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Instructions: Following most lab and lecture sections, we will be providing concept
checks for review. Each concept check will:

• List the lab/lecture learning objectives. You will be responsible for mastering these ob-
jectives, and demonstrating mastery through homework assignments, exams (midterm
and final), and on the final course project.

• Include concept check questions. These questions are intended to reinforce the lab/lec-
tures, and help you master the learning objectives.

You are strongly encourage to complete all concept check questions, and to discuss these
(and related) problems on Piazza and at office hours. However, problems marked with a (?)
are considered optional.

Week 5 Lab: Concept Check Exercises

Kernels

Kernel Learning Objectives

• Explain how explicit feature maps can be used to extend the expressivity of linear
models.

• Explain potential issues explicitly computing large feature spaces.

• State and explain the definition of a ’kernelized’ method.

• Explain why the SVM dual is kernelized, while the primal is not (ignoring the repre-
senter theorem).

• Give the relationship between a feature map and kernel function.

• Explain the computational benefits of kernelization based on costs of optimizing over
Rn vs Rd.
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• Be able to apply the kernel trick using the kernel matrix K.

• Be able to apply the elements of our proof of the representer theorem (ex: projections
decrease norms) to prove related theorems.

• Compare using the representer theorem and duality to kernelized SVM.

• Describe common kernels (RBF/polynomial) and their properties (i.e. equivalent fea-
ture maps, computational benefits relative to explicit computation (if possible),...).

• Describe some general recipes for deriving ”new” kernel function.

Kernel Concept Check Questions

1. Fix n > 0. For x, y ∈ {1, 2, . . . , n} define k(x, y) = min(x, y). Give an explicit feature
map ϕ : {1, 2, . . . , n} to RD (for some D) such that k(x, y) = ϕ(x)Tϕ(y).

Solution. Define ϕ(x) = (1(x ≤ 1),1(x ≤ 2), . . . ,1(x ≤ n)). Then ϕ(x)Tϕ(y) =
min(x, y).

2. Show that k(x, y) = (xTy)4 is a positive semidefinite kernel on Rd × Rd.

Solution. k1(x, y) = xTy is a psd kernel, since xTy is an inner product on Rd. Using
the product rule for psd kernels, we see that

k(x, y) = k1(x, y)k1(x, y)k1(x, y)k1(x, y) = k1(x, y)4

is psd as well.

3. Let A ∈ Rd×d be a positive semidefinite matrix. Prove that k(x, y) = xTAy is a positive
semidefinite kernel.

Solution. Fix x1, . . . , xn ∈ Rd and let X denote the matrix that has xTi as its ith row.
Then note that (XAXT )ij = xTi Axj = k(xi, xj). Thus we are done if we can show
XAXT is positive semidefinite. But note that, for any α ∈ Rn,

αTXAXTα = (XTα)TA(XTα) ≥ 0,

since A is positive semidefinite.

4. Consider the objective function

J(w) = ‖Xw − y‖1 + λ‖w‖22.

Assume we have a positive semidefinite kernel k.

(a) What is the kernelized version of this objective?

(b) Given a new test point x, find the predicted value.
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Solution.

(a) J(α) = ‖Kα− y‖1 +λαTKα, where Kij = k(xi, xj). Here xTi is the ith row of X.

(b) fα(x) =
∑n

i=1 αik(xi, x).

5. Show that the standard 2-norm on Rn satisfies the parallelogram law.

Solution.

‖x− y‖22 + ‖x+ y‖22 = (‖x‖22 − 2xTy + ‖y‖22) + (‖x‖22 + 2xTy + ‖y‖22)
= 2‖x‖22 + 2‖y‖22.

6. Suppose you are given an training set of distinct points x1, x2, . . . , xn ∈ Rn and labels
y1, . . . , yn ∈ {−1,+1}. Show that by properly selecting σ you can achieve perfect 0−1
loss on the training data using a linear decision function and the RBF kernel.

Solution. By selecting σ sufficiently small (say, much smaller than mini 6=j ‖xi − xj‖2)
we can use αi = yi and get very pointy spikes at each data point. [Note: This is not
possible if any repeated points have different labels, which is not unusual in real data.]

7. Suppose you are performing standard ridge regression, which you have kernelized using
the RBF kernel. Prove that any decision function fα(x) learned on a training set must
satisfy fα(x)→ 0 as ‖x‖2 →∞.

Solution. Since fα(x) =
∑n

i=1 αik(xi, x) we have

lim
‖x‖2→∞

fα(x) = lim
‖x‖2→∞

n∑
i=1

αi exp

(
−‖xi − x‖

2
2

2σ2

)
=

n∑
i=1

αi lim
‖x‖2→∞

exp

(
−‖xi − x‖

2
2

2σ2

)
= 0.

8. Consider the standard (unregularized) linear regression problem where we minimize
L(w) = ‖Xw − y‖22 for some X ∈ Rn×m and y ∈ Rn. Assume m > n.

(a) Let w∗ be one minimizer of the loss function L above. Give an infinite set of
minimizers of the loss function.

(b) What property defines the minimizer given by the representer theorem (in terms
of X)?

Solution.

(a) {w∗ + v | v ∈ null(X)}. Using the standard inner product on Rn, we can also
write null(X) as the set of all vectors orthogonal to the row space of X.

(b) w∗ lies in the row space of X.
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