
Fugatto

Fugatto 1
Foundational Generative Audio Transformer Opus 1

NVIDIA
Rafael Valle, Rohan Badlani, Zhifeng Kong, Sang-gil Lee, Arushi Goel, Sungwon Kim,
João Felipe Santos, Shuqi Dai, Siddharth Gururani, Aya AlJa’fari, Alex Liu, Kevin Shih,
Wei Ping, Bryan Catanzaro
rafaelvalle@nvidia.com

ABSTRACT

Fugatto is a versatile audio synthesis and transformation model capable of follow-
ing free-form text instructions with optional audio inputs. While large language
models (LLMs) trained with text on a simple next-token prediction objective can
learn to infer instructions directly from the data, models trained solely on audio
data lack this capacity. This is because audio data does not inherently contain the
instructions that were used to generate it. To overcome this challenge, we introduce
a specialized dataset generation approach optimized for producing a wide range of
audio generation and transformation tasks, ensuring the data reveals meaningful
relationships between audio and language. Another challenge lies in achieving
compositional abilities – such as combining, interpolating between, or negating
instructions – using data alone. To address it, we propose ComposableART , an
inference-time technique that extends classifier-free guidance to compositional
guidance. It enables the seamless and flexible composition of instructions, leading
to highly customizable audio outputs outside the training distribution. Our evalua-
tions across a diverse set of tasks demonstrate that Fugatto performs competitively
with specialized models, while ComposableART enhances its sonic palette and
control over synthesis. Most notably, we highlight our framework’s ability to
synthesize emergent sounds – sonic phenomena that transcend conventional audio
generation – unlocking new creative possibilities. Demo Website.

1 INTRODUCTION

Recent research has sparked a strong debate between specialist and generalist models. While
specialist models excel at specific tasks, they tend to be brittle, often struggling with changes in data
distribution or task requirements. In contrast, generalist models eliminate the need for task-specific
designs, can process diverse data, and scale effectively with increased compute and data. They
also demonstrate emergent capabilities, enabling unsupervised task learning by leveraging broader
datasets (Radford et al., 2019) and demonstrations (Brown et al., 2020). In this paper, we propose a
strategy for developing a generalist audio synthesis and transformation model, called Fugatto, and
an inference method for composing instructions through latent space manipulation, including from
different models, called Composable Audio Representation Transformation (ComposableART).

Large language models (LLMs) have demonstrated impressive unsupervised multitask learning
capabilities in the text domain (Radford et al., 2019), where instructions can be inferred from the
data itself. However, such instructions are typically absent in the audio domain, making it difficult to
generalize to unseen tasks without explicit guidance. Although models such as (Wang et al., 2024;
Yang et al., 2023; Vyas et al., 2023) exist, they have several limitations enumerated in Table 1. In
this panorama, dataset and instruction generation is necessary.

We employ a multifaceted data and instruction generation strategy that considerably expands the
range of tasks of audio generation models. First, we use LLMs to generate and augment instructions
and captions, providing Fugatto with instructions that are closer to free-form instructions (Goel
et al., 2024; Doh et al., 2023). Second, we develop instructions that can be either absolute (e.g.,

1

https://fugatto.github.io/

Fugatto

”synthesize a happy voice”) or relative (e.g., ”increase the happiness of this voice”), enabling Fugatto
to handle a wide array of dynamic tasks (OpenAI, 2024). Third, we leverage audio understanding
models (Kong et al., 2024a; Gong et al., 2023) to create descriptions and synthetic captions for
audio clips, enriching the dataset where annotations are sparse, allowing for better generalization
and more accurate performance (Kong et al., 2024b). Fourth, we transmute existing datasets to
uncover new relationships, enabling the creation of entirely new tasks without requiring additional
raw data. Finally, we use audio processing tools to create new connections between text, audio, and
their corresponding transformations.

By combining these approaches, we ensure that Fugatto has access to diverse and enriched datasets,
allowing it to learn from various audio domains and contexts. This strategy enhances the model’s task
diversity and lays the groundwork for unsupervised multitask learning at scale, unlocking emergent
abilities such as synthesizing entirely new sounds, such as “a saxophone barking”.

While data is important, the ability to compose, interpolate between, and negate instructions is
generally difficult to obtain through data alone. Negation data, for instance, is typically unavailable,
and generating outputs that represent the composition or interpolation of instructions is equally chal-
lenging. Though this has been explored in the vision domain using Energy Based Models(EBMs) (Du
et al., 2020) and EBMs in latent space (Nie et al., 2021), EBMs require training a new model per
attribute, which can be cumbersome and impractical for a large number of attributes.

To overcome this limitation, we propose an inference-time technique called ComposableART , which
is based on classifier-free guidance (CFG) (Ho & Salimans, 2022) and further expands on the dual
classifier-free guidance in (Yang et al., 2024; Lee et al., 2024). We propose a generalized framework
that leverages the weighted combination of vector fields between instructions, frame indices and
models. This approach enables Fugatto to handle complex instruction-based operations, such as
smoothly interpolating between instructions or negating specific instructions to exclude undesired
effects. In contrast, models like (Vyas et al., 2023; Yang et al., 2023) rely on more rigid methods,
often requiring external classifiers or manual intervention to achieve similar results.

In this paper, we present a detailed exploration of Fugatto’s dataset and instruction generation,
training strategies, implementation improvements, and performance across a wide range of tasks.
Through rigorous evaluations and comparisons with specialist and generalist models, we establish
Fugatto as a new benchmark for foundation models for audio synthesis and transformation. Similarly,
we establish ComposableART as a highly desirable framework for compositional guidance that
unlocks the full potential of score-based generative models. Our contributions include:

• We offer a comprehensive strategy for building a foundation model for audio generation and
transformation given text and audio inputs, delivering strong performance across a wide
range of tasks and providing a robust framework for both research and practical applications.

• We demonstrate how to enhance and create contextually rich audio and text datasets while
generating flexible instructions with LLMs, enabling our community to replicate and adapt
these techniques for their own models.

• We demonstrate how to perform composition, interpolation, and negation of instructions by
extending CFG to compositional guidance, enabling better control over the model’s outputs.

Table 1: Comparison of our proposed model Fugatto with other models.

Fugatto AudioBox NExT-GPT UniAudio AUDIT VoiceLDM

Emergent properties ✓ ? ? ? ? ?
Large-scale data ✓ ✗ ✓ ✓ ✗ ✗
Supports numerous tasks ✓ ✗ ✗ ✓ ✗ ✗
Free-Form Instructions ✓ ✗ ? ? ✓ ✗
Open-ended generation ✓ ✗ ✗ ✓ ✗ ✗
Compositionality ✓ ✗ ✗ ✗ ✗ ✓
Multi-Modal Inputs ✓ ✓ ✓ ✓ ✓ ✗

2

Fugatto

2 APPROACH

Our approach to audio generation given text and optional audio is similar to recent approaches in
LLMs, focusing on large scale compute and datasets, followed by pre-training and fine-tuning stages.
However, our approach differs in two aspects. First, our dataset generation mechanism requires
going beyond unsupervised next token prediciton (Section 2.1). Second, we propose inference time
techniques to control audio generation (Section 2.4). In Appendix A.1 we provide a detailed list of
tasks and instructions our model supports.

2.1 DATASET GENERATION

We focus on building as large and diverse a dataset in order to collect demonstrations of as many
audio tasks and contexts as possible. We emphasize that our ultimate goal is not to just excel on such
tasks, but to drive, as a community, towards a future where unsupervised multitask learning emerges
from data and model scale. Towards this goal, we propose a dataset generation strategy built on five
pillars below, and provide, in Appendix A.1.1, a thorough description of each pillar.

I – Generating Free-Form Instructions with LLMs: Our strategy consists of prompting an
LLM to create programmatic task-specific instruction generators, similar to Kocielnik et al. (2023).
We prompt an LLM to create python methods that generate instructions of different lengths and
for different personas (standard, young-crowd, thirty-somethings, professional), given task-specific
inputs including audio description, language, and others. Each persona has a set of verbs, adverbs,
connectors, and other assets to create the instructions.

II – Generating Absolute and Relative Instructions: Following GPT4-o’s (OpenAI, 2024) ability
to perform a relative change in speech, we aim to obtain an audio generation model that is able to
follow instructions that are absolute or relative, such as ”synthesize a happy voice” or ”increase the
happiness in this voice.”. Given that such data is normally not available, we later describe a strategy
to create such data by transmuting existing datasets and leveraging audio processing tools. Once
such datasets are created, we can select one sample and create an absolute instruction for it, or select
two samples and create a relative instruction. Similarly to absolute instructions, we generate relative
instructions with a python method, produced by an LLM, that creates an instruction given the task,
the attribute being modified and how it should be modified.

III – Generating Audio Descriptions with Audio Understanding Models: We use audio under-
standing and classification models (Kong et al., 2024a) to produce synthetic captions for audio in
the wild, following recent research (Leng et al., 2023; Kong et al., 2024b) showing that it is possible
to drastically expand or improve text-to-audio models with synthetic captions. As such, we expand
the strategies described in (Leng et al., 2023; Kong et al., 2024b) to generate high quality synthetic
captions. For speech data, we implemented a prompt generation pipeline that automates the creation
of natural language descriptions for voices. The pipeline converts speech attributes predicted by
models – such as “gender”, emotion, and speech quality – into detailed natural language descriptions
using LLM-generated templates. These templates describe voices in various ways based on the
speaker attributes, enhancing diversity by generating descriptions in multiple formats.

