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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

e List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

e Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (%)
are considered optional.

Lecture 2: Excess Risk Decomposition and Regulariza-
tion

Topic 1: Excess Risk Decomposition
Learning Objectives

1. Give precise definitions for excess risk, approximation error, estimation error, and
optimization error.

2. Suppose we have nested hypothesis spaces, say H; C Hs. Explain how we would expect
the approximation error and estimation error to change when we change from H; to

Ho, all else fixed.

3. Explain how we would expect the approximation error and estimation error to change
when we increase the sample size, all else fixed.

*Brett authored these concept checks for Spring 2017 DS-GA 1003, and the work is almost entirely his.
Later (minor) modifications were made by David Rosenberg and Ben Jakubowski.



4. Explain optimization error, and write down an excess risk decomposition that incor-
porates approximation error, estimation error, and optimization error. Why might we
have negative optimization error but never negative estimation error?

Concept Check Questions

1. Let X =Y ={1,2,...,10}, A = {1,...,10,11} and suppose the data distribution
has marginal distribution X ~ Unif{1,...,10}. Furthermore, assume ¥ = X (i.e.,
Y always has the exact same value as X). In the questions below we use square loss
function f(a,z) = (a — x).

(a) What is the Bayes risk?

(b) What is the approximation error when using the hypothesis space of constant
functions?

(c) Suppose we use the hypothesis space F of affine functions.
i. What is the approximation error?
ii. Consider the function f(z) =z 4 1. Compute R(f) — R(f#).

Solution.

(a) The best decision function is f*(z) = z. The associated risk is 0.
(b) The best constant function is f(z) = E[Y] = E[X] = 5.5. This has risk

33

E[(Y —5.5)%] = Var(Y) = T

by using (or deriving) the formula for the variance of a discrete uniform distribu-
tion. Thus the approximation error is 33/4.

(¢) 1. The Bayes decision function is affine, so the approximation error is 0.
ii. The risk is

A~

R(f) =E[(Y = f(X))’] = E[(X — (X +1))’| = L.
Thus the answer is 1.

2. (x) Let X = [-10,10], Y = A = R and suppose the data distribution has marginal
distribution X ~ Unif(—10,10) and Y|X = x ~ N (a + bx,1). Throughout we assume
the square loss function ¢(a,z) = (a — ).

(a) What is the Bayes risk?

(b) What is the approximation error when using the hypothesis space of constant
functions (in terms of a and b)?

(c) Suppose we use the hypothesis space of affine functions.



i. What is the approximation error?

ii. Suppose you have a fixed data set and compute the empirical risk minimizer
fn(z) = ¢+ dz. What is the estimation error (int terms of a,b,¢,d) ?

Solution. Throughout we use the fact that Var(X) = E[X?] — E[X]?.
(a) The best decision function is f(z) = E[Y|X = z] = a + bzx. This has risk
E[(Y —a—bX))] =E[E[(Y —a—bX)*|X]] =E[1] = 1.

(b) The best constant function is given by E[Y| = E[E[Y|X]] = a + bE[X]| = a. This
has risk

E[(Y —a)}] = E[E[(Y — a)*|X]] = E[1 + 0*X?] = 1 + b’E[X?],

where

Thus the approximation error is 1006%/3.
(c) i. There is an affine Bayes decision function, so the approximation error is 0.
ii. Note that

R(f.) = E[Y —c—dX)?] =E[E[(Y - c—dX)*|X]]
= El+((a—c)+ (b—d)X)* =1+ (a—c)*+100(b — d)?/3.

Thus the estimation error is (a — ¢)? 4+ 100(b — d)?/3.

3. Try to best characterize each of the following in terms of one or more of optimization
error, approximation error, and estimation error.
(a) Overfitting.
(b) Underfitting.

(c) Precise empirical risk minimization for your hypothesis space is computationally
intractable.

(d) Not enough data.
Solution.

(a) High estimation error due to insufficient data relative to the complexity of your
hypothesis space. Can be accompanied by low approximation error indicating a
complex hypothesis space.

(b) High approximation error due to an overly simplistic hypothesis space. Can be
accompanied by low estimation estimation error due to the large amount of data
relative to the (low) complexity of the hypothesis space.
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4.

()
()

(a)
(b)

Increased optimization error.

High estimation error.

We sometimes look at R( fn) as random, and other times as deterministic. What
causes this difference?

True or False: Increasing the size of our hypothesis space can shift risk from
approximation error to estimation error but always leaves the quantity R(f,) —
R(f*) constant.

