Homework 5: Conditional Probability Models

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. BTEX, LyX, or MathJax via iPython), though if you need to you
may scan handwritten work. You may find the minted package convenient for including source code
in your MTEX document. If you are using LiyX, then the listings package tends to work better.

1 Introduction

In this homework we’ll be investigating conditional probability models, with a focus on various
interpretations of logistic regression, with and without regularization. Along the way we’ll dis-
cuss the calibration of probability predictions, both in the limit of infinite training data and in a
more bare-hands way. On the Bayesian side, we’ll recreate from scratch the Bayesian linear gaus-
sian regression example we discussed in lecture. We’ll also have several optional problems that
work through many basic concepts in Bayesian statistics via one of the simplest problems there
is: estimating the probability of heads in a coin flip. Later we’ll extend this to the probability of
estimating click-through rates in mobile advertising. Along the way we’ll encounter empirical Bayes
and hierarchical models.

2 From Scores to Conditional Probabilities’

Let’s consider the classification setting, in which (x1,y1),..., (Zn,yn) € X x {—1,1} are sampled
i.i.d. from some unknown distribution. For a prediction function f : X — R, we define the margin
on an example (z,y) to be m = yf(x). Since our class predictions are given by sign(f(z)), we
see that a prediction is correct iff m(z) > 0. It’s tempting to interpret the magnitude of the score
| f(x)| as a measure of confidence. However, it’s hard to interpret the magnitudes beyond saying one
prediction score is more or less confident than another, and without any scale to this “confidence
score”, it’s hard to know what to do with it. In this problem, we investigate how we can translate
the score into a probability, which is much easier to interpret. In other words, we are looking for a
way to convert score function f(x) € R into a conditional probability distribution z — p(y =1 | x).

In this problem we will consider margin-based losses, which are loss functions of the form
(y, f(z)) — L(yf(z)), where m = yf(x) is called the margin. We are interested in how we can
go from an empirical risk minimizer for a margin-based loss, f = arg mingcz Y10 £ (yif(2:)), to
a conditional probability estimator 7(x) ~ p(y = 1 |). Our approach will be to try to find a

IThis problem is based on Section 7.5.3 of Schapire and Freund’s book Boosting: Foundations and Algorithms.

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings

way to use the Bayes® prediction function® f* = argmin Ezy [(yf(x)] to get the true conditional
probability 7(z) = p(y = 1| x), and then apply the same mapping to the empirical risk minimizer.
While there is plenty that can go wrong with this “plug-in” approach (primarily, the empirical risk
minimizer from a [limited] hypothesis space F may be a poor estimate for the Bayes prediction
function), it is at least well-motivated, and it can work well in practice. And please note that we
can do better than just hoping for success: if you have enough validation data, you can directly
assess how well “calibrated” the predicted probabilities are. This blog post has some discussion of
calibration plots: https://jmetzen.github.io/2015-04-14 /calibration.html.

It turns out it is straightforward to find the Bayes prediction function f* for margin losses, at
least in terms of the data-generating distribution: For any given x € X', we’ll find the best possible
prediction g. This will be the § that minimizes

Ey [0 (yg) |]

If we can calculate this § for all z € X, then we will have determined f*(z). We will simply take

(@) = arggmin Ey [¢(yg) | x].

Below we’ll calculate f* for several loss functions. It will be convenient to let 7(z) = p(y =1 | x)
in the work below.

1. Write E, [¢ (yf(z)) |] in terms of w(x), ¢(—f(x)), and ¢(f(z)). [Hint: Use the fact that
ye{-11}]

2. Show that the Bayes prediction function f*(z) for the exponential loss function ¢ (y, f(x)) =
e ¥/(*) ig given by
Fix) = 1. (@)
2 1—m(z))’

where we’ve assumed 7(z) € (0,1). Also, show that given the Bayes prediction function f*,
we can recover the conditional probabilities by

1

m(z) = Tre2F e

[Hint: Differentiate the expression in the previous problem with respect to f(z). To make
things a little less confusing, and also to write less, you may find it useful to change variables
a bit: Fix an ¢ € X. Then write p = w(x) and § = f(z). After substituting these into
the expression you had for the previous problem, you’ll want to find ¢ that minimizes the
expression. Use differential calculus. Once you’ve done it for a single x, it’s easy to write the
solution as a function of x.|

2Don’t be confused — it’s Bayes as in “Bayes optimal”, as we discussed at the beginning of the course, not Bayesian
as we've discussed more recently.