IV – Creating New Tasks and Datasets by Transmuting Datasets: We leverage implicit relation-
ships between samples in a dataset to enable new tasks. Generally speaking, we look for datasets
where one factor is held constant while other factors change. For example, we leverage emotional
speech synthesis datasets with different renditions of the same text (Livingstone & Russo, 2018) by
the same speaker to define a speech transformation task. Similarly, we leverage instrument synthesis
datasets with different renditions of the same note (Engel et al., 2017) to define an instrument trans-
formation task. We also leverage datasets that provide the individual parts of a sounds mixture (Rafii
et al., 2017) to support tasks such as source separation, and audio generation conditioned on audio
context and captions, possibly synthetic.

V – Creating New Tasks and Datasets by Leveraging Audio Processing Tools: We create
synthetic paired data for speech and audio by using Praat (Boersma & Van Heuven, 2001) and
Pedalboard (Spotify, 2024) to manipulate several speech and audio factors. For each factor, we apply
controlled modifications, allowing us to generate speech and audio samples with specific alterations.
With this strategy we can create speech and audio pairs that describe speech and audio transformation
tasks such as changing of one or multiple speech factors, for example ”increase the F0 variance

3

Fugatto

slightly and decrease the speech rate.” or ”add moderate reverb to this audio file”. For each factor, we
determine a practical range of adjustments and define increments that correspond to varying degrees
of change, such as ”slightly”, ”moderate”, and ”significant”.

With these pillars established and leveraging open source datasets, we are able to build a large text
and audio dataset with at least 20 million rows, not including on-the-fly modifications to captions,
instructions and audio. Assuming each row refers to 10 seconds of audio, our dataset is comprised of
at least 50,000 hours of audio. We emphasize that this compilation is exclusively comprised of open
source data, and provide a full list of datasets, tasks, and instructions in Appendices A.1.2, A.1.3 and
A.1.4 respectively.

2.2 INSTRUCTION GENERATION

Our approach supports template-based and free-form instructions.

Template-based Instructions: In these instructions, the task is explicitly provided, followed by
task-specific attributes, always in the same order, and with each attribute wrapped between start and
end of attribute markers. We dynamically construct template-based instructions based on the task
and the set of factors. Each factor is specified by its name and corresponding value, using the format
given {name}:{value} followed by a closing HTML-like tag </{factor}>. The instruction
always starts with the task, followed by its factors, and ends with output:. Additionally, a given
context clause is appended at different locations, determined by the task at hand, when audio
contexts are present. The structure of a template-based instruction is:

input:{task} given {factor}:{value}</{factor}>given context:<audio>output:

where {task} represents the specific task, {factor} and {value} correspond to the different
factors and their respective values, and <audio> refers to the audio context provided. We provide
examples of task and dataset specific instructions in Appendix A.1.4.

Free-form Instructions: We dynamically construct free-form instructions by using instruction
generators introduced in Section 2.1. Unlike template-based instructions where we know before
hand the reference in text to each audio context, in free-form it is not straight forward to determine
which word in the text refers to the audio. As such, in free-form instructions we simply append to the
instruction given context k:<audio> for each audio context, resulting in this structure:

input:{instruction} [given context:<audio_k>]output:

In order to promote simplicity and agility during development, we decided to use raw text instead
of learnable tokens for given factor and </factor>. Following LLM practice, the full
instruction and each audio are wrapped with learnable <start of> and <end of> tokens.

2.3 MODEL AND TRAINING

In this section we describe the text and audio representations used in our model, as well as the
training objective and architecture. We provide a graphical depiction and details for hyperparameters,
objective function, training stages and oversampling in A.2.

Text and Audio representation: The text representation is obtained by encoding the previously
described instructions with a pre-trained language model held frozen during training. In this Opus,
we use the byT5 tokenizer free language model (Xue et al., 2022), which supports a large set of
characters, including IPA. In this opus, the audio representation is a 22khz mel-spectrogram with 80
bins, which is subsumed by a relatively shallow learnable transformer encoder. The mel spectrogram
is scaled to have approximately 0 mean and 1 standard deviation.

Training Objective and Architecture: We train our model with the Optimal Transport Conditional
Flow Matching (OT-CFM) objective (Lipman et al., 2022; Tong et al., 2023), and use a T5-based (Raf-
fel et al., 2020) Transformer (Vaswani, 2017) with Adaptive Layer Norm (Xu et al., 2019) as the
parameterization of the vector field estimator. We replace the Transformer MLPs with kernel size
3 convolutions. After independently projecting the encoded text and audio to a shared embedding
space, we time-wise concatenate the embedded audio and text. The model cross-attends to this
representation, applying Adaptive Layer Norm (Xu et al., 2019) to them on every layer.

4

Fugatto

We observed that certain implementation choices yielded better training curves. Specifically, adaptive
layer norm is completely computed in FP32, GELU uses approximate tanh, and the final layers are
initialized to outputs zeros, which is approximately the mean of our scaled mel-distribution.

Training Stages: Fugatto training follows curriculum learning1 (Bengio et al., 2009). We start with
template-based instructions and a subset of tasks. Eventually, once we informally establish that the
model is able to follow template-based instructions by observing validation scores and listening to
samples, we proceed with an equal mixture of template-based and free-form instructions. Given
that some tasks are underrepresented in the data, we find that oversampling leads to better results.
Empirically, we find that sampling from a multinomial distribution with upsampling parameter
β = 0.25, similar to Le et al., 2024, is sufficient. As training progresses, we adjust each dataset’s
weight according to validation scores on target tasks.

2.4 COMPOSABLE AUDIO REPRESENTATION TRANSFORMATION (ComposableART)

We extend Classifier Free Guidance(CFG) (Ho & Salimans, 2022) to support compositional guidance.
Compositional guidance provides an OT-CFM model with the ability to independently control and
generate (unseen) combinations of instructions and tasks, including with vector fields from different
models (Karras et al., 2024). Compositional generation has been explored in Diffusion Models (Liu
et al., 2023; Yang et al., 2024; Lee et al., 2024), for images and audio. To the best of our knowledge,
we are the first to showcase novel ways of applying compositional guidance, expanding it to not just
attributes, but also tasks, models and temporal composition of attributes.

Compositional Guidance Method Classifier Free Guidance(CFG), generally applied to diffusion
models, combines the conditional and unconditional score estimates to obtain samples of higher
quality and diversity pertaining to the condition. The following equation summarizes the application
of CFG, where ϵθ represents the score estimate and γ represents the gradient scaling factor:

ϵθ(zλ, c) = ϵθ(zλ, c) + γ(ϵθ(zλ, c)− ϵθ(zλ)) (1)

We extend the Classifier Free Guidance framework to support the combination of vector fields across
multiple instructions (ck), multiple mel-frame indices (f) and multiple models (θm). Let vt,f(ck, θm)
be the vector field produced at flow-step t by model m, parameterized by θm, given condition ck or ∅,
for mel-frame f. Additionally, let wk,f,m be the flow-step invariant and user-determined scalar weight
associated with vt,f(ck, θm). The equation for compositional guidance across instructions, frames, and
models is defined as:

ṽt,f =
∑
k,m

wk,f,m(vt,f(ck, θm) + γ(vt,f(ck, θm)− vt,f(∅, θm))) (2)

where γ refers to the gradient scale parameter from CFG, and ṽt,f is the resulting composed vector
field for flow step t and frame f. This follows similar conditional independence assumptions in
(Nie et al., 2021; Liu et al., 2023) to support compositional guidance. We apply this compositional
guidance at every step of the flow-matching inference procedure.

Attribute/Event Composition: An attribute is a simple input prompt belonging to a particular task
like speech synthesis. A task like audio event generation can have multiple prompts or attributes as
input. With compositional guidance, we can support unique unseen combinations of attributes. This
gives the users an ability to create artistic combinations like simulating a scene with multiple-audio
events, e.g. by composing ’thunder’, ’rain’ and ’wind’ a storm can be achieved.

Task Composition: The model has been trained on many individual tasks, but it has not encountered
combinations of tasks, such as speech synthesis alongside audio event generation. Using composi-
tional guidance, we can enable the synthesis of unique, unseen task combinations, like generating
speech with a specific audio event in the background.

Model Composition: The same technique can be extended to integrate distinct models. This is
particularly useful when training domain-specific versions of Fugatto, each with its own parameters

1It simplifies development and supports incremental research, though not strictly necessary.

5

Fugatto

and datasets. This allows users to synthesize a ”mixture of experts” sample that combines models
trained on independent domains such as speech and audio events. Following (Karras et al., 2024),
we use the velocities for each independent model, defined by parameters θm.

Temporal Composition: Instead of using the same scalar for every frame f , we assign a unique
weight wk,f,m to each frame. This enables users to control the compositional output with arbitrary
curves (e.g., sigmoid or linear increase or decrease), while retaining the advantages of combining
attributes, tasks, and models.

3 EXPERIMENTS

We present a comprehensive evaluation of Fugatto across multiple tasks to demonstrate its effective-
ness and versatility. We begin with an ablation study, examining the impact of various design choices.
Next, we evaluate Fugatto’s performance in audio synthesis and transformation tasks in speech, music
and general sounds. Finally, we explore Fugatto’s emergent capabilities, and perform a thorough
evaluation of our ComposableART method. Unless otherwise specified, we use template-based
instructions, 2nd order Heun solver with 50 function evaluations, and task specific gradient scale γ.

3.1 ABLATIONS

We first analyze the impact of different t-sampling strategies in OT-CFM, comparing the traditional
uniform sampling with others. Then, we examine the effect of model size on both loss metrics
and emergent capabilities, including the ability to synthesize novel sounds not found in the training
data—such as a “saxophone meowing” or “a person speaking while barking.”

t-sampling strategy: In the OT-CFM framework, the timestep t is typically sampled from a uni-
form distribution, t ∼ U(0, 1). However, recent discussions within the community have introduced
conflicting strategies for this sampling process. Notably, Stable Audio’s GitHub repository proposes
sampling t from a sigmoid-transformed normal distribution, t ∼ sigmoid(N (0, 1)), thereby concen-
trating samples around t = 0.5. On the other hand, (Lovelace et al., 2023) advocate for increased
sampling from values of t closer to zero.

