Grayed patterns are presented in this paper.

language. After adding a pattern solving a problem in a more general context, the orphaned
pattern group could become children of this pattern. For example, there was a group of system
updating related patterns that was not linked with the language. This was solved by adding
UPDATING pattern that describes the basic mechanisms needed for updating. Therefore, the
pattern connecting is very efficient approach to recognize patterns.

3 Patterns

In this section, we present the selected patterns that are most interesting and typical for the
domain. The selected patterns are grayed in Fig. 1.

We use the following template to describe our patterns. First, we present Context where
the pattern can be applied. The next section is the description of Problem that the pattern
will solve in the given context. In Forces section we describe the motivation or goals that one
may want to solve by applying this pattern. Furthermore, we give Solution, argument it in
Consequences section and give Resulting Context that will be the new context after applying
the pattern. Finally, Related Patterns are presented and in Known Usage one known case of
usage is given.

F5 - 3

3.1 Isolate Functionalities

Context
An embedded control system is needed to control a large machine which consists of different
kinds of sensors, actuators and controlling devices.

Problem
What is a reasonable way to design embedded control system for a large machine?

Forces
– Resource utilization: Available resources should be used efficiently.
– Analyzability: It is easier to understand smaller and less complex entities.
– Extendability: It should be easy to add new functionalities.
– Variability: It should be possible to create different products from the same base system.
– Testability: Smaller entities are easier to test.
– Reusability: Same components can be reused in different products.
– Subsetability: The implementation of different kinds of functionalities may need different

kinds of special expertises.
– Cost efficiency: Extensive wiring is expensive.
– Cost efficiency: High end components cost significantly more than low end components.
– Fault tolerance: Extensive wiring is more likely to break.
– Fault tolerance: Monolithic software in single device creates a single point of failure.

Solution
The system is divided into subsystems according to functionality. These subsystems can be
placed on separate devices. For example, there can be separate controller for drive engine,
frame, hydraulic pressure, boom, etc. As a controller takes care only its functionality, the
hardware requirements are not so high. Therefore, a suitable hardware can be also chosen
from low end components. In this way every functionality has just enough resources without
wasting them. The controlling device should be located close to the actuators and sensors it
is using. This results in less extensive, cheaper and less error prone wiring.

The devices are interconnected and they function as nodes on the bus, abstracting the
physical location of the devices. The bus allows easy extendability as new nodes can be added
without additional wiring. One of the most commonly used bus standard in large machines is
CAN [5]. The communication on the bus takes place using a common message format. For
example, CANopen [6] and J1939 [7] are commonly used standards for messaging on top of
CAN bus. The throughput of the bus limits the amount of nodes and messages that can be on
the bus at the same time. Standard bus components are cost-effective and well available. A
bus is usually implemented with single well shielded wire that is less probable to break than
a set of wires.

F5 - 4

It is possible to test the device as a standalone subsystem, as it implements only certain
functionality. This also makes the system easier to understand for developers. Implementation
of some functionalities such as boom kinematics needs special expertise. The experts do not
need to worry about the whole system as they can concentrate only on the problem area.
When the same functionality is needed in some other product, the same device and software
can be reused.

Consequences
+ Functional division makes system more understandable and manageable.
+ New nodes can be added easily within the limits of the message bus capacity.
+ Nodes do not depend statically on each other, but only on the message format.
– The capacity of the message bus limits the amount of nodes.
– Throughput may be compromised due to heavy message traffic.
– It may be difficult to know where functionality resides because the location is abstracted
by the bus.
– Changing the bus implementation may require changes in several devices.
– A single bus wire can still break, even if the possibility is smaller than with a set of wires.

Resulting Context
Distributed and scalable embedded machine control system where nodes communicate with
each other via a bus using a common message format. This pattern forms the base for a
distributed embedded control system for a large machine.