3In this context, the Bayes prediction function is often referred to as the “population minimizer.” In our case,
“population” refers to the fact that we are minimizing with respect to the true distribution, rather than a sample.
The term “population” arises from the context where we are using a sample to approximate some statistic of an entire
population (e.g. a population of people or trees).

https://jmetzen.github.io/2015-04-14/calibration.html

3. Show that the Bayes prediction function f*(x) for the logistic loss function £ (y, f(z)) =
In (1 + e_yf(x)) is given by

and the conditional probabilities are given by

1

@) = e F@-

Again, we may assume that 7(z) € (0, 1).

4. [Optional] Show that the Bayes prediction function f*(x) for the hinge loss function £ (y, f(z)) =
max (0,1 — yf(x)) is given by

F*(x) = sign (ﬂ'(ac) - ;) .

Note that it is impossible to recover 7(z) from f*(z) in this scenario. However, in practice
we work with an empirical risk minimizer, from which we may still be able to recover a
reasonable estimate for m(x). An early approach to this problem is known as “Platt scaling”:
https://en.wikipedia.org/wiki/Platt _scaling.

3 Logistic Regression

3.1 Equivalence of ERM and probabilistic approaches

In lecture we discussed two different ways to end up with logistic regression.

ERM approach: Consider the classification setting with input space X = R, outcome space
Y+ = {—1,1}, and action space Ag = R, with the hypothesis space of linear score functions
Fscore = {x = alw|we Rd}. Consider the margin-based loss function fiogistic(m) = log (1 +e™™)
and the training data D = ((«1,41),.-., (n,yn)). Then the empirical risk objective function for
hypothesis space Fscore and the logistic loss over D is given by

Rn(w)

1 ¢ T
-~ D logistic(yiw” @)

=1

1 n
- Z log (1 + exp (—yinxi)) .
i=1

Bernoulli regression with logistic transfer function: Consider the conditional probabil-
ity modeling setting with input space X = R%, outcome space Y, »1 = 10,1}, and action space
Ap,1] = [0,1], where an action corresponds to the predicted probability that an outcome is 1.
Define the standard logistic function as ¢(n) = 1/ (1 + e~") and the hypothesis space Fprop =

1 yi=1
{z — ¢(w'z) | w e R*}. Suppose for every y; in the dataset D above, we define y] = {0 4)
Yi = —

3

https://en.wikipedia.org/wiki/Platt_scaling

and let D" be the resulting collection of (x;,y;) pairs. Then the negative log-likelihood (NLL) ob-
jective function for Fon and D’ is give by

NLL(w)

— Zy; log ¢(w” ;) + (1 — y}) log (1- ¢(wai))
i=1

n

> [yilog p(wx;)] + (v — 1)log (1 — p(w”x;))

i=1

If Wprob minimizes NLL(w), then z — c;S(:z:Twpmb) is a maximum likelihood prediction function over
the hypothesis space Fprop for the dataset D’.

Show that nR, (w) = NLL(w) for all w € R%. And thus the two approaches are equivalent, in
that they produce the same prediction functions.

3.2 Numerical Overflow and the log-sum-exp trick

Suppose we want to calculate log (exp(n)) for n = 1000.42. If we compute this literally in Python,
we will get an overflow (try it!), since numpy gets infinity for e19942 and log of infinity is still
infinity. On the other hand, we can help out with some math: obviously log (exp(n)) = 7, and
there’s no issue.

It turns out, log(exp(n)) and the problem with its calculation is a special case of the LogSumExp
function that shows up frequently in machine learning. We define

LogSumExp(x1,...,2,) = log (€”* + -+ e"").

Note that this will overflow if any of the x;’s are large (more than 709). To compute this on
a computer, we can use the “log-sum-exp trick”. We let z* = max (z1,...,2,) and compute
LogSumExp as

LogSumExp(x1,...,2,) = 2" + log T p 4 ex”'_’”*] .
1. Show that the new expression for LogSumExp is valid.
2. Show that exp (z; — z*) € (0, 1] for any 4, and thus the exp calculations will not overflow.

3. Above we’ve only spoken about the exp overflowing. However, the log part can also have
problems by becoming negative infinity for arguments very close to 0. Explain why the log
term in our expression log [eml*“’* + o+ e””"’””*] will never be “inf”.

