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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Pre-Lecture 2: Optimization and linear algebra

Instructions: Prior to lecture 2, please review the following problems

Optimization Prerequisites for Lasso

1. Given a ∈ R we define a+, a− as follows:

a+ =

{
a if a ≥ 0,
0 otherwise,

and a− =

{
−a if a < 0,
0 otherwise.

We call a+ the positive part of a and a− the negative part of a. Note that a+, a− ≥ 0.

(a) Give an expression for a in terms of a+, a−.

(b) Give an expression for |a| in terms of a+, a−.

∗Brett authored these concept checks for Spring 2017 DS-GA 1003, and the work is almost entirely his.
Later (minor) modifications were made by David Rosenberg and Ben Jakubowski.
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For x ∈ Rd define x+ = (x+1 , . . . , x
+
d ) and x− = (x−1 , . . . , x

−
d ).

(c) Give an expression for x in terms of x+, x−.

(d) Give an expression for ‖x‖1 without using any summations or absolute values.
[Hint: Use x+, x− and the vector 1 = (1, 1, . . . , 1) ∈ Rd.]

Solution.

(a) a = a+ − a−

(b) |a| = a+ + a−

(c) x = x+ − x−

(d) ‖x‖1 = 1T (x+ + x−)

2. Let f : R→ R and S ⊆ R. Consider the two optimization problems

minimizex∈R |x|
subject to f(x) ∈ S and

minimizea,b∈R a+ b
subject to f(a− b) ∈ S

a, b ≥ 0.

Solve the following questions.

(a) If x in the first problem satistfies f(x) ∈ S show how to quickly compute (a, b)
for the second problem with a+ b = |x| and f(a− b) ∈ S.

(b) If a, b in the second problem satisfy f(a − b) ∈ S, show how to quickly compute
an x for the first problem with |x| ≤ a+ b and f(x) ∈ S.

(c) Assume x is a minimizer for the first problem with minimum value p∗1 and (a, b)
is a minimizer for the second problem with minimum p∗2. Using the previous two
parts, conclude that p∗1 = p∗2.

Solution.

(a) Let a = x+ and b = x−. Then a+ b = |x| and a− b = x.

(b) Let x = a− b and note that |x| = |a− b| ≤ |a|+ |b| = a+ b.

(c) Part a) shows p∗2 ≤ p∗1 by letting â = x+ and b̂ = x−. Part b) shows p∗1 ≤ p∗2 by
letting x̂ = a− b.

3. Let f : Rd → R, S ⊆ R and consider the following optimization problem:

minimizex∈Rd ‖x‖1
subject to f(x) ∈ S,

where ‖x‖1 =
∑d

i=1 |xi|. Give a new optimization problem with a linear objective
function and the same minimum value. Show how to convert a solution to your new
problem into a solution to the given problem. [Hint: Use the previous two problems.]
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Solution. Consider the minimization problem

minimizea,b∈Rd 1T (a+ b)
subject to f(a− b) ∈ S,

ai, bi ≥ 0 for i = 1, . . . , d.

Let p∗1 be the minimum for the original problem, and p∗2 the minimum for our new
problem. We first show p∗1 = p∗2. Suppose x is a minimizer for the original problem
and let a = x+ and b = x−. Then by the first question 1T (a+ b) = ‖x‖1 and a− b = x.
This shows p∗2 ≤ p∗1. Next suppose (a, b) is a minimizer for our new problem, and let
x = a− b. Then

‖x‖1 = ‖a− b‖1 =
d∑

i=1

|ai − bi| ≤
d∑

i=1

|ai|+ |bi| =
d∑

i=1

ai + bi = 1T (a+ b).

This proves p∗1 ≤ p∗2.

Finally, given a minimizer (a, b) for the new problem we recover a minimizer x for the
original problem by letting x = a− b.

Ellipsoids

1. (?) Describe the following set geometrically:{
v ∈ R2

∣∣∣∣ vT ( 2 2
0 2

)
v = 4

}
.

Solution. The set is an ellipse with semi-axis lengths 2/
√

3 and 2 rotated counter-
clockwise by π/4. Letting v = (x, y)T and multiplying all terms we get

2x2 + 2xy + 2y2 = 4.

From precalculus we can see this is a conic section, and must be an ellipse or a hyper-
bola, but more work is needed to determine which one. Instead of proceeding along
these lines, let’s use linear algebra to give a cleaner treatment that extends to higher
dimensions.