Related Patterns
MESSAGE CHANNEL [8] and MESSAGE BUS [9] describe similar mechanisms for decou-
pling nodes but in different domains.

Known Usage
Programmable Logic Controllers (PLC) are used as controlling units in a drilling machine.
These controlling units are connected to sensors and actuators required for the functionality
such as measuring drill hole depth. Every unit is a node on the bus that interconnects them. In
the drilling machine CAN bus is used as it is common bus solution for this domain. High-level
communication protocol is provided by CANopen, removing the need to design it in-house.
In addition, COTS (commercial off-the-shelf) components supporting CANopen are readily
available. The system is divided so that each functionality has its own controller. For example,
there are separate controllers for boom and drill.

F5 - 5

3.2 Permission Request

Context
A distributed embedded control system has been divided into nodes with ISOLATE FUNC-
TIONALITIES. The nodes make independent decisions about their functionality. However,
there may be situations where the autonomous functionality can not be executed as other
nodes may have conflicting needs preventing the action. For example, the cabin controller
has knowledge that parking brake is engaged, in this case the transmission controller should
not allow driving. As there are multiple dependencies, albeit simple as such, but as a whole
they form complex combinations which are difficult to synchronize.

Problem
How to ensure that an independent action of a node is not in conflict in some other nodes
goals?

Forces
– Distributability: Information required for making a decision for execution may reside on

some other node.
– Resource utilization: A node may require information from multiple nodes to make a

decision. This may cause a lot of bus traffic.
– Performance: All information can not be shared to all nodes, as it causes latency and

compromises bus throughput.
– Safety: Individual node may not take action autonomously as it may compromise safety.

For example, the machine should not move if the cabin door is open.
– Scalability: When the number of nodes increases, the dependencies between nodes grow

exponentially.
– Decoupling: A node does not need to mind of functionalities out of their responsibilities.

For example, the transmission controller does not need know that harvester head even
exists. However, harvester head operation may prevent the driving.

Solution
A node is responsible for some functionality and it has relevant information for its own re-
sponsibility area. However, different functionalities in different nodes may interfere with each
other. Additional information, which is not locally available, may be needed for decision
whether to execute functionality. Typically actions which need permission are irreversible.
There has to be a way to either get information for decision making or externalize the deci-
sion.

As the system may consist of different set of nodes, it is difficult to know beforehand
what functionalities might interfere with each other. Therefore, it is simpler to centralize
the decision making to separate permit authority. It needs information from nodes to make
a decision. The permit authority may collect the information on demand or it has collected
them from the announcements of different nodes. Usually the permit authority is located in
high-end node, as decision making may require processing power.

A device does not need to ask permission for internal actions separately, because it has
permission to execute the whole functionality. For example, if harvester head option for pre-
vention for fungal disease is activated, after cutting the tree down the root will be sprayed

F5 - 6

automatically. However, for the cutting functionality a permission has to be asked. If some-
thing occurs that interferes with the cutting functionality during operation, the action has to
be aborted with separate abort message.

Consequences
+ As the decision making is externalized, less processing capacity is required in the node.
+ The permission is always asked from the same entity. This makes the system more under-
standable.
+ The details do not need to be transferred, because permit authority processes the informa-
tion to a single decision.
+ Decreases possibility of single node to cause harm.
+ External dependencies of single node are reduced.
– Permit authority may be a single point of failure.
– Designing the permit authority may be challenging as it depends on all the information and
therefore from all the nodes.
– Different combinations of devices present different constraints for decision making.

Resulting Context
A system where a node can check from the permit authority if it can execute its functionality.

Related patterns
DEVICE PROXY and HARDWARE ABSTRACTION LAYER can be used to abstract devices, so
that if the hardware implementation changes, the permit authority is not affected. SOMEONE
IN CHARGE [10] presents a paradigm that there has to be always someone responsible for
decision. PROCESS IMAGE or VARIABLE MANAGER can be used to provide a place to store
the information required for decision making.