4. In the objective functions for logistic regression, there are expressions of the form log (1 + e~%)
for some s. Note that a naive implementation gives 0 for s > 36 and inf for s < —709. Show
how to use the numpy function logaddexp to correctly compute log (1 + e~*).

3.3 Regularized Logistic Regression

For a dataset D = ((21,91), - -+ (Tn,Yn)) drawn from R%x {—1, 1}, the regularized logistic regression
objective function can be defined as

Jlogistic(w) = Rn('LU) +)‘Hsz
1
n 3

n

Z]Qg (1 + exp (—ylexl)) +)\HU}”2
=1

https://en.wikipedia.org/wiki/LogSumExp
https://docs.scipy.org/doc/numpy/reference/generated/numpy.logaddexp.html

1. Prove that the objective function J]Ogistic(w) is convex. You may use any facts mentioned in
the convex optimization notes.

2. Complete the f_objective function in the skeleton code, which computes the objective
function for Jiogistic(w). Make sure to use the log-sum-exp trick to get accurate calculations
and to prevent overflow.

3. Completethe fit_logistic_regression_function in the skeleton code using the minimize
function from scipy.optimize. ridge_regression.py from Homework 2 gives an ex-
ample of how to use the minimize function. Use this function to train a model on the
provided data. Make sure to take the appropriate preprocessing steps, such as standardizing
the data and adding a column for the bias term.

4. Find the /5 regularization parameter that minimizes the log-likelihood on the validation set.
Plot the log-likelihood for different values of the regularization parameter.

5. Based on the Bernoulli regression development of logistic regression, it seems reasonable to
interpret the prediction f(z) = ¢(wTz) =1/ (1 + e‘me) as the probability that y = 1, for a
randomly drawn pair (z,y). Since we only have a finite sample (and we are regularizing, which
will bias things a bit) there is a question of how well “calibrated” our predicted probabilities
are. Roughly speaking, we say f(x) is well calibrated if we look at all examples (z,y) for
which f(z) ~ 0.7 and we find that close to 70% of those examples have y = 1, as predicted...
and then we repeat that for all predicted probabilities in (0,1). To see how well-calibrated
our predicted probabilities are, break the predictions on the validation set into groups based
on the predicted probability (you can play with the size of the groups to get a result you
think is informative). For each group, examine the percentage of positive labels. You can
make a table or graph. Summarize the results. You may get some ideas and references from
scikit-learn’s discussion.

6. [Optional| If you can, create a dataset for which the log-sum-exp trick is actually necessary
for your implementation of regularized logistic regression. If you don’t think such a dataset
exists, explain why. If you like, you may consider the case of SGD optimization. [This problem
is intentionally open-ended. You're meant to think, explore, and experiment. Points assigned
for interesting insights.|

4 Bayesian Logistic Regression with Gaussian Priors

Let’s return to the setup described in Section 3.1 and, in particular, to the Bernoulli regression set-
ting with logistic transfer function. We had the following hypothesis space of conditional probability
functions:

Forob = {2+ p(w'z) | w e R}

Now let’s consider the Bayesian setting, where we induce a prior on Fon by taking a prior p(w)
on the parameter w € R%.

https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf
https://en.wikipedia.org/wiki/Calibration_(statistics)
http://scikit-learn.org/stable/modules/calibration.html

1.

5

For the dataset D’ described in Section 3.1, give an expression for the posterior density
p(w | D) in terms of the negative log-likelihood function

NLLp/(w) = = yilogp(w’z;)+ (1 -y} log (1 - p(w”z;))

i=1

and a prior density p(w) (up to a proportionality constant is fine).

. Suppose we take a prior on w of the form w ~ A(0,%). Find a covariance matrix X such that

MAP estimate for w after observing data D’ is the same as the minimizer of the regularized
logistic regression function defined in Section 3.3 (and prove it). [Hint: Consider minimizing
the negative log posterior of w. Also, remember you can drop any terms from the objective
function that don’t depend on w. Also, you may freely use results of previous problems.]

. In the Bayesian approach, the prior should reflect your beliefs about the parameters before

seeing the data and, in particular, should be independent on the eventual size of your dataset.
Following this, you choose a prior distribution w ~ N(0,I). For a dataset D of size n,
how should you choose A in our regularized logistic regression objective function so that the
minimizer is equal to the mode of the posterior distribution of w (i.e. is equal to the MAP
estimator).