True or False: Assume we treat our data set as a random sample and not a fixed
quantity. Then the estimation error and the approximation error are random and
not deterministic.

True or False: The empirical risk of the ERM, R(f,), is an unbiased estimator of
the risk of the ERM R(f,).

In each of the following situations, there is an implicit sample space in which the
given expectation is computed. Give that space.

i. When we say the empirical risk R(f) is an unbiased estimator of the risk R(f)
(where f is independent of the training data used to compute the empirical
risk).

ii. When we compute the expected empirical risk E[R(f,)] (i.c., the outer ex-
pectation).

iii. When we say the minibatch gradient is an unbiased estimator of the full
training set gradient.

Solution.

(a)
(b)

The quantity is random when we consider the training data as a random sample of
size n. If we focus on a fixed set of training data then the quantity is deterministic.

False. Note that fn depends on which hypothesis space you have chosen. As
an example, imagine having an affine Bayes decision function, and changing the
hypothesis space from the set of affine functions to the set of all decision func-
tions. This can cause empirical risk minimization to overfit the training data thus
creating a sharp rise in R(f,) — R(f*).

False, approximation error is a deterministic quantity.

False. The empirical risk of the ERM will often be biased low. This is why we

use a test set to approximate its true risk. The issue is that fn depends on the
training data so

Eg(fn(xz)v yz) 7é ]Eafn(w)a y)

where x,y is a new random draw from the data distribution that isn’t in the
training data.



(e) i. The space of training sets (i.e., samples of size n from the data generating
distribution).

ii. The space of training sets (i.e., samples of size n from the data generating
distribution).

iii. The space of all minibatches chosen from the full training set (i.e., samples

of of the batch size from the empirical distribution on the full training set).

5. For each, use <, >, or = to determine the relationship between the two quantities, or
if the relationship cannot be determined. Throughout assume JFi, F, are hypothesis
spaces with F; C F,, and assume we are working with a fixed loss function ¢.

(a) The estimation errors of two decision functions fi, fo that minimize the empirical
risk over the same hypothesis space, where f; uses 5 extra data points.

(b) The approximation errors of the two decision functions fi, fo that minimize risk
with respect to Fi, Fa, respectively (i.e., fi = fr and fo = f7,).

(c) The empirical risks of two decision functions fi, fo that minimize the empirical
risk over Fi, Fa, respectively. Both use the same fixed training data.

(d) The estimation errors (for Fi, F, respectively) of two decision functions fi, fo
that minimize the empirical risk over Fi, F», respectively.

(e) The risk of two decision functions fi, fo that minimize the empirical risk over
F1, Fo, respectively.

Solution.

(a) Roughly speaking, more data is better, so we would tend to expect that fo will
have lower estimation error. That said, this is not always the case, so the rela-
tionship cannot be determined.

(b) The approximation error of f; will be larger.
(¢) The empirical risk of f; will be larger.

(d) Roughly speaking, increasing the hypothesis space should increase the estimation
error since the approximation error will decrease, and we expect to need more
data. That said, this is not always the case, so the answer is the relationship
cannot be determined.

(e) Cannot be determined.
6. In the excess risk decomposition lecture, we introduced the decision tree classifier
spaces F (space of all decision trees) and Fy (the space of decision trees of depth d)
and went through some examples. The following questions are based on those slides.

Recall that Py = Unif([0,1]?), Y = {blue, orange}, orange occurs with .9 probability
below the line y = x and blue occurs with .9 probability above the line y = .

(a) Prove that the Bayes error rate is 0.1.
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(b) Is the Bayes decision function in F?

(c) For the hypothesis space F3 the slide states that R(f) = 0.1764.004 for n = 1024.
Assuming you had access to the training code that produces f from a set of data
points, and random draws from the data generating distribution, give an algorithm
(pseudocode) to compute (or estimate) the values 0.176 and .004.

Solution.

(a) Since the output space is discrete and we are using the 0 — 1 loss, our best
prediction is the highest probability output conditional on the input. By choosing
orange below the line y = x and blue above, we obtain a .1 probability of error.
For the 0 — 1 loss, probability of error gives the risk.

(b) No. Any decision tree in F has finite depth, and thus will divide [0,1]? into a
finite number of rectangles. Thus we cannot produce the decision boundary y = x
used by the Bayes decision function.