Known Usage
One node of the system is a dedicated authority node. This node uses VARIABLE MANAGER
to store system state. For example, the drive controller receives a command from the bus to
move the machine. Before the controller executes the command, it checks from the authority
node if the command can be executed. For example, if the machine operator has pressed
emergency stop, the command can not be executed.

F5 - 7

3.3 Third-Party Confinement

Context
A distributed embedded control system where SEPARATE REAL TIME has been applied. Real
time part is separated from high-end functionality. There are third-party applications, such as
fleet management and navigation which require a lot of processing power. The third-party
applications should not compromise the system functionality.

Problem
How to cost-efficiently provide a generic and safe platform to run third-party applications?

Forces
– Efficiency: Third-party services may need a lot of processing power.
– Safety: There is a need to run third-party applications that can not be trusted as they may

interfere with the machine functionalities.
– Maintainability: Development and maintenance of third-party services should be possible

on COTS hardware.
– Extendability: It should be simple task to add new third-party applications to the system.
– Reusability: It should be possible to use same third-party applications in different prod-

ucts.
– Installability: The machine operator should be able to install preferred third-party appli-

cations.
– Maturity: There should be a place to run immature applications without risk of interfering

with the well-tested machine functionalities. These applications may be third-party or in-
house developed.

Solution
There is usually a need to offer third-party applications, such as mapping, to improve service
quality for the machine operator. These applications rarely have real time demands but may
require a lot of CPU time. In many cases such third-party applications are readily available
and therefore make rapid development possible. Often their behavior in all situations can not
be guaranteed and they should be isolated. Thus, a component providing a platform for the
third-party application is added to the system. This component is placed at a high-end node
to isolate it from the machine control functionality. Third-party applications reside inside this
component in order to isolate them from machine specific high-end functionality.

The third-party applications communicate with the rest of the system via machine vendor
provided interfaces. These interfaces should be mature and reliable. The application platform
should have enough processing power to support resource intense third-party applications.
The other option is to limit the available resources. A common solution to provide this service
is to use PC as the high-end node.

F5 - 8

Consequences
+ Third-party applications improve user experience for the machine operator.
+ New third-party applications can be easily installed.
+ It is easier to create third-party applications for COTS hardware as COTS operating sys-
tems, application development tools, and libraries can be used.
+ Third-party applications do not interfere with other machine functionalities.
– The high-end node creates a single point of failure.
– Confinement may cause latency that may not be acceptable for some third-party applica-
tions.
– Interface between machine and third-party application is challenging to design. It may
cause maintainability issues and it may unnecessarily restrict third-party functionalities.

Resulting Context
A system with a capability to provide a restricted environment for third-party applications.

Related patterns
QUARANTINE [10] presents an error confinement system.

Known Usage
Machine vendor provides a subcontractor an interface that is used to implement remote diag-
nostics application. Remote diagnostics application uses the interface to acquire diagnostics
data, such as oil pressure and diesel consumption. Subcontractor creates an user interface
that is implemented on PC using QT. This user interface can provide different sensor values
and production information for the machine operator. Remote access on PC is used to pro-
vide work plans in the beginning of the shift and send production reports to organization’s
database after the operator’s shift.

F5 - 9

3.4 Variable Manager

Context
ISOLATE FUNCTIONALITIES has been applied, resulting in a distributed embedded control
system with consists of several autonomous nodes. These nodes must share system state
information to take proper care of their responsibilities. The node does not need to know the
source and location of the information, and all data should be accessible independently of the
provider.

Problem
How can you efficiently share systemwide information in the distributed embedded system?

Forces
– Accuracy: Data is volatile, so the local caches need to be flushed frequently.
– Efficiency: Data updating causes message traffic that should be minimized.
– Scalability: System must be scalable in terms of nodes.
– Extendability: It should be possible to add new units and they should have easy access to

the system state information without changes to the rest of the nodes.
– Adaptability: It should be easy to change the location of the state information source.
– Usability: It should be easy to find the desired information about the system state.