In our experiments, we observe that although Stable Audio’s strategy provides a marginal improve-
ment on TTA tasks, it renders the model unable to effectively attend to the transcript in text-to-speech
(TTS) tasks – a critical requirement. We provide an explanation for this phenomenon in Appendix A.3.

Training with t ∼ U(0, 1) is effective across all tasks.
Training with t ∼ sigmoid(N (0, 1)) significantly degrades TTS performance.

Model capacity: We evaluate how the learnable parameter count influences loss curves and emergent
capabilities. We consider models with 0.8 B, 1.4 B params, and 2.5 B parameters. Under a fixed
data composition and sampling weights, we observe that increasing the parameter count from the
smallest to the largest model not only improves validation losses but also delays overfitting. In
Appendix A.2, we provide task-specific validation loss plots that showcase the expected decrease
in validation loss as parameter count increases. Informally and consistent with findings in (Radford
et al., 2019), we observe that the smaller model does not exhibit emergent abilities comparable to the
larger models, particularly in their ability to synthesize novel sounds absent from the training data,
such as “saxophone barking”. We invite readers to evaluate samples in our supplementary materials.

Emerging capabilities surface with sufficient model capacity and training data.

3.2 AUDIO SYNTHESIS

Text-To-Voice Synthesis: We evaluate in-context text-to-speech synthesis (TTS) and singing voice
synthesis (SVS). For TTS, we follow the evaluation in Wang et al. (2023), using the same transcripts
as Eskimez et al. (2024), to evaluate our model’s ability to perform speech synthesis given a transcript
and a speech sample from an unseen speaker. Following our training strategy, during evaluation we
always provide the speaker’s previous sentence when possible, otherwise a random sample different
from the target. For SVS, we evaluate Fugatto’s ability to generate singing voice samples from
instructions describing the desired lyrics and musical style without a backing track, for example:

6

https://fugatto.github.io/

Fugatto

“Showcases a female singer with an interesting sound, conveys the message through american english
lyrics, and infuses country influences throughout.” The full list is available in Appendix A.4

Our zero-shot TTS results in Table 2a show that Fugatto has word error rates similar to ground truth,
and is competitive with expert and generalist (Omni) models in terms of speaker similarity. Our SVS
results in Table 2b shows high cosine similarity between CLAP embeddings of the synthetic samples
and the captions used to create it. We note that the higher WER in SVS likely comes from the higher
difficulty for the generative model and the speech transcription model.

Table 2: Fugatto is comparable to generalist models and expert models on in-context TTS benchmarks.
On SVS, it synthesizes samples with high CLAP-similarity and low WER relative to the task at hand.

(a) TTS on the LibriSpeech Test Clean benchmark in Wang et al. (2023)

Model Omni WER ↓ SIM-o ↑ SIM-r ↑

Ground Truth 2.20

Vall-E (24khz) ✗ 5.90 0.58
Natural Speech 3 (16khz) ✗ 1.81 0.67 0.76
AudioBox (16khz) ✗ 4.80 0.73
UniAudio (16khz) ✓ 2.00 0.71

Fugatto γ = 2 ✓ 2.66 0.60 0.61
Fugatto γ = 3 ✓ 2.44 0.61 0.62

(b) SVS: WER and CLAP-Scores on a set of
10 music styles and 13 lyrics snippets from
famous songs.

Model WER ↓ CLAP ↑
Fugatto γ = 2 71.90 0.49
Fugatto γ = 4 19.54 0.45

Text-To-Audio (TTA): We showcase Fugatto’s performance on traditional TTA benchmarks that
measure a model’s ability to synthesize general sounds (AudioCAPS) and music (MusicCAPS) that
follow instructions provided in text. We use the metrics (FD, FAD, and IS) and data splits (train, test)
used in Kong et al. (2024b). Results in Table 3a and Table 3b shows that our model achieves strictly
better scores than existing generalist models, while occasionally outperforming expert models.

Table 3: Fugatto outperforms generalists models and occasionally outperforms specialist models in
TTA benchmarks on AudioCaps and MusicCaps.

(a) TTA on the AudioCaps benchmark in Kong et al., 2024b

Model Omni FD ↓ FAD ↓ IS ↑
VoiceLDM-Maudio ✗ 2.50
AudioBox (16khz) ✗ 10.14 1.10 11.90
NExT-GPT ✓ 1.68
UniAudio ✓ 3.12

Fugatto γ = 1 ✓ 16.73 1.36 9.72
Fugatto γ = 2 ✓ 20.20 2.21 10.21

(b) TTA on the MusicCaps benchmark in Kong et al., 2024b

Model Omni FD ↓ FAD ↓ IS ↑
MusicGen (medium) ✗ 35.52 5.02 1.94
AudioLDM-2-large ✗ 16.12 2.74 2.30
Tango-AF&AC-FT-MC ✗ 21.84 1.99 2.21
UniAudio* ✓ 3.65

Fugatto γ = 1 ✓ 11.52 1.43 2.73
Fugatto γ = 2 ✓ 13.18 1.93 2.97

3.3 AUDIO TRANSFORMATIONS

Speech Enhancement: We evaluate speech denoising and bandwidth extension tasks. Speech
denoising evaluates the ability to extract speech from an additive mixture comprised of speech and
noise. Bandwidth extension (sometimes referred to as ”upsampling”) evaluates the ability to recreate
missing content from audio that is low passed filtered and downsampled not to include frequencies
above a certain threshold frequency2. For speech denoising, we use the DNS-Noisy benchmark and
traditional metrics PESQ and STOI described in Kong et al., 2023. For bandwidth extension, we
use the VCTK benchmark and the traditional metric LSD described in Liu et al., 2024. In Fugatto,
this task is interpreted as source separation, in contrast with the enhancement task that modifies
the acoustic qualities of the target audio. Though Fugatto is comparable to specialist models in
bandwidth extension, work remains to be done to close the gap in denoising.

Speech Modulation: In this task we evaluate our model’s ability to transform a person’s emotion
in speech into another emotion, while preserving their speaker identity and the transcript. For this
purpose, construct a train and test set based on the ESD dataset. We use open-source models to report
emotion classification and correlation with Valence, Arousal and Dominance (VAD). We establish

2We use librosa after observing that torch.audio leaks frequencies above the threshold frequency.

7

Fugatto

Table 4: Fugatto is comparable to specialist models for speech denoising and upsampling.

(a) Speech Denoising on the DNS benchmark in Kong et al., 2023

Model Omni PESQWB ↑ PESQNB ↑ STOI ↑
Noisy dataset 1.59 2.16 91.60

FullSubNet ✗ 2.90 3.37 96.40
FAIR-Denoiser ✗ 2.66 3.23 96.60
CleanUNet 2 ✗ 3.26 3.66 97.70

Fugatto γ = 0.1 ✓ 2.77 3.32 95.70
Fugatto γ = 1 ✓ 2.73 3.34 95.90

(b) Upsampling on the VCTK benchmark in Liu et al., 2024

Model Omni LSD 4khz ↓ LSD 8khz ↓
Unprocessed (to 22khz) 2.74 1.84

NuWave (to 22khz) ✗ 1.37 0.88
NVSR (to 22khz) ✗ 1.49 1.37
AudioSR (to 22khz) ✗ 1.25 1.08

Fugatto γ = 0.1 ✓ 1.29 1.25
Fugatto γ = 1 ✓ 1.38 1.34

upper bounds by also computing scores on ground truth data. Our results in Table 5a show that our
model is able to properly transform the emotion as well as the ground truth, it needs improvement on
speaker similarity and word error rates.

MIDI2Audio: We evaluate our model’s ability to convert midi to audio with the 250 simple 2-bar
monophonic melodies from Pati et al., 2020. Note that Fugatto has never seen monophonic melodies
during training, with the average number of stems present in training being 8. We use the error in
pitch estimation on the ground truth MIDI notes as the upper-bound quality. We evaluate the L1
distance of the F0 contours extracted from the input rendered MIDI and the generated audio. During
evaluation, we transpose the pitch contours to a common key. We provide examples in Appendix A.5.

Table 5: Fugatto performs well on novel tasks such as emotion conversion and MIDI2Aaudio.

(a) Speech modulation (Emotion Conversion): remarkably high Top-2 accuracy
and pearson correlation ρ between ground truth and synthetic samples on VAD.
Low speaker similarity.

Model WER SIM-o ρVAD Top-2 Acc.
Ground Truth 7.42 0.62

Fugatto γ = 2 24.17 0.19 0.68, 0.77, 0.77 0.59
Fugatto γ = 3 21.96 0.21 0.68, 0.77, 0.77 0.62

(b) MIDI2Audio: surprising
zero-shot abilities on monophonic
melody to audio.

Model L1 ↓
F0 estimation error 0.21

Fugatto γ = 1 1.74
Fugatto γ = 2 1.00

3.4 EMERGENT CAPABILITIES AND SOUND GALLERY

We consider an ability to be emergent if it is absent in smaller models but appears in larger ones (Wei
et al., 2022; Radford et al., 2019), and Fugatto demonstrates emergent sounds and emergent tasks. In
this section, we provide qualitative results through our demo page to highlight the model’s emergent
abilities and invite readers to a guided tour through our sound gallery, which showcases compelling
examples of Fugatto’s artistic potential and emergent capabilities.