(c¢) Pseudocode follows:

i. Initialize L to be an empty list of risks.
ii. Repeat the following M times for some sufficiently large M:

A. Draw a random sample (21, 41), ..., (s, y,) from the data generating dis-
tribution.

B. Obtain a decision function f by running our training algorithm on the
generated sample.

C. Draw a new random sample (x},v;),..., (2%, ys) of size S where S is
sufficiently large.

D. Compute e = |{i | f(z}) # y/}|. That is, the number of times f is
incorrect on our new sample.

E. Add e/S to the list L.

iii. Compute the sample average and standard deviation of the values in L. Above
.176 would be the average and .004 would be the standard deviation.

Instead of drawing the sample of size S we could have computed the risk analyt-
ically.

Topic 2: L; and L, Regularization

Learning Objectives

1. Explain the concept of a sequence of nested hypothesis spaces, and explain how a
complexity measure (of a function) can be used to create such a sequence.

2. Given a base hypothesis space of decision functions (e.g. affine functions), a perfor-
mance measure for a decision function (e.g. empirical risk on a training set), and a



function complexity measure (e.g. Lipschitz continuity constant of decision function),
give the corresponding optimization problem in Tikhonov and Ivanov forms.

3. For some situations (i.e. combinations of base hypothesis space, performance measure,
and complexity measure), we claimed that Tikhonov and Ivanov forms are equivalent.
Be able to explain what this means and write it down mathematically.

4. In particular, the Tikhonov and Ivanov formulations are equivalent for lasso and ridge
regression. Be comfortable switching between the formulations to assist with interpre-
tations (e.g. the classic L1 regularization picture with the norm ball is based on the
Ivanov formulation).

Concept Check Questions
1. Consider the following two minimization problems:

arg min Q(w) + % Z L(fuw(xi), yi)
i=1

w

and

1 n
in CQ) — E L i) Yi
argwmmC (w) + n 2 (folTi), yi),

where Q(w) is the penalty function (for regularization) and L is the loss function. Give
sufficient conditions under which these two give the same minimizer.

Solution. Let C' = 1/A. Then the two objectives differ by a constant factor.

2. (%) Let f: R™ — R be a differentiable function. Prove that |V f(z)||2 < L if and only
if f is Lipschitz with constant L.

Solution. First suppose ||V f(z)|l2 < L for some L > 0 and all z € R". By the mean
value theorem we have, for any z,y € R",

fly) = flx) =Vflx+E&y—2) (y—a),

where ¢ is some value between (0 and 1. Taking absolute values on each side we have

[f(y) = @) = [V flz+ &y —2)"(y —2)] < [Vfl@+ &y —2))lally — 22

by Cauchy-Schwarz. Applying our bound on the gradient norm proves f is Lipschitz
with constant L.

Conversely, suppose f is Lipschitz with constant L. Note that

V@) 0] = |f (a5 0)] = [ LET ZI@] g L

t—0 t — t=0 |t’

= Ljjvl-
Letting v = V f(x) we obtain ||V f(z)||3 < L||V f(z)]||2 giving the result.
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3. (x) Let w denote the minimizer for

minimize,, [|[Xw — yl|3
subject to ||wl]|; <.

Prove that f(x) = @’z is Lipschitz with constant r.

Solution. Note that ||wlls < ||w]|1 < 7, so the argument from class gives the result. To
see the inequality, note that

[wlli = (lwil + -+ [wal)* = Jwi[* + -+ + fwa* = [Jw]5.

4. Two of the plots in the lecture slides use the fact that ||w||/||w@]| is always between 0 and
1. Here w is the parameter vector of the linear model resulting from the regularized
least squares problem. Analgously, w is the parameter vector from the unregularized
problem. Why is this true that the quotient lies in [0, 1]?

Solution. We assume Ivanov regularization (since Tikhonov is equivalent). We know
that

l i(wT% - yi)2 < l i(@T% — i)

" L
since @ is the solution to the unconstrained minimization. But if ||| < ||w]| then ||@||
is feasible for the regularized problem, so |[w|| = ||@]|. Thus [[@|| > ||w]|.

5. Explain why feature normalization is important if you are using L, or Lo regularization.

Solution. Suppose you have a model y = w’z where z; is a very correlated with g, but
the feature is measured in meters. Thus w; = 4 would mean each increase in z; by 1
meter yields an increase in y by 4. Now suppose we change the units of w; to kilometers
by scaling it. This would require us to change w; to 4000 to achieve the same decision
function. While this has no effect on the loss (y — w”x)? it has a significant effect on
Al|wl3 or Aljwl||;. For example, even if xs,...,z, had very little relationship with y,
we would still undervalue w; due to the regularization.
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