Solution
A common state information module is added to every node. It contains the information that
is relevant to operation of the corresponding node. This information is presented as separate
state variables. For example, the current hydraulic pressure in kilopascals may be stored as
one integer variable in the component. The values are received from and sent to other nodes
using the bus. The local value of the remote variable can be updated when a message con-
taining the changed value is noticed on the bus. All variable changes are sent as broadcast
messages so the actual location of the information is not needed. The values of the variables
can be sent and updated using different strategies: by-request, periodically, or as a side-effect,
for example, when another variable is updated.

A variable can have an associated status or age. This information can be used to check
whether the stored value of the variable is valid. If the value is not valid, the node should
send a request for newer data to the bus. In this way, the node does not need to know about
the origins of the data. The system may present even its internal state information as state
variables. Its responsibility is then to send the notifications about the changes in the relevant
variables to the bus. As there is a lot of information, which is partially not crucial for the
whole system functionality, a care should be taken on what variables are updated via the bus.
Otherwise, the bus capacity might be exceeded.

F5 - 10

Consequences
+ Assuming that the updating frequency of the shared variables is high enough, each node
gets sufficiently accurate state information concerning the other parts of the system.
+ Nodes can change information location transparently.
– This solution does not prevent the nodes from modifying the common system state so that
the information becomes inconsistent.
– The solution may result in a large number of variable names that is difficult to manage.
– Variable broadcasting may cause a lot of bus traffic.

Resulting Context
A distributed embedded control system where common state information is shared between
the nodes.

Related patterns
The pattern can be thought of as a special kind of PROXY [11] pattern. BLACKBOARD [12]
uses similar kind of data sharing. If the state information sharing mechanism is distributed,
it can been seen as a BUS ABSTRACTION. On the other hand, the implementation may use
BUS ABSTRACTION internally.

Known Usage
A heavy machinery system such as forestry machine uses multiple controllers to steer the
machine. The controllers must share information in order to co-operate. This is achieved
by every node keeping track of the needed parts of the system state information. The nodes
update their system state information by receiving messages from the bus. Some information-
carrying messages such as messages containing sensor data are sent periodically, some are
sent whenever information is available.

F5 - 11

3.5 Redundancy Switch

Context
A distributed embedded control system where hardware is replicated using the REDUNDANT
FUNCTIONALITY pattern to meet availability requirements. Redundant units are relatively
error-prone. The system needs to recognize that the active unit’s output is within acceptable
limits. If the limits are not met, the unit is considered faulty and the system needs to choose
a new replicated unit as active. The mechanism described by HEARTBEAT can not be used to
detect a failure of a unit as it generates extraneous message traffic between units and may be
too slow to detect the failure of an active unit.

Problem
How to respond rapidly to a failure in a unit and choose the active one from redundant units?

Forces
– Availability: A backup unit should take over in predetermined strict response time when

the active unit malfunctions.
– Reliability: A unit can not make sanity checks for itself as self-tests may not be reliable

enough or consume too much resources.
– Reliability: In a system with even numbered amount of units, voting is not an option as it

may result in draw.
– Resource utilization: A unit may not make sanity checks for other units, because it may

consume too much resources.
– Scalability: It should be possible to add new backup units to the system and use the same

fault detection mechanism.
– Resource utilization: Fault detection can not be implemented using mechanism such as

HEARTBEAT as it is not fast enough and the heartbeat messages from multiple units may
congest the bus.

– Fault tolerance: Malfunction of monitoring mechanism should not interfere with the out-
put of the active unit.

– Response time: Switching the active unit should be as fast as possible.

