
Homework 6: Multiclass, Trees, and Gradient Boosting

Instructions: Your answers to the questions below, including plots and mathematical work,
should be submitted as a single PDF file. It’s preferred that you write your answers using software
that typesets mathematics (e.g. LATEX, LYX, or MathJax via iPython), though if you need to you
may scan handwritten work. You may find the minted package convenient for including source code
in your LATEX document. If you are using LYX, then the listings package tends to work better.

1 Reformulations of Multiclass Hinge Loss

1.1 Multiclass setting review
Consider the multiclass output space Y = {1, . . . , k}. Suppose we have a base hypothesis space H =
{h : X × Y → R} from which we select a compatibility score function. Then our final multiclass
hypothesis space is F =

{
f(x) = arg maxy∈Y h(x, y) | h ∈ H

}
. Since functions in F map into Y,

our action space A and output space Y are the same. Nevertheless, we will write our class-sensitive
loss function as ∆ : Y × A → R, even though Y = A. We do this to indicate that the true class
goes in the first slot of the function, while the prediction (i.e. the action) goes in the second slot.
This is important because we do not assume that ∆(y, y′) = ∆(y′, y). It would not be unusual to
have this asymmetry in practice. For example, false alarms may be much less costly than no alarm
when indeed something is going wrong.

In the spirit of empirical risk minimization, we would like to find f ∈ F minimizing the empirical
cost-sensitive loss:

min
f∈F

n∑
i=1

∆ (yi, f(xi)) ,

possibly with some regularization. But this is clearly intractable, since we already know binary
classification is intractable and that’s a special case of this formulation. In lecture we proposed an
alternative, tractable objective function: the multiclass SVM based on the convex multiclass hinge
loss.

1.2 Two versions of multiclass hinge loss (or generalized hinge loss)
In lecture, we defined the margin of the compatibility score function h on the ith example (xi, yi)
for class y as

mi,y(h) = h(xi, yi)− h(xi, y).

We also gave a formulation of a multiclass SVM objective function, where the loss on an individual
example (xi, yi) was

1

https://github.com/gpoore/minted
https://en.wikibooks.org/wiki/LaTeX/Source_Code_Listings


`1(h, (xi, yi)) = max
y∈Y−{yi}

(max [0,∆(yi, y)−mi,y(h)]) .

There’s an alternative formulation, called the generalized hinge loss in SSBD Section 17.2. There
they define

`2(h, (xi,yi)) = max
y∈Y

[∆ (yi, y) + h(xi, y)− h(xi, yi)] .

1. Show that if ∆(y, y) = 0 for all y ∈ Y, then `2 (h, (xi, yi)) = `1(h, (xi, yi)). [Hint: Note that
maxy∈Y φ(y) = max

(
φ(yi),maxy∈Y−{yi} φ(yi)

)
.]

2. In the context of the generalized hinge loss, we’ve said that ∆(yi, y) is like the “target margin”
between the score for true class yi and the score for class y. Suppose that for our compatibility
function h, all target margins are reached or exceeded on xi. That is

mi,y(h) = h(xi, yi)− h(xi, y) ≥ ∆(yi, y),

for all y ∈ Y − {yi}. Assume that ∆(yi, y) > 0 ∀y 6= yi and ∆(yi, y) = 0 for y = yi. ]

(a) Show that under the conditions above, `1(h, (xi, yi)) = `2(h, (xi, yi)) = 0.
(b) Show that under the conditions above, we make the correct prediction on xi. That is,

f(xi) = arg maxy∈Y h(xi, y) = yi.

2 SGD for Multiclass Linear SVM
Suppose our output space and our action space are given as follows: Y = A = {1, . . . , k}. Given a
non-negative class-sensitive loss function ∆ : Y ×A → [0,∞) and a class-sensitive feature mapping
Ψ : X × Y → Rd. Our prediction function f : X → Y is given by

fw(x) = arg max
y∈Y

〈w,Ψ(x, y)〉

For training data (x1, y1), . . . , (xn, yn) ∈ X×Y, let J(w) be the `2-regularized empirical risk function
for the multiclass hinge loss. We can write this as

J(w) = λ‖w‖2 +
1

n

n∑
i=1

max
y∈Y

[∆ (yi, y) + 〈w,Ψ(xi, y)−Ψ(xi, yi)〉] ,

for some λ > 0.

1. [Optional] Show that J(w) is a convex function of w. You may use any of the rules about
convex functions described in our notes on Convex Optimization, in previous assignments,
or in the Boyd and Vandenberghe book, though you should cite the general facts you are
using. [Hint: If f1, . . . , fm : Rn → R are convex, then their pointwise maximum f(x) =
max {f1(x), . . . , fm(x)} is also convex.]

