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Boosting Introduction

Ensembles: Parallel vs Sequential

Ensemble methods combine multiple models
Parallel ensembles: each model is built independently

e.g. bagging and random forests
Main Idea: Combine many (high complexity, low bias) models to reduce variance

Sequential ensembles:
Models are generated sequentially
Try to add new models that do well where previous models lack
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Boosting Introduction

Overview

AdaBoost algorithm
weighted training sets and weighted classification error

AdaBoost minimizes training error
AdaBoost train/test learning curves (seems resistant to overfitting)
(If time) AdaBoost is minimizing exponential loss function (but in a special way)

Tomorrow
Forward stagewise additive modeling
Gradient Boosting (generalizes beyond exponential loss function)
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Boosting Introduction

The Boosting Question: Weak Learners

A weak learner is a classifier that does slightly better than random.
Weak learners are like “rules of thumb”:

If an email has “Viagra” in it, more likely than not it’s spam.
Email from a friend is probably not spam.
A linear decision boundary.

Can we combine a set of weak classifiers to form single classifier that makes accurate
predictions?

Posed by Kearns and Valiant (1988,1989):

Yes! Boosting solves this problem. [Rob Schapire (1990).]

(We mention “weak learners” for historical context, but we’ll avoid this terminology and
associated assumptions...)
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AdaBoost: The Algorithm

AdaBoost: Setting

AdaBoost is for binary classification: Y= {−1,1}
Base hypothesis space H = {h : X→ {−1,1}}.

Note: not producing a score, but an actual class label.
we’ll call it a base learner
(when base learner satisfies certain conditions, it’s called a “weak learner”)

Typical base hypothesis spaces:
Decision stumps (tree with a single split)
Trees with few terminal nodes
Linear decision functions
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AdaBoost: The Algorithm

Weighted Training Set

Training set D= {(x1,y1) , . . . ,(xn,yn)}.
Weights (w1, . . . ,wn) associated with each example.
Weighted empirical risk:

R̂w
n (f ) =

1
W

n∑
i=1

wi `(f (xi ),yi ) whereW =

n∑
i=1

wi

Can train a model to minimize weighted empirical risk.
What if model cannot conveniently be trained to reweighted data?
Can sample a new data set from D with probabilities(w1/W , . . .wn/W ).
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AdaBoost: The Algorithm

AdaBoost - Rough Sketch

Training set D= {(x1,y1) , . . . ,(xn,yn)}.
Start with equal weight on all training points w1 = · · ·= wn = 1.
Repeat for m = 1, . . . ,M:

Find base classifier Gm(x) that tries to fit weighted training data (but may not do that well)
Increase weight on the points Gm(x) misclassifies

So far, we’ve generated M classifiers: G1(x), . . . ,Gm(x).
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AdaBoost: The Algorithm

AdaBoost: Schematic

From ESL Figure 10.1
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AdaBoost: The Algorithm

AdaBoost - Rough Sketch

Training set D= {(x1,y1) , . . . ,(xn,yn)}.
Start with equal weight on all training points w1 = · · ·= wn = 1.
Repeat for m = 1, . . . ,M:

Base learner fits weighted training data and returns Gm(x)
Increase weight on the points Gm(x) misclassifies

Final prediction G (x) = sign
[∑M

m=1αmGm(x)
]
. (recall Gm(x) ∈ {−1,1})

The αm’s are nonnegative,
larger when Gm fits its weighted D well
smaller when Gm fits weighted D less well
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AdaBoost: The Algorithm

Adaboost: Weighted Classification Error

In round m, base learner gets a weighted training set.
Returns a base classifier Gm(x) that roughly minimizes weighted 0−1 error.

The weighted 0-1 error of Gm(x) is

errm =
1
W

n∑
i=1

wi1(yi 6= Gm(xi )) where W =

n∑
i=1

wi .

Notice: errm ∈ [0,1].
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AdaBoost: The Algorithm

AdaBoost: Classifier Weights

The weight of classifier Gm(x) is αm = ln
(

1−errm
errm

)
.

Note that weight αm→ 0 as weighted error errm→ 0.5 (random guessing).
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AdaBoost: The Algorithm

AdaBoost: Example Reweighting

We train Gm to minimize weighted error, and it achieves errm.

Then αm = ln
(

1−errm
errm

)
is the weight of Gm in final ensemble.