Solution
The system has redundant units that communicate with each other to keep their state con-
sistent. One is used as active unit to control the process and others are hot standby units
that can take over control when needed. A special monitoring unit or component is added
to the system. The monitoring component examines the output of replicated control units. A
monitoring component is configured so that it knows the acceptable limits of the output of
controlling units. It takes outputs of all controlling units as inputs and examines the output
and chooses which unit is used as active unit. The monitoring component then switches the
output of active unit as system’s control output.

By default monitoring component uses the active unit for output. When it detects that
output is not within the acceptable limits, but outputs of redundant units are, it chooses one
of them to produce output. The output can be changed using a hardware switch. After the
control output is switched it can boot the unit which malfunctioned, in order to get it back

F5 - 12

online as a backup unit. If the rebooted unit does not produce output which is in acceptable
limits, the monitoring mechanism takes the unit offline and may notify the system operator
or administrator.

The monitoring component does not communicate directly with the active unit. In this
way, it does not affect the operation of active unit. However, the monitoring component cre-
ates a single point of failure. Therefore the monitoring component should be robust and sim-
ple enough in order to be reliable. The failure of the monitoring component should not prevent
the active unit from functioning.

Consequences
+ Monitoring component makes the fault detection more reliable.
+ Monitoring component makes the fault detection and unit switching fast enough to meet
high availability requirements.
+ System operator or administrator can be notified of unit malfunction.
– Monitoring component creates a single point of failure. In addition, the mechanism limits
the possibilities to make a redundant monitoring component.
– If the active units output is in acceptable limits, the monitoring component does not recog-
nize a malfunction.

Resulting Context
A system where units have redundant units and the controlling which one of them is active
unit is placed on separate component. Active unit can be switched within predetermined
response time.

Related patterns
WATCHDOG can be used to detect malfunctioning units and restart them.

Known Usage
In an embedded control system, a redundancy control unit (RCU) is connected to two redun-
dant control systems. The redundancy control unit is an intelligent switch, which chooses the
currently active controller according to the operating statuses of the control systems. Alarm
from the sanity checking system signals a malfunction and RCU is notified. RCU tells to
backup unit to go active.

F5 - 13

3.6 Locker Key

Context
A distributed embedded control system where ISOLATE FUNCTIONALITIES has been ap-
plied. A controller has shared memory that multiple processes can access. Processes com-
municate with each other using some kind of messaging scheme. Intense communication
between processes may occur. Direct interprocess communication scheme involves memory
allocation for messages, copying large memory blocks from address space to another and re-
quires active participation of both, the sender and the receiver. Therefore, this kind of scheme
should be avoided.

Problem
How to efficiently communicate between processes avoiding dynamic memory allocation?

Forces
– Efficiency: Dynamic memory allocation consumes processing time. It takes time to find

and reserve free memory and copy information between memory areas.
– Throughput: Direct interprocess communication should be minimized.
– Safety: Dynamic memory allocation may fail and such a situation may cause drastic

consequences in a real time system.
– Interoperability: Interprocess communication should be carried out in a uniform way

regardless of programming language.

Solution
An embedded controller has memory that can be shared among the controller’s processes. All
the processes can access this shared memory space and it has enough free space to accommo-
date all the communication needs of the system. This memory can be used for communication
by allocating part of it as message lockers. A locker is a predefined sized memory area that
can be used to store message content. The locker size is usually determined from the largest
message size. By pre-allocating the lockers, dynamic memory allocation is not required later
on. Therefore, the interprocess communication may not run out of memory and is faster.

Every locker is has a key which can be used to access the locker content. The key can
be index, i.e. locker number. However, different key types such as Universally Unique ID
(UUID) or result from a hash function can be used. Message sender requests a locker (i.e.
a space in the shared memory) by using a reservation function. The function returns a key
to the caller. The message sender uses a function with the key to insert data in the acquired
locker. The key is sent to the receiver with direct interprocess communication scheme. The
receiver uses the key to access the message from the shared space. The locker is freed after
the access so it can be reused for other messages.