Bayesian Linear Regression - Implementation

In this problem, we will implement Bayesian Gaussian linear regression, essentially reproducing
the example from lecture, which in turn is based on the example in Figure 3.7 of Bishop’s Pattern
Recognition and Machine Learning (page 155). We've provided plotting functionality in "sup-
port_code.py". Your task is to complete "problem.py". The implementation uses np.matrix ob-
jects, and you are welcome to use? the np.matrix.get] method.

1.
2.

Implement likelihood func.

Implement get posterior params.

. Implement get predictive params.

Run “python problem.py” from inside the Bayesian Regression directory to do the regression
and generate the plots. This runs through the regression with three different settings for the
prior covariance. You may want to change the default behavior in support code.make plots
from plt.show, to saving the plots for inclusion in your homework submission.

. Comment on your results. In particular, discuss how each of the following change with

sample size and with the strength of the prior: (i) the likelihood function, (ii) the posterior
distribution, and (iii) the posterior predictive distribution.

4However, in practice we are usually interested in computing the product of a matrix inverse and a vector, i.e.
X ~1b. In this case, it’s usually faster and more accurate to use a library’s algorithms for solving a system of linear
equations. Note that y = X ~1b is just the solution to the linear system Xy = b. See for example John Cook’s blog
post for discussion.

https://davidrosenberg.github.io/mlcourse/Archive/2016/Lectures/13a.bayesian-regression.pdf#page=12
https://www.johndcook.com/blog/2010/01/19/dont-invert-that-matrix/
https://www.johndcook.com/blog/2010/01/19/dont-invert-that-matrix/

6. Our work above was very much “full Bayes”, in that rather than coming up with a single
prediction function, we have a whole distribution over posterior prediction functions. However,
sometimes we want a single prediction function, and a common approach is to use the MAP
estimate — that is, choose the prediction function that has the highest posterior likelihood. As
we discussed in class, for this setting, we can get the MAP estimate using ridge regression. Use
ridge regression to get the MAP prediction function corresponding to the first prior covariance
(== %I , per the support code). What value did you use for the regularization coefficient?
Why?

6 [Optional] Coin Flipping: Maximum Likelihood
1. [Optional] Suppose we flip a coin and get the following sequence of heads and tails:
D= (H,HT)

Give an expression for the probability of observing D given that the probability of heads is
0. That is, give an expression for p (D | 8). This is called the likelihood of 6 for the data D.

2. |Optional] How many different sequences of 3 coin tosses have 2 heads and 1 tail? If we toss
the coin 3 times, what is the probability of 2 heads and 1 tail? (Answer should be in terms
of 9.)

3. [Optional] More generally, give an expression for the likelihood p(D | 0) for a particular se-
quence of flips D that has nj heads and n; tails. Make sure you have expressions that make
sense even for § = 0 and nj = 0, and other boundary cases. You may use the convention that
0% = 1, or you can break your expression into cases if needed.

4. [Optional] Show that the maximum likelihood estimate of 6 given we observed a sequence

with nj heads and n; tails is
Np

éMLE = .
ny + ng

You may assume that np +n; > 1. (Hint: Maximizing the log-likelihood is equivalent and is
often easier.)

7 |[Optional] Coin Flipping: Bayesian Approach with Beta
Prior
We'll now take a Bayesian approach to the coin flipping problem, in which we treat 6 as a random

variable sampled from some prior distribution p(6). We’ll represent the ith coin flip by a random
variable X; € {0,1}, where X; = 1 if the ith flip is heads. We assume that the X;’s are conditionally

independent given #. This means that the joint distribution of the coin flips and 6 factorizes as
follows:

8

p(1,...,2n,0) = p@)p(x1,...,z, | 0) (always true)

= p(0) Hp(a:i | 6) (by conditional independence).

=1

. [Optional] Suppose that our prior distribution on 6 is Beta(h,t), for some h,t > 0. That is,

p(6) oc 071 (1 — H)t_l. Suppose that our sequence of flips D has nj;, heads and n; tails. Show
that the posterior distribution for 6 is Beta(h + np,t + n;). That is, show that

p(0 | D) gh—1+nn (1 — H)t_lJ””)

We say that the Beta distribution is conjugate to the Bernoulli distribution since the prior
and the posterior are both in the same family of distributions (i.e. both Beta distributions).

. [Optional] Give expressions for the MLE, the MAP, and the posterior mean estimates of 6.

