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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Lecture 2: Excess Risk Decomposition and Regulariza-

tion

Topic 1: Excess Risk Decomposition

Learning Objectives

1. Give precise definitions for excess risk, approximation error, estimation error, and
optimization error.

2. Suppose we have nested hypothesis spaces, sayH1 ⊂ H2. Explain how we would expect
the approximation error and estimation error to change when we change from H1 to
H2, all else fixed.

3. Explain how we would expect the approximation error and estimation error to change
when we increase the sample size, all else fixed.

∗Brett authored these concept checks for Spring 2017 DS-GA 1003, and the work is almost entirely his.
Later (minor) modifications were made by David Rosenberg and Ben Jakubowski.
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4. Explain optimization error, and write down an excess risk decomposition that incor-
porates approximation error, estimation error, and optimization error. Why might we
have negative optimization error but never negative estimation error?

Concept Check Questions

1. Let X = Y = {1, 2, . . . , 10}, A = {1, . . . , 10, 11} and suppose the data distribution
has marginal distribution X ∼ Unif{1, . . . , 10}. Furthermore, assume Y = X (i.e.,
Y always has the exact same value as X). In the questions below we use square loss
function `(a, x) = (a− x)2.

(a) What is the Bayes risk?

(b) What is the approximation error when using the hypothesis space of constant
functions?

(c) Suppose we use the hypothesis space F of affine functions.

i. What is the approximation error?

ii. Consider the function f̂(x) = x+ 1. Compute R(f̂)−R(fF).

2. (?) Let X = [−10, 10], Y = A = R and suppose the data distribution has marginal
distribution X ∼ Unif(−10, 10) and Y |X = x ∼ N (a+ bx, 1). Throughout we assume
the square loss function `(a, x) = (a− x)2.

(a) What is the Bayes risk?

(b) What is the approximation error when using the hypothesis space of constant
functions (in terms of a and b)?

(c) Suppose we use the hypothesis space of affine functions.

i. What is the approximation error?

ii. Suppose you have a fixed data set and compute the empirical risk minimizer
f̂n(x) = c+ dx. What is the estimation error (int terms of a, b, c, d) ?

3. Try to best characterize each of the following in terms of one or more of optimization
error, approximation error, and estimation error.

(a) Overfitting.

(b) Underfitting.

(c) Precise empirical risk minimization for your hypothesis space is computationally
intractable.

(d) Not enough data.

4. (a) We sometimes look at R(f̂n) as random, and other times as deterministic. What
causes this difference?
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(b) True or False: Increasing the size of our hypothesis space can shift risk from
approximation error to estimation error but always leaves the quantity R(f̂n) −
R(f ∗) constant.

(c) True or False: Assume we treat our data set as a random sample and not a fixed
quantity. Then the estimation error and the approximation error are random and
not deterministic.

(d) True or False: The empirical risk of the ERM, R̂(f̂n), is an unbiased estimator of
the risk of the ERM R(f̂n).

(e) In each of the following situations, there is an implicit sample space in which the
given expectation is computed. Give that space.

i. When we say the empirical risk R̂(f) is an unbiased estimator of the risk R(f)
(where f is independent of the training data used to compute the empirical
risk).

ii. When we compute the expected empirical risk E[R(f̂n)] (i.e., the outer ex-
pectation).

iii. When we say the minibatch gradient is an unbiased estimator of the full
training set gradient.

5. For each, use ≤, ≥, or = to determine the relationship between the two quantities, or
if the relationship cannot be determined. Throughout assume F1,F2 are hypothesis
spaces with F1 ⊆ F2, and assume we are working with a fixed loss function `.

(a) The estimation errors of two decision functions f1, f2 that minimize the empirical
risk over the same hypothesis space, where f2 uses 5 extra data points.

(b) The approximation errors of the two decision functions f1, f2 that minimize risk
with respect to F1,F2, respectively (i.e., f1 = fF1 and f2 = fF2).

(c) The empirical risks of two decision functions f1, f2 that minimize the empirical
risk over F1,F2, respectively. Both use the same fixed training data.

(d) The estimation errors (for F1,F2, respectively) of two decision functions f1, f2
that minimize the empirical risk over F1,F2, respectively.

(e) The risk of two decision functions f1, f2 that minimize the empirical risk over
F1,F2, respectively.

6. In the excess risk decomposition lecture, we introduced the decision tree classifier
spaces F (space of all decision trees) and Fd (the space of decision trees of depth d)
and went through some examples. The following questions are based on those slides.
Recall that PX = Unif([0, 1]2), Y = {blue, orange}, orange occurs with .9 probability
below the line y = x and blue occurs with .9 probability above the line y = x.

(a) Prove that the Bayes error rate is 0.1.

(b) Is the Bayes decision function in F?
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(c) For the hypothesis space F3 the slide states that R(f̃) = 0.176±.004 for n = 1024.
Assuming you had access to the training code that produces f̃ from a set of data
points, and random draws from the data generating distribution, give an algorithm
(pseudocode) to compute (or estimate) the values 0.176 and .004.

Topic 2: L1 and L2 Regularization

Learning Objectives

1. Explain the concept of a sequence of nested hypothesis spaces, and explain how a
complexity measure (of a function) can be used to create such a sequence.

2. Given a base hypothesis space of decision functions (e.g. affine functions), a perfor-
mance measure for a decision function (e.g. empirical risk on a training set), and a
function complexity measure (e.g. Lipschitz continuity constant of decision function),
give the corresponding optimization problem in Tikhonov and Ivanov forms.

3. For some situations (i.e. combinations of base hypothesis space, performance measure,
and complexity measure), we claimed that Tikhonov and Ivanov forms are equivalent.
Be able to explain what this means and write it down mathematically.

4. In particular, the Tikhonov and Ivanov formulations are equivalent for lasso and ridge
regression. Be comfortable switching between the formulations to assist with interpre-
tations (e.g. the classic L1 regularization picture with the norm ball is based on the
Ivanov formulation).

Concept Check Questions

1. Consider the following two minimization problems:

arg min
w

Ω(w) +
λ

n

n∑
i=1

L(fw(xi), yi)

and

arg min
w

CΩ(w) +
1

n

n∑
i=1

L(fw(xi), yi),

where Ω(w) is the penalty function (for regularization) and L is the loss function. Give
sufficient conditions under which these two give the same minimizer.

2. (?) Let f : Rn → R be a differentiable function. Prove that ‖∇f(x)‖2 ≤ L if and only
if f is Lipschitz with constant L.

3. (?) Let ŵ denote the minimizer for

minimizew ‖Xw − y‖22
subject to ‖w‖1 ≤ r.
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Prove that f(x) = ŵTx is Lipschitz with constant r.

4. Two of the plots in the lecture slides use the fact that ‖ŵ‖/‖w̃‖ is always between 0 and
1. Here ŵ is the parameter vector of the linear model resulting from the regularized
least squares problem. Analgously, w̃ is the parameter vector from the unregularized
problem. Why is this true that the quotient lies in [0, 1]?

5. Explain why feature normalization is important if you are using L1 or L2 regularization.

5


	Lecture 2: Excess Risk Decomposition and Regularization
	Topic 1: Excess Risk Decomposition
	Learning Objectives
	Concept Check Questions

	Topic 2: L1 and L2 Regularization
	Learning Objectives
	Concept Check Questions