Emergent Sounds: Fugatto exhibits the ability to generate outputs that are not present in the training
data itself. For instance, it can synthesize a cello that shouts with anger or a person that speaks and
barks.

Emergent Tasks: Beyond generating novel sounds, Fugatto demonstrates the ability to perform tasks
it was not explicitly trained for by combining tasks seen during training. For example, it can perform
speech prompt conditioned singing voice synthesis or convert monophonic MIDI to a singing voice.

3.5 COMPOSITIONALITY

Compositionality enables users to combine attributes and tasks to generate novel input combinations
not found in the training data, providing artistic and fine-grained control over the desired output.
Since such novel combination rarely exists in the training data or the natural world, evaluating these
samples is typically challenging. Furthermore, there are no established baselines and metrics for such
sounds. Despite these challenges, we aim to provide a qualitative and quantitative evaluation of our
proposed approach and invite readers to listen to compositional samples on our website.

8

https://fugatto.github.io/
https://fugatto.github.io/

Fugatto

3.5.1 ATTRIBUTE/EVENT COMPOSITION

Control intensity of each instruction (Weighted Combination): Compositional synthesis with
instructions gives users a knob to control the intensity of each instruction. In order to evaluate this
ability, we create

(
10
2

)
pairs of instructions by leveraging 10 event labels provided in Appendix A.6.

Given a pair of events we can generate composite instructions through language or ComposableART:

Baseline linguistic composition example input:
input: synthesize Event 1 and Event 2
Proposed ComposableART composition example inputs:
w1*v(input: synthesize Event 1) + w2*v(input: synthesize Event 2)

For each pair of events, we first generate samples using ComposableART with different convex
combination of weights for each instruction, and using the linguistic baseline3. Then, for each method
and generated audio, we compute the cosine similarity between the audio and text CLAP embeddings
for each event in the event pair used to produce the audio, shown as Instruction 1 and 2 in Figure 1.

Figure 1 shows that as we increase the weight on Instruction 1, the occurrence of the event in the
generated clip increases as evidenced by the CLAP scores. Reciprocally, as we decrease the weight
on Instruction 2, the occurrence of the event in the generated clip decreases. In the linguistic baseline,
we cannot control the weights of each attribute and their independent existence in synthesized samples
is lower than the ComposableART samples at higher weights.

Linguistic baseline ComposableART (proposed).

Figure 1: Comparison of CLAP scores between the Linguistic baseline and ComposableART’s
composition of attributes with Fugatto. Instruction is equivalent to event.

Linguistic Baseline ComposableART (proposed)

Figure 2: Comparison of Baseline and ComposableART temporal guidance for instruction sequences.

Negation of attributes: With our approach, users can assign negative weights to attributes, producing
negative velocity that steers the model away from the attribute. We use the previous

(
10
2

)
event pairs

to evaluate our approach alongside linguistic negation with the keyword ‘NOT’:

Baseline Linguistic Negation example input:
input: synthesize Event 1 and NOT Event 2

3In Figure 1, the diagonal fit, different weights, and the lack of samples in the linguistic baseline are an
implementation and compute timeout byproduct given that the linguistic baseline does not support weights.

9

Fugatto

ComposableART Negation example input:
v(input: synthesize Event 1) - v(input: synthesize Event 2)

Table 6 shows CLAP cosine similarity of the linguistic baseline against the proposed ComposableART
method. It can be observed that while the positive event remains similar to the baseline, the negative
event has a considerably lower cosine similarity than the baseline, indicating the effectiveness in
removal of the audio event using ComposableART as compared to the linguistic approach. Qualita-
tively, we also observe that this can be immensely useful in steering towards negative emotions in
speech synthesis or swapping gender, a task which is not trivial.

Interpolation of attributes: ComposableART also supports interpolation of attributes by having
the ability to independently control one attribute while keeping others. We evaluate our ability to
control “pitch” as the interpolation variable by changing the weights on pitch and keeping ”text” and
“language” attributes fixed. Figure 3 showcases the expected decrease in fundamental frequency as
we increase the weight on the “low pitch” attribute.

Table 6: CLAP Cosine Similarity of Attributes

Instruction Type CLAP Score
Linguistic baseline +ve Instruction 0.02± 0.02
Linguistic baseline −ve Instruction 0.17± 0.02

ComposableART +ve Instruction 0.06± 0.01
ComposableART −ve Instruction −0.04± 0.02

−2 −1 0 1 2

120

140

160

Weight

F0
m

ea
n

Figure 3: F0 mean given weight on the
“low pitch” condition

3.5.2 TEMPORAL COMPOSITION

To evaluate the effectiveness of temporal guidance, we combine the previous set of audio events pairs
over time. For ComposableART , we use a sigmoid-like curve to increase and decrease over time
the weights on event 1 and event 2 respectively. For the equivalent linguistic baseline, we create the
instruction “Event 2 followed by Event 1”. Figure 2 showcases time-windowed CLAP scores, y-axis,
for each approach and event across time, x-axis. We observe that the baseline is unable to establish
the temporal trend as well as ComposableART , where we observe, as expected, a consistent increase
in event 1 and consistent decrease in event 2.

3.5.3 TASK AND MODEL COMPOSITION

Task Composition: In our website, we provide qualitative samples where we compose a set of tasks
involving “electronic music”, “birds chirping”, “dog barking”, and “TTS”. Our results show that the
output conforms to the composition of such tasks using the proposed method.

Model Composition: In our website, we provide samples where we consider 2 different Fugatto
models, one trained on speech datasets and the other trained on general sounds and audio events. We
perform model composition to synthesize samples that contain both speech as well as audio events.
This can be immensely useful in the future, where each domain specific model is an expert model and
a combination of such high-quality experts can be used to synthesize compositional outputs without
the need to train a monolithic large generative model.

4 DISCUSSION AND LIMITATIONS

We work towards a future where unsupervised multitask learning in audio synthesis and transformation
emerges from data and model scale. Our proposed framework ComposableART Fugatto establishes
our first step towards this direction, and in this step we become aware of our current limitations and
challenges. For example, optimizing dataset sampling weights to drive performance on multiple
benchmarks is a herculean task, and generative models for audio and video would certainly benefit
from research similar to (Albalak et al., 2023; Chung et al., 2023; Xie et al., 2024). Along straighter
paths, we plan to replace mels with a latent representation that better supports low frequencies and
stereo. We believe this modification should be rather straight forward. Further work is necessary to

10

https://fugatto.github.io/
https://fugatto.github.io/

Fugatto

establish the impact of data and free-form instructions on Fugatto’s emergent abilities, especially
using language to combine tasks not jointly seen during training. Finally, ComposableART requires
more analysis on the choice of weights, and how the norm of the vector field can be used for easier
and more stable control.

11

Fugatto

REPRODUCIBILITY STATEMENT

We plan to release our dataset and code to facilitate reproducible research.

REFERENCES

Alon Albalak, Liangming Pan, Colin Raffel, and William Yang Wang. Efficient online data mixing
for language model pre-training. In R0-FoMo: Robustness of Few-shot and Zero-shot Learning in
Large Foundation Models, 2023.

Yoshua Bengio, Jérôme Louradour, Ronan Collobert, and Jason Weston. Curriculum learning. In
Proceedings of the 26th annual international conference on machine learning, pp. 41–48, 2009.

Mathieu Bernard and Hadrien Titeux. Phonemizer: Text to phones transcription for multiple languages
in python. Journal of Open Source Software, 6(68):3958, 2021.

Paul Boersma and Vincent Van Heuven. Speak and unspeak with praat. Glot International, 5(9/10):
341–347, 2001.

Tom B Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in Neural Information Processing Systems, 33:1877–1901, 2020.

Hyung Won Chung, Noah Constant, Xavier Garcia, Adam Roberts, Yi Tay, Sharan Narang, and
Orhan Firat. Unimax: Fairer and more effective language sampling for large-scale multilingual
pretraining. arXiv preprint arXiv:2304.09151, 2023.

Shuqi Dai, Ming-Yu Liu, Rafael Valle, and Siddharth Gururani. Expressivesinger: Multilingual and
multi-style score-based singing voice synthesis with expressive performance control. In ACM
Multimedia 2024, 2024.

SeungHeon Doh, Keunwoo Choi, Jongpil Lee, and Juhan Nam. Lp-musiccaps: Llm-based pseudo
music captioning. arXiv preprint arXiv:2307.16372, 2023.

Yilun Du, Shuang Li, and Igor Mordatch. Compositional visual generation with energy based
models. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), Ad-
vances in Neural Information Processing Systems, volume 33, pp. 6637–6647. Curran Asso-
ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/
2020/file/49856ed476ad01fcff881d57e161d73f-Paper.pdf.

Jesse Engel, Cinjon Resnick, Adam Roberts, Sander Dieleman, Mohammad Norouzi, Douglas Eck,
and Karen Simonyan. Neural audio synthesis of musical notes with wavenet autoencoders. In
International Conference on Machine Learning, pp. 1068–1077. PMLR, 2017.

Sefik Emre Eskimez, Xiaofei Wang, Manthan Thakker, Canrun Li, Chung-Hsien Tsai, Zhen Xiao,
Hemin Yang, Zirun Zhu, Min Tang, Xu Tan, et al. E2 tts: Embarrassingly easy fully non-
autoregressive zero-shot tts. arXiv preprint arXiv:2406.18009, 2024.

Arushi Goel, Zhifeng Kong, Rafael Valle, and Bryan Catanzaro. Audio dialogues: Dialogues dataset
for audio and music understanding. arXiv preprint arXiv:2404.07616, 2024.