[Hint: You may use the fact that a Beta(h,t) distribution has mean h/(h + t) and has mode
(h—1)/(h+t—2) for h,t > 1. For the Bayesian solutions, you should note that as h + ¢
gets very large, and assuming we keep the ratio h/(h +t) fixed, the posterior mean and MAP
approach the prior mean h/ (h + t), while for fixed h and ¢, the posterior mean approaches
the MLE as the sample size n = nj, + n; — oo.

. [Optional] What happens to éMLE , éM AP, and éPOSTERIOR MEAN as the number of coin flips

n = ny, + ny approaches infinity?

. [Optional] The MAP and posterior mean estimators of § were derived from a Bayesian per-

spective. Let’s now evaluate them from a frequentist perspective. Suppose 6 is fixed and
unknown. Which of the MLE, MAP, and posterior mean estimators give unbiased estimates
of 6, if any? [Hint: The answer may depend on the parameters h and ¢ of the prior. Also,
let’s consider the total number of flips n = ny, + n; to be given (not random), while n;, and
ny are random, with n, =n — ny.|

. [Optional] Suppose somebody gives you a coin and asks you to give an estimate of the prob-

ability of heads, but you can only toss the coin 3 times. You have no particular reason to
believe this is an unfair coin. Would you prefer the MLE or the posterior mean as a point
estimate of 87 If the posterior mean, what would you use for your prior?

[Optional] Hierarchical Bayes for Click-Through Rate Esti-
mation

In mobile advertising, ads are often displayed inside apps on a phone or tablet device. When an ad
is displayed, this is called an “impression.” If the user clicks on the ad, that is called a “click.” The
probability that an impression leads to a click is called the “click-through rate” (CTR).

Suppose we have d = 1000 apps. For various reasons’, each app tends to have a different
overall CTR. For the purposes of designing an ad campaign, we want estimates of all the app-level
CTRs, which we’ll denote by 61, ... ,601900- Of course, the particular user seeing the impression and
the particular ad that is shown have an effect on the CTR, but we’ll ignore these issues for now.
[Because so many clicks on mobile ads are accidental, it turns out that the overall app-level CTR
often dominates the effect of the particular user and the specific ad.]

If we have enough impressions for a particular app, then the empirical fraction of clicks will give
a good estimate for the actual CTR. However, if we have relatively few impressions, we’ll have some
problems using the empirical fraction. Typical CTRs are less than 1%, so it takes a fairly large
number of observations to get a good estimate of CTR. For example, even with 100 impressions, the
only possible CTR estimates given by the MLE would be 0%, 1%, 2%, ..., 100%. The 0% estimate
is almost certainly much too low, and anything 2% or higher is almost certainly much too high.
Our goal is to come up with reasonable point estimates for 61, ..., 61000, €ven when we have very
few observations for some apps.

If we wanted to apply the Bayesian approach worked out in the previous problem, we could
come up with a prior that seemed reasonable. For example, we could use the following Beta(3,400)
as a prior distribution on each 6;:

Beta(3,400) Density Function
90-
60-

30-

0.0% 0.5% 1.0% 15% 2.0% 25%

In this basic Bayesian approach, the parameters 3 and 400 would be chosen by the data scientist
based on prior experience, or “best guess”, but without looking at the new data. Another approach
would be to use the data to help you choose the parameters a and b in Beta(a,b). This would not
be a Bayesian approach, though it is frequently used in practice. One method in this direction is
called empirical Bayes. Empirical Bayes can be considered a frequentist approach, in which we
estimate a and b from the data D using some estimation technique, such as maximum likelihood.
The proper Bayesian approach to this type of thing is called hierarchical Bayes, in which we put
another prior distribution on a and b. We’ll investigate each of these approaches below.

Mathematical Description

We'll now give a mathematical description of our model, assuming the prior parameters a and b
are directly chosen by the data scientist. Let ni,...,nq be the number of impressions we observe
for each of the d apps. In this problem, we will not consider these to be random numbers. For the

5The primary reason is that different apps place the ads differently, making it more or less difficult to avoid
clicking the ad.

ith app, let c},...,cl"" € {0,1} be indicator variables determining whether or not each impression

was clicked. That is, cz = 1(jth impression on ith app was clicked). We can summarize the data
on the ith app by D; = (z;,n;), where z; = 2?7:1 ¢} is the total number of impressions that were
clicked for app i. Let 6 = (01, ...,04), where 6; is the CTR for app i.