Suppose wi is weight of example i before training:
If Gm classfies xi correctly, then wi is unchanged.
Otherwise, wi is increased as

wi ← wie
αm

= wi

(
1− errm
errm

)
For errm < 0.5, this always increases the weight.
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AdaBoost: The Algorithm

Adaboost: Example Reweighting

Any misclassified point has weight adjusted as wi ← wi

(
1−errm
errm

)
.

The smaller errm, the more we increase weight of misclassified points.
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AdaBoost: The Algorithm

AdaBoost: Algorithm

Given training set D= {(x1,y1) , . . . ,(xn,yn)}.
1 Initialize observation weights wi = 1, i = 1,2, . . . ,n.
2 For m = 1 to M:

1 Base learner fits weighted training data and returns Gm(x)
2 Compute weighted empirical 0-1 risk:

errm =
1
W

n∑
i=1

wi1(yi 6= Gm(xi )) where W =

n∑
i=1

wi .

3 Compute αm = ln
(

1−errm
errm

)
[classifier weight]

4 Set wi ← wi · exp [αm1(yi 6= Gm(xi ))] , i = 1,2, . . . ,n [example weight adjustment]

3 Ouptut G (x) = sign
[∑M

m=1αmGm(x)
]
.
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AdaBoost: The Algorithm

AdaBoost with Decision Stumps

After 1 round:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10
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AdaBoost: The Algorithm

AdaBoost with Decision Stumps

After 3 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10
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AdaBoost: The Algorithm

AdaBoost with Decision Stumps

After 120 rounds:

Figure: Plus size represents weight. Blackness represents score for red class.

KPM Figure 16.10
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Does AdaBoost Minimize Training Error?

AdaBoost: Does it actually minimize training error?

Methods we’ve seen so far come in two categories:
Regularized empirical risk minimization (L1/L2 regression, SVM, kernelized versions)
Trees

GD and SGD converge to minimizers of objective function on training data

Trees achieve 0 training error unless same input occurs with different outputs
without any limit on tree complexity

So far, AdaBoost is just an algorithm.
Does an AdaBoost classifier G (x) even minimize training error?
Yes, if our weak classifiers have an “edge” over random.
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Does AdaBoost Minimize Training Error?

AdaBoost: Does it actually minimize training error?

Assume base classifier, Gm(x) has errm 6 1
2 .

(Otherwise, let Gm(x)←−Gm(x).)

Define the edge of classifier Gm(x) at round m to be

γm =
1
2
− errm.

Measures how much better than random Gm performs.
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Does AdaBoost Minimize Training Error?

AdaBoost: Does it actually minimize training error?

Theorem
The empirical 0-1 risk of the AdaBoost classifier G (x) is bounded as

1
n

n∑
i=1

1(yi 6= G (x))6
M∏

m=1

√
1−4γ2

m.

What’s are the possible values for
√

1−4γ2
m?.

Proof is an optional homework problem on Homework 6.
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Does AdaBoost Minimize Training Error?

AdaBoost: Does it actually minimize training error?

Suppose errm 6 0.4 for all m.

Then the “edge” is γm = .5− .4= .1, and training error is bounded as follows:

1
n

n∑
i=1

1(yi 6= G (x))6
M∏

m=1

√
1−4(.1)2 ≈ (.98)M

Bound decreases exponentially:

.98100 ≈ .133

.98200 ≈ .018

.98300 ≈ .002

With a consistent edge, training error decreases very quickly to 0.

David Rosenberg (New York University) DS-GA 1003 March 28, 2017 24 / 41



Does AdaBoost Minimize Training Error?

Training Error Rate Curves

“Base learner” plots error rates errM on weighted training sets after M rounds of boosting
“Train error” is the training error of the combined classifier
“Theory bound” plots the training error bound given by the theorem

Figure 3.1 from Boosting: Foundations and Algorithms by Schapire and Freund.
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Test Performance of Boosting

Typical Train / Test Learning Curves

Might expect too many rounds of boosting to overfit:

From Rob Schapire’s NIPS 2007 Boosting tutorial.
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Test Performance of Boosting

Learning Curves for AdaBoost

In typical performance, AdaBoost is surprisingly resistant to overfitting.
Test continues to improve even after training error is zero!