Let A =

(
2 2
0 2

)
. Since vTAv is a number, we must have (vTAv)T = vTATv. This

gives

vTATv = vTAv =
1

2
vT (AT + A)v = vT

(
2 1
1 2

)
v.

Our new matrix is symmetric, and thus allows us to apply the spectral theorem to
diagonalize it with an orthonormal basis of eigenvectors. In other words, by rotating
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our axes we can get a diagonal matrix. Either doing this by hand, or using a computer
(Matlab, Mathematica, Numpy) we obtain(

2 1
1 2

)
= Q

(
3 0
0 1

)
QT where Q =

1√
2

(
1 −1
1 1

)
=

(
cos(π/4) − sin(π/4)
sin(π/4) cos(π/4)

)
.

The set {
w ∈ R2

∣∣∣∣ wT

(
3 0
0 1

)
w = 4

}
is an ellipse with semi-axis lengths 2/

√
3 and 2 since it corresponds to the equation

3w2
1 + w2

2 = 4. Since Q performs a counter-clockwise rotation by π/4 we obtain the
answer. More concretely,

wT

(
3 0
0 1

)
w = 4 ⇐⇒ (Qw)TQ

(
3 0
0 1

)
QT (Qw) = 4 ⇐⇒ (Qw)T

(
2 1
1 2

)
(Qw) = 4

so

{v | vTAv = 4} =

{
Qw

∣∣∣∣ wT

(
3 0
0 1

)
w = 4

}
.

−2

−1

1

2

−2 −1 1 2

{(x, y) | 3x2 + y2 = 4}

−2

−1

1

2

−2 −1 1 2

{v | vTAv = 4}

Figure 1: Rotated Ellipse

More generally, the solution to vTAv = c for v ∈ Rn, A ∈ Rn×n and c > 0 will be an
ellipsoid if A is positive definite. The ith semi-axis will have length

√
c/λi where λi is

the ith eigenvalue of A.

(?) Linear Algebra Prerequisites for Linear Regressions

1. When performing linear regression we obtain the normal equations ATAx = ATy where
A ∈ Rm×n, x ∈ Rn, and y ∈ Rm.
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(a) If rank(A) = n then solve the normal equations for x.

(b) (?) What if rank(A) 6= n?

Solution.

(a) We first show that rank(ATA) = n to show that we can invert ATA. By the
rank-nullity theorem, we can do this by showing ATA has trivial nullspace. Note
that for any x ∈ Rn we have

ATAx = 0 =⇒ xTATAx = 0 =⇒ ‖Ax‖22 = 0 =⇒ Ax = 0 =⇒ x = 0.

This last implication follows since rank(A) = n so A has trivial nullspace (again
by rank-nullity). This proves ATA has a trivial nullspace, and thus ATA is in-
vertible. Applying the inverse we obtain

x = (ATA)−1ATy.

Since ATA is invertible, our answer for x is unique.

(b) We will show that the equation always has infinitely many solutions x. First note
that rank(A) 6= n implies rank(A) < n since you cannot have larger rank than
the number of columns. Next, recall rank(A) = rank(ATA). Hence, by rank-
nullity, ATA has a non-trivial nullspace, which in turn implies that if there is a
solution, there must be infinitely many solutions.

Next note AT and ATA have the same column space. To see this, first note that
every vector of the form ATAx must be a linear combination of the columns of
AT , and thus lies in the column space of AT . Since rank(ATA) = rank(A) =
rank(AT ), this implies AT and ATA have the same column spaces.

A specific solution can be computed as x = (ATA)+ATy, where (ATA)+ is the
pseudoinverse of ATA. Of the infinitely many possible solutions x, this gives the
one that minimizes ‖x‖2. More precisely, x = (ATA)+ATy solves the optimization
problem

minimize ‖x‖2
subject to ATAx = ATy.

2. Prove that ATA+ λIn×n is invertible if λ > 0 and A ∈ Rn×n.

Solution. If (ATA+ λIn×n)x = 0 then

0 = xT (ATA+ λIn×n)x = ‖Ax‖22 + λ‖x‖22 =⇒ x = 0.

Thus ATA + λIn×n has trivial nullspace. Alternatively, we could notice that ATA is
positive semidefinite, so adding λIn×n will give a matrix whose eigenvalues are all at
least λ > 0. A square matrix is invertible iff its eigenvalues are all non-zero.
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