In our Bayesian approach, we act as though the data were generated as follows:
1. Sample 64, ...,04 i.i.d. from Beta(a,b).

2. For each app i, sample c},...,cl" i.i.d. from Bernoulli(6;).

()

8.1 [Optional] Empirical Bayes for a single app

We start by working out some details for Bayesian inference for a single app. That is, suppose
we only have the data D; from app ¢, and nothing else. Mathematically, this is exactly the same
setting as the coin tossing setting above, but here we push it further.

1. Give an expression for p(D; | 0;), the likelihood of D; given the probability of click 6;, in terms
of 91', xX; and n;.

2. We will take our prior distribution on 6; to be Beta(a,b). The corresponding probability
density function is given by
1

a—1 b1
B(a,b)ei (1=,

p(6;) = Beta(6;; a,b) =
where B(a,b) is called the Beta function. Explain (without calculation) why we must have

/93—1 (1—0,)""" d6; = B(a,b).

3. Give an expression for the posterior distribution p(; | D;). In this case, include the constant
of proportionality. In other words, do not use the “is proportional to” sign o in your final
expression. You may reference the Beta function defined above. [Hint: This problem is
essentially a repetition of an earlier problem.]

4. Give a closed form expression for p(D;), the marginal likelihood of D;, in terms of the a, b, z;,
and n;. You may use the normalization function B(:,-) for convenience, but you should not
have any integrals in your solution. (Hint: p(D;) = [p(D; | 6;) p(6;) df;, and the answer will
be a ratio of two beta function evaluations.)

5. The maximum likelihood estimate for 6; is z;/n;. Let pyLe(D;) be the marginal likelihood of
D, when we use a prior on #; that puts all of its probability mass at x;/n;. Note that

pvmLe(Di) = p (Di | 0; = xz> D (91 = :)

= p(Di9i=%>~
ng

10

1500 .
—9.x107

- 7.x107°
1000

b 5.x1077

500
3.x107°

1.%x107°

Figure 1: A plot of p(D; | a,b) as a function of a and b.

Explain why, or prove, that pyLe(D;) is larger than p(D;) for any other prior we might put
on ;. If it’s too hard to reason about all possible priors, it’s fine to just consider all Beta
priors. [Hint: This does not require much or any calculation. It may help to think about the
integral p(D;) = [p(D; | 0;) p(0;) db; as a weighted average of p(D; | ;) for different values
of 6;, where the weights are p(6;).]

6. One approach to getting an empirical Bayes estimate of the parameters a and b is to use
maximum likelihood. Such an empirical Bayes estimate is often called an ML-2 estimate,
since it’s maximum likelihood, but at a higher level in the Bayesian hierarchy. To emphasize
the dependence of the likelihood of D; on the parameters a and b, we’ll now write it as
p(D; | a,b)°. The empirical Bayes estimates for a and b are given by

(a,b) = argmax p(D; | a,b).
(a,b)€(0,00) % (0,00)

To make things concrete, suppose we observed x; = 3 clicks out of n; = 500 impressions. A
plot of p(D; | a,b) as a function of a and b is given in Figure 1. It appears from this plot that
the likelihood will keep increasing as a and b increase, at least if a and b maintain a particular
ratio. Indeed, this likelihood function never attains its maximum, so we cannot use ML-2
here. Explain what’s happening to the prior as we continue to increase the likelihood. [Hint:
It is a property of the Beta distribution (not difficult to see), that for any € € (0, 1), there is a
Beta distribution with expected value 6 and variance less than ¢, for any € > 0. What’s going
in here is similar to what happens when you attempt to fit a gaussian distribution A (u,o?)
to a single data point using maximum likelihood.]

6Note that this is a slight (though common) abuse of notation, because a and b are not random variables in this
setting. It might be more appropriate to write this as p(D;; a,b) or p, »(D;). But this isn’t very common.

11

8.2 [Optional] Empirical Bayes Using All App Data

In the previous section, we considered working with data from a single app. With a fixed prior, such
as Beta(3,400), our Bayesian estimates for 6; seem more reasonable to me’ than the MLE when our
sample size n; is small. The fact that these estimates seem reasonable is an immediate consequence
of the fact that I chose the prior to give high probability to estimates that seem reasonable to me,
before ever seeing the data. Our earlier attempt to use empirical Bayes (ML-2) to choose the prior
in a data-driven way was not successful. With only a single app, we were essentially overfitting the
prior to the data we have. In this section, we’ll consider using the data from all the apps, in which
case empirical Bayes makes more sense.

