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Abstract 

Many applications in mobile robotics require the 
safe execution of a collision-free motion to a goal posi- 
tion. Planning approaches are well suited for  achiev- 
ing a goal position in known static environments, 
while real-time obstacle avoidance methods allow re- 
active motion behavior in dynamic and unknown en- 
vironments. This paper proposes the global dynamic 
window approach as a generatlization of the dynamic 
window approach. It combines methods from motion 
planning and real-time obstacle avoidance to result 
in a framework that allows robust execution of high- 
velocity, goal-directed, reactive motion for a mobile 
robot in unknown and dynamic environments. The 
global dynamic window approach is applicable to non- 
holonomic and holonomic mobile robots. 

1 Introduction 

Algorithms that generate motion for mobile robots 
can be divided into planning algorithms and real-time 
obstacle avoidance algorithms. Planning algorithms 
consider a model or map of the environment to com- 
pute a path from the robot’s current position to the 
goal, whereas obstacle avoidance algorithms usually 
use sensory information to determine a motion that 
will avoid collision with obstacles in the environment. 

For most applications in mobile robotics the en- 
vironment is partially or completely unknown and 
changes with time. Under such circumstances the tra- 
jectories generated by planning algorithms become in- 
accurate and replanning is required to reach the goal. 
Since planning can be too time-consuming to avoid 
collisions in real-time, motion commands for mobile 
robots are usually generated by computationally effi- 
cient real-time obstacle avoidance approaches. Purely 
reactive obstacle avoidance, however, may not result in 
the behavior required to accomplish the robot’s task. 

In this paper the global dynamic window approach 
is introduced. This framework combines planning and 
real-time obstacle avoidance algorithms to generate 
motions for mobile robots that achieve the robot’s 
task, while securely navigating in an unknown and 
dynamic environment. The framework is applied to 
high-speed navigation in unknown environments us- 
ing a holonomic mobile base. 

2 Related Work 

2.1 Real-Time Obstacle Avoidance 

Most of the earlier real-time obstacle avoidance ap- 
proaches were based on artificial potential fields [lo]. 
The robot is kept at a safe distance from obstacles 
by a repulsive force, while being drawn towards the 
goal by an attractive force. To refine the trajectories 
generated by this approach, various extensions have 
been suggested [9]. While artificial potential field ap- 
proaches are computationally efficient, the robot can 
get stuck in local minima before reaching the goal posi- 
tion. This is due to the fact that no information about 
the connectivity of the free space is used to determine 
the motion. 

In the vector field histogram approach [2] a direc- 
tion of motion is chosen based on sensory information 
such that obstacles are avoided while the robot contin- 
ues to move towards the goal. As with the potential 
field approach the robot can get trapped in local min- 
ima. Extending this approach, parameterized path 
families [5],  or more specifically steer angle fields, take 
the nonholonomic kinematic constraints of the robot 
into account when choosing a motion. This reduces 
the search space and makes the approach more effi- 
cient. 

The curvature-velocity method [14] and the dy- 
namic window approach [SI are based on the steer 
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angle field approach. In addition to  kinematic con- 
strains these frameworks take into account dynamic 
constraints to reduce the search space even further. 
Although these approaches yield very good results for 
obstacle avoidance at high velocities, the problem of 
local minima persists. 

The dynamic window approach has been integrated 
with a gross motion planner [13] and was extended to  
use a map in conjunction with sensory information 
to generate collision free motion [7]. A Bayesian ap- 
proach to obstacle avoidance was linked with global 
path planning [8]. However, these approaches require 
a priori knowledge about the environment for the ex- 
ecution of a motion command. 

3 Holonomic Dynamic Window Ap- 
proach 

Holonomic robots have several advantages over car- 
like and synchro-drive robots. Since they allow instan- 
taneous acceleration in all directions they are much 
easier to control and have an increased maneuverabil- 
ity. The orientation of the robot can be controlled 
independently of its motion in the plane. In addition, 
the equations of motion have a simple closed-form so- 
lution. This provides the motivation for the general- 
ization of the dynamic window approach to  holonomic 
robots presented in this section. In Section 4 the holo- 
nomic dynamic window approach will be integrated 
with a global planning method to result in the global 
dynamic window approach. 

2.2 Motion Planning 
3.1 Dynamic Window Approach 

There is a large number of robot motion planning 
algorithms presented in the literature [12]. In low- 
dimensional configuration spaces, like those for mobile 
robots, the use of a navigation function [ll] seems to 
be an appealing approach to  motion planning. A nav- 
igation function represents a virtually local minima- 
free1 artificial potential function that can be used lo- 
cally to guide the robot to  the global goal. Construct- 
ing a grid-based navigation function results in very 
simple and computationally efficient motion planning 
algorithms [l]. 