2. Since J(w) is convex, it has a subgradient at every point. Give an expression for a subgradient
of J(w). You may use any standard results about subgradients, including the result from an
earlier homework about subgradients of the pointwise maxima of functions. (Hint: It may be
helpful to refer to ŷi = arg maxy∈Y [∆ (yi, y) + 〈w,Ψ(xi, y)−Ψ(xi, yi)〉].)

3. Give an expression for the stochastic subgradient based on the point (xi, yi).

4. Give an expression for a minibatch subgradient, based on the points (xi, yi), . . . , (xi+m−1, yi+m−1).

2

https://davidrosenberg.github.io/mlcourse/Notes/convex-optimization.pdf


3 [Optional] Hinge Loss is a Special Case of Generalized Hinge
Loss

Let Y = {−1, 1}. Let ∆(y, ŷ) = 1(y 6= ŷ). If g(x) is the score function in our binary classification
setting, then define our compatibility function as

h(x, 1) = g(x)/2

h(x,−1) = −g(x)/2.

Show that for this choice of h, the multiclass hinge loss reduces to hinge loss:

` (h, (x, y)) = max
y′∈Y

[∆ (y, y′)) + h(x, y′)− h(x, y)] = max {0, 1− yg(x)}

4 Multiclass Classification - Implementation
In this problem we will work on a simple three-class classification example, similar to the one given
in lecture. The data is generated and plotted for you in the skeleton code.

4.1 One-vs-All (also known as One-vs-Rest)
In this problem we will implement one-vs-all multiclass classification. Our approach will assume we
have a binary base classifier that returns a score, and we will predict the class that has the highest
score.

1. Complete the class OneVsAllClassifier in the skeleton code. Following the OneVsAllClassifier
code is a cell that extracts the results of the fit and plots the decision region. Include these
results in your submission.

4.2 Multiclass SVM
In this question, we will implement stochastic subgradient descent for the linear multiclass SVM,
as described in lecture and in this problem set. We will use the class-sensitive feature mapping
approach with the “multivector construction”, as described in our multiclass classification lecture
and in SSBD Section 17.2.1.

1. Complete the skeleton code for multiclass SVM. Following the multiclass SVM implementa-
tion, we have included another block of test code. Make sure to include the results from these
tests in your assignment, along with your code.

5 [Optional] Audio Classification
In this problem, we will work on the urban sound dataset URBANSOUND8K from the Center
for Urban Science and Progress (CUSP) at NYU. (You should download the data from that link.)
We will first extract features from raw audio data using the LibROSA package, and then we will
train multiclass classifiers to classify the sounds into 10 sound classes. URBANSOUND8K dataset
contains 8732 labeled sound excerpts broken into 10 folds. Use folds 1 and 2 for training, and folds
3 and 4 for validation.

3

https://davidrosenberg.github.io/mlcourse/Archive/2017Fall/Lectures/11b.multiclass.pdf#page=10
https://davidrosenberg.github.io/mlcourse/Archive/2017Fall/Lectures/11b.multiclass.pdf#page=10
https://davidrosenberg.github.io/mlcourse/Archive/2017Fall/Lectures/11b.multiclass.pdf#page=28
https://serv.cusp.nyu.edu/projects/urbansounddataset/urbansound8k.html
https://github.com/librosa/librosa


1. In LibROSA, there are many functions for visualizing audio waves and spectra, such as dis-
play.waveplot() and display.specshow(). Load a random audio file from each class as a floating
point time series with librosa.load(), and plot their waves and linear-frequency power spec-
trogram. If you are interested, you can also play the audio in the notebook with functions
display() and Audio() in IPython.display.

2. Mel-frequency cepstral coefficients (MFCC) are a commonly used feature for sound processing.
We will use MFCC and its first and second differences (like discrete derivatives) as our features
for classfication. First, use function feature.mfcc() from LibROSA to extract MFCC features
from each audio sample. (The first MFCC coefficient is typically discarded in sound analysis,
but you do not need to. You can test whether this helps in the optional problem below.)
Next, use function feature.delta() to calculate the first and second differences of MFCC.
Finally, combine these features and normalize each feature to zero mean and unit variance.

3. Train a linear multiclass SVM on your training set. Evaluate your results on the validation
set in terms of 0/1 error and generate a confusion table. Compare the results to a one-vs-all
classifier using a binary linear SVM as the base classifier. For each model, may use your code
from the previous problem, or you may use another implementation (e.g. from sklearn).

4. [More Optional] Compare results to any other multiclass classification methods of your choice.

5. [More Optional] Try different feature sets and see how they affect performance.

6 [Optional] Decision Tree Implementation
In this problem we’ll implement decision trees for both classification and regression. The strategy
will be to implement a generic class, called Decision_Tree, which we’ll supply with the loss
function we want to use to make node splitting decisions, as well as the estimator we’ll use to come
up with the prediction associated with each leaf node. For classification, this prediction could be
a vector of probabilities, but for simplicity we’ll just consider hard classifications here. We’ll work
with the classification and regression data sets from previous assignments.