1. Let D = (Dy,...,Dy) be the data from all the apps. Give an expression for p(D | a,b), the
marginal likelihood of D. Expression should be in terms of a,b,x;,n; for i = 1,...,d.
Assume data from different apps are independent. (Hint: This problem should be easy, based
on a problem from the previous section.)

2. Explain why p(0; | D) = p(0; | D;), according to our model. In other words, once we choose
values for parameters a and b, information about one app does not give any information about
other apps.

3. Suppose we have data from 6 apps. 3 of the apps have a fair number of impressions, and 3
have relatively few. Suppose we observe the following:
’ \ Num Clicks \ Num Impressions ‘

App 1 50 10000
App 2 160 20000
App 3 180 60000
App 4 0 100
App 5 0 5
App 6 1 2

Compute the empirical Bayes estimates for a and b. (Recall, this amounts to computing
(a,b) = arg max, yer>0xr>0 P(D | a,b).) This will require solving an optimization problem,
for which you are free to use any optimization software you like (perhaps scipy.optimize would
be useful). The empirical Bayes prior is then Beta(a, ZA))7 where & and b are our ML-2 estimates.
Give the corresponding prior mean and standard deviation for this prior.

4. Complete the following table:
’ \ NumClicks \ NumImpressions \ MLE \ MAP \ PosteriorMean | PosteriorSD ‘

App 1 50 10000 0.5%

App 2 160 20000 0.8%

App 3 180 60000 0.3%

App 4 0 100 0%

App 5 0 5 0%

App 6 1 2 50%
Make sure to take a look at the PosteriorSD values and note which are big and which are
small.

1 say “to me”, since I am the one who chose the prior. You may have an entirely different prior, and think that
my estimates are terrible.

12

https://docs.scipy.org/doc/scipy/reference/optimize.html

8.3 |[Optional] Hierarchical Bayes

In Section 8.2 we managed to get empirical Bayes ML-II estimates for a and b by assuming we had
data from multiple apps. However, we didn’t really address the issue that ML-II, as a maximum
likelihood method, is prone to overfitting if we don’t have enough data (in this case, enough apps).
Moreover, a true Bayesian would reject this approach, since we’re using our data to determine our
prior. If we don’t have enough confidence to choose parameters for a and b without looking at the
data, then the only proper Bayesian approach is to put another prior on the parameters a and b.
If you are very uncertain about values for a and b, you could put priors on them that have high
variance.

1. [Optional| Suppose P is the Beta(a, b) distribution. Conceptually, rather than putting priors
on a and b, it’s easier to reason about priors on the mean m and the variance v of P. If we
parameterize P by its mean m and the variance v, give an expression for the density function
Beta(f; m,v). You are free to use the internet to get this expression — just be confident it’s
correct. [Hint: To derive this, you may find it convenient to write some expression in terms
of n=a+10b.]

2. [Optional] Suggest a prior distribution to put on m and v. [Hint: You might want to use one
of the distribution families given in this lecture.

3. [Optional] Once we have our prior on m and v, we can go “full Bayesian” and compute posterior
distributions on 64, ..., 0;. However, these no longer have closed forms. We would have to use
approximation techniques, typically either a Monte Carlo sampling approach or a variational
method, which are beyond the scope of this course®. After observing the data D, m and v
will have some posterior distribution p(m,v | D). We can approximate that distribution by a
point mass at the mode of that distribution (mmap,vmap) = argmax,, , p(m,v | D). Give
expressions for the posterior distribution p(61,...,04 | D), with and without this approxi-
mation. You do not need to give any explicit expressions here. It’s fine to have expressions
like p(61,...,04 | m,v) in your solution. Without the approximation, you will probably need
some integrals. It’s these integrals that we need sampling or variational approaches to ap-
proximate. While one can see this approach as a way to approximate the proper Bayesian
approach, one could also be skeptical and say this is just another way to determine your prior
from the data. The estimators (myap,vmap) are often called MAP-II estimators, since
they are MAP estimators at a higher level of the Bayesian hierarchy.

81If you’re very ambitious, you could try out a package like PyStan to see what happens.

13

https://davidrosenberg.github.io/mlcourse/Archive/2016/Lectures/10b.conditional-probability-models.pdf#page=6
https://pystan.readthedocs.io/en/latest/