Other navigation functions include the harmonic 
potential function [4] and circulatory fields [15]. Har- 
monic potential functions use fluid dynamics to com- 
pute a local minima-free potential function. In the 
circulatory field approach obstacles are surrounded by 
a magnetic field caused by a fictitious current flowing 
through their surface. The robot navigates around an 
obstacle by aligning itself with this field. These ap- 
proaches require complete knowledge of the shape of 
obstacles, their location, and motion to construct a 
navigation function. This is an unreasonable assump- 
tion for many applications in mobile robotics. 

In another approach the concepts of potential field- 
based obstacle avoidance and approximate cell decom- 
position motion planning were used in conjunction to 
yield a framework for planning and execution of robot 
motion [3]. This framework requires partial knowledge 
of the environment but will tolerate small, unforeseen 
obstacles and minor changes in the environment. 

Saddle points are ignored here. 

The dynamic window approach [6] is an obsta- 
cle avoidance method that takes into account the 
kinematic and dynamic constraints of a synchro-drive 
robot. Kinematic constraints are taken into account 
by directly searching the velocity space of a synchro- 
drive robot. The search space is the set of tuples (v, w )  
of translational velocities v and rotational velocities w 
that are achievable by the robot. 

Among all velocity tuples those are selected that 
allow the robot to come to a stop before hitting an 
obstacle, given the current position, the current ve- 
locity, and the acceleration capabilities of the robot. 
These velocities are called the admissible velocities. 

Restricting the search to  a dynamic window fur- 
ther reduces the search space in accordance with dy- 
namic limitations of the robot. The dynamic window 
contains those velocities that can be achieved by the 
robot, given its current velocity and its acceleration 
capabilities, within a given time interval. This time 
interval corresponds to a servo tick of the control loop. 
Figure 1 illustrates the subdivision of the search space 
in the dynamic window approach. The dynamic win- 
dow is a rectangle, since acceleration capabilities for 
translation and steering are independent. 

To determine the next motion command all admis- 
sible velocities within the dynamic window are consid- 
ered. Among those a velocity is chosen that maximizes 
the alignment of the robot with the target and the 
length of the trajectory until an obstacle is reached. 

Using this approach, robust obstacle avoidance be- 
havior has been demonstrated at high velocities [6].  
However, since the dynamic window approach only 
considers goal heading and no connectivity informa- 
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W m i n  

admissible velocities blocked by obstacle 

Figure 1: Search space for dynamic window approach 

tion about the free space, it is still susceptible to local 
minima. 

3.2 Search Space 

The most important difference between the dy- 
namic window approach and the holonomic dynamic 
window approach is the overall search space. A holo- 
nomic robot has no limitations on the direction of in- 
stantaneous acceleration. However, it is impractical 
to search the entire space of possible velocity changes. 
Therefore a subset has to be selected that exploits the 
kinematic advantages of holonomicity while retaining 
computational feasibility. 

For the holonomic dynamic window approach the 
search space consists of all possible velocities in a 
global reference frame. It is discretized in polar co- 
ordinates, choosing a fixed set of directions and scalar 
velocities. This results in a circular search space and 
a circular dynamic window, its depicted in Figure 2. 

4 VY 

admissible velocities blocked by obstacle 

Figure 2: Search space for holonomic dynamic window 
approach 

The use of a global reference frame allows the de- 
coupling of the two translational axes, yielding the fol- 
lowing equation of motion for the x-axis for constant 

acceleration a, and velocity w,: 

1 
 ti) = ~ ( 0 )  + w x t i  + axt dt = ~ ( 0 )  + w,ti + -~,t:  li 2 

and similarly for the y-axis. These equations show 
that when accelerating from a constant velocity to 
achieve a given velocity command the robot describes 
a quadratic curve until the desired velocity is attained. 
The curvature of those curves depends on the magni- 
tude of the acceleration. In order to achieve curves 
with low curvature the two-dimensional search space 
shown in Figure 2 is searched for different accelera- 
tions. Low accelerations result in low curvature and 
allow to imitate car-like behavior. If the accelerations 
are chosen such that axy = a, = ay the resulting 
overall search space is three-dimensional and a motion 
command is defined by v' = (0, , wy) and a' = (azy, azy) .  