1. [Optional] Complete the class Decision_Tree, given in the skeleton code. The intended
implementation is as follows: Each object of type Decision_Tree represents a single node
of the tree. The depth of that node is represented by the variable self.depth, with the root
node having depth 0. The main job of the fit function is to decide, given the data provided,
how to split the node or whether it should remain a leaf node. If the node will split, then
the splitting feature and splitting value are recorded, and the left and right subtrees are fit
on the relevant portions of the data. Thus tree-building is a recursive procedure. We should
have as manyDecision_Tree objects as there are nodes in the tree. We will not implement
pruning here. Some additional details are given in the skeleton code.

2. [Optional] Complete either the compute_entropy or compute_gini functions. Run the
code provided that builds trees for the two-dimensional classification data. Include the results.
For debugging, you may want to compare results with sklearn’s decision tree. For visualization,
you’ll need to install graphviz.

4

https://librosa.github.io/librosa/generated/librosa.display.specshow.html
https://librosa.github.io/librosa/generated/librosa.display.specshow.html
https://en.wikipedia.org/wiki/Mel-frequency_cepstrum


3. [Optional] Complete the function mean_absolute_deviation_around_median (MAE).
Use the code provided to fit the Regression_Tree to the krr dataset using both the MAE
loss and median predictions. Include the plots for the 6 fits.

7 Gradient Boosting Machines
Recall the general gradient boosting algorithm1, for a given loss function ` and a hypothesis space
F of regression functions (i.e. functions mapping from the input space to R):

1. Initialize f0(x) = 0.

2. For m = 1 to M :

(a) Compute:

gm =

 ∂

∂f(xj)

n∑
i=1

` (yi, f(xi))

∣∣∣∣∣
f(xi)=fm−1(xi), i=1,...,n

n

j=1

(b) Fit regression model to −gm:

hm = arg min
h∈F

n∑
i=1

((−gm)i − h(xi))
2
.

(c) Choose fixed step size νm = ν ∈ (0, 1], or take

νm = arg min
ν>0

n∑
i=1

` (yi, fm−1(xi) + νhm(xi)) .

(d) Take the step:
fm(x) = fm−1(x) + νmhm(x)

3. Return fM .

In this problem we’ll derive two special cases of the general gradient boosting framework: `2-
Boosting and BinomialBoost.

1. Consider the regression framework, where Y = R. Suppose our loss function is given by

`(ŷ, y) =
1

2
(ŷ − y)

2
,

and at the beginning of the m’th round of gradient boosting, we have the function fm−1(x).
Show that the hm chosen as the next basis function is given by

hm = arg min
h∈F

n∑
i=1

[(yi − fm−1(xi))− h(xi)]
2
.

1Besides the lecture slides, you can find an accessible discussion of this approach in http://www.saedsayad.
com/docs/gbm2.pdf, in one of the original references http://statweb.stanford.edu/~jhf/ftp/trebst.pdf,
and in this review paper http://web.stanford.edu/~hastie/Papers/buehlmann.pdf.

5

http://www.saedsayad.com/docs/gbm2.pdf
http://www.saedsayad.com/docs/gbm2.pdf
http://statweb.stanford.edu/~jhf/ftp/trebst.pdf
http://web.stanford.edu/~hastie/Papers/buehlmann.pdf


In other words, at each stage we find the base prediction function hm ∈ F that is the best fit
to the residuals from the previous stage. [Hint: Once you understand what’s going on, this is
a pretty easy problem.]

2. Now let’s consider the classification framework, where Y = {−1, 1}. In lecture, we noted that
AdaBoost corresponds to forward stagewise additive modeling with the exponential loss, and
that the exponential loss is not very robust to outliers (i.e. outliers can have a large effect on
the final prediction function). Instead, let’s consider the logistic loss

`(m) = ln
(
1 + e−m

)
,

where m = yf(x) is the margin. Similar to what we did in the `2-Boosting question, write an
expression for hm as an argmin over F .

8 Gradient Boosting Implementation
This method goes by many names, including gradient boosting machines (GBM), generalized boost-
ing models (GBM), AnyBoost, and gradient boosted regression trees (GBRT), among others. Al-
though one of the nice aspects of gradient boosting is that it can be applied to any problem with a
subdifferentiable loss function, here we’ll keep things simple and consider the standard regression
setting with square loss.

1. Complete the gradient_boosting class. As the base regression algorithm, you may use
sklearn’s regression tree. You should use the square loss for the tree splitting rule and the
mean function for the leaf prediction rule. Run the code provided to build gradient boosting
models on the classification and regression data sets, and include the plots generated. Note
that we are using square loss to fit the classification data, as well as the regression data.

2. [Optional] Repeat the previous runs on the classification data set, but use a different clas-
sification loss, such as logistic loss or hinge loss. Include the new code and plots of your
results. Note that you should still use the same regression tree settings for the base regression
algorithm.

6