Yuan Gong, Hongyin Luo, Alexander H Liu, Leonid Karlinsky, and James Glass. Listen, think, and
understand. arXiv preprint arXiv:2305.10790, 2023.

Zhifang Guo, Yichong Leng, Yihan Wu, Sheng Zhao, and Xu Tan. Prompttts: Controllable text-to-
speech with text descriptions. In ICASSP 2023-2023 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1–5. IEEE, 2023.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Tero Karras, Miika Aittala, Tuomas Kynkäänniemi, Jaakko Lehtinen, Timo Aila, and Samuli Laine.
Guiding a diffusion model with a bad version of itself, 2024. URL https://arxiv.org/
abs/2406.02507.

12

https://proceedings.neurips.cc/paper_files/paper/2020/file/49856ed476ad01fcff881d57e161d73f-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2020/file/49856ed476ad01fcff881d57e161d73f-Paper.pdf
https://arxiv.org/abs/2406.02507
https://arxiv.org/abs/2406.02507

Fugatto

Rafal Kocielnik, Shrimai Prabhumoye, Vivian Zhang, R Michael Alvarez, and Anima Anandkumar.
Autobiastest: Controllable sentence generation for automated and open-ended social bias testing in
language models. arXiv preprint arXiv:2302.07371, 2023.

Zhifeng Kong, Wei Ping, Ambrish Dantrey, and Bryan Catanzaro. Cleanunet 2: A hybrid speech
denoising model on waveform and spectrogram. arXiv preprint arXiv:2309.05975, 2023.

Zhifeng Kong, Arushi Goel, Rohan Badlani, Wei Ping, Rafael Valle, and Bryan Catanzaro. Audio
flamingo: A novel audio language model with few-shot learning and dialogue abilities. arXiv
preprint arXiv:2402.01831, 2024a.

Zhifeng Kong, Sang-gil Lee, Deepanway Ghosal, Navonil Majumder, Ambuj Mehrish, Rafael Valle,
Soujanya Poria, and Bryan Catanzaro. Improving text-to-audio models with synthetic captions.
arXiv preprint arXiv:2406.15487, 2024b.

Matthew Le, Apoorv Vyas, Bowen Shi, Brian Karrer, Leda Sari, Rashel Moritz, Mary Williamson,
Vimal Manohar, Yossi Adi, Jay Mahadeokar, et al. Voicebox: Text-guided multilingual universal
speech generation at scale. Advances in neural information processing systems, 36, 2024.

Sang-gil Lee, Wei Ping, Boris Ginsburg, Bryan Catanzaro, and Sungroh Yoon. Bigvgan: A universal
neural vocoder with large-scale training. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=iTtGCMDEzS_.

Yeonghyeon Lee, Inmo Yeon, Juhan Nam, and Joon Son Chung. Voiceldm: Text-to-speech with
environmental context. In ICASSP 2024-2024 IEEE International Conference on Acoustics, Speech
and Signal Processing (ICASSP), pp. 12566–12571. IEEE, 2024.

Yichong Leng, Zhifang Guo, Kai Shen, Xu Tan, Zeqian Ju, Yanqing Liu, Yufei Liu, Dongchao Yang,
Leying Zhang, Kaitao Song, et al. Prompttts 2: Describing and generating voices with text prompt.
arXiv preprint arXiv:2309.02285, 2023.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Haohe Liu, Ke Chen, Qiao Tian, Wenwu Wang, and Mark D Plumbley. Audiosr: Versatile audio
super-resolution at scale. In ICASSP 2024-2024 IEEE International Conference on Acoustics,
Speech and Signal Processing (ICASSP), pp. 1076–1080. IEEE, 2024.

Nan Liu, Shuang Li, Yilun Du, Antonio Torralba, and Joshua B. Tenenbaum. Compositional visual
generation with composable diffusion models, 2023. URL https://arxiv.org/abs/2206.
01714.

Steven R Livingstone and Frank A Russo. The ryerson audio-visual database of emotional speech
and song (ravdess): A dynamic, multimodal set of facial and vocal expressions in north american
english. PloS one, 13(5):e0196391, 2018.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Confer-
ence on Learning Representations, 2019. URL https://openreview.net/forum?id=
Bkg6RiCqY7.

Justin Lovelace, Soham Ray, Kwangyoun Kim, Kilian Q Weinberger, and Felix Wu. Simple-tts:
End-to-end text-to-speech synthesis with latent diffusion. 2023.

Weili Nie, Arash Vahdat, and Anima Anandkumar. Controllable and compositional generation with
latent-space energy-based models, 2021. URL https://arxiv.org/abs/2110.10873.

OpenAI. Gpt-4o: A powerful multimodal language model. https://openai.com/research/
hello-gpt-4o, 2024. Accessed: 2024-09-21.

Ashis Pati, Siddharth Kumar Gururani, and Alexander Lerch. dmelodies: A music dataset for
disentanglement learning. In Proceedings of the 21th International Society for Music Information
Retrieval Conference, ISMIR 2020, Montreal, Canada, October 11-16, 2020, pp. 125–133, 2020.
URL http://archives.ismir.net/ismir2020/paper/000300.pdf.

13

https://openreview.net/forum?id=iTtGCMDEzS_
https://arxiv.org/abs/2206.01714
https://arxiv.org/abs/2206.01714
https://openreview.net/forum?id=Bkg6RiCqY7
https://openreview.net/forum?id=Bkg6RiCqY7
https://arxiv.org/abs/2110.10873
https://openai.com/research/hello-gpt-4o
https://openai.com/research/hello-gpt-4o
http://archives.ismir.net/ismir2020/paper/000300.pdf

Fugatto

Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al. Language
models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. Journal of machine learning research, 21(140):1–67, 2020.

Zafar Rafii, Antoine Liutkus, Fabian-Robert Stöter, Stylianos Ioannis Mimilakis, and Rachel Bittner.
The musdb18 corpus for music separation. 2017.

Jonathan Shen, Ruoming Pang, Ron J Weiss, Mike Schuster, Navdeep Jaitly, Zongheng Yang, Zhifeng
Chen, Yu Zhang, Yuxuan Wang, Rj Skerrv-Ryan, et al. Natural tts synthesis by conditioning
wavenet on mel spectrogram predictions. In 2018 IEEE international conference on acoustics,
speech and signal processing (ICASSP), pp. 4779–4783. IEEE, 2018.

Spotify. Pedalboard documentation. https://spotify.github.io/pedalboard/index.
html, 2024. Accessed: 2024-09-23.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Conditional flow matching: Simulation-free dynamic
optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Rafael Valle, Kevin Shih, Ryan Prenger, and Bryan Catanzaro. Flowtron: an autoregressive flow-based
generative network for text-to-speech synthesis. arXiv preprint arXiv:2005.05957, 2020.

A Vaswani. Attention is all you need. Advances in Neural Information Processing Systems, 2017.

Apoorv Vyas, Bowen Shi, Matthew Le, Andros Tjandra, Yi-Chiao Wu, Baishan Guo, Jiemin Zhang,
Xinyue Zhang, Robert Adkins, William Ngan, et al. Audiobox: Unified audio generation with
natural language prompts. arXiv preprint arXiv:2312.15821, 2023.

Chengyi Wang, Sanyuan Chen, Yu Wu, Ziqiang Zhang, Long Zhou, Shujie Liu, Zhuo Chen, Yanqing
Liu, Huaming Wang, Jinyu Li, et al. Neural codec language models are zero-shot text to speech
synthesizers. arXiv preprint arXiv:2301.02111, 2023.

Xiaofei Wang, Manthan Thakker, Zhuo Chen, Naoyuki Kanda, Sefik Emre Eskimez, Sanyuan Chen,
Min Tang, Shujie Liu, Jinyu Li, and Takuya Yoshioka. Speechx: Neural codec language model
as a versatile speech transformer. IEEE/ACM Transactions on Audio, Speech, and Language
Processing, 2024.

Jason Wei, Yi Tay, Rishi Bommasani, Colin Raffel, Barret Zoph, Sebastian Borgeaud, Dani Yogatama,
Maarten Bosma, Denny Zhou, Donald Metzler, et al. Emergent abilities of large language models.
arXiv preprint arXiv:2206.07682, 2022.

Sang Michael Xie, Hieu Pham, Xuanyi Dong, Nan Du, Hanxiao Liu, Yifeng Lu, Percy S Liang,
Quoc V Le, Tengyu Ma, and Adams Wei Yu. Doremi: Optimizing data mixtures speeds up
language model pretraining. Advances in Neural Information Processing Systems, 36, 2024.

Jingjing Xu, Xu Sun, Zhiyuan Zhang, Guangxiang Zhao, and Junyang Lin. Understanding and
improving layer normalization. Advances in neural information processing systems, 32, 2019.

Linting Xue, Aditya Barua, Noah Constant, Rami Al-Rfou, Sharan Narang, Mihir Kale, Adam
Roberts, and Colin Raffel. Byt5: Towards a token-free future with pre-trained byte-to-byte models.
Transactions of the Association for Computational Linguistics, 10:291–306, 2022.

Dongchao Yang, Jinchuan Tian, Xu Tan, Rongjie Huang, Songxiang Liu, Xuankai Chang, Jiatong
Shi, Sheng Zhao, Jiang Bian, Xixin Wu, et al. Uniaudio: An audio foundation model toward
universal audio generation. arXiv preprint arXiv:2310.00704, 2023.

Jinhyeok Yang, Junhyeok Lee, Hyeong-Seok Choi, Seunghun Ji, Hyeongju Kim, and Juheon Lee.
Dualspeech: Enhancing speaker-fidelity and text-intelligibility through dual classifier-free guidance.
arXiv preprint arXiv:2408.14423, 2024.

14

https://spotify.github.io/pedalboard/index.html
https://spotify.github.io/pedalboard/index.html

Fugatto

A APPENDIX

A.1 DATASETS

In this section we provide information about our dataset generation strategy, tasks, instruction
generators, and a full list of datasets created and used during training, including their sampling
weights and task probabilities.

A.1.1 APPROACH TO DATASET GENERATION

In this subsection we provide further descriptions of the procedures in each of the five pillars described
in Section 2.1. Overall, the captions and instructions generation process is centered around leveraging
LLMs to transform tags into richer descriptions, always being careful that the description relates to
the audio content, and to create what we call instruction generators, i.e. python methods that create
free-form instructions based on the synthetic descriptions and task at hand.

I – The python code snippet below is an LLM generated script that outputs free-form instructions for
the task reverse sound, for example. Once such a script exists, it can be used to prompt an LLM to
generate scripts for other tasks with increasing levels of complexity.

class ReverseAudioInstructor:
audio_references = {

’standard’: {
’verbs’: [’reverse’, ’play backward’, ’invert’],
’gerunds’: [’reversing’, ’playing backward’, ’inverting’],
’contexts’: [’audio’, ’sound’, ’recording’, ’clip’, ’track’],
’asks’: [’Can you’, ’Please’, ’Could you’, ’I need you to’],
’styles’: [’completely’, ’precisely’, ’accurately’],
’mentions’: [’I provided’, ’I sent’, ’I attached’]

},
...

}

@staticmethod
def generate_instruction(persona=’standard’):

ref = ReverseAudioInstructor.audio_references[persona]

templates = [
"{ask} {verb} the {context}.",
"{verb} the {context} {style}.",
"{ask} {verb} the {context} {mention}.",
"Your task is to {verb} the {context}.",
"We need the {context} {mention} to be {gerund}.",
"{gerund} the {context} is the goal.",
"Please focus on {gerund} the {context}.",
"The objective is {gerund} the {context} {mention}.",

]

template = random.choice(templates)

instruction = template.format(
ask=random.choice(ref[’asks’]),
verb=random.choice(ref[’verbs’]),
gerund=random.choice(ref[’gerunds’]),
context=random.choice(ref[’contexts’]),
style=random.choice(ref[’styles’]),
mention=random.choice(ref[’mentions’])

)

return instruction.capitalize()

if __name__ == ’__main__’:
for persona in ReverseAudioInstructor.audio_references.keys():

print(f"\n{persona.capitalize()} instructions:")

15

Fugatto

II – The python code snippet below is an LLM generated script that outputs free-form instructions
for the task speech modulation, for example.. Note that the instructions refer to relative changes such
as increase and decrease with different magnitudes such small or large changes. Once such a script
exists, it can be used to prompt an LLM to generate scripts for other tasks with increasing levels of
complexity.

class SpeechModulationInstructor:
instructions = {

’scale_formant’: {
’increase’: {

’small’: [
"add a touch more resonance",
"slightly enhance the formant frequencies",
...

],
...
’large’: [

"dramatically enhance the resonance",
"massively boost the formant frequencies",
...

]
},
’decrease’: {

’small’: [
"tone down the resonance just a little",
"slightly reduce the formant frequencies",
...

],
...
’large’: [

"dramatically reduce the resonance",
"massively lower the formant frequencies",
...

]
}

},
...
}

}

@staticmethod
def get_instruction(modulation, direction, intensity):

return random.choices(SpeechModulationInstructor.instructions[modulation][direction][intensity])[0]

@staticmethod
def combine_instructions(modulations):

parts = []
for modulation_i in modulations:

modulation = modulation_i[’modulation’]
direction = modulation_i[’direction’]
intensity = modulation_i[’intensity’]
instruction_part = SpeechModulationInstructor.get_instruction(modulation, direction, intensity)
parts.append(instruction_part)

instruction = ""
if parts:

Combine parts into a single instruction
if len(parts) > 1:

combined_instruction = ", and ".join(parts[:-1]) + ", and " + parts[-1]
else:

combined_instruction = parts[0]
instruction = "Let’s " + combined_instruction + "."

return instruction

if __name__ == ’__main__’:
print("main")

16

Fugatto

III - Figure 4 provides a visual depiction of our speech captioning, dubbed Prompt-2-Voice
(P2V) pipeline. We applied this approach to several open-source soeech datasets. Additionally, we
incorporated existing speaker descriptions from datasets like PromptSpeech (Guo et al., 2023), which
provide details on gender, pitch, volume, and speaking rate, and enriched them by adding emotion and
quality information. This automation not only streamlines the process but also allows us to efficiently
label in-the-wild datasets, significantly scaling the available training data wigh high quality captions.

Figure 4: Synthetic caption generation pipeline for Prompt-to-Voice (P2V).

V - We use audio effects libraries to create synthetic paired data where some factors are held constant
while others change. We use Pedalboard (Spotify, 2024), a Python library for audio effects, to apply
different audio effects to sounds believed not to have effects. For each effect, there are a number
of parameters that can be altered. We generate on the fly audio segments with the same effect but
different levels of a single parameter while keeping the others fixed, so that we can not only create
instructions with synthetic pairs of uneffected vs. effected data, but also synthetic pairs where we ask
the model to increase or decrease the intensity of a given parameter (e.g. ”increase the compression
rate a little bit” or ”reduce the room size for the reverb moderately”). For each parameter, we
determined a reasonable range for the parameter, and increments that would correspond to ”a little”,
”moderate”, and ”a lot” of that parameter.

17

Fugatto

A.1.2 LIST OF DATASETS

18

Fugatto

Open Source Vocal Datasets

Table 7: Open source vocal datasets. tts is Text-To-Speech and tta is Text-To-Audio (Audio from
Caption)

Dataset Sampling Weights Task and Probabilities

AISHELL-3 2.46 tts
CML-Dutch 0.769 tts
CML-French 0.334 tts
CML-German 1.762 tts
CML-Italian 0.158 tts
CML-Polish 0.051 tts
CML-Portuguese 0.086 tts
CML-Spanish 0.512 tts
common-accent-AccentClassification 0.131 tta
CREMA-D-EmotionClassification 0.074 tta
DAPS-Enhancement 0.21 enhancement paired 0.99

deenhancement paired 0.01
DNS-Challenge-2020 14.247 source separation
emov-db-EmotionClassification 0.068 tta
IEMOCAP-EmotionClassification 0.059 tta
jl-corpus-EmotionClassification 0.024 tta
LibriTTS-Clean-100 1.23 tts
LibriTTS-Clean-360 4.31 tts
LibriTTS-Other-500 0.643 tts
LibriVox-English 52.54 tts
LibriVox-French 0.909 tts
LibriVox-German 1.147 tts
LibriVox-Italian 0.114 tts
LibriVox-Portuguese 0.12 tts
LibriVox-Spanish 0.276 tts
LIMMITS2024-* 0.768 tts 0.80

inpainting 0.10
upsampling 0.10

MSP-PODCAST-Publish-1.9-EmotionClassification 0.451 tta
NonSpeech7k-EventClassification 0.063 tta
OMGEmotion-EmotionClassification 0.017 tta
ravdess-EmotionClassification 0.014 tta
SongDescriber-AudioCaptioning 0.077 tta
SONYC-UST-EventClassification 0.279 tta
tess-EmotionClassification 0.028 tta
VCTK-VoiceConversion 2.89 voice conversion paired vctk
VCTK-TTS 0.137 tts
VocalSound-VocalClassification 0.155 tta

19

Fugatto

Open Source Non-Vocal Datasets

Table 8: Open Source Non-Vocal Datasets. tts is Text-To-Speech and tta is Text-To-Audio (tta)

Dataset Sampling Weights Task and Probabilities

audiocaps-AudioCaptioning 5.21 tta 0.90
inpainting 0.10

BBCSoundEffects-AudioDescription 0.15 tta
chime-home-EventClassification 0.05 tta
Clotho-AQA-EventClassification 0.01 tta
Clotho-AQA singlelabel-EventClassification 0.07 tta
Clotho-v2-AudioCaptioning 0.19 tta
CochlScene-SceneClassification 0.61 tta
Epidemic sound-AudioCaptioning 0.41 tta
ESC-50 1.12 tta 0.90

inpainting 0.10
FMA-GenreClassification 1.04 tta
FSD50k-EventClassification 0.41 tta
GTZAN-GenreClassification 0.01 tta
LP-MusicCaps-MC-AudioCaptioning 0.07 tta
LP-MusicCaps-MSD-0 8.56 tta 0.90

inpainting 0.10
LP-MusicCaps-MSD-1 8.62 tta 0.90

inpainting 0.10
LP-MusicCaps-MSD-AudioCaptioning 11.82 tta
LP-MusicCaps-MTT-AudioCaptioning 0.47 tta
MACS-AudioCaptioning 0.17 tta
Maestro 0.08 tta 0.90

upsampling 0.10
Medley-solos-DB 0.19 tta 0.90

upsampling 0.10
MSD 12.38 tta 0.80

upsampling 0.10
inpainting 0.10

MTG-Jamendo 2.16 tta 0.90
inpainting 0.10

musdbhq-InstrClassification 0.10 tta
MusicCaps-AudioCaptioning 0.54 tta 0.90

inpainting 0.10
NonSpeech7k-EventClassification 0.06 tta
NSynth-MIR 2.31 tta
SongDescriber-AudioCaptioning 0.08 tta
SONYC-UST-EventClassification 0.28 tta
SoundDescs-AudioDescription 0.23 tta
SoundVE-Caps 37.00 tta
UrbanSound8K-EventClassification 0.09 tta
WavText5K-AudioCaptioning 0.04 tta
WavText5K-Tagging 0.02 tta

20

Fugatto

New Datasets generated from Open Source Data

Table 9: New datasets generated from open source data. tts is Text-To-Speech, tta is Text-To-Audio
(Audio from Caption), and P2V refers to prompt to voice, in which LLMs were used to create full
form captions given speech attributes. The -AF suffix indicates synthetic captions generated with
Audio Flamingo.