To determine if a motion command (5, a') is admis- 
sible the length of the resulting trajectory has to be 
determined. Simulation of the base motion according 
to the equations of motion will determine the dura- 
tion ti of the trajectory until hitting an obstacle. The 
length l(v',a',ti) of the trajectory can then be com- 
puted analytically: 

l(v',a',ti) = Li dt 

= I"y (w, + ~ , t ) ~  + (wY + ~ , t ) ~  dt. 

If the length of the trajectory permits the robot to 
come to a halt after moving for the duration of one 
servo tick, the motion command is considered admis- 
sible. 

3.3 Objective Function 

A desired velocity v' = (w,, wy) and an acceleration 
a' = (U,, u Y )  are selected from the search space accord- 
ing to the objective function 

where p' = (5, y) is the position vector of the mobile 
base. This objective function is a linear combination 
of three functions. The ranges of those functions are 
normalized to the interval [0,1]. 

To favor trajectories that are directed towards the 
goal, the function alzgn(p',v') = 1-181/r, where8 is the 
angle between the direction of motion and goal head- 
ing, results in large values for good alignment with 
the goal heading. The goal heading is modified if the 
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robot’s lateral distance to an obstacle becomes too 
small. 

The function vel(;) is defined as follows: 

where U,,, the maximum velocity the robot can 
achieve. It will favor high velocities if the robot is 
far from the goal and low velocities when it is close. If 
the trajectory that results from the motion command 
(G, 2) passes through the goal region, the value of the 
binary function goal(p’, G, Z) is 1 , otherwise it is 0. The 
parameters a,  p, and y can be adjusted to modify the 
behavior of the robot. The algorithm’s performance is 
robust over a wide range of values. 

4 Global Dynamic Window Approach 

The dynamic window approach and the holonomic 
dynamic window approach are both susceptible to lo- 
cal minima. The robot’s motion with respect to  the 
goal is only influenced by the goal heading. This lim- 
itation can be removed by incorporating information 
about the connectivity of the free space into the selec- 
tion of a motion command. 

The global dynamic window approach presented in 
this section extends the dynamic window approach 
[SI and the holonomic dynamic window approach pre- 
sented in Section 3 by incorporating a simple and effi- 
cient motion planning algorithm. The global planning 
is efficient enough to be executed for each servo tick 
of the motion controller. This allows robot navigation 
in real-time in a globally goal-directed fashion. 

No prior knowledge about the environment is as- 
sumed in the global dynamic window approach. Such 
knowledge can be provided in form of a model of the 
environment or be acquired during motion through 
sensing. 

4.1 Free Space Connectivity 

To exploit information about the connectivity of 
the free space, a model of the environment is required. 
The model-based dynamic window approach [.7] incor- 
porates sensory data and a given map of the envi- 
ronment to determine collision-free motion. A similar 
technique could also be adapted for the global dynamic 
window approach. The work presented in this paper 
is restricted to the case where no a priori knowledge 
about the environment is available and hence global 
planning algorithms cannot be applied. 

To collect information about the connectivity of the 
free space sensory information is merged into a map. 
In order to achieve real-time performance for the over- 
all algorithm no preprocessing of the sensory data is 
performed. At  each servo tick the sensory data is 
translated into configuration space obstacles that are 
represented in an occupancy grid. 

This simple approach is motivated by the fact that 
only connectivity information about the free space is 
needed. Furthermore, the mobile base used in the ex- 
periments presented in Section 5 has little slippage 
resulting in maps that are very accurate. For collision 
avoidance the motion integration error is irrelevant , 
as the map is frequently updated with very accurate 
sensory information. 

4.2 Navigation Function 

Since the environment is represented as an occu- 
pancy grid, a grid-based navigation function is a nat- 
ural and efficient choice for a global planning algo- 
rithm. The global dynamic window approach com- 
bines the dynamic window approach for reactive ob- 
stacle avoidance with the global, local minima-free 
navigation function NF1 [l, 121. This function is com- 
puted using a wave-propagation technique starting at 
the goal. It labels cells in the occupancy grid with the 
L1 distance to the goal, taking into account obstruc- 
tions by obstacles. The result is a local minima-free 
potential function with a unique minimum at the goal. 

Employed with classical motion planning algo- 
rithms the navigation function NF1 has the disadvan- 
tage of producing trajectories that graze obstacles. Se- 
lecting motion commands using the dynamic window 
approach eliminates this problem, since a minimum 
clearance from obstacles is maintained. 

The classical motion planning algorithm [l, 121 
computes NF1 for the entire occupancy grid. This 
is motivated by the fact that the same NF1 can be 
reused for every location of the robot as long as the 
environment does not change. The global dynamic 
window approach recomputes the NF1 each time a 
motion command is selected, allowing it to  operate in 
unknown and dynamic environments. Hence it is not 
necessary and not desirable to compute NFl for the 
entire grid. Instead, NF1 is computed in a rectangu- 
lar region aligned with the goal heading. The width 
of this rectangular region is increased until the robot’s 
current position is reached by the wave front. 