F5 - 14

Consequences
+ No dynamic memory allocation is needed for messages. This is fast and prevents memory
exhaustion.
+ The transferred data is minimal as only a key is delivered.
+ Solution offers a possibility for the receiver of the key to fetch the message data at suitable
moment.
+ Common messaging mechanism makes the system more understandable.
– Normal indexes do not provide any kind of memory protection and therefore the locker
integrity is compromised. By using UUID or hash, the key protection level is higher but also
more processing is needed.
– In the situation where there is memory management provided by the operating system it
may be costly and error-prone to map a single physical memory block to different logical
addresses on different processes.

Resulting Context
An embedded controller with fast interprocess messaging capabilities.

Related Patterns
EARLY ALLOCATION and STATIC RESOURCE ALLOCATION can be used to allocate lockers.
EARLY WARNING can be used to find out the optimal amount of lockers and also during
runtime to warn that critical amount of lockers are already in use.

Known Usage
In an elevator controller a part of the shared memory is reserved for an array that is used as
lockers. The array element size is determined from the largest possible message payload. The
lockers are used through an interface. The message sender can store the message payload to
the locker using an interface function. The interface then returns the key for the particular
locker. The sender delivers the key to the message receiver. The receiver uses the key to
retrieve the message payload through the interface. When the key is used the locker space is
freed. In other words, the same key can be used only once.

F5 - 15

4 Conclusions

In this paper, we have introduced a pattern language that was collected during architectural
evaluations in Finnish machine industry. We have illustrated this language with seven exam-
ple patterns. These patterns reflect the some characteristics of evaluated embedded systems
such as distribution, real time and fault-tolerance.

Although we have a pattern language the pattern collection work is expected to continue.
Therefore, pattern language is constantly evolving, leading to a more comprehensive and
more systematically organized pattern language of embedded machine control systems. Even
though there could be some gaps, the pattern language covers the most important discovered
solutions.

5 Acknowledgements

We like to thank our shepherd Jorge L. Ortega Arjona for his insight. Also we would like
to thank for valuable feedback our EuroPLoP 2009 workshop members Anjali Das, Arto
Juhola, Farah Lakhani, Martin Wagner, Stefan Sobernig and Tim Wellhausen. Special thanks
to our professor Kai Koskimies and colleagues who gave us valuable input. Additionally, our
appreciation goes to Jim Coplien who guided us to the path of patterns.

References

1. IEE: Embedded systems and the year 2000 problem: Guidance notes. IEE Technical Guidelines
9:1997 (1997)

2. Clements, P., Kazman, R., Klein, M.: Evaluating Software Architectures: Methods and Case Stud-
ies. Addison-Wesley Professional (2002)

3. Leppänen, M., Koskinen, J., Mikkonen, T.: Discovering a Pattern Language for Embedded Machine
Control Systems Using Architecture Evaluation Methods. In: 11th Symposium on Programming
Languages and Software Tools (SPLST’09). (2009)

4. Eloranta, V.P., Koskinen, J., Leppänen, M., Reijonen, V.: A Pattern Language for Dis-
tributed Machine Control Systems. Technical report, Tampere University of Technology (2010)
http://practise.cs.tut.fi/publications.php?project=sulake.

5. ISO 11898: Road vehicles – Controller Area Network (CAN). ISO, Geneva, Switzerland. (2003)
http://www.iso.org/.

6. CiA: CANopen specification. CiA, NÂ¸rnberg, Germany. http://www.can-cia.org/.
7. SAE: J1939 standard. SAE International, Warrendale, USA. http://www.sae.org/.
8. Buschmann, F., Henney, K., Schmidt, D.C.: Pattern-Oriented Software Architecture Volume 4: A