Dataset Sampling Weights Task and Probabilities

audiocaps-AudioCaptioning-AF 5.79 tta 0.90
inpainting 0.10

AudioSet-AF 37.24 tta 0.80
inpainting 0.05
inpainting random mask 0.05
upsampling 0.09
downsampling 0.01

AISHELL-3-AddRemove-Sound-Effects 3.23 add sound effects 0.50
remove sound effects 0.50

AISHELL-3-SoundEffectsModulation 3.84 sound effects modulation
AISHELL-3-SpeechModulationPraat 3.84 speech modulation praat
CLAP freesound-AF 2.82 tta
CREMA-D-P2V 0.62 tts 0.80

inpainting 0.10
upsampling 0.10

EGFxSet-AddSoundEffects 0.00 add sound effects paired
EGFxSet-RemoveSoundEffects 0.00 remove sound effects paired
Emilia [English] (subset + additions) 27.23 tts 0.80

inpainting 0.05
inpainting random mask 0.05
upsampling 0.04
reverse sound 0.04
downsampling 0.01

emov-db-EmotionClassification 0.07 tta
ESD-ChangeEmotion 1.90 speech modulation paired
ESD-ENGLISH-P2V 0.93 tts 0.80

inpainting 0.10
upsampling 0.10

ESD-MANDARIN-P2V 0.63 tts 0.80
inpainting 0.10
upsampling 0.10

IEMOCAP-EmotionClassification 0.06 tta
jl-corpus-EmotionClassification 0.02 tta
LibriTTS-Clean-100-Add-Remove-Sound-Effects 7.85 add sound effects 0.50

remove sound effects 0.50
LibriTTS-Clean-100-SoundEffectsModulation 0.06 sound effects modulation
LibriTTS-Clean-100-SpeechModulationPraat 9.34 speech modulation praat
LibriTTS-Clean-100-Enhancement 0.85 enhancement paired 0.99

deenhancement paired 0.01
LibriTTS-Clean-360-Enhancement 2.71 enhancement paired 0.99

deenhancement paired 0.01
LibriTTS-Other-500-Enhancement 6.11 enhancement paired
JL-CORPUS-P2V 0.62 tts 0.80

inpainting 0.10
upsampling 0.10

LMD-Aligned 1.17 midi2audio
musdbhq-InstrClassification 0.10 tta
musdbhq-add-sound 3.81 add sound 0.50

add sound to mixture 0.50
musdbhq-singing 0.86 singing voice synthesis
musdbhq-singing-aggregated 0.86 singing voice synthesis
musdbhq-source-separation 3.81 source separation 0.50

remove sound from mixture 0.50
NonSpeech7k-EventClassification 0.06 tta
NSynth-MIR 2.31 tta
OMGEmotion-EmotionClassification 0.02 tta
ravdess-EmotionClassification 0.01 tta
RAVDESS-CreateVariation 0.02 speech modulation paired
RAVDESS-ChangeIntensity 0.15 speech modulation paired
RAVDESS-ChangeEmotion 0.22 speech modulation paired
RAVDESS-P2V 0.62 tts 0.80

inpainting 0.10
upsampling 0.10

ExpressiveSinger-P2V 2.84 singing voice synthesis nolanguage
tess-EmotionClassification 0.03 tta
VGG-AF 0.92 tta
WavCaps-AF 7.83 tta

21

Fugatto

Below we provide descriptions for the suffixes associated with our generated datasets presented in
Table 7, Table 8, and Table 9.

–AF: Refers to generating synthetic captions with the strategy described in (Kong et al., 2024b). In
summary, the strategy consists of using an audio understanding model, here Audio Flamingo Chat,
to caption sounds in the wild, and then filtering out synthetic captions based on the CLAP cosine
similarity between the audio and the synthetic caption. In this paper, we used this strategy to create
synthetic captions for AudioCaps, AudioSet, CLAP Freesound, and WavCaps.

–{Add, Remove} Sound Effects: These refer to applying, on the fly, audio effects modifications to
existing audio data to create paired data that describe tasks related to adding and removing sound
effects. We focus on speech, which we assume has the least amount of audio effects applied to it,
especially when compared to music data. In this iteration, the audio modulations are performed
with (Spotify, 2024) and include a large list of effects such as chorus, reverb, distortion, amongst
others.

–{Add, Remove}: This refers to splitting an audio mixture into separate audio stems and creating
manifests that add one track given another track. In this opus, we have not explored creating artificial
mixtures by adding random waveforms but imagine this strategy can yield good results.

–P2V: P2V, or prompt-to-voice, is a task that enables control of speech synthesis through textual
prompts, allowing for the description of speaker characteristics when an appropriate audio prompt that
matches the desired persona is unavailable. The strategy has several components. First, we extract
and curate all possible tags from existing metadata. For example, the expressive singer (Dai et al.,
2024) dataset includes, implicitly and explicitly, information about vocal range, accent, language,
style and others. Then, following the strategy in Section 2.1 we first prompt LLMs to produce long
form descriptions of each attribute, then we prompt an LLM to create a instruction generator that
combines the modified attributes in different ways.

–Singing: refers to leveraging music stems dataset with vocal tracks to create singing datasets. As
usual, we leverage all the metadata available, combined with transcriptions obtained from speech
transcription models and song captions obtained by prompting LLMs. In cases where an accompa-
niment or backing track is available, we associate the timestamps on each lyrics snippet with the
respective accompaniment. Once the metadata types are available, we prompt an LLM to create a
python method that produces instructions given the metadata for a singing voice synthesis task with
or without accompaniment.

–Singing-Aggregated: -Singing-Aggregated adds to -Singing the combination of adjacent sentences,
given criteria such as max gap between sentences and max sentence length.

–Source Separation and Add To Mixture: refers to leveraging existing In this iteration, assuming
doing such would produce samples undesirable out-of-distribution samples, we do not create mixtures
by combining random samples together. Instead, we leverage mixtures that are already exist.

–Speech Modulation: refers to applying speech modulations to existing speech data to create paired
data that describe a task in which a relative change is being applied to an attribute of speech, e.g.
”Increase the speaking rate in this sample”. In this iteration, the speech modulations are performed
with Praat (Boersma & Van Heuven, 2001) and we focus on transformations such as formant scaling,
F0 mean scaling (equivalent to transposition in music), F0 variance scaling (equivalent to flattening
or expanding the F0 contour), and speaking rate scaling (equivalent to making a person speak faster
or slower). Due to artifacts that can be introduced in the audio as a result of the modulation, we limit
the scaling values to ranges that we find acceptable in terms of audio quality.

–Speech Modulation Paired: This refers to leveraging available paired data to create new tasks.
For example, an emotional speech dataset with paired data can be used to enable an emotion
transformation tasks. The procedure is straight forward and consists of first grouping samples by
speaker and transcript, then creating pairs that establish relationships between two samples. For
example, given a speaker and transcript, two samples with different emotion can be used to define
a ”convert emotion task”, two samples with the same emotion and intensity can be used to create a
”create a variation of this speech”, and two samples with the same emotion but different intensity
can be used to define a ”increase the intensity in the emotion task”. Once the pairs and new tasks
are defined, we prompt an LLM to create a script that takes in the attributes and tasks to generate
task-specific instructions.

22

Fugatto

–Sound Effects Modulation: refers to applying sound effects modulations to existing data to create
paired data for relative change in audio effects in a file. In this iteration, the speech modulations are
performed with Praat (Boersma & Van Heuven, 2001) and focus on formant scaling, F0 mean scaling,
F0 variance scaling and speaking rate scaling. We limit the values to the range below

A.1.3 TASKS

Below we provide the list of tasks that are known to be supported by our model, and the respective
minimal instruction for that task. Please note that we provide minimal instructions due to layout
reasons, not due to model limitations.

Task Minimal Instruction

Add Sounds to Instrument Track
using audio example add drums like this <audio> to this guitar track <audio>
using text description add rock drums to this guitar track <audio>

Add Sounds to Sound Mixture
using audio example add guitar like this <audio> to this backing track <audio>
using text description add guitar to this backing track <audio>

Apply Sound Effects add long reverb to this audio <audio>
Copy Audio copy this <audio>
Downsample Audio downsample this to 16kHz <audio>
Enhance Audio enhance this sound <audio>
Generate Audio From Captions generate a saxophone barking
Generate Music From Captions generate a calm sound track
Generate Speech From Captions generate an angry voice
Inpaint Audio (Continuation) inpaint this sound <audio>
MIDI2Audio

using audio example turn this MIDI track <audio> into natural audio.
using text description turn this MIDI track <audio> into a heavy metal track.