Figure 3 shows a narrow NF1 for an unobstructed 
path and a wider NF1 for an obstructed path. The 
NF1 is shown as gradient colors, the robot is the black 
dot at the bottom of the NF1 and the goal position 
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Figure 3: Navigation function computation 

is the gray dot in the darker region of the NF1, ob- 
stacles are shown in black. Although widening the 
NF1 may cause partial recomputation of previously 
computed regions, this modification to the NF1 algo- 
rithms greatly reduces the cost of NF1 computation. 

4.3 Objective Function 

The objective function of the dynamic window and 
the holonomic dynamic window approach described 
in Section 3.3 can easily be modified to incorpo- 
rate the navigation function described in Section 4.2. 
The function alzgn(p',v') is replaced by the function 
nfl(p',v'). This function's value increases if v'is aligned 
with the gradient of the navigation function at the 
robot's location 5. This makes the global dynamic 
window approach immune to local minima, since NF1 
is a local minima-free potential. 

In addition, the function Anf l  is added to  the ob- 
jective function. Its value indicates by how much a 
motion command is expected to reduce the value of 
the NF1 during the next servo tick. This favors mo- 
tion commands that quickly reduce the distance to 
the goal. The objective functions Og for the global 
dynamic window is then defined as: 

The value of nfl(t7,p') can be determined by exam- 
ining the neighbors of the grid cell that corresponds 
to the robot's location. However, since NF1 is grid- 
based, its gradient can only be a multiple of 45", re- 
sulting in unnatural behavior along passages that are 
not grid-aligned. By examining neighbors at a con- 
stant distance from the cell that corresponds to  the 
robot's position this behavior can be improved. Sim- 
ilar to the holonomic dynamic window approach, the 
desired direction of motion is modified to maintain a 
safe lateral distance to obstacles. 

5 Experimental Results 

The global holonomic dy- 
namic window approach has 
been implemented and tested on 
the Nomad XR4000 mobile base 
by Nomadic Technologies, Inc. 
shown in Figure 4. This base 
moves at omnidirectional trans- 
lational velocities of up to 1.2y 
and accelerations of up to 1 . 5 3 .  
It is equipped with a SICK laser 
range finder with a field of view 
of 180" and an accuracy of up Figure 4: The 

Nomad XR4000 to lcm. Using the on-board 450 
MHz PC, servo rates of above 15 Hz are achieved for 
map sizes of 30m x 30m at a resolution of 5 m .  The 
robot navigates reliably with very high velocities in 
tight environments. In long but not necessarily wide 
open areas the base moves at its maximum velocity. 

Figure 5 shows two example executions of the global 
holonomic dynamic window approach. The velocities 
achieved in both examples are above 1.0:. Obsta- 
cles are shown in black. The trajectory of the robot is 
shown as a line and the current NF1 is shown as a gra- 
dient. The four images on the left represent a 6m x 6m 
map, the images on the right a 10m x lorn map, both 
with grid cell sizes of 5cm x 5cm. In both examples the 
robot started without any knowledge about the envi- 
ronment. The first image in both cases corresponds to 
the robot at rest; the obstacles are only those visible 
from its position. As the robot starts moving, obsta- 
cles are added to the map and the NF1 is recomputed 
correspondingly, until the robot reaches the goal. 

The third image on the right side shows a situation 
where sensory information indicates that the goal is 
obstructed. Hence, no NF1 can be constructed and 
the global dynamic window approach reduces to the 
dynamic window approach. When updated sensory in- 
formation shows that the goal is not obstructed, as can 
be seen in the fourth image, the NF1 is reconstructed. 

6 Conclusion 
The dynamic window approach to obstacle avoid- 

ance was extended to holonomic robots. Taking 
advantage of the increased maneuverability of such 
robots, obstacle avoidance can be performed in dy- 
namic environments at high velocities. 

Integrating the holonomic dynamic window ap- 
proach with an efficient motion planning method re- 
sults in the global dynamic window approach. It is 
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m 
Start 

6m x 6711 map 10m x 10m map 

Figure 5: Two example executions 

an effective framework for global, reactive robot nav- 
igation. Global goal behavior is integrated with lo- 
cal obstacle avoidance. The global dynamic window 
approach is particularly well suited for unknown and 
changing environments. It allows the robot to navi- 
gate safely and at high speeds to reach a goal position 
without prior knowledge of the environment. 
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