From Rob Schapire’s NIPS 2007 Boosting tutorial.
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Boosting Fits an Additive Model

Adaptive Basis Function Model

AdaBoost produces a classification score function of the form

M∑
m=1

αmGm(x)

each Gm is a base classifier

The Gm’s are like basis functions, but they are learned from the data.
Let’s move beyond classification models...

David Rosenberg (New York University) DS-GA 1003 March 28, 2017 30 / 41



Boosting Fits an Additive Model

Adaptive Basis Function Model

Base hypothesis space H

An adaptive basis function expansion over H is

f (x) =
M∑

m=1

νmhm(x),

hm ∈H chosen in a learning process (“adaptive”)
νm ∈ R are expansion coefficients.

Note: We are taking linear combination of outputs of hm(x).
Functions in hm ∈H must produce values in R (or a vector space)
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Boosting Fits an Additive Model

How to fit an adaptive basis function model?

Loss function: `(y , ŷ)
Base hypothesis space: H of real-valued functions
Want to find

f (x) =
M∑

m=1

νmhm(x)

that minimizes empirical risk
1
n

n∑
i=1

`(yi , f (xi )) .

We’ll proceed in stages, adding a new hm in every stage.
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Boosting Fits an Additive Model

Forward Stagewise Additive Modeling (FSAM)

Start with f0 ≡ 0.
After m−1 stages, we have

fm−1 =

m−1∑
i=1

νihi ,

where h1, . . . ,hm−1 ∈H.

Want to find
step direction hm ∈H and
step size νi > 0

So that
fm = fm−1+νihm

minimizes empirical risk.
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Boosting Fits an Additive Model

Forward Stagewise Additive Modeling

1 Initialize f0(x) = 0.
2 For m = 1 to M:

1 Compute:

(νm,hm) = argmin
ν∈R,h∈H

n∑
i=1

`

yi , fm−1(xi )+νh(xi )︸ ︷︷ ︸
new piece

 .

2 Set fm = fm−1+νmh.

3 Return: fM .
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Boosting Fits an Additive Model

Exponential Loss and AdaBoost

Take loss function to be
`(y , f (x)) = exp(−yf (x)) .

Let H be our base hypothesis space of classifiers h : X→ {−1,1}.
Then Forward Stagewise Additive Modeling (FSAM) reduces to AdaBoost!

Proof on Homework #6 (and see HTF Section 10.4).
Only difference:

AdaBoost gets whichever Gm the base learner returns from H – no guarantees it’s best in H.
FSAM explicitly requires getting the best in H

Gm = argmin
G∈H

N∑
i=1

w
(m)
i 1(yi 6= G (xi ))
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Robustness and AdaBoost

Exponential Loss

Note that exponential loss puts a very large weight on bad misclassifications.
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Robustness and AdaBoost

AdaBoost / Exponential Loss: Robustness Issues

When Bayes error rate is high (e.g. P(f ∗(X ) 6= Y ) = 0.25)

e.g. there’s some intrinsic randomness in the label
e.g. training examples with same input, but different classifications.

Best we can do is predict the most likely class for each X .
Some training predictions should be wrong (because example doesn’t have majority
class)

AdaBoost / exponential loss puts a lot of focus on geting those right
Empirically, AdaBoost has degraded performance in situations with

high Bayes error rate, or when there’s
high “ label noise”

Logistic loss performs better in settings with high Bayes error
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Population Minimizer

Population Minimizers

In traditional statistics, the population refers to
the full population of a group, rather than a sample.

In machine learning, the population case is the hypothetical case of
an infinite training sample from PX×Y.

A population minimizer for a loss function is another name for the risk minimizer.
For the exponential loss `(m) = e−m, the population minimizer is given by

f ∗(x) =
1
2
ln

P(Y = 1 | X = x)

P(Y =−1 | X = x)

(Short proof in KPM 16.4.1)
By solving for P(Y = 1 | X = x), we can give probabilistic predictions from AdaBoost as
well.
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Population Minimizer

Population Minimizers

AdaBoost has the robustness issue because of the exponential loss.
Logistic loss `(m) = ln(1+ e−m) has the same population minimizer.

But works better with high label noise or high Bayes error rate

Population minimizer of SVM hinge loss is

f ∗(x) = sign
[
P(Y = 1 | X = x)−

1
2

]
.

Because of the sign, we cannot solve for the probabilities.
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