Remove Sound Effects remove sound effects <audio>
Remove Sound from Sound Mixture

from audio examples remove this <audio> from these sounds
from text captions remove the piano from this music track <audio>

Reverse Sound reverse this sound
Singing-Voice Synthesis

given Speech Captions sing this ’At last my love’ with a male voice
given Language sing this ’At last my love’ in English
given Accent sing this ’At last my love’ in English with an Italian accent

Separate Audio into Sources
given audio examples give me this <audio> from this music track <audio>
given text description give me the piano from this music track <audio>

Sound Effects Modulation (Increase and Decrease Attributes)
Chorus increase the chorus a bit <audio>
Compressor decrease the compressor threshold <audio>
Delay decrease the delay time <audio>
Distortion increase the distortion <audio>
Limiter make the limiter less strong <audio>
Phaser increase the phaser speed <audio>
Reverb increase the reverb room size in this <audio>

Speech Modulation (Paired)
Voice Conversion convert from this <audio> to this <audio>
Accent Conversion convert from British English to American English
Emotion Conversion make this calm sample <audio> sound angry
Speech Variation give me a different take on this voice <audio>

Speech Modulation (Praat)
Scale Speaking Rate increase the speaking rate <audio>
Scale F0 Mean increase the average pitch <audio>
Scale F0 Variance increase the variance in pitch <audio>
Scale Formants scale the formants here <audio>

Text-To-Speech
from Speech Prompt say this ’May the force!’ given this voice <audio>
from Speech Captions say this ’May the force!’ with a male voice
from Language say this ’May the force!’ in English
from Accent say this ’May the force!’ in English with an Italian accent

Upsample Audio upsample this sound <audio>

23

Fugatto

A.1.4 INSTRUCTIONS

After an informal evaluation, we concluded that, for our purpose, Claude Sonnet is better than GPT4-o
at producing instructions and following prompts. Below we provide examples of template-based
and free-form instructions for a handful of tasks and datasets. For clarity, we remove the redundant
’input:’ and ’output:’ parts from all instructions.

AISHELL-3-AddRemove-Sound-Effects
Eradicating the audio from the provided audio material with the
Distortion, and Phaser effect is your task. Focus on eradicating
it systematically.

AISHELL-3-SoundEffectsModulation
We need to minimize the delay time.</caption>

AISHELL-3-SpeechModulationPraat
Let’s subtly enhance the pitch for a brighter sound, and
dramatically slow down the speech for a very relaxed
delivery.</caption>

audiocaps-AudioCaptioning
synthesize A consistent, loud mechanical motor</caption>

AudioSetFullwoAudioMusicCaps-EventClassification
synthesize This is a sound of Speech</caption>

AudioSet-AF
Yo, mind fill in the missing bits in this tune? Please do this
smoothly.]

CREMA-D-P2V
Manifest a voice reproduction in American English verbalizing "The
airplane is almost full.", with the timbre is often monotone and
lacks energy, and itś like a middle-aged who is not Hispanic.

LibriTTS-Clean-100
Stitch up a spiel in en declaring ""But there was a passenger
dropped off for you-a little girl.", with a female speaker with
a moderate pitch and intonation delivers her words quite rapidly
in a confined, clear acoustic environment.

RAVDESS-ChangeEmotion
modulate I want to switch from angry to fearful.</caption> given
example:

24

Fugatto

A.2 MODEL AND TRAINING

Model visualization: Figure 5 provides a visual description of Fugatto’s architecture and input
handling and Algorithm 1 provides a pseudo-algorithm for the optimal-transport conditional flow
matching loss. Essentially, it minimizes the mean squared error between the estimator’s prediction
and a linear interpolation between the data and the Gaussian noise sample used to condition the model
on xt, scaled by (1− σ), where σ is a small enough value.

Figure 5: A description of Fugatto’s architecture and input handling.

Algorithm 1 Optimal Transport Conditional Flow Matching Loss Pseudo-Algorithm

1: Sample x1 ∼ X , where X is the data distribution
2: σ ← 0.01
3: x0 ← randn like(x1)
4: xt ← (1− (1− σ) · t) · x0 + t · x1

5: vt ← estimatorθ(xt, t;)
6: ut ← x1 − x0 · (1− σ)
7: loss← mse(vt,ut)

Optimal Transport Conditional Flow Matching Pseudo-Algorithm:

25

Fugatto

Model hyperparameters: We provide a list of Fugatto’s hyperparameters in Table 10.

Table 10: Model Hyperparameters for the main Fugatto evaluated in this paper.

Hyperparameter Value
t schedule uniform
n mel channels 80
n hidden 1536
sigma 0.01
text encoder config.name google/byt5-large
text encoder config.scale 1.0
text encoder config.n hidden 1536
mel encoding strategy separate
mel encoder config.is causal false
mel encoder config.pos emb.name rope
mel encoder config.pos emb.base 16384
mel encoder config.use flash attention true
mel encoder config.deterministic false
mel encoder config.n layers 3
mel encoder config.p dropout 0.1
mel encoder config.p dropout out 0.0
mel encoder config.n heads 16
mel encoder config.has xattn false
mel encoder config.apply norm to cond false
mel encoder config.layer norm method pre
mel encoder config.kernel size 3
mel encoder config.use layer scale true
mel encoder config.layer scale init 0.1
mel encoder config.layer scale decay 0.95
mel encoder config.d model 1536
decoder config.d time 128
decoder config.transformer hparams.is causal false
decoder config.transformer hparams.pos emb.name rope
decoder config.transformer hparams.pos emb.base 16384
decoder config.transformer hparams.use flash attention true
decoder config.transformer hparams.deterministic false
decoder config.transformer hparams.n layers 24
decoder config.transformer hparams.p dropout 0.1
decoder config.transformer hparams.n heads 16
decoder config.transformer hparams.has xattn true
decoder config.transformer hparams.kernel size 3
decoder config.transformer hparams.context xattn.n heads 16
decoder config.transformer hparams.context xattn.d heads 1536
decoder config.d data 80
decoder config.d model 1536

Training and Inference During the first phase, Fugatto is trained on at least 32 NVIDIA A100
GPU for approximately 1M iterations with template-based instructions and a subset of tasks. During
the second phase, we restart the optimizer and train for approximately 250k iterations, sampling
from template-based and free-form instructions uniformly and adding all tasks. We use the AdamW
optimizer (Loshchilov & Hutter, 2019) with a learning rate of 1e-4, annealing the learning rate to
1e-6 during the second phase. A G2P model (Bernard & Titeux, 2021) pre-processes the text into
the International Phonetic Alphabet (IPA) format. During inference, we generate mel-spectrograms
using 50 function evaluations, 100 in practice, with Heun’s Solver and task-specific guidance scale γ.
Mel-spectrogram to waveform conversion is performed using the pre-trained universal BigVGAN V2
vocoder, available in the BigVGAN (Lee et al., 2023) repository4.

4BigVGAN: https://github.com/nvidia/bigvgan

26

https://github.com/nvidia/bigvgan

Fugatto

A.3 ABLATIONS

t-sampling We draw inspiration from (Shen et al., 2018; Valle et al., 2020), where, due to optimization
issues, the model would be stuck in a local minima and not make use of the text conditioning variable,
rendering the model useless during inference. We believe the same is true with t ∼ sigmoid(N (0, 1)),
and that with such a distribution the model is stuck in a local minima and does not leverage the text
to minimize the loss.

Figure 6: A description of the image.

Model capacity: Exponentially smoothed validation loss per task at different t-values from smaller
models with 0.8 B, 1.4 B params, to larger models with 2.5 B parameters.

Figure 7: Validation scores for different Fugatto sizes on 3 benchmarks at 3 different t-values.

27

Fugatto

A.4 SINGING VOICE SYNTHESIS MUSIC STYLES AND LYRICS

The Singing-Voice-Synthesis experiments in Section 3.2 evaluates all combinations between the
13 lyrics snippets and 10 music styles below. For each combination, we use the singing-voice-
synthesis instruction generator to create instructions such as: “Showcases a female singer with
an interesting sound, conveys the message through american english lyrics, and infuses country
influences throughout.”

This is the set of 13 lyrics snippets used during evaluation:

"Is this the real life?\nIs this just fantasy?"
"As I walk through the valley of the shadow of death"
"Somebody once told me\nThe world is gonna roll me."
"Look\nIf you had\nOne shot\nOr one opportunity."
"Joy to the world\nThe lord is come."
"Carry on, my wayward son\nThere’ll be peace when you are done."
"Please allow me to introduce myself."
"At first I was afraid, I was petrified."
"The world was on fire and no one could save me but you."
"Josie’s on a vacation far away."
"She’s got a smile that it seems to me."
"She was a fast machine, she kept her motor clean."
"Do you have the time to listen to me whine."

This is the set of 10 music styles used during evaluation:

"Country",
"Electronic",
"Hard Rock",
"Hip-Hop",
"Latin Rock",
"Metal",
"Opera",
"Pop",
"R&B",
"Singer-Songwriter"

28

Fugatto

A.5 MIDI2AUDIO F0 CONTOURS

Figure 8 shows comparisons of 25 monophonic melodies from the test set. As evident from the plot,
the model manages to follow the provided MIDI notes and timing well, while inserting nuances, and
varying timbres to the performance.

Figure 8: F0 contours of input MIDI (cyan), and generated melodies (magenta). X-axis denotes time
in seconds, and Y-axis denotes MIDI pitch.

A.6 COMPOSITIONALITY

Attribute Composition (Audio Events): This is the list of audio events used during Attribute/Event
composition in 3.5:

Violin, fiddle; Accelerating, revving, vroom; Water; Acoustic
guitar; Afrobeat; Whistle; Air conditioning; Air horn, truck horn;
Aircraft; Wind

29

	Introduction
	Approach
	Dataset Generation
	Instruction Generation
	Model and Training
	Composable Audio Representation Transformation (ComposableART)

	Experiments
	Ablations
	Audio Synthesis
	Audio Transformations
	Emergent Capabilities and Sound Gallery
	Compositionality
	Attribute/Event Composition
	Temporal Composition
	Task and Model Composition

	Discussion and Limitations
	Appendix
	Datasets
	Approach to Dataset Generation
	List of datasets
	Tasks
	Instructions

	Model and Training
	Ablations
	Singing Voice Synthesis Music Styles and Lyrics
	Midi2Audio F0 contours
	Compositionality