Pattern Language for Distributed Computing. Wiley (May 2007)
9. Hohpe, G., Woolf, B.: Enterprise Integration Patterns: Designing, Building, and Deploying Mes-

saging Solutions. Addison-Wesley Longman Publishing Co., Inc., Boston, MA, USA (2003)
10. Hanmer, R.: Patterns for Fault Tolerant Software. John Wiley & Sons (2007)
11. Vlissides, J.M., Coplien, J.O., Kerth, N.L.: Pattern Languages of Program Design 2. Addison-

Wesley Longman Publishing Co., Inc., Boston, MA, USA (1996)
12. Buschmann, F., Meunier, R., Rohnert, H., Sommerlad, P., Stal, M., Sommerlad, P., Stal, M.: Pattern-

Oriented Software Architecture, Volume 1: A System of Patterns. John Wiley & Sons (August
1996)

F5 - 16

���������	�
�������������������

���������
���������

����

�����
������

����������	
���������������������������������	
��������������	
������������������� �

��

���������

��������	�
�����

������
�����������
��������
�����
�����
�������
������������
�������

�����	�������
����������

�
�����������
�����������	�������������������������������
������

�����������	�
��

�
���	�
�
������������������
����
�
��	������������
�����	�

������	��

�������
���
�����
�������
������

�
������������������
�
����	���������������
�����	������
��

���
�����������	������
�
��	����
�������������������������������	��
������
�
�

������������

�� ����
���������

 � ����!
�����"���!���

#� ��������$��
��

%� $��&�������

'� (������)
�	�

*� +���)�
����

,� ��������
�-����!�
���
�

.� /�����/�������

0� (��1����

�2� �����/�	3����4��
�5

������
��

���6

���������
������

��

���������
�������������
�������

/�������������
7�

• ������&����	���788�����������������8��!�8������	�9����:;���<����

• =;>�������
�	���788�������5������
����8�

• + $$�������
�	���788?����
������8��������
8���? ������
8������
8�����	����

• ����������������@��
������	���788� ����8���8�

• $�;�������
�4	���788����5��!��
�
�����������	������6�

• ������/��4���������������������	�
������;����
��������� 22,6�5�

	���788����������
�����8

����������������	����

���������
����

/����!
��������
����������(������)
�	��(��1����������	�

��

�������������������������������
�����

• ���!��������!
�����"���!�������;��	���A�

• B������
�������������
����
���	�	���788�������������8����8�
9

��:222'#�,*# ,# ��,#�20*C#��5��*�������

����������

• =����������
����������

•)�����
���������������
�����
�����
�9�

� +���������	�����������������������
�������
�����	������
�������������������

D�������E����!�4�D�E$�6

• >��
�����

���������
���������
�����	�������
�������������������

� 	�������������	����������!����������
��������������	��
������������

��������������	�����������!

� �����������

�����������
��5�F������
���������
�����	�������
�������

�����������G��;������������
8������
���������
��������
��������������
8�����

��8����
����8	�����
���

��������������	��	�9

• �	���
����������������5������������

� �	�
�
���
	�����!�����	��	����������	����?�������������!�������4�����
������6�����

	��
������������
������������������
�4�����
�������������
6

� ����	��������H��	�
�
���!���
�����	�������������
�����
��������������

������������"��
������
�����
������������
��

� ��
�����!
������������
�����������

• A	�������������������������!9�

� @�
��
��������������������!���������������������������	
7

� "���
��	���������������	�����������������	��������

� "���
��	�����������	��!��	����	��������	�������

� "���
��	������������������	����	��
�

� "���
��	��������������������
��	���

� I����������������
����������$����D�����
����������
��������	�������
��

�����������
����������������������
���������!
�������	�

�)��������������	���������������
������������
�	�������	���������������

�����!9�>
����������
�����

���������	���

�<������<������<����<���
����<��

���	�
�����	����������������������

��������������������!9��	�
���
������
�����	��

���	����
��	�����������

• A	����
��	���������������������	����
�����9�

� ������������������
� �7�/���	������	�������������
���������������������	��	��

� ����������!
����	�����
�
� �������
�����
7������?�
������
������������
��	����������

!�����	��J
��������	�������	����
������������
��
�������	�
���	��������������

B�����������������	����	������	�K�D��
���������
��
�����������

� =��
�����������������������
� ��H��	�������
��	��
�
������������������	�������
�����

��������������������������������
��

• >
����������������9�

� �	����
������������������	�������
	����������������������������������
�����

������
����	������
	�������
���������
�������
���!����	������
���	�������
�����

������
��
������	�����	�������
�

� (�����������
�������&�����������L����	���L������������������!����	����

� A�
	���������������	������������	�������
��	����������������!

• ��

����������
����	��������H�
���������������������������
�������4�	�
��96�

������
����	������������
�

� �	�
��
����������

�

• �����������
������
��������
����������
�

• >����

������	����
������
	�����������������
M���
�

•)�������������������������
����������������
9�

� >����!�����	���
���������������
�����
�������	����������
���

���9

• >��������������!
����������
��������
�4������������7��
�
6������������	�

�������
���������	�������	��������
��������������������������
��	�����������	���

�
���������
�������

• A����������	��	�����
�����������	����	�����

��������������������������!
�4���

���������!6���!�������������(
�=�

���	���������	��!�������	����	����
������������

��������	�
�����

�

• �	��!�����������������	��
�����	�

• >���
���
���������	�F
����������������������G�����������������
�H����
������
	�����

��!���������������	���
!���
������������

• �	����
�������
��������������	�������
���
�����������������
�����������������������

�	�
�������

	�����������
�����������

• @��
������

• >�������4�����������
��������6�

• /���	�4���5��
�6�

• ;�������L�
������
�

����	����
��������������������������
���������������!��������
��>�����������������	����	������

������
������A���������

��5A
��������?�
��������������K�D���������
����������������
�����

=�����������
�����	����
������
	�����	��7���������	��
�������������	��������

I��������������	��
�������������	�������������������	���������
��
�������	�����������������
��

�����������������������������4�����
6���!�����������
��������������������	�
���������

������������4��
��������
�
��
���������

�N6��������������	����5������������M������
����� �

�����������	��I/��>��
��������
���������������

A�!���
��	��������	����������������	����������7�

• D��!
����������������
�

� ���!
��������������
�
������F�	
�����������
���������G

�
������!
������������������	��������������������
������������
�������	�����

• /M���
�

• �

��������
������������
�4���������	��������6���������������4��!�����I/�������!����

+ $$�����������6�

� ��
	�������������	������������������������	�����H���������������!�����

�
���	������
���������������������
������	

� ����������
�
	���������������

• �����
�4�	�����������
������6������

• @
����������������
����	����
�

����������	����
��������
	������
�)���
�����������

���� ��� �����������������!������

• =�����
�������4�
���6�������
�

• ������
�����������������������
�

• ������
��������������
���	�4�����=)>�������
6�

• �����

���
�������!�����������

• A	���
�����������
��	����
������4������������69�

• A�
	��
����
����
�������	��
�����������
�

�����!�����	�F���	�G��
�������
���
��

•)�����������
���

�������	����	�����

��������������������������!
���!��

• �	����
������
	�����F���G���
������������
8����������������
��

!""#$%&'(

!
!"#$%&'(')'*&+,'-,%./0,1

'

!"#$%&'2')'3,%./0,1'"4'50&'#6%7&4'

!
!"#$%&'8')'9%"/06'

!
!"#$%&':')';<<'-,%.'647'4,'1<6='>'"/'4,5'50&'?$%,@A,@'-6='

!
!"#$%&'B')'C%&/&&'D%,+'50&'#6%7&4'

!
!"#$%&'E')'C4/"7&'50&'F061<&'

!

!
!"#$%&'G')'H<,/"4#'/-"+'

!
"##!$%&'&()*$%+!,-.!"##*/!01